
AN AMBA-COMPLIANT MOTION ESTIMATOR FOR
H.264 ADVANCED VIDEO CODING1

Chao-Yung Kao

Department of Computer Science
National Tsing Hua University

Hsin-chu, Taiwan 300
g924305@oz.nthu.edu.tw

Youn-Long Lin
Department of Computer Science

National Tsing Hua University
Hsin-chu, Taiwan 300

ylin@cs.nthu.edu.tw

1 Supported in part by the National Science Council, R.O.C., under Grants No. NSC 92-2218-E-007-023, NSC 92-2220-E-
007-009, and NSC 92-2220-E-007-017, by the Ministry of Economics Affairs, R.O.C., under Grant No. 92-EC-17-A-03-
S1-0002, and by Taiwan Semiconductor Manufacturing Corp. (TSMC) under Grant No. 93A0002EA.

Abstract –We propose a 2D VLSI architecture with 256
processing elements and a computation result reuse
methodology for full search variable block size motion
estimation (FSVBSME) in the next generation video
coding standard H.264/AVC. Our pipelined engine can
complete matching a candidate macroblock in every clock
cycle. We implement a prototype on an SOC platform
with a 32-bit RISC CPU core and field programmable
gate array (FPGA) module. We equip the hardware
accelerator with an AMBA-AHB on-chip-bus interface.
Experimental results show that our proposed hardware
accelerator delivers 480X speed-up when compared with
software running at the same clock rate.

Keywords: Motion Estimation, Video Coding, AMBA,
Hardware Accelerator, Fast Prototyping, H.264.

1 Introduction
 H.264/AVC is the latest video coding standard of the
ITU-T Video Coding Experts Group (VCEG) and
ISO/IEC Moving Picture Experts Group (MPEG) [1]. Its
new features include variable block sizes motion
estimation with multiple reference frames, integer 4x4
discrete cosine transform, in-loop deblocking filter and
context-adaptive binary arithmetic coding (CABAC).
H.264/AVC can save up to 50% bit-rate compared to
MPEG-4 simple profile at the same video quality level.
However, large amount of computation is required.
Profiling report shows that motion estimation consumes
about 60% of the total encoding time. Therefore,
hardware accelerator for motion estimation is necessary in
real-time applications.

Many motion estimation architectures have been
proposed for MPEG-4 and H.264/AVC [2][3]. However,
most of them are targeted towards ASICs. Verification is
difficult and time-to-market is long. Reusability and
flexibility are low, and it takes a lot of time and effort to
integrate the hardware accelerator with software.

 In this paper, we present a variable block size
motion estimation engine with AMBA-AHB on-chip-bus
interface and its prototype on an SOC platform consisting
of embedded 32-bit RISC CPU core, memory modules,
on-chip-bus, FPGA module, peripherals and development
environment.

 The rest of this paper is organized as following. In
Section 2, we introduce the motion estimation algorithm
used in H.264/AVC. In Section 3, we present our motion
estimation architecture and the data reuse methodology.
Our experimental results are presented in Section 4.
Finally, we draw conclusions and point to possible
directions for future research in Section 5.

2 Motion Estimation Algorithm
 Motion estimation algorithms exploit the temporal
redundancy of a video sequence. Among all the motion
estimation algorithms, the full-search block-matching
algorithm, as shown in Figure 1, has been proven to find
the best block match, which causes the smallest sum of
absolute differences (SAD). The minimum SAD is
computed as formula (1) and (2).

∑∑
−

=

−

=

++−=
1

0

1

0
),(),(),(

N

m

N

n
jnimRBnmCBjiSAD (1)

)),(min(),(min jiSADjiSAD = (2)

CB represents current block, and RB represents reference
block. N is the block size and (i, j) is the motion vector. In
H.264/AVC, each picture of a video is partitioned into
macroblocks of 16X16 pixels and each macroblock can be
subdivided into seven kinds of variable size sub-blocks
(one 16x16 sub-block, two 16x8 sub-blocks, two 8x16
sub-blocks, four 8x8 sub-blocks, eight 8x4 sub-blocks,
eight 4x8 sub-blocks, or sixteen 4x4 sub-blocks).
Therefore, we have to find the motion vector and

calculate the associated minimum SAD for each and every
of 41 sub-blocks.

Figure 1. Block Matching

3 Proposed Motion Estimator
3.1 Hardware Architecture

 We adopt the full search algorithm because its
regularity is more suitable for hardware implementation.
We reuse the computation results of SADs for 4x4 sub-
blocks to calculate the SADs of 16x16, 16x8, 8x16, 8x8,
8x4 and 4x8 sub-blocks.

Our architecture is shown in Figure 2. There are total
256 processing elements (PE). PEs are grouped into 16
4X4 arrays. The detail of a PE array is depicted in Figure
3.

