
A Parameterized On-Chip-Bus-Compliant FDWT/IDWT Accelerator IP
Generator*

Youn-Long Lin

Department of Computer Science
National Tsing Hua University

Hsin-Chu, Taiwan 300
Tel : +886-3-573-1072
Fax : +886-3-572-3694

ylin@cs.nthu.edu.tw

Chih-Chun Chang

Department of Computer Science
National Tsing Hua University

Hsin-Chu, Taiwan 300
Tel : +886-3-574-2797
Fax : +886-3-572-3694

dajovu@nthucad.cs.nthu.edu.tw

Abstract - We propose a software tool for automatic generation
of hardware accelerators for performing Discrete Wavelet
Transform (DWT) with user-specified coefficient parameters. In
addition to (5, 3) and (9, 7) DWT filters adopted by the next
generation JPEG2000 image compression standard, other useful
filters such as (9, 3), (6, 10), and (2, 2) can also be generated.
The generated hardware IPs can perform both forward and
inverse transform (FDWT and IDWT). We analyze variable life
time for register allocation with low power consumption and
apply register retiming technology to improve circuit
performance. Our tool also produces on-chip-bus interface
circuit compliant with the AMBA protocol together with
associated device driver so that the generated IPs is ready for
SOC integration. We verify the proposed approach by
integrating generated IPs into an SOC platform running
JPEG2000 application software. Experimental results
demonstrated that the proposed approach is indeed effective in
enhancing the productivity of hardware accelerator IP design.1

I. Introduction

For multimedia processing, Discrete Wavelet Transform
(DWT)-based image coding has better performance than
traditional Discrete Cosine Transform (DCT)-based image
coding, especially for low bit-rate applications. Therefore,
DWT-based approach has been adopted for next generation
image coding standards such as JPEG2000 [16],
Motion-JPEG2000 [17], and MPEG4 still image coding [18].
Because the DWT function accounts for a significant portion
of the encoding/decoding time, it is advantageous to speed up
the function with dedicated hardware accelerator. For easy
SOC integration, a hardware accelerator should be compliant
with popular on-chip-bus protocols.

In practice, different standards use DWT filters with
different coefficients. For example, we use (5, 3) and (9, 7)
filters in JPEG2000 and (9, 3) filter in MPEG4. A

parameterized DWT IP generator will greatly increase our
productivity in multimedia SOC design.

1* Supported in part by the National Science Council, R.O.C.,
under Grants No. NSC 92-2218-E-007-023, NSC
92-2220-E-007-009, and NSC 92-2220-E-007-017, by the
Ministry of Economics Affairs, R.O.C., under Grant No.
92-EC-17-A-03-S1-0002, and by Taiwan Semiconductor
Manufacturing Corp. (TSMC) under Grant No. 93A0002EA.

 A typical DWT-based image coding uses DWT to
transform image data into wavelet coefficients first. After the
quantized wavelet coefficients are processed through the
entropy coder, the final compressed image is produced. DWT
processes image data in larger scale to eliminate the annoying
blocking artifacts suffered by traditional DCT-based image
coding. DWT can be done in either lossy or lossless mode. If
we choose appropriate FDWT/IDWT pairs, perfect
reconstruction can be achieved. The most important property
of DWT is multi-resolution decomposition that can achieve
low bit rate and high quality.

 The rest of this paper is organized as following. Section
II describes the wavelet transform theory and surveys some
previously proposed architectures. Section III describes basic
architectures for both forward DWT and inverse DWT with
emphasis on reducing the power consumption of critical
modules. Section IV gives the optimized lifting-based DWT
theory and its corresponding architecture. In Section V, we
present our synthesis, DFT, and ATPG results. In Section VI,
we describe our IP integration and verification environment.
We then present an AMBA-based DMA interface for the IP in
Section VII. Finally, we draw some concluding remarks and
point to possible directions for future research in Section VIII.

