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ABSTRACT 
 
We propose an architecture for Tier-1 of Embedded Block 
Coding With Optimized Truncation (EBCOT) in the 
JPEG2000 standard. The architecture is composed of a 
16-bit parallel context generator and a 3-stage pipelined 
binary arithmetic encoder. The former is designed for low 
power consumption. The later is used to achieve an high 
throughput. The design is verified on an AMBA-based 
system as an accelerator. Compared with the best-known 
column-based method, we reduce the cycle count by 17%. 
Let the number of context-decision (CX, D) pairs be the