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Abstract - We propose a software tool for automatic generation 
of hardware accelerators for performing Discrete Wavelet 
Transform (DWT) with user-specified coefficient parameters. In 
addition to (5, 3) and (9, 7) DWT filters adopted by the next 
generation JPEG2000 image compression standard, other useful 
filters such as   (9, 3), (6, 10), and (2, 2) can also be generated. 
The generated hardware IPs can perform both forward and 
inverse transform (FDWT and IDWT). We analyze variable life 
time for register allocation with low power consumption and 
apply register retiming technology to improve circuit 
performance. Our tool also produces on-chip-bus interface 
circuit compliant with the AMBA protocol together with 
associated device driver so that the generated IPs is ready for 
SOC integration. We verify the proposed approach by 
integrating generated IPs into an SOC platform running 
JPEG2000 application software. Experimental results 
demonstrated that the proposed approach is indeed effective in 
enhancing the productivity of hardware accelerator IP design.1 
 
 

I. Introduction 
 

For multimedia processing, Discrete Wavelet Transform 
(DWT)-based image coding has better performance than 
traditional Discrete Cosine Transform (DCT)-based image 
coding, especially for low bit-rate applications. Therefore, 
DWT-based approach has been adopted for next generation 
image coding standards such as JPEG2000 [16], 
Motion-JPEG2000 [17], and MPEG4 still image coding [18]. 
Because the DWT function accounts for a significant portion 
of the encoding/decoding time, it is advantageous to speed up 
the function with dedicated hardware accelerator. For easy 
SOC integration, a hardware accelerator should be compliant 
with popular on-chip-bus protocols. 

In practice, different standards use DWT filters with 
different coefficients. For example, we use (5, 3) and (9, 7) 
filters in JPEG2000 and (9, 3) filter in MPEG4. A 

parameterized DWT IP generator will greatly increase our 
productivity in multimedia SOC design. 
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92-EC-17-A-03-S1-0002, and by Taiwan Semiconductor 
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 A typical DWT-based image coding uses DWT to 
transform image data into wavelet coefficients first. After the 
quantized wavelet coefficients are processed through the 
entropy coder, the final compressed image is produced. DWT 
processes image data in larger scale to eliminate the annoying 
blocking artifacts suffered by traditional DCT-based image 
coding. DWT can be done in either lossy or lossless mode. If 
we choose appropriate FDWT/IDWT pairs, perfect 
reconstruction can be achieved. The most important property 
of DWT is multi-resolution decomposition that can achieve 
low bit rate and high quality.  

 The rest of this paper is organized as following. Section 
II describes the wavelet transform theory and surveys some 
previously proposed architectures. Section III describes basic 
architectures for both forward DWT and inverse DWT with 
emphasis on reducing the power consumption of critical 
modules. Section IV gives the optimized lifting-based DWT 
theory and its corresponding architecture. In Section V, we 
present our synthesis, DFT, and ATPG results. In Section VI, 
we describe our IP integration and verification environment. 
We then present an AMBA-based DMA interface for the IP in 
Section VII. Finally, we draw some concluding remarks and 
point to possible directions for future research in Section VIII. 
 
 

II. Previous Work 
 

Much work has been performed on DWT theory and 
implementation. Mallat combined the Wavelet transform and 
filter bank into a single transformation [11]. Daubechies 
applies DWT to image coding and proposed many famous 
wavelet filters [6] including the (9, 7) filter. Swendens 
proposed the Lifting Scheme (LS) [5] making DWT more 
computationally efficient. Calderbank, Daubechies and 
Sweldens later proposed the Integer Wavelet Transform (IWT)  
[2] that is more efficient without scarifying the performance. 
Vishwanath proposed the Recursive Pyramid Algorithm (RPA)  
[14] and a systolic array implementation. Ferretti proposed a 
modified RPA [7] to solve the boundary problem encountered 
during perfect reconstruction.  