II. Previous Work

Much work has been performed on DWT theory and
implementation. Mallat combined the Wavelet transform and
filter bank into a single transformation [11]. Daubechies
applies DWT to image coding and proposed many famous
wavelet filters [6] including the (9, 7) filter. Swendens
proposed the Lifting Scheme (LS) [5] making DWT more
computationally efficient. Calderbank, Daubechies and
Sweldens later proposed the Integer Wavelet Transform (IWT)
[2] that is more efficient without scarifying the performance.
Vishwanath proposed the Recursive Pyramid Algorithm (RPA)
[14] and a systolic array implementation. Ferretti proposed a
modified RPA [7] to solve the boundary problem encountered
during perfect reconstruction.

The lifting scheme is adopted by the JPEG2000 standard
finalized in March 2000. Many lifting-based DWT
architectures have been proposed. Grangetto, Magli, and
Martina proposed a criterion for optimal factorization of
DWT[8]. Fig. 1 depicts the DWT functionality of JPEG2000.

Low-pass output

High-pass output

X(n) -1/2 1/4

(5,3) forward DWT

X(n) α β

(9,7) forward DWT

γ

1/K

K Low-pass output

High-pass output

δ

Fig. 1 The DWT functionality in JPEG2000

It is easy to see that the structure of a (9, 7) filter is a

cascade of two (5, 3) filters. Chen et al [3] proposed a
combined (5, 3) filter and (9, 7) filter architecture by means of
folding as shown in Fig. 2.

P

R

E

D

I

C

U

P

D

A

T

E

in

R1 R2 R3

K

1/K

x

x

out

Fig. 2 Chen’s Combined (5, 3) and (9, 7) Filter

Architecture

III. DWT Architecture

In this section, we improve Chen’s architecture so that it

can perform both FDWT and IDWT. After estimating the
power consumption of our DWT architecture, we identify the
hot spot and reduce the power consumption. Furthermore, we
improve the circuit performance by means of register
retiming.

A. Combined forward DWT and inverse DWT

We propose a dual mode architecture that can perform both
FDWT and IDWT. First observing the (5, 3) filter FDWT and
IDWT described in the lifting scheme of Fig. 3, we find that
many components are common to both directions. The (9, 7)
filter also exhibits similar characteristics as shown in Fig. 4.

Transform Wavelet Discrete Inversefilter (5,3)
2

)22()2()12()12(

4
2)12()12()2()2(

Transform Wavelet Discrete Forwardfilter (5,3)
4

2)12()12()2()2(

2
)22()2()12()12(

 ++

++=+

 +++−

−=

 +++−

+=

 ++

−+=+

nXnXnYnX

nYnYnYnX

nYnYnXnY

nXnXnXnY

ext

extext
ext

ext

extext
ext

Fig. 3 The (5, 3) wavelet operation in the lifting scheme

For the (5, 3) filter, the division by four or by two can be
easily implemented with shifting two bits or one bit in the
predict module or the update module. But for the (9, 7) filter,
the operation is more complex. We still can find some
common operation and reuse the predict module, the update
module and the K module (scaling by K or 1/K).

 ()[]
 () []

 () []
 () []

[]
[]

[]
[]

 () []
 () []

 () []
 () []

Transform Wavelet Discrete Inversefilter (9,7)
6)22()2()12()12(
512()12()2()2(
422()2()12()12(
312()12()2()2(
2)12()/1()12(
1)2()2(

Transform Wavelet Discrete Forwardfilter (9,7)
6)2()/1()2(
5)12()12(
412()12()2()2(
322()2()12()12(
212()12()2()2(
1)22()2()12()12(

