
AN AMBA-COMPLIANT MOTION ESTIMATOR FOR 
H.264 ADVANCED VIDEO CODING1

 
Chao-Yung Kao 

Department of Computer Science 
National Tsing Hua University 

Hsin-chu, Taiwan 300 
g924305@oz.nthu.edu.tw 

Youn-Long Lin 
Department of Computer Science 

National Tsing Hua University 
Hsin-chu, Taiwan 300 

ylin@cs.nthu.edu.tw 
 

                                                           
1 Supported in part by the National Science Council, R.O.C., under Grants No. NSC 92-2218-E-007-023, NSC 92-2220-E-
007-009, and NSC 92-2220-E-007-017, by the Ministry of Economics Affairs, R.O.C., under Grant No. 92-EC-17-A-03-
S1-0002, and by Taiwan Semiconductor Manufacturing Corp. (TSMC) under Grant No. 93A0002EA. 

Abstract –We propose a 2D VLSI architecture with 256 
processing elements and a computation result reuse 
methodology for full search variable block size motion 
estimation (FSVBSME) in the next generation video 
coding standard H.264/AVC. Our pipelined engine can 
complete matching a candidate macroblock in every clock 
cycle. We implement a prototype on an SOC platform 
with a 32-bit RISC CPU core and field programmable 
gate array (FPGA) module. We equip the hardware 
accelerator with an AMBA-AHB on-chip-bus interface. 
Experimental results show that our proposed hardware 
accelerator delivers 480X speed-up when compared with 
software running at the same clock rate. 

Keywords: Motion Estimation, Video Coding, AMBA, 
Hardware Accelerator, Fast Prototyping, H.264. 

1 Introduction 
  H.264/AVC is the latest video coding standard of the 
ITU-T Video Coding Experts Group (VCEG) and 
ISO/IEC Moving Picture Experts Group (MPEG) [1]. Its 
new features include variable block sizes motion 
estimation with multiple reference frames, integer 4x4 
discrete cosine transform, in-loop deblocking filter and 
context-adaptive binary arithmetic coding (CABAC). 
H.264/AVC can save up to 50% bit-rate compared to 
MPEG-4 simple profile at the same video quality level. 
However, large amount of computation is required. 
Profiling report shows that motion estimation consumes 
about 60% of the total encoding time.  Therefore, 
hardware accelerator for motion estimation is necessary in 
real-time applications. 

Many motion estimation architectures have been 
proposed for MPEG-4 and H.264/AVC [2][3]. However, 
most of them are targeted towards ASICs. Verification is 
difficult and time-to-market is long. Reusability and 
flexibility are low, and it takes a lot of time and effort to 
integrate the hardware accelerator with software.  

  In this paper, we present a variable block size 
motion estimation engine with AMBA-AHB on-chip-bus 
interface and its prototype on an SOC platform consisting 
of embedded 32-bit RISC CPU core, memory modules, 
on-chip-bus, FPGA module, peripherals and development 
environment.  

 The rest of this paper is organized as following. In 
Section 2, we introduce the motion estimation algorithm 
used in H.264/AVC. In Section 3, we present our motion 
estimation architecture and the data reuse methodology. 
Our experimental results are presented in Section 4. 
Finally, we draw conclusions and point to possible 
directions for future research in Section 5. 

2 Motion Estimation Algorithm 
 Motion estimation algorithms exploit the temporal 
redundancy of a video sequence. Among all the motion 
estimation algorithms, the full-search block-matching 
algorithm, as shown in Figure 1, has been proven to find 
the best block match, which causes the smallest sum of 
absolute differences (SAD). The minimum SAD is 
computed as formula (1) and (2).  
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CB represents current block, and RB represents reference 
block. N is the block size and (i, j) is the motion vector. In 
H.264/AVC, each picture of a video is partitioned into 
macroblocks of 16X16 pixels and each macroblock can be 
subdivided into seven kinds of variable size sub-blocks 
(one 16x16 sub-block, two 16x8 sub-blocks, two 8x16 
sub-blocks, four 8x8 sub-blocks, eight 8x4 sub-blocks, 
eight 4x8 sub-blocks, or sixteen 4x4 sub-blocks). 
Therefore, we have to find the motion vector and 



calculate the associated minimum SAD for each and every 
of 41 sub-blocks. 

