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ABSTRACT 
We proposed a hardware accelerator IP for the Tier-1 portion of 
Embedded Block Coding with Optimal Truncation (EBCOT) used 
in the JPEG2000 next generation image compression standard. 
EBCOT Tier-1 accounts for more than 70% of encoding time due 
to extensive bit-level processing.  Our architecture consists of a 
16-bit parallel context formation module and a 3-stage pipelined 
arithmetic encoder. Compared with the known best design, we 
reduce 17% of the cycle count and have achieved within 5% of 
the theoretical lower bound. We have integrated our synthesizable 
RTL with an AMBA-AHB interface for SOC design. FPGA 
prototyping has been successfully demonstrated and substantial 
speedup achieved. 
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1. INTRODUCTION 
JPEG2000 is the next generation image 
compression/decompression standard. Like previous standard 
such as JPEG, it consists of three major phases: transformation, 
quantization and entropy coding. JPEG2000 achieves better 
quality and efficiency at the expense of more computation 
complexity. It employs discrete wavelet transform (DWT) in 
stead of the more traditional discrete cosine transform (DCT). For 
entropy coding, the embedded block coding with optimal 
truncation (EBCOT) is used. EBCOT consists of two tiers: Tier-1 
codes each code-block into a sub-bit-stream and Tier-2 assembles 
sub-bit-streams into image stream. 

In addition to computational intensive coding tasks, a JPEG2000 
codec needs to handle other complicated control function such as 
rate distortion control. Therefore, it is advantageous to implement 
it with a hardware/software codesign approach. According to out 
profiling report, the Tier-1 portion of EBCOT accounts for more 
than 70% of the total encoding time due to its extensive bit-level 
processing. Hence, it is the most suitable candidate for hardwired 
implementation. 

The EBCOT Tier-1 takes as its input a code-block ranging from 
4X4 to 64X64 transformed and quantized pixels. Each pixel is a 
9-bit signed magnitude number. The code-block is divided into 
bit-planes and coded one bit-plane at a time starting from the 

MSB bit-plane down towards the LSB bit-plane, Each bit-plane is 
further divided into horizontal 4-row stripes. 

There are two phases in EBCOT Tier-1: Context Formation (CF) 
and Arithmetic Encoder (AE). For each bit, the CF generates a 
context/decision pair based on its surrounding information for the 
AE to perform adaptive coding. Each bit-plane is scanned by the 
CF in three passes. Each bit is coded in one of these passes. The 
scanning order is stripe by stripe, column by column, and bit by 
bit as depicted below Figure 1. 

 
When a bit is scanned, whether and how it will be coded depends 
on the status of itself and its eight surrounding neighboring bits. 
After coding a bit and possibly generating its context/decision 
pair, we have to update its status information for successive 
coding of its yet to be coded neighbors. 
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Figure 1. Scanning hierarchy 



The AE takes as its input the sequence of context/decision pairs 
generated by the CF and adaptively updates its probability tables 
for arithmetic coding. Coded information is output byte by byte. 

2. PROPOSED ARCHITECTURE 
Our proposed architecture consists of six parts as depicted in 
Figure 2. The code-memory supports input of code-block in a 
pixel by pixel fashion and output of 16 bits of a bit-plane. The 
state memory records the status of relevant bits. The address 
generator is responsible for supplying correct addresses to the 
above mentioned memory modules. 

 
CF is a parallel structure. It can process sixteen bits 
simultaneously. It generates up to 40 context/decision pairs for 
each set of 16 bits. The Compress & PISO (parallel-in-serial-out) 
module delivers all valid (CX, D) pairs to the AE one by one. AE 
is a 3-stage pipelined structure. It receives (CX, D) pairs from 
Compress & PISO and generates a series of bytes constituting 
sub-bitstream. 

2.1 Context Formation 
There are three factors affecting parallelism of CF: 1) scanning 
order, 2) checking neighbors, and 3) changing state. An example 
is illustrated in Figure 3. The number annotating a bit represents 
the scanning order of this bit. While the context of the sixth bit is 
generated, the states of the 8 bits in the context window should be 
checked. However, the first, second, third and fifth bit have 
already coded, and may have their states changed.  It would affect 
the coding result of the sixth bit immediately. 

 

 
We depict the data dependency among these sixteen bits as a DFG 
shown in Figure 4. If we process the sixteen bits simultaneously, 
the clock period requires ten delay units. Since its delay is ten, not 
sixteen, times than sample-based architecture, we can use lower 
voltage to achieve the same level of throughput. Theoretically, we 
estimate that the 16-bit parallel architecture can save about 60% 
power consumption compared with a sample-based architecture. 

If we alleviate the frequency of memory access and utilize 
efficient memory bandwidth, we can reduce the power 
consumption as well. The memory-saving algorithm and the data 
arrangement proposed by [4] are adopted. Furthermore, we adjust 
our memory arrangement to be suitable for 16-bit parallel 
processing. There are eight bits as a word, and words are placed 
in three memories with an interleaving format, as shown in Figure 
5. During memory access, the order of memory data depends on 
the stripe. For example, the data order is (C, A, B) while we code 
Stripe n, and the data order is (B, C, A,) while we code Stripe n+1. 
Through this memory arrangement, we can utilize efficient 
memory bandwidth. 
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Figure 2. Proposed tier-1 block coder 



 
During the coding process, we use nine 8-bit shift registers for 
local data reuse as shown in Figure 6. By the multiplexer, the 
three memories can transfer data in the right order. The context 
window is the data requirement for the parallel processing. It 
includes sixteen current coding bits in the stripe and twenty 
neighbor bits for coding in the boundary. The context window 
would slide to the next four columns (sixteen bits) after each 
processing step. 