++×−+←+
++−×−←
++×−+←+
++−×+←

+×−←+
×←

×←
+×−←+

++−×+←
++×++←+

++−×+←
++×++←+

STEPnXnXnXnX
STEPnXnXnXnX
STEPnXnXnYnX
STEPnXnXnXnX
STEPnYKnX
STEPnYKnX

STEPnYKnY
STEPnYKnY
STEPnYnYnYnY
STEPnYnYnYnY
STEPnYnYnXnY
STEPnXnXnXnY

ext

ext

ext

extextext

α
β

γ
δ

δ
γ

β
α

Fig. 4 The (9, 7) wavelet operation in the lifting scheme

By adding some routing paths and multiplexers as depicted

in Fig. 5, we can perform both FDWT and IDWT using the
same architecture. Compared with the architecture proposed
by Chen [3], our architecture needs only six additional
multiplexers to gain the dual mode capability.

in

out

R1 R2 R3

R1 R2 R3

K

1/K

P
R
E
D
I
C
T

U
P
D
A
T
E

out

Fig. 5 Proposed Dual Mode FDWT/IDWT Architecture

B. The bit precision

Let’s focus on how many bits as needed to preserve the
precision. We will analyze the integer bits and the fraction bits
separately. The input to the DWT module is the YCrCb
component. Each pixel of an YCrCb component takes either 8
bits or 9 bits. By tracing the expression of the (9, 7) filter
forward DWT, we find that in the extreme case the output
could be 8.265234 times larger than the input. Therefore, we
need 5 guard bits. Therefore, we use 14 bits for the integer
part.
 In Reference [8], the PSNR (db) value of image Lena for
different rate (bpp) and different fraction bit-length (m) is
studied. TABLE 1 shows that using 8 bits for the fraction bits
has great quality. In order to get higher quality we use 10 bits
for the fraction part to approximate to the case of infinite
bit-length.

TABLE 2

PSNR as a function of bit precision for (9, 7) filter

Daubechies (9, 7) filter
Fraction bits

m = ∞
m = 4
m = 8

0.25 bpp
33.6429
23.5472
32.8755

0.5 bpp
36.7810
25.5439
35.5629

1 bpp
39.9570
28.3017
38.2426

C. Low-power and high-performance design

We already have the FDWT/IDWT architecture. Now we
make it more low-power and more high-performance.

C.1 Improved symmetric extension module

For symmetric extension of signals at the beginning and
ending of input sequence, a shift register module is commonly
used. Our power analysis shows that the shifter module
consumes about 35% of the total power. By carefully
analyzing the life time of each register, we re-design it with a
special datapath resulting in 70% power saving in the module.

With the behavior of the symmetric extension, we can use
the register minimization techniques from high level synthesis
to analyze the lifetime of each input pixel. It is easy to know
the minimum number of registers needed. Then we allocate
the register to the input. The principle is not to shift the input
pixels from registers to registers. Instead we hold input pixels
in the same registers and access them through multiplexers.

According to the allocation table, we design a finite state
machine (FSM) to control the data path of nine registers. In
our application, we need four FSMs to perform both FDWT
and IDWT of both (5, 3) and (9, 7) filters.

C.2 Canonic Signed Digit (CSD) Multipliers

Multiplication is also the critical part of our design. We try
to make it more low-power and high-performance. In our
application, every coefficients of the multiplication (α, β, γ, δ,
K and 1/K) are known already. Therefore we do not need
general multipliers. Hartley proposed the canonic signed digit
multipliers (CSD) [19] that uses shift operation and addition to
implement multiplication. For example, to multiply 0.75 is
equal to shift right 1 bit plus shift right 2 bits. We can

decompose any floating point coefficients into CSD
representation. There are some researches in optimizing the
CSD representation. Take the K value defined in JPEG2000 (9,
7) filter as example. By the shift line reduction, we can
reduce the CSD from nine shift lines to five shift lines. That
will reduce both the area and the critical path delay. If a
multiplier needs to perform two multiplications, the
sub-expression sharing technique is beneficial. We should find
the common sub-expression between two or three
multiplicands.