 

Figure 1.  Block Matching 

3 Proposed Motion Estimator 
3.1 Hardware Architecture 

 We adopt the full search algorithm because its 
regularity is more suitable for hardware implementation. 
We reuse the computation results of SADs for 4x4 sub-
blocks to calculate the SADs of 16x16, 16x8, 8x16, 8x8, 
8x4 and 4x8 sub-blocks. 

Our architecture is shown in Figure 2. There are total 
256 processing elements (PE). PEs are grouped into 16 
4X4 arrays. The detail of a PE array is depicted in Figure 
3. 

Let CRB(i, j) be the 16X16 candidate reference 
block upper-left anchored at coordinate (i, j) of the 
reference frame relative to the current macroblock. For 
example, CRB(-16, -16) denotes the most upper-left 
candidate reference block while CRB (-16, +16) denotes 
the most lower-left one. Totally, we have to match the 
current block against 33X33 = 1089 CRBs. Our proposed 
pipelined architecture delivers a throughput level of one 
CRB matching per clock cycle. 

At the beginning, each PE holds a pixel of the 
current macroblock. Then, we load pixel data within the 
search range in the reference frame into the motion 
estimator according to the sequence illustrated in Table 1. 
One or two 1x16 search area pixels are input in each clock 
cycle and broadcasted to all PEs. Each PE computes the 
difference between the current macroblock pixel and the 
candidate reference block pixel. The results of 4x1 PEs 
are summed up and passed to the right. Afterward the 
SADs of 4x4 blocks will be stored in hardware queues for 
SAD computations of other types of sub-blocks. We can 
obtain sixteen 4x4 SADs in every clock cycle. Along the 
pipeline downwards, we also obtain 8 8x4 SADs, 8 4x8 
SADs, 4 8x8 SADs, 2 16x8 SADs, 2 8x16 SADs and 1 
16x16 SADS every cycle. The comparators will record 

the minimum SADs and the best motion vectors of 41 
sub-blocks and output the results. 

 

Figure 2. Proposed Motion Estimator Architecture 
 

Table 1 shows that we complete loading CRB(-16, -
16) between clock cycles 0 and 15. After clock cycle 47 
all pixels of 33 leftmost CRBs (i.e., CRB(-16, -16), CRB(-
16, -15), … CRB(-16, +16)) have been loaded. The 
loading of second column (i.e., CRB(-15, -16), CRB(-15, 
-15), … CRB(-15, +16)) is started at clock cycle 33 and 
partially overlapped with that of column 1. This allows us 
to eliminate bubble in the pipeline and, hence, achieve 
one CRB per clock cycle. So, the whole computation will 
take 15 + 33x33 + 4 = 1,108 cycles to complete, where 15 
is the number of cycles to fill up the array and generate 
the first 16 4x4 SADs, 33X33 is the total number of CRBs, 
and 4 is the number of pipeline stages after the PE array. 

 

 Figure 3. Architecture of the 4X4 PE Array 



Table 1. Data Supply to the PE Array 

Clk Data Flow 

0 Pixel[0~15] of row 0 to row 0~15 of PE array 

1 Pixel[0~15] of row 1 to row 0~15 of PE array 
: : 

32 Pixel[0~15] of row 32 to row 0~15 of PE array 

33 Pixel[0~15] of row 33 to row 1~15 of PE array 
Pixel[1~16] of row 0 to row 0 of PE array 

34 Pixel[0~15] of row 34 to row 2~15 of PE array 
Pixel[1~16] of row 1 to row 0~1 of PE array 

: : 

47 Pixel[0~15] of row 47 to row 15 of PE array 
Pixel[1~16] of row 14 to row 0~14 of PE array 

48 Pixel[1~16] of row 15 to row 0~15 of PE array 

: : 

65 Pixel[1~16] of row 32 to row 0~15 of PE array 

66 Pixel[1~16] of row 47 to row 1~15 of PE array 
Pixel[2~17] of row 14 to row 0 of PE array 

: : 

3.2 Data-Reuse Methodology 

Video signal processing generally requires a lot of 
memory bandwidth. In H.264/AVC, for applications of 
30fps, 352x288 (CIF) pixels per frame with 5 reference 
frames and [+16,-16] search range, a straightforward 
implementation will consume 33GB/s of memory 
bandwidth. Therefore, exploiting data reuse is necessary.  

The search ranges of two consecutive current 
macroblocks overlap with each other as depicted in Figure 
4.  We take advantage of this kind of global locality 
within a search area stripe [4]. Therefore, our local 
memory size is 42x32x8 = 12,288 bits. Each pixel of the 
search range will be used by matching for three current 
macroblocks, resulting in 66% reduction in memory 
traffic. 

