
A Hardware Accelerator IP for EBCOT Tier-1 Coding in
JPEG2000 Standard

Tien-Wei Hsieh Youn-Long Lin

Department of Computer Science

National Tsing Hua University
Hsin-Chu, Taiwan 300
{ylin@cs.nthu.edu.tw}

ABSTRACT
We proposed a hardware accelerator IP for the Tier-1 portion of
Embedded Block Coding with Optimal Truncation (EBCOT) used
in the JPEG2000 next generation image compression standard.
EBCOT Tier-1 accounts for more than 70% of encoding time due
to extensive bit-level processing. Our architecture consists of a
16-bit parallel context formation module and a 3-stage pipelined
arithmetic encoder. Compared with the known best design, we
reduce 17% of the cycle count and have achieved within 5% of
the theoretical lower bound. We have integrated our synthesizable
RTL with an AMBA-AHB interface for SOC design. FPGA
prototyping has been successfully demonstrated and substantial
speedup achieved.

Keywords
JPEG2000, Embedded Block Coding with Optimal Truncation,
Context Formation, Arithmetic Encoder.

1. INTRODUCTION
JPEG2000 is the next generation image
compression/decompression standard. Like previous standard
such as JPEG, it consists of three major phases: transformation,
quantization and entropy coding. JPEG2000 achieves better
quality and efficiency at the expense of more computation
complexity. It employs discrete wavelet transform (DWT) in
stead of the more traditional discrete cosine transform (DCT). For
entropy coding, the embedded block coding with optimal
truncation (EBCOT) is used. EBCOT consists of two tiers: Tier-1
codes each code-block into a sub-bit-stream and Tier-2 assembles
sub-bit-streams into image stream.

In addition to computational intensive coding tasks, a JPEG2000
codec needs to handle other complicated control function such as
rate distortion control. Therefore, it is advantageous to implement
it with a hardware/software codesign approach. According to out
profiling report, the Tier-1 portion of EBCOT accounts for more
than 70% of the total encoding time due to its extensive bit-level
processing. Hence, it is the most suitable candidate for hardwired
implementation.

The EBCOT Tier-1 takes as its input a code-block ranging from
4X4 to 64X64 transformed and quantized pixels. Each pixel is a
9-bit signed magnitude number. The code-block is divided into
bit-planes and coded one bit-plane at a time starting from the

MSB bit-plane down towards the LSB bit-plane, Each bit-plane is
further divided into horizontal 4-row stripes.

There are two phases in EBCOT Tier-1: Context Formation (CF)
and Arithmetic Encoder (AE). For each bit, the CF generates a
context/decision pair based on its surrounding information for the
AE to perform adaptive coding. Each bit-plane is scanned by the
CF in three passes. Each bit is coded in one of these passes. The
scanning order is stripe by stripe, column by column, and bit by
bit as depicted below Figure 1.

When a bit is scanned, whether and how it will be coded depends
on the status of itself and its eight surrounding neighboring bits.
After coding a bit and possibly generating its context/decision
pair, we have to update its status information for successive
coding of its yet to be coded neighbors.

MSB

LSB

4 Bits in a
Column

N-bit Pixel
precision

N Columns in a Stripe

N Stripes in a Bit-
plane

3 Passes for a Bit-plane

Figure 1. Scanning hierarchy

The AE takes as its input the sequence of context/decision pairs
generated by the CF and adaptively updates its probability tables
for arithmetic coding. Coded information is output byte by byte.

2. PROPOSED ARCHITECTURE
Our proposed architecture consists of six parts as depicted in
Figure 2. The code-memory supports input of code-block in a
pixel by pixel fashion and output of 16 bits of a bit-plane. The
state memory records the status of relevant bits. The address
generator is responsible for supplying correct addresses to the
above mentioned memory modules.

CF is a parallel structure. It can process sixteen bits
simultaneously. It generates up to 40 context/decision pairs for
each set of 16 bits. The Compress & PISO (parallel-in-serial-out)
module delivers all valid (CX, D) pairs to the AE one by one. AE
is a 3-stage pipelined structure. It receives (CX, D) pairs from
Compress & PISO and generates a series of bytes constituting
sub-bitstream.