C.2 Using retiming to improve performance

After synthesis, we focus on the critical path. We find that
the critical path is in the predict module and the update
module. A path that performs two additions and one
multiplication is critical. We improve it by retiming. We move
the registers as depicted in Fig. 6 to shorten the critical path
while preserving the functionality. The figure shows the
original and the retimed predict module. The critical path
delay is reduced from 3.89 ns to 3.10 ns. The update module is
also optimized similarly.

The original predict module architecture

The new predict module architecture after retiming
Fig. 6 Optimizing the predict module by retiming

IV. Generalized DWT

In this section, we generalize our propose DWT architecture

to filters with different coefficients. First we will review the
lifting-based DWT theory proposed by Swelden. Then, we
propose detail architecture of each sub-module. We try to
reuse our dual mode FDWT/IDWT architecture for different
factoring of DWT. Finally, we describe our parameterized
DWT generator.

Given user input of the coefficients of wavelet filter taps,
our parameterized DWT generator will produce both the DWT
C model and the DWT RTL model (DWT IP). We feed the
image data into both the DWT C model and the DWT IP.
Comparing the outputs from both models helps us in
functional verification.

A. Lifting-based DWT theory

Applying the Euclidean algorithm that finds the greatest
common divisor of two natural numbers, we can find the
greatest common divisor of two Laurent polynomials. We
can factor any two Laurent polynomials and b into
the following form:

)(za)(z

)1(
0

)(
01
1)(

)(
)(

1
∏
=

=

 n

i

ni zazq
zb
za

Any wavelet filter can be represented as a polyphase matrix
below:

)2(
)()(
)()(

)(
00

=

zgzh
zgzh

zP ee

And we know that the perfect reconstruction property is
)3()(~)(1 IzPzP t =−

However, we can factor and into the form:)(zhe)(zho

)4(
0

)(
01
1)(

)(
)(

10

=

∏
=

zazq
zh
zh n

n

i

ie

And it is easy to build a complementary polyphase matrix:

)5(
/11
0

01
1)(

)()(
)()(

)(
100

0 ∏
=

=

=

n

i

iee

K
Kzq

zgzh
zgzh

zP

The original polyphase matrix can always be constructed from

with one lifting)(0 zP

)6(
10

)(1
)()(0

=

zs
zPzP

Then observe that:

)7(
1)(
01

01
10

01
10

10
)(1

01
1)(

=

=

=

zq

zqzq

i

ii

We know that any wavelet filter’s polyphase matrix can be
factored into the form

)8(
/10
0

1)(
01

10
)(1

)(
1

=∏

= K
K

zt
zs

zP
i

n

i

i

This is the most important result.

B. The factorization of different wavelet filters

We have already known that the division of two Laurent
polynomials is not unique. Different divisions of polynomials
result in different factoring of wavelet filters. We will analyze
the factoring of many wavelet filters including both the odd
taps wavelet filters and the even taps wavelet filters.

B.1 The factorization of odd taps wavelet filters

Focusing on the factoring of odd taps wavelet filters, let’s
analyze the polyphase matrix.

)9(
)()(
)()(

)(
00

=

zgzh
zgzh

zP ee

Because the length of the wavelet filter is odd, the length of

the even part transfer function should be longer than

the length of the odd part transfer function . And the
interval between them is just one. Therefore we can fix the

division. The quotient polynomials must be in the

form of either

)(zhe

q

)(zho

()zi

()1+zα or ()11 −+ zα . To avoid the value
α being too large or too infinitesimal, we put the value α
under some constraints. If its value is neither larger than
0.000005 nor smaller than -0.000005, α will be truncated.
By those principles, we can factor all odd taps wavelet filters
into the lifting scheme. The results are shown in TABLE 1. In

the table, both and a are equal to 0a 1 α .