Let CRB(i, j) be the 16X16 candidate reference
block upper-left anchored at coordinate (i, j) of the
reference frame relative to the current macroblock. For
example, CRB(-16, -16) denotes the most upper-left
candidate reference block while CRB (-16, +16) denotes
the most lower-left one. Totally, we have to match the
current block against 33X33 = 1089 CRBs. Our proposed
pipelined architecture delivers a throughput level of one
CRB matching per clock cycle.

At the beginning, each PE holds a pixel of the
current macroblock. Then, we load pixel data within the
search range in the reference frame into the motion
estimator according to the sequence illustrated in Table 1.
One or two 1x16 search area pixels are input in each clock
cycle and broadcasted to all PEs. Each PE computes the
difference between the current macroblock pixel and the
candidate reference block pixel. The results of 4x1 PEs
are summed up and passed to the right. Afterward the
SADs of 4x4 blocks will be stored in hardware queues for
SAD computations of other types of sub-blocks. We can
obtain sixteen 4x4 SADs in every clock cycle. Along the
pipeline downwards, we also obtain 8 8x4 SADs, 8 4x8
SADs, 4 8x8 SADs, 2 16x8 SADs, 2 8x16 SADs and 1
16x16 SADS every cycle. The comparators will record

the minimum SADs and the best motion vectors of 41
sub-blocks and output the results.

Figure 2. Proposed Motion Estimator Architecture

Table 1 shows that we complete loading CRB(-16, -
16) between clock cycles 0 and 15. After clock cycle 47
all pixels of 33 leftmost CRBs (i.e., CRB(-16, -16), CRB(-
16, -15), … CRB(-16, +16)) have been loaded. The
loading of second column (i.e., CRB(-15, -16), CRB(-15,
-15), … CRB(-15, +16)) is started at clock cycle 33 and
partially overlapped with that of column 1. This allows us
to eliminate bubble in the pipeline and, hence, achieve
one CRB per clock cycle. So, the whole computation will
take 15 + 33x33 + 4 = 1,108 cycles to complete, where 15
is the number of cycles to fill up the array and generate
the first 16 4x4 SADs, 33X33 is the total number of CRBs,
and 4 is the number of pipeline stages after the PE array.

 Figure 3. Architecture of the 4X4 PE Array

Table 1. Data Supply to the PE Array

Clk Data Flow

0 Pixel[0~15] of row 0 to row 0~15 of PE array

1 Pixel[0~15] of row 1 to row 0~15 of PE array
: :

32 Pixel[0~15] of row 32 to row 0~15 of PE array

33 Pixel[0~15] of row 33 to row 1~15 of PE array
Pixel[1~16] of row 0 to row 0 of PE array

34 Pixel[0~15] of row 34 to row 2~15 of PE array
Pixel[1~16] of row 1 to row 0~1 of PE array

: :

47 Pixel[0~15] of row 47 to row 15 of PE array
Pixel[1~16] of row 14 to row 0~14 of PE array

48 Pixel[1~16] of row 15 to row 0~15 of PE array

: :

65 Pixel[1~16] of row 32 to row 0~15 of PE array

66 Pixel[1~16] of row 47 to row 1~15 of PE array
Pixel[2~17] of row 14 to row 0 of PE array

: :

3.2 Data-Reuse Methodology

Video signal processing generally requires a lot of
memory bandwidth. In H.264/AVC, for applications of
30fps, 352x288 (CIF) pixels per frame with 5 reference
frames and [+16,-16] search range, a straightforward
implementation will consume 33GB/s of memory
bandwidth. Therefore, exploiting data reuse is necessary.

The search ranges of two consecutive current
macroblocks overlap with each other as depicted in Figure
4. We take advantage of this kind of global locality
within a search area stripe [4]. Therefore, our local
memory size is 42x32x8 = 12,288 bits. Each pixel of the
search range will be used by matching for three current
macroblocks, resulting in 66% reduction in memory
traffic.

Figure 4. Global Locality within Search Area Stripe

3.3 Prototyping on Platform

 We adopt the ALTERA Excalibur EPXA10DDR and
its associated system-level development kits as our SOC
design platform. The Excalibur EPXA10DDR as shown in
Figure 5 is based on an enhanced FPGA device called
EPXA10F1020C1 System-On-a-Programable-
Chip(SOPC). It includes a 32-bit ARM922T RISC
processor in hard-core form and embedded FPGA. The
Excalibur has several additional hardware peripherals as
listed below :

• ARM922T 32-bit RISC processor core
• 1000K-gate FPGA module
• 10/100 Mb Ethernet port
• Two 32-bit PCI slots.
• 256 KB Single Port SRAM
• 128 KB Dual Port SRAM
• 128 MB DDR SDRAM
• 32 MB Flash Memory

Figure 5. SOC Platform

We integrate the developed motion estimation IP into
the SOC platform in five steps:

• Get familiar with the hardware interface
architecture [5]

• Analyze input and output protocol of the
hardware accelerator

• Verify the functionality of the hardware design
• Design a finite state machine for on-chip bus

communication
• Write device driver software

Figure 6 depicts all interface-related components.