The lifting scheme is adopted by the JPEG2000 standard 
finalized in March 2000. Many lifting-based DWT 
architectures have been proposed. Grangetto, Magli, and 
Martina proposed a criterion for optimal factorization of 
DWT[8]. Fig. 1 depicts the DWT functionality of JPEG2000. 
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Fig. 1  The DWT functionality in JPEG2000 

 
It is easy to see that the structure of a (9, 7) filter is a 

cascade of two (5, 3) filters. Chen et al [3]  proposed a 
combined (5, 3) filter and (9, 7) filter architecture by means of 
folding as shown in Fig. 2. 
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Fig. 2  Chen’s Combined (5, 3) and (9, 7) Filter 

Architecture 

 
III. DWT Architecture 

 
In this section, we improve Chen’s architecture so that it 

can perform both FDWT and IDWT. After estimating the 
power consumption of our DWT architecture, we identify the 
hot spot and reduce the power consumption. Furthermore, we 
improve the circuit performance by means of register 
retiming. 
 
A. Combined forward DWT and inverse DWT 
 

We propose a dual mode architecture that can perform both 
FDWT and IDWT. First observing the (5, 3) filter FDWT and 
IDWT described in the lifting scheme of Fig. 3, we find that 
many components are common to both directions. The (9, 7) 
filter also exhibits similar characteristics as shown in Fig. 4. 
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Fig. 3  The (5, 3) wavelet operation in the lifting scheme 

For the (5, 3) filter, the division by four or by two can be 
easily implemented with shifting two bits or one bit in the 
predict module or the update module. But for the (9, 7) filter, 
the operation is more complex. We still can find some 
common operation and reuse the predict module, the update 
module and the K module (scaling by K or 1/K). 
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Fig. 4  The (9, 7) wavelet operation in the lifting scheme 

 
By adding some routing paths and multiplexers as depicted 

in Fig. 5, we can perform both FDWT and IDWT using the 
same architecture. Compared with the architecture proposed 
by Chen [3], our architecture needs only six additional 
multiplexers to gain the dual mode capability. 

 

in 

out   

R1 R2 R3 

R1 R2 R3 

K 

1/K 

P 
R 
E 
D 
I 
C 
T 

U 
P 
D 
A 
T 
E 

out 

 
Fig. 5  Proposed Dual Mode FDWT/IDWT Architecture 



B. The bit precision 
 

Let’s focus on how many bits as needed to preserve the 
precision. We will analyze the integer bits and the fraction bits 
separately. The input to the DWT module is the YCrCb 
component. Each pixel of an YCrCb component takes either 8 
bits or 9 bits. By tracing the expression of the (9, 7) filter 
forward DWT, we find that in the extreme case the output 
could be 8.265234 times larger than the input. Therefore, we 
need 5 guard bits. Therefore, we use 14 bits for the integer 
part.  
 In Reference [8], the PSNR (db) value of image Lena for 
different rate (bpp) and different fraction bit-length (m) is 
studied. TABLE 1 shows that using 8 bits for the fraction bits 
has great quality. In order to get higher quality we use 10 bits 
for the fraction part to approximate to the case of infinite 
bit-length. 

 
TABLE 2 

PSNR as a function of bit precision for (9, 7) filter 
 

Daubechies (9, 7) filter 
Fraction bits 

m = ∞ 
m = 4 
m = 8 

0.25 bpp 
33.6429 
23.5472 
32.8755 

0.5 bpp 
36.7810 
25.5439 
35.5629 

1 bpp 
39.9570 
28.3017 
38.2426 

 
C. Low-power and high-performance design 
 

We already have the FDWT/IDWT architecture. Now we 
make it more low-power and more high-performance. 
 
C.1 Improved symmetric extension module 
 

For symmetric extension of signals at the beginning and 
ending of input sequence, a shift register module is commonly 
used. Our power analysis shows that the shifter module 
consumes about 35% of the total power. By carefully 
analyzing the life time of each register, we re-design it with a 
special datapath resulting in 70% power saving in the module.  

With the behavior of the symmetric extension, we can use 
the register minimization techniques from high level synthesis 
to analyze the lifetime of each input pixel.  It is easy to know 
the minimum number of registers needed. Then we allocate 
the register to the input. The principle is not to shift the input 
pixels from registers to registers. Instead we hold input pixels 
in the same registers and access them through multiplexers. 

According to the allocation table, we design a finite state 
machine (FSM) to control the data path of nine registers. In 
our application, we need four FSMs to perform both FDWT 
and IDWT of both (5, 3) and (9, 7) filters. 
 