TABLE 1

The factorization results of the odd length wavelet filters

21
210)(),(−− ++= MMM ddd

ii zazazaztzs

(9 , 7)
 Md 0a 1a 2a

K

)(1 zs 0 0 0

)(1 zt 0 -1.586146 -1.586146

)(2 zs 1 -0.052979 -0.052979

)(2 zt 0 0.882926 0.882926

)(3 zs 1 0.443504 0.443504

0

0.869865

(5 , 3)
 Md 0a 1a 2a

K

)(1 zs 0 0 0
)(1 zt 0 -0.5 -0.5
)(2 zs 1 0.25 0.25

0

1

(9 , 3)
 Md 0a 1a 2a

K

)(1 zs 0 0 0
)(1 zt 0 -0.499992 -0.499992
)(2 zs 1 -0.046875 -0.046875

0

0.707110

(13 , 11)
 Md 0a 1a 2a

K

)(1 zs 0 0 0

)(1 zt 0 -2.254075 -2.254075

)(2 zs 1 -0.190816 -0.190816

)(2 zt 0 -0.196851 -0.196851

)(3 zs 1 0.106976 0.106976

)(3 zt 0 1.591717 1.591717

)(4 zs 1 0.578168 0.578168

0

0.983757

B.2 The factorization of even taps wavelet filters

Now let’s focus on the polyphase wavelet filters. The length of

transfer function and transfer function are the

same. If we still limit the quotient polynomials

)(zhe)(zho

()zqi in

the form of ()1+zα or ()11 −+ zα , the factorization will
fail.

TABLE 2

The factorization results of the odd length wavelet filters

We must choose the quotients so that the gcd is a constant.

Therefore we use another adaptive factorization. If the lengths
of two transfer functions are the same, we let the quotient be a
constant α . If their difference is one, we use
()1+zα or ()11 −+ zα

1 a

 to be the quotient. For both cases, we
use normal division without limited quotient. In the last

case, , and may be different. By the above
guideline, the quotients of the normal cases will be the

alternate form of a constant

0a a 2

α and ()1+zα or ()11 −+ zα .
The gcd will be a constant as expected.

B.3 The factorization of inverse discrete wavelet transform

Another important issue is how to factor inverse wavelet
transform. According to the theory by Mallat [5], each

factored wavelet filter will be in the form shown in Fig. 7. The
scaling part is K and 1/K for FDWT. But, it is 1/K and K for
IDWT. The lifting part is)1(P ,U ,…)1()(MP ,U for FDWT
and ,

)(M

)(MU)(MP ,…U ,)1()1(P for IDWT. The block diagrams of
the FDWT and IDWT are symmetric. Therefore we only need
to factor the FDWT. We can easily construct the inverse
wavelet transform from the forward wavelet transform by
means of lifting.

P (1) U (1) P (M) U (M)

1/K

K

X(n)

Low-pass
output

High-pass
output

Forward wavelet transform using lifting

P (1) U (1)

+

+

P (M)

+

+

1/K

K
Low-pass
output

High-pass
output

Inverse wavelet transform using lifting

U (M)

X(n)

 - -

 - -

21
210)(),(−− ++= MMM ddd

ii zazazaztzs

(6 , 2)

 Md
 0a 1a 2a

K

)(1 zs 0 0 0 0

)(1 zt 0 -1 0 -1

)(2 zs 1 -0.0625 0.5 -0.0625
 0.707107

(2 , 2)
 Md

 0a 1a 2a
K

)(1 zs 0 0 0

)(1 zt 0 1 1

)(2 zs 1 0.5 -0.5

0

0.707107

(10 , 6)
 Md

 0a 1a 2a
K

)(1 zs 0 0 0 0
)(1 zt 0 0.369515 0 0
)(2 zs 1 0.119532 0.119532 0
)(2 zt 0 3.242383 3.242383 0
)(3 zs 0 -0.008568 -0.008568 0
)(3 zt 0 -4.611887 -4.611887 0
)(4 zs 1 -0.110879 0.500002 0.110878

1.149596

Fig. 7 Generalized FDWT and IDWT in Lifting Scheme

C. Generalized DWT Architecture

In the previous sub-section, we have already introduced the
generalized DWT theory. Now, we present the architecture.

