Randomized algorithm

Tutorial 4 Hint for Homework 3

- Let X be a Poisson random variable with mean λ
 - a) What is the most likely value of X when

 λ is an integer?

 λ is not an integer?

[Hint]

Compare Pr(X=k+1) with Pr(X=k)

We define the median of X to be the least number m such that $Pr(X \le m) \ge 1/2$. What is the median of X when $\lambda = 3.9$?

[Hint]

You may calculate it directly.

X: Poisson random variable(μ)

 Show that Y and Z are independent Poisson random variables

[Hint]

By definition of Poisson random variable with some condition

For example:

- 1. Pr(Y=k)/* under what situation would Ybe equal to k? */
- 2. $Pr(Y=k_1 \cap Z=k_2) = Pr(Y=k_1)Pr(Z=k_2)$?

We begin with n balls in the first round

--- : served --- : thrown again

We finish when every ball is served.

Suppose b balls are now in play.
 f(b): the expected number of balls that survive to the subsequent round

Give an explicit formula for f(b). [Hint] E[# bins with 1 ball]=?

Show that $f(b) \leq b^2/n$.

```
[Hint] (Bernoulli's inequality)
For all x \ge -1 and r in N
(1 + x)^r \ge 1 + rx
```

Suppose that every round the number of balls served was exactly the expected value. Show that all the balls would be served in O(log log n) rounds.

```
[Hint] # balls at each round decreased exactly according to expectation: m, f(m), f(f(m)), ...
```

Another kind of balls-and-bins problem
 We have log₂n players.

0

1

2

. .

n-1

Each player randomly chooses a starting location ℓ and places one ball in bin ℓ mod n, ℓ +1 mod n, ..., ℓ +n / $\log_2 n$ -1 mod n

Show that the maximum load is only $O(\log \log n/\log \log \log n)$ with probability approaching 1 as $n \rightarrow \infty$

[Hint]

Total number of balls = n

What is

Pr(Bin 1 receives at least M balls)?

We throw *n* balls randomly to *n* bins

Let $X=X_1+X_2+...+X_n$ where

$$X_i = 1$$
 if i^{th} bin is empty;
 $X_i = 0$ otherwise

Let $Y=Y_1+Y_2+...+Y_n$ where each Y_i is an independent Bernoulli random variables with $Pr(Y_i = 1) = (1-1/n)^n$

- Show that $E[X_1X_2...X_k] \leq E[Y_1Y_2...Y_k]$. [Hint] By induction.
- b) Show that $X_1^{k1} X_2^{k2} ... X_j^{kj} = X_1 X_2 ... X_j$
- Show that $E[e^{tX}] \leq E[e^{tY}]$
- d) Derive a Chernoff bound for

$$Pr(X \ge (1 + \delta)E[X])$$