C.2 Canonic Signed Digit (CSD) Multipliers 
 

Multiplication is also the critical part of our design. We try 
to make it more low-power and high-performance. In our 
application, every coefficients of the multiplication (α, β, γ, δ, 
K and 1/K) are known already. Therefore we do not need 
general multipliers. Hartley proposed the canonic signed digit 
multipliers (CSD) [19] that uses shift operation and addition to 
implement multiplication. For example, to multiply 0.75 is 
equal to shift right 1 bit plus shift right 2 bits. We can 

decompose any floating point coefficients into CSD 
representation. There are some researches in optimizing the 
CSD representation. Take the K value defined in JPEG2000 (9, 
7) filter as example.  By the shift line reduction, we can 
reduce the CSD from nine shift lines to five shift lines. That 
will reduce both the area and the critical path delay. If a 
multiplier needs to perform two multiplications, the 
sub-expression sharing technique is beneficial. We should find 
the common sub-expression between two or three 
multiplicands. 
 
C.2 Using retiming to improve performance 
 

After synthesis, we focus on the critical path. We find that 
the critical path is in the predict module and the update 
module. A path that performs two additions and one 
multiplication is critical. We improve it by retiming. We move 
the registers as depicted in Fig. 6 to shorten the critical path 
while preserving the functionality. The figure shows the 
original and the retimed predict module. The critical path 
delay is reduced from 3.89 ns to 3.10 ns. The update module is 
also optimized similarly. 

 
 

The original predict module architecture 

The new predict module architecture after retiming  
Fig. 6  Optimizing the predict module by retiming 

 
IV. Generalized DWT 

 
In this section, we generalize our propose DWT architecture 

to filters with different coefficients. First we will review the 
lifting-based DWT theory proposed by Swelden. Then, we 
propose detail architecture of each sub-module. We try to 
reuse our dual mode FDWT/IDWT architecture for different 
factoring of DWT. Finally, we describe our parameterized 
DWT generator.  

Given user input of the coefficients of wavelet filter taps, 
our parameterized DWT generator will produce both the DWT 
C model and the DWT RTL model (DWT IP). We feed the 
image data into both the DWT C model and the DWT IP. 
Comparing the outputs from both models helps us in 
functional verification. 

 
A. Lifting-based DWT theory 



 
Applying the Euclidean algorithm that finds the greatest 
common divisor of two natural numbers, we can find the 
greatest common divisor of two Laurent polynomials.  We 
can factor any two Laurent polynomials  and b  into 
the following form:  
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Any wavelet filter can be represented as a polyphase matrix 
below: 
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And it is easy to build a complementary polyphase matrix: 
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We know that any wavelet filter’s polyphase matrix can be 
factored into the form 
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This is the most important result. 
 
B. The factorization of different wavelet filters 
 

We have already known that the division of two Laurent 
polynomials is not unique. Different divisions of polynomials 
result in different factoring of wavelet filters. We will analyze 
the factoring of many wavelet filters including both the odd 
taps wavelet filters and the even taps wavelet filters.  
 
B.1   The factorization of odd taps wavelet filters 
 

Focusing on the factoring of odd taps wavelet filters, let’s 
analyze the polyphase matrix. 
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Because the length of the wavelet filter is odd, the length of 

the even part transfer function  should be longer than 

the length of the odd part transfer function . And the 
interval between them is just one. Therefore we can fix the 

division. The quotient polynomials  must be in the 

form of either 
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( )1+zα  or ( )11 −+ zα . To avoid the value 
α  being too large or too infinitesimal, we put the value α  
under some constraints. If its value is neither larger than 
0.000005 nor smaller than -0.000005, α  will be truncated. 
By those principles, we can factor all odd taps wavelet filters 
into the lifting scheme. The results are shown in TABLE 1. In 

the table, both and  a  are equal to 0a 1 α  . 

 

TABLE 1 

The factorization results of the odd length wavelet filters 
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B.2   The factorization of even taps wavelet filters 
 
Now let’s focus on the polyphase wavelet filters. The length of 



transfer function and transfer function  are the 

same. If we still limit the quotient polynomials 
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the form of ( )1+zα or ( )11 −+ zα , the factorization will 
fail.  

TABLE 2 

The factorization results of the odd length wavelet filters 

 
We must choose the quotients so that the gcd is a constant. 

Therefore we use another adaptive factorization. If the lengths 
of two transfer functions are the same, we let the quotient be a 
constant α . If their difference is one, we use 
( )1+zα or ( )11 −+ zα

1 a

 to be the quotient. For both cases, we 
use normal division without limited quotient. In the last 

case, ,  and may be different. By the above 
guideline, the quotients of the normal cases will be the 

alternate form of a constant

0a a 2

α  and ( )1+zα or ( )11 −+ zα . 
The gcd will be a constant as expected. 
 