C.1 Top-Level DWT architecture

The top-level generalized FDWT/IDWT architecture is
based on the dual mode DWT architecture we have proposed.
The previous architecture already can perform (5, 3) and (9, 7)
FDWT/IDWT operation. Now we try to make it more
generalized for filters with different coefficients.

Our new generalized DWT architecture is different from the

previous one that can only deal with two couples of lifting and
the dual lifting. If some wavelet filter is factored into more
than two couples of lifting, we must extend the architecture.
The easiest way is to cascade more predict and update
modules. We also have to give the K module new K and 1/K
values. The OUT module remains the same.

C.2 Predict/Update module

Fig. 8 depicted a modified FDWT/IDWT architecture
optimized for (5, 3) and (9, 7) filters employed by the
JPEG2000 standard. From the factoring of (5, 3) and (9, 7)

filters, we find that their quotient polynomials ()zqi are in

the form of ()1+zα or ()11 −+ zα . Therefore, if we keep
every quotient in our p lynomial division as the form of o
()1+zα or ()1−1+ zα , it is easy to map the lifting scheme

into our FDWT/IDWT architecture.

S
Y
M
M
E
T
R
I
C

E
X
T
E
N
T
I
O
N

P
R
E
D
I
C
T

U
P
D
A
T
E

S
C
A
L
I
N
G

O
U
T

CONTROL
UNIT

input pixel

output coefficient

DATA LINE

CONTROL LINE

Fig. 8 A Modified FDWT / IDWT Architecture

Let’s focus on the PREDICT and UPDATE modules. Fig. 9
depicts the original PREDICT module. The only thing we
need to do is to replace the multiplier α. We implement an
automatic shift-add multiplier generator to produce a
low-power and high-speed multiplier. The scaling module also
uses the generated shift-add multiplier. Then the generalized
shift register module is very easy to extend too. After we
factor the polyphase matrix, if we need one lifting or one dual
lifting, we use the (5, 3) mode. If we need two liftings or two
dual liftings, we use the (9, 7) mode. Therefore, we can handle
any factoring of wavelet filter.

α

Fig. 9 Original PREDICT Module

According to Grangetto’s work [18], we know that a fixed

quotient form may not be the optimal factoring of a wavelet
filter. The quotient may be in the form of -------- resulting
in a PREDICT module as depicted in Fig. 10. Therefore, we
can construct any generalized FDWT/IDWT architecture with
different wavelet coefficients.

a0 a0 a1 a0a2 a1

1
10)(−+= zaazqi0)(azqi = 2

2
1

10)(−− ++= zazaazqi
Fig. 10 Generalized PREDICT Module

C.3 Signal extension module

We have already proposed a low power signal extension

module for both (5, 3) and (9, 7) filters. Now, a general
architecture is needed. We have found that the signal
extension module is related to the number of the couples of
the lifting and the dual lifting. Therefore we pre-design the
signal extension module for one, two, three and four couples
of the lifting and the dual lifting. We select the signal
extension module according to the number of couples of
lifting.

C.4 Control unit module

The control unit of the top DWT architecture is very
complex. It should control every sub-module and generate the
output valid signal. Our DWT generator will calculate the
latency of the signal extension module and the total latency of
the top-level DWT module and produce a controller with
appropriate timing behavior.

V. DWT IP Implementation

We have implemented the proposed architecture as a
reusable IP generator. We follow the guidelines defined in the
Reuse Methodology Manual (RMM).

TABLE 3

Parameter Set of the IP Generator

At least 1 pixel, at
most one row

Steps between
Pixels

Stride

16 ~ 1K Pixels Row (Column)
Length

Length

Non-de-interleaved
(LHLHLH…LH)

De-interleaved
(LLL…LHHH…H)

Input / Output
Ordering

De-interleaved

Lossy (9,7) filter

Lossless (5,3) filter Wavelet
Filter

Coefficients

Mode

IDWT

FDWT Forward DWT
Or

Inverse DWT

Direction
Parameter RangDescription Parameter

Our target is to process a 16M-pixel image in 0.5sec. We set
the tile size to be 256 * 256 pixels and resolution level at 5.
We need 152,371,200 clock cycles and the clock period bound
is 3.281 ns.