The 16-bit parallel processing can reduce cycles consumed by 
context formatting. However, there are still wasted cycles because 
each bit is coded in only one of the three passes. We adopt the 
skipping scheme and propose a stripe-skipping method. It is easy 
to implement in our 16-bit parallel architecture. Moreover, the 
memory requirement of stripe-skipping is small. We just use three 
16-bit registers to record the coding condition of all stripes in 
three passes and save about 2% of the cycles. 

2.2 Arithmetic Encoder 
Since the AE has feedback loops, we cannot employ a 
straightforward pipelined structure. We adopt a Modified 
Probability Estimation Table (MPET) [5] and the operand 
forwarding method commonly found in RISC design to overcome 
those problems. 

Our 3-stage pipelined AE architecture is shown in Figure. 7. In 
the first stage, we read a context-decision (CX, D) pair from CF 
and use CX to look up the Context Table for the probability 
estimate. Since the probability estimate of CX can be updated by 
the feedback information from the second stage, we need to cope 
with two identical contexts come in continuously. We use the 
MPET that original PET data and two types of updating PET data 
are read simultaneously by one index. Moreover, the result of the 
second stage should forward to select correct PET data. 

In the second stage, we calculate the updating values of the A 
register and the Context Table and dispatch the information of 
shift amount to the third stage. In the third stage, we either 
calculate the updating values of the C register and the counter CT 
or perform the renormalization procedure. After all bits of a code-
block are coded, AE is terminated and flushed to get a complete 
sub-bitstream. 

 
 

An important characteristic of the input symbols for AE are 
presented in [3]. Those symbols have a highly skewed distribution. 
In [4], they adopt a simple renormalization strategy, and their 
BYTEOUT sub-procedure would take more than one clock cycle 
to complete the C register operation. We use the operand 
forwarding method commonly found in RISC CPU design to 
overlap the actions of BYTEOUT and register-updating to 
achieve about 10% saving in cycle counts, as shown in Figure 8. 

 

3. EXPERIMENTAL RESULT 
We have implemented the proposed architecture in Verilog RTL 
and synthesized it with Synopsys Design Compiler under the 

Context Table A

C

Index Updating 

Bit Shifting 

Probability Estimation (MPET) 

A Calculation 

MPS Updating 

Table Reading 

C Calculation 

Renormalization 

CX D 

Byte 

Figure 7.  Proposed AE architecture 

Current coding bit 

Neighbor bits for coding 

Memory A 

Memory B 

Memory C 

 

M 

 

U 

 

X 

Figure 6. Shift registers 

C = C << A_shift 

CT = CT - A_shift 

C = C << CT 

A_shift = A_shift -CT 

BYTEOUT2 

CT > A_shift ? 

BYTEOUT 

Twice ? 

DONE

yes no 

yes 

no

Figure 8.  Renormalization using forwarding



worst case operating environment (WCCOM), and use 
PrimePower to analyze the power consumption, as shown in 
Table 1. 

Table 1. Synthesis and power analysis 

 Skipping 
methods[2] 

Memory 
saving[4] Our design

Tech. library TSMC .35 TSMC .35 TSMC .35 

Area 
(gate count) 

19,000 + 
13Kbit 

memory 
 

25,706 + 
45Kbit 

memory 
Max. freq. 

(MHz) 50 142.8 43.38 

Power (mW) 115 131.8 (under 
100 MHz) 26.68 

 

Table 2. Comparison by cycle count 

Images Lower 
bound 

Column-
based[2] Our design

Airplane 1,315,525 1,755,450 1,405,830 

Baboon 1,750,918 2,106,820 1,829,179 

Lena 1,345,543 1,743,283 1,429,414 

Peppers 1,455,349 1,880,388 1,540,763 

Average 1,466,833.8 1,871,485.3 1,551,296.5

 

Our experiment uses four standard images Airplane, Babbon, 
Lena and Peppers. All of them are 512x512 gray image. Before 
EBCOT process, test images go through 5/3 DWT and three 
decomposition levels. Our process unit is a 64x64 code-block. We 
reduce the cycle count by 17% compared with column-based 
architecture. In addition, let the number of contexts be the lower 
bound on the cycle count, we have achieved 5% within the 

optimum, as shown in Table 2. 

We integrate our design with JPEG2000 software on Altera 
ExcaliburTM EPXA10DDR and compare the performance with 
pure JPEG2000 software, as shown in Figure 9. 

4. CONCLUSION 
We have proposed a hardware accelerator IP for EBCOT of 
JPEG2000. Our novel architecture leads to 17% reduction in 
cycle count compared with the state-of-the-art. We have achieved 
within 5% of the theoretical bound. We have also demonstrated 
the developed IP in an SOC platform using FPGA prototyping. 
The proposed IP can be used for any AMBA-based SOC design 
of IPEG2000 image coding. 
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Figure 9.  Experimental results on SoC platform