 
B.3   The factorization of inverse discrete wavelet transform 
 

Another important issue is how to factor inverse wavelet 
transform. According to the theory by Mallat [5], each 

factored wavelet filter will be in the form shown in Fig. 7. The 
scaling part is K and 1/K for FDWT. But, it is 1/K and K for 
IDWT. The lifting part is )1(P ,U ,…)1( )(MP ,U  for FDWT 
and ,

)(M

)(MU )(MP ,…U ,)1( )1(P  for IDWT. The block diagrams of 
the FDWT and IDWT are symmetric. Therefore we only need 
to factor the FDWT. We can easily construct the inverse 
wavelet transform from the forward wavelet transform by 
means of lifting. 
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Fig. 7  Generalized FDWT and IDWT in Lifting Scheme 

C. Generalized DWT Architecture 
 

In the previous sub-section, we have already introduced the 
generalized DWT theory. Now, we present the architecture.  
 
C.1   Top-Level DWT architecture 
 

The top-level generalized FDWT/IDWT architecture is 
based on the dual mode DWT architecture we have proposed. 
The previous architecture already can perform (5, 3) and (9, 7) 
FDWT/IDWT operation. Now we try to make it more 
generalized for filters with different coefficients. 

 
Our new generalized DWT architecture is different from the 

previous one that can only deal with two couples of lifting and 
the dual lifting. If some wavelet filter is factored into more 
than two couples of lifting, we must extend the architecture. 
The easiest way is to cascade more predict and update 
modules. We also have to give the K module new K and 1/K 
values. The OUT module remains the same. 
 
C.2 Predict/Update module 
 

Fig. 8 depicted a modified FDWT/IDWT architecture 
optimized for (5, 3) and (9, 7) filters employed by the 
JPEG2000 standard. From the factoring of (5, 3) and (9, 7) 

filters, we find that their quotient polynomials  ( )zqi   are in 

the form of ( )1+zα  or ( )11 −+ zα . Therefore, if we keep 
every quotient in our p lynomial division as the form of o
( )1+zα  or ( )1−1+ zα , it is easy to map the lifting scheme 

into our FDWT/IDWT architecture. 
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Fig. 8  A Modified FDWT / IDWT Architecture 

Let’s focus on the PREDICT and UPDATE modules. Fig. 9 
depicts the original PREDICT module. The only thing we 
need to do is to replace the multiplier α. We implement an 
automatic shift-add multiplier generator to produce a 
low-power and high-speed multiplier. The scaling module also 
uses the generated shift-add multiplier. Then the generalized 
shift register module is very easy to extend too. After we 
factor the polyphase matrix, if we need one lifting or one dual 
lifting, we use the (5, 3) mode. If we need two liftings or two 
dual liftings, we use the (9, 7) mode. Therefore, we can handle 
any factoring of wavelet filter. 
 

 

α

 
Fig. 9  Original PREDICT Module 

 
According to Grangetto’s work [18], we know that a fixed 

quotient form may not be the optimal factoring of a wavelet 
filter. The quotient   may be in the form of  -------- resulting 
in a PREDICT module as depicted in Fig. 10. Therefore, we 
can construct any generalized FDWT/IDWT architecture with 
different wavelet coefficients. 
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Fig. 10  Generalized PREDICT Module 

 
C.3 Signal extension module 
 

We have already proposed a low power signal extension 

module for both (5, 3) and (9, 7) filters. Now, a general 
architecture is needed. We have found that the signal 
extension module is related to the number of the couples of 
the lifting and the dual lifting. Therefore we pre-design the 
signal extension module for one, two, three and four couples 
of the lifting and the dual lifting. We select the signal 
extension module according to the number of couples of 
lifting. 
 
C.4 Control unit module 
 

The control unit of the top DWT architecture is very 
complex. It should control every sub-module and generate the 
output valid signal. Our DWT generator will calculate the 
latency of the signal extension module and the total latency of 
the top-level DWT module and produce a controller with 
appropriate timing behavior.  
 

V. DWT IP Implementation 
 

We have implemented the proposed architecture as a 
reusable IP generator. We follow the guidelines defined in the 
Reuse Methodology Manual (RMM). 