Using the TSMC 0.13µm cell library, we are able to achieve

this target. After synthesis, we perform DFT synthesis to insert
scan chains. The report is given in Fig. 11. The fault coverage
is 98.25% based on the report from TeraMax. We use the tool
nLint® to make sure our coding style is compliant with the
RMM.

3.22 3.12 8.03 Timing
(ns)

31 28 19 Leakage

13,902 8,039 423 Dynamic Power
(uW)

33,054 31,143 12,336 Area
(gate count)

4 ns with
insert DFT

4ns No
constraint

Timing constraint
(insert DFT or not)

< TSMC 0.13 mµ cell library >

Fig. 11 Synthesis and DFT report

VI. Verification and Integration

To verify our generated DWT IP, we design a testbench, a

bus interface and a device driver, and integrate them all into
an SOC platform for FPGA prototyping.

Our golden model is the official JPEG2000 reference
software called Jasper. We extract from Jasper the input and
the output of the DWT function. And then we feed the input to
our DWT IP and compare the outputs of both software and
hardware. We also provide a high code coverage testbench to
verify our DWT IP.

We integrated the DWT IP into an AMBA-AHB-based SOC
platform as depicted in Fig. We use a data-driven architecture.
The DWT IP is active only when data arrives.

SDRAM
(picture)

Control
Logic

< Slave >

DWT

ARM
Processor

AMBA

Control Signal

Data Signal
Fig. 12 The DWT IP AHB Interface

Our device driver simplifies the use of our DWT IP to a

function call as depicted below:

DW T (FORWARD, LOSSSLESSS, DEINTER, 256, 16, DW T_data, output);

Finally, we integrate all software and hardware together in
an SOC platform as depicted in Fig. 13. The Jasper software is
running on the ARM922T CPU with the DWT function
replaced by the function call to the DWT device driver.

Both the ARM922T CPU and the DWT IP in FPGA are

clocked at 25MHz. When encoding a 512x512—pixel image,
the pure software version takes 7.218 sec while the
DWT-accelerated version takes 6.631 sec. This demonstrates
the functional correctness of our proposed generator.

WOSFS
image

32MB

ARM922T
 Processor

SDRAM
Controller

DPRAM External
Bus

 Interface

FlashSDRAM

Embedded Stripe
AHB

FPGA

DMA

PLD to
Stripe
Bridge

Stripe to
PLD

Bridge

Avalon or AHB

128MB

256KB 128KB

System image
and Software

codec

Timer PIO

DWT
IP

Fig. 13 SOC Integration for JPEG2000 Codec

VIII. Conclusions

We have proposed a software tool for automatic generation of
hardware accelerators for performing Discrete Wavelet
Transform (DWT) with user-specified coefficient parameters.
In addition to (5, 3) and (9, 7) DWT filters adopted by the
JPEG2000 image compression standard, other useful filters
such as (9, 3), (6, 10) and (2, 2) filters can also be
generated. Our generated hardware IP can perform both
forward and inverse transform (FDWT and IDWT). We have
employed from high level synthesis research the register life
time analysis technology for reducing power consumption and
logic retiming technology for improving circuit performance.
Our tool also produces on-chip-bus interface circuit compliant
with the AMBA protocol together with associated device
driver so that the generated IPs is ready for SOC integration.

We have verified the proposed approach by integrating
generated IPs into an SOC platform running JPEG2000
application software. Experimental results demonstrated that
the proposed approach is indeed effective in enhancing the
productivity of hardware accelerator IP design.

 In the future, we can try to integrate the DWT architecture
that we generated into other image or video compression
system. Furthermore, we can improve the data communication
bottleneck between the DWT IP and the memory modules.