 

Figure 4. Global Locality within Search Area Stripe 

3.3 Prototyping on Platform 

        We adopt the ALTERA Excalibur EPXA10DDR and 
its associated system-level development kits as our SOC 
design platform. The Excalibur EPXA10DDR as shown in 
Figure 5 is based on an enhanced FPGA device called 
EPXA10F1020C1 System-On-a-Programable-
Chip(SOPC). It includes a 32-bit ARM922T RISC 
processor in hard-core form and embedded FPGA. The 
Excalibur has several additional hardware peripherals as 
listed below : 
 

•  ARM922T 32-bit RISC processor core 
•      1000K-gate FPGA module 
• 10/100 Mb Ethernet port 
• Two 32-bit PCI slots. 
• 256 KB Single Port SRAM 
• 128 KB Dual Port SRAM 
• 128 MB DDR SDRAM 
• 32 MB Flash Memory 
 

Figure 5. SOC Platform 

We integrate the developed motion estimation IP into 
the SOC platform in five steps: 

• Get familiar with the hardware interface 
architecture [5] 

• Analyze input and output protocol of the 
hardware accelerator 

• Verify the functionality of the hardware design 
• Design a finite state machine for on-chip bus 

communication 
• Write device driver software 
 
Figure 6 depicts all interface-related components. 

The software component runs on the ARM922T CPU 
core. We have two hardware modules. The hardware 
accelerator carries out the main processing of motion 
estimation. The communication module has two sides: 
one communicates with the processor core via AMBA-
AHB and the other communicates with the hardware 
accelerator. A finite state machine is included in the 
communication module for handling the bus protocol. The 

FPGA 

Embedded Stripe 

AHB2 

 
AH 1 B

 
Motion Estimatior 

 
Stripe to PLD  

Bridge 

 
PLD to Stripe 

Bridge 

 
 

UART 
Controller 

 
 
AHB1 to  

AHB2 Bridge 

 
 

DPRAM 
128KB 

 
 

SRAM 
256KB 

 
 

SDRAM 
128MB 

 
 

Flash 
32MB 

 
 

SDRAM 
    Controller 

WatchDog 
    Timer 

 
PLD  

Master 
 1 

 
PLD  

Master 
2 

 
PLD 

Master
3 

   Interrupt 
  Controller 

     ARM922T 
      Processor 

 
 

External Bus 
    Interface 



communication module also contains a register file to 
synchronize the hardware accelerator and software driver.   

 

Figure 6. CPU-Accelerator Interface Architecture 

 We use the Excalibur Stripe Simulator (ESS) to 
verify our hardware/software co-design. By using 
hardware/software co-simulation, we can uncover 
functional errors early in the design process. The 
debugging effort is greatly reduced during FPGA 
prototyping. Furthermore, we can capture the bus 
behavior by observing the signal transfer on the AMBA-
AHB bus between the CPU core and the hardware 
accelerator.   

4 Experimental Results 
 Our design is implemented in Verilog and 
synthesized using the Synopsys Design Compiler with 
TSMC 0.13μm standard cell library. The results are 
shown in Table 2. 

Table 2. Synthesis Results 

Target 
Processing  
Capability 

720x480 
30fps 

1920x1080 
30fps 

Gate Count 95,934 197,225 

frequency 50 MHz 285 MHz 

Power 
consumption 113 mW 878 mW 

 

Moreover, we verified our motion estimator using 
the FPGA module of the SOPC platform and list the 
compilation result reported by QuartusII in Table 3.  

Table 3. FPGA Compilation Report 

Target device for compilation EPXA10F1020C1 

ARM922T working frequency 12.5MHz 

FPGA working frequency 12.5MHz 

Total logic elements 23,057 

Total memory bits 12,288 

Table 4 compares the motion estimation time 
between pure software and our hardware accelerator for 
matching a 16x16 current block against a 48x48 search 
range. The speed up is 480 times. 

Total pins 68 

Table 4. Computation Time Comparison 

 Pure 
Software 

SW Driver co-work with 
Hardware Accelerator 

Total time (s) 3.394 0.007 

 

5 Conclusions 
We have presented an AMBA-compliant motion 

estimator for H.264/AVC. We describes its architecture, 
data reuse methodology and a FPGA prototype. The 
experimental results show that the coding process with 
our motion estimator speeds up greatly.  

In the future, we plan to integrate the design with 
other components of H.264/AVC, such as motion 
compensation, transform, deblocking filter and entropy 
coding. 
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