 
TABLE 3 

Parameter Set of the IP Generator 

 

At least 1 pixel, at 
most one row 

Steps between 
Pixels 

Stride 

16 ~ 1K Pixels Row (Column) 
Length 

Length 

Non-de-interleaved 
(LHLHLH…LH) 

De-interleaved 
(LLL…LHHH…H)

Input / Output 
Ordering 

De-interleaved

Lossy (9,7) filter 

Lossless (5,3) filter Wavelet 
Filter 

Coefficients 

Mode 

IDWT 

FDWT Forward DWT 
Or 

Inverse DWT 

Direction 
Parameter RangDescription Parameter

 
 

Our target is to process a 16M-pixel image in 0.5sec. We set 
the tile size to be 256 * 256 pixels and resolution level at 5. 
We need 152,371,200 clock cycles and the clock period bound 
is 3.281 ns.  

 
Using the TSMC 0.13µm cell library, we are able to achieve 

this target. After synthesis, we perform DFT synthesis to insert 
scan chains. The report is given in Fig. 11. The fault coverage 
is 98.25% based on the report from TeraMax. We use the tool 
nLint® to make sure our coding style is compliant with the 
RMM. 

 



3.22 3.12 8.03 Timing 
(ns) 

31 28 19 Leakage 

13,902 8,039 423 Dynamic Power 
(uW) 

33,054 31,143 12,336 Area 
(gate count) 

4 ns with 
insert DFT

4ns No 
constraint 

Timing constraint 
(insert DFT or not) 

< TSMC 0.13 mµ  cell library > 
 

Fig. 11  Synthesis and DFT report 

 
VI. Verification and Integration 

 
To verify our generated DWT IP, we design a testbench, a 

bus interface and a device driver, and integrate them all into 
an SOC platform for FPGA prototyping. 
 

Our golden model is the official JPEG2000 reference 
software called Jasper. We extract from Jasper the input and 
the output of the DWT function. And then we feed the input to 
our DWT IP and compare the outputs of both software and 
hardware. We also provide a high code coverage testbench to 
verify our DWT IP. 
 

We integrated the DWT IP into an AMBA-AHB-based SOC 
platform as depicted in Fig. We use a data-driven architecture. 
The DWT IP is active only when data arrives. 

SDRAM 
(picture) 

Control 
Logic 

< Slave > 

DWT 

ARM 
Processor

AMBA

Control Signal 

Data Signal  
Fig. 12  The DWT IP AHB Interface 

 
Our device driver simplifies the use of our DWT IP to a 

function call as depicted below: 
 
 

DW T (FORWARD, LOSSSLESSS, DEINTER, 256, 16, DW T_data, output);  
 

Finally, we integrate all software and hardware together in 
an SOC platform as depicted in Fig. 13. The Jasper software is 
running on the ARM922T CPU with the DWT function 
replaced by the function call to the DWT device driver. 

 
Both the ARM922T CPU and the DWT IP in FPGA are 

clocked at 25MHz. When encoding a 512x512—pixel image, 
the pure software version takes 7.218 sec while the 
DWT-accelerated version takes 6.631 sec. This demonstrates 
the functional correctness of our proposed generator. 
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Fig. 13  SOC Integration for JPEG2000 Codec 

 
VIII. Conclusions 

 
We have proposed a software tool for automatic generation of 
hardware accelerators for performing Discrete Wavelet 
Transform (DWT) with user-specified coefficient parameters. 
In addition to (5, 3) and (9, 7) DWT filters adopted by the 
JPEG2000 image compression standard, other useful filters 
such as   (9, 3), (6, 10) and (2, 2) filters can also be 
generated. Our generated hardware IP can perform both 
forward and inverse transform (FDWT and IDWT). We have 
employed from high level synthesis research the register life 
time analysis technology for reducing power consumption and 
logic retiming technology for improving circuit performance. 
Our tool also produces on-chip-bus interface circuit compliant 
with the AMBA protocol together with associated device 
driver so that the generated IPs is ready for SOC integration.  
 
We have verified the proposed approach by integrating 
generated IPs into an SOC platform running JPEG2000 
application software. Experimental results demonstrated that 
the proposed approach is indeed effective in enhancing the 
productivity of hardware accelerator IP design. 
 
 In the future, we can try to integrate the DWT architecture 
that we generated into other image or video compression 
system. Furthermore, we can improve the data communication 
bottleneck between the DWT IP and the memory modules. 
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