References

[1] K. Andra, C. Chakrabarti, and T. Acharya, “A
VLSI architecture for lifting-based forward and
inverse wavelet transform,” IEEE Transactions on
Signal Processing, Vol. 50, Issue 4, pp. 966-977, April
2002.

[2] A. R. Calderbank, I. Daubechies, W. Sweldens,
and B.-L. Yeo, “Wavelet transforms that map integers
to integers,” Technical report, Department of
Mathematics, Princeton University, 1996.

[3] C.-Y. Chen, Z.-L. Yang, T.-C. Wang and L.-G.
Chen, “A programmable VLSI architecture for 2-D
discrete wavelet transform,” IEEE International
Symposium on Circuits and Systems 2000, Vol. 1, pp.
619 – 622, May 2000.

[4] C. Chrysafis and A. Ortega, “Line-based, reduced
memory, wavelet image compression,” IEEE

Transactions on Image Processing, Vol. 9, No. 3, pp.
378-389, March 2000.

[5] A. Cohen, I. Daubechies and J. Feauveau,
“Bi-orthogonal bases of compactly supported
wavelets“, Comm. Pure Appl. Math., Vol. 45, pp.
485-560, 1992.

[6] I. Daubechies and W. Swelden, “Factoring
wavelet transform into lifting steps,” The Journal of
Fourier Analysis and Applications, Vol. 4, pp.247-269,
1998.

[7] M. Ferretti and D. Rizzo, ``Handling borders in
systolic architectures for the 1-D discrete wavelet
transform for perfect reconstruction,’’ IEEE
Transactions on Signal Processing, Vol. 48 , Issue
5 , May 2000, pp. 1365 - 1378

[8] M. Grangetto, E. Magli, M. Martina, and G. Mo,
“Optimization and Implementation of the Integer
Wavelet Transform for Image Coding,” IEEE
Transactions on Image Processing, Vol. 11, Issue 6, pp.
596-604, June 2002.

[9] C.-T. Huang, P.-C. Tseng and L.-G. Chen,
“Efficient VLSI architectures of lifting-based discrete
wavelet transform by systematic design method,”
IEEE International Symposium on Circuits and
Systems 2002, Vol. 5, pp. 565 – 568, May 2002.

[10] C.-J. Lian, K.-F. Chen, H.-H. Chen and L.-G.
Chen, “Lifting based discrete wavelet transform
architecture for JPEG2000,” IEEE International
Symposium on Circuits and Systems, Vol.2, pp. 445 –
448, May 2001.

[11] S. Mallat, “A theory for multi resolution signal
decomposition: the wavelet representation,” IEEE
Transactions on Pattern Analysis and Machine
Intelligence, Vol. 11, pp. 674-693, July 1989.

[12] M. Ravasi, L. Tenze and M. Mattavelli, “A
scalable and programmable architecture for 2-D DWT
decoding,” IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 12, Issue 8 , pp.
671-677, August 2002.

[13] P.-C. Tseng, C.-T. Huang and L.-G. Chen,
“Reconfigurable discrete wavelet transform
architecture for advanced multimedia systems,” IEEE
Workshop on Signal Processing Systems 2003, pp.
137 – 141, August 2003.

[14] M. Vishwanath, “The Recursive Pyramid
Algorithm for the Discrete Wavelet Transform,” IEEE
Trans. on Signal Processing, Vol. 42, No. 3, pp.
673-676, March 1994.

[15] P.-C. Wu and L.-G. Chen, “An efficient
architecture for two-dimensional discrete wavelet
transform,” IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 11, Issue.4 , pp.
536-545, April 2001.

[16] ISO/IEC. ISO/IEC 15444-1. Information
technology – JPEG2000 Part I. image coding system.
March 2000.

[17] ISO/IEC. ISO/IEC 15444-3. Information
technology – Motion JPEG2000, 2002.

[18] ISO/IEC. JTC1/SC29/WG11 Coding of moving
pictures and audio, January 2001.