2.1 Context Formation
There are three factors affecting parallelism of CF: 1) scanning
order, 2) checking neighbors, and 3) changing state. An example
is illustrated in Figure 3. The number annotating a bit represents
the scanning order of this bit. While the context of the sixth bit is
generated, the states of the 8 bits in the context window should be
checked. However, the first, second, third and fifth bit have
already coded, and may have their states changed. It would affect
the coding result of the sixth bit immediately.

We depict the data dependency among these sixteen bits as a DFG
shown in Figure 4. If we process the sixteen bits simultaneously,
the clock period requires ten delay units. Since its delay is ten, not
sixteen, times than sample-based architecture, we can use lower
voltage to achieve the same level of throughput. Theoretically, we
estimate that the 16-bit parallel architecture can save about 60%
power consumption compared with a sample-based architecture.

If we alleviate the frequency of memory access and utilize
efficient memory bandwidth, we can reduce the power
consumption as well. The memory-saving algorithm and the data
arrangement proposed by [4] are adopted. Furthermore, we adjust
our memory arrangement to be suitable for 16-bit parallel
processing. There are eight bits as a word, and words are placed
in three memories with an interleaving format, as shown in Figure
5. During memory access, the order of memory data depends on
the stripe. For example, the data order is (C, A, B) while we code
Stripe n, and the data order is (B, C, A,) while we code Stripe n+1.
Through this memory arrangement, we can utilize efficient
memory bandwidth.

Memory A

Memory B

Memory C

Memory A

Memory B

Memory C

Memory A

Stripe n-1

Stripe n

Stripe n+1

Current access bits A word in a memory

Figure 5. Data arrangement

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Delay step

Figure 4. Data dependency during context

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Current coding bit

Coded bit

Not coded bit

Figure 3. Scanning order

Code Block
Memory

Arithmetic

Encoder
Compress & PISO

Context

Formation

16 bits

(CX, D)s

(CX, D)

State Memory

Byte_out

Address Generator

Pixel_in

Figure 2. Proposed tier-1 block coder

During the coding process, we use nine 8-bit shift registers for
local data reuse as shown in Figure 6. By the multiplexer, the
three memories can transfer data in the right order. The context
window is the data requirement for the parallel processing. It
includes sixteen current coding bits in the stripe and twenty
neighbor bits for coding in the boundary. The context window
would slide to the next four columns (sixteen bits) after each
processing step.

The 16-bit parallel processing can reduce cycles consumed by
context formatting. However, there are still wasted cycles because
each bit is coded in only one of the three passes. We adopt the
skipping scheme and propose a stripe-skipping method. It is easy
to implement in our 16-bit parallel architecture. Moreover, the
memory requirement of stripe-skipping is small. We just use three
16-bit registers to record the coding condition of all stripes in
three passes and save about 2% of the cycles.

2.2 Arithmetic Encoder
Since the AE has feedback loops, we cannot employ a
straightforward pipelined structure. We adopt a Modified
Probability Estimation Table (MPET) [5] and the operand
forwarding method commonly found in RISC design to overcome
those problems.

Our 3-stage pipelined AE architecture is shown in Figure. 7. In
the first stage, we read a context-decision (CX, D) pair from CF
and use CX to look up the Context Table for the probability
estimate. Since the probability estimate of CX can be updated by
the feedback information from the second stage, we need to cope
with two identical contexts come in continuously. We use the
MPET that original PET data and two types of updating PET data
are read simultaneously by one index. Moreover, the result of the
second stage should forward to select correct PET data.

In the second stage, we calculate the updating values of the A
register and the Context Table and dispatch the information of
shift amount to the third stage. In the third stage, we either
calculate the updating values of the C register and the counter CT
or perform the renormalization procedure. After all bits of a code-
block are coded, AE is terminated and flushed to get a complete
sub-bitstream.

An important characteristic of the input symbols for AE are
presented in [3]. Those symbols have a highly skewed distribution.
In [4], they adopt a simple renormalization strategy, and their
BYTEOUT sub-procedure would take more than one clock cycle
to complete the C register operation. We use the operand
forwarding method commonly found in RISC CPU design to
overlap the actions of BYTEOUT and register-updating to
achieve about 10% saving in cycle counts, as shown in Figure 8.