The software component runs on the ARM922T CPU
core. We have two hardware modules. The hardware
accelerator carries out the main processing of motion
estimation. The communication module has two sides:
one communicates with the processor core via AMBA-
AHB and the other communicates with the hardware
accelerator. A finite state machine is included in the
communication module for handling the bus protocol. The

FPGA

Embedded Stripe

AHB2

AH 1 B

Motion Estimatior

Stripe to PLD

Bridge

PLD to Stripe

Bridge

UART
Controller

AHB1 to

AHB2 Bridge

DPRAM
128KB

SRAM
256KB

SDRAM
128MB

Flash
32MB

SDRAM
 Controller

WatchDog
 Timer

PLD

Master
 1

PLD

Master
2

PLD

Master
3

 Interrupt
 Controller

 ARM922T
 Processor

External Bus
 Interface

communication module also contains a register file to
synchronize the hardware accelerator and software driver.

Figure 6. CPU-Accelerator Interface Architecture

 We use the Excalibur Stripe Simulator (ESS) to
verify our hardware/software co-design. By using
hardware/software co-simulation, we can uncover
functional errors early in the design process. The
debugging effort is greatly reduced during FPGA
prototyping. Furthermore, we can capture the bus
behavior by observing the signal transfer on the AMBA-
AHB bus between the CPU core and the hardware
accelerator.

4 Experimental Results
 Our design is implemented in Verilog and
synthesized using the Synopsys Design Compiler with
TSMC 0.13μm standard cell library. The results are
shown in Table 2.

Table 2. Synthesis Results

Target
Processing
Capability

720x480
30fps

1920x1080
30fps

Gate Count 95,934 197,225

frequency 50 MHz 285 MHz

Power
consumption 113 mW 878 mW

Moreover, we verified our motion estimator using
the FPGA module of the SOPC platform and list the
compilation result reported by QuartusII in Table 3.

Table 3. FPGA Compilation Report

Target device for compilation EPXA10F1020C1

ARM922T working frequency 12.5MHz

FPGA working frequency 12.5MHz

Total logic elements 23,057

Total memory bits 12,288

Table 4 compares the motion estimation time
between pure software and our hardware accelerator for
matching a 16x16 current block against a 48x48 search
range. The speed up is 480 times.

Total pins 68

Table 4. Computation Time Comparison

 Pure
Software

SW Driver co-work with
Hardware Accelerator

Total time (s) 3.394 0.007

5 Conclusions
We have presented an AMBA-compliant motion

estimator for H.264/AVC. We describes its architecture,
data reuse methodology and a FPGA prototype. The
experimental results show that the coding process with
our motion estimator speeds up greatly.

In the future, we plan to integrate the design with
other components of H.264/AVC, such as motion
compensation, transform, deblocking filter and entropy
coding.

References
[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A.
Luthra, “Overview of the H.264/AVC video coding
standard”, IEEE Transactions on Circuits and Systems
for Video Technology, pp. 560-576, July 2003.

[2] S. Y. Yap, and J. V. McCanny, “A VLSI
Architecture for Advanced Video Coding Motion
Estimation”,Proceeding of IEEE International Conference
on Application-Specific Systems, Architectures, and
Processors, pp. 293-301, June 2003.

[3] Yu-Wen Huang, Tu-Chih Wang, Bing-Yu Hsieh,
and Liang-Gee Chen, “Hardware Architecture Design for
Variable Block Size Motion Estimation in MPEG-4
AVC/JVT/ITU-T H.264”, Proceedings of the 2003
International Symposium on Circuits and Systems, Vol 2,
pp. 796-799, May 2003.

[4] Jen-Chieh Tuan, Tian-Sheuan Chang, and Chein-
Wei Jen, “On the Data Reuse and Memory Bandwidth
Analysis for Full-Search Block-Matching VLSI
Architecture”, IEEE Transactions on Circuits and Systems
for Video Technology, Vol 12, pp. 61-72, Jan. 2002.

[5] A. Baganne, J. L. Philippe, and E. Martin, “A
Formal Technique for Hardware Interface Design”, IEEE
Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, Vol 45, pp. 584-591, May 1998.

Data &
Addres s
Buses

Proc sor es
core

Control signals
Reset
Clock

Communicat n io
Interface Hardware

Accelerator

xdata
ydata

start
available

Memory
Module

Control
Logic

Data &
Addres s
Buses

Proc sor es
core

Control signals
Reset
Clock

Data &
Addres s
Buses

Proc sor es
core

Control signals
Reset
Clock

Communicat n io
Interface Communicat n io
Interface Hardware

Accelerator
Hardware
Accelerator

xdata xdata
ydata ydata

start start
available available

Memory
Module

Control
Logic

	Introduction
	Motion Estimation Algorithm
	Proposed Motion Estimator
	Hardware Architecture
	Data-Reuse Methodology
	Prototyping on Platform

	Experimental Results
	Conclusions
	References