3. EXPERIMENTAL RESULT
We have implemented the proposed architecture in Verilog RTL
and synthesized it with Synopsys Design Compiler under the

Context Table A

C

Index Updating

Bit Shifting

Probability Estimation (MPET)

A Calculation

MPS Updating

Table Reading

C Calculation

Renormalization

CX D

Byte

Figure 7. Proposed AE architecture

Current coding bit

Neighbor bits for coding

Memory A

Memory B

Memory C

M

U

X

Figure 6. Shift registers

C = C << A_shift

CT = CT - A_shift

C = C << CT

A_shift = A_shift -CT

BYTEOUT2

CT > A_shift ?

BYTEOUT

Twice ?

DONE

yes no

yes

no

Figure 8. Renormalization using forwarding

worst case operating environment (WCCOM), and use
PrimePower to analyze the power consumption, as shown in
Table 1.

Table 1. Synthesis and power analysis

 Skipping
methods[2]

Memory
saving[4] Our design

Tech. library TSMC .35 TSMC .35 TSMC .35

Area
(gate count)

19,000 +
13Kbit

memory

25,706 +
45Kbit

memory
Max. freq.

(MHz) 50 142.8 43.38

Power (mW) 115 131.8 (under
100 MHz) 26.68

Table 2. Comparison by cycle count

Images Lower
bound

Column-
based[2] Our design

Airplane 1,315,525 1,755,450 1,405,830

Baboon 1,750,918 2,106,820 1,829,179

Lena 1,345,543 1,743,283 1,429,414

Peppers 1,455,349 1,880,388 1,540,763

Average 1,466,833.8 1,871,485.3 1,551,296.5

Our experiment uses four standard images Airplane, Babbon,
Lena and Peppers. All of them are 512x512 gray image. Before
EBCOT process, test images go through 5/3 DWT and three
decomposition levels. Our process unit is a 64x64 code-block. We
reduce the cycle count by 17% compared with column-based
architecture. In addition, let the number of contexts be the lower
bound on the cycle count, we have achieved 5% within the

optimum, as shown in Table 2.

We integrate our design with JPEG2000 software on Altera
ExcaliburTM EPXA10DDR and compare the performance with
pure JPEG2000 software, as shown in Figure 9.

4. CONCLUSION
We have proposed a hardware accelerator IP for EBCOT of
JPEG2000. Our novel architecture leads to 17% reduction in
cycle count compared with the state-of-the-art. We have achieved
within 5% of the theoretical bound. We have also demonstrated
the developed IP in an SOC platform using FPGA prototyping.
The proposed IP can be used for any AMBA-based SOC design
of IPEG2000 image coding.

5. REFERENCES
[1] “JPEG 2000 Part I Final Committee Draft Version 1.0”,

ISO/IEC JTC 1/SC 29/WG 1 N1646R, March 2000.
Available from http://www.jpeg.org.

[2] Chung-Jr Lian, Kuan-Fu Chen, Hong-Hui Chen and Liang-
Gee Chen, “Analysis and Architecture Design of Block-
Coding Engine for EBCOT in JPEG 2000”, IEEE
Transactions on Circuits and Systems for Video Technology,
Vol. 13, No. 3, pp 219-230, March 2003.

[3] David Taubman, Erik Ordentlich, Marcelo Weinberger,
Gadiel Seroussi, Ikuro Ueno and Fumitaka Ono, “Embedded
Block Coding in JPEG2000”, Proceedings of the IEEE
International Conference on Image Processing (ICIP), Vol. 2,
pp 33-36, September 2000.

[4] Yun-Tai Hsiao, Hung-Der Lin, Kun-Bin Lee and Chein-Wei
Jen, “High-Speed Memory-Saving Architecture for the
Embedded Block Coding in JPEG2000”, IEEE International
Symposium on Circuits and Systems, Vol. 5, pp 133-136,
May 2002.

[5] Masaya Tarui, Masaru Oshita, Takao Onoye and Isao
Shirakawa, “High-Speed Implementation of JBIG Arithmetic
Coder”, Proceedings of the IEEE Region 10 Conference,
Vol. 2, pp 1291-1294, September 1999.

Figure 9. Experimental results on SoC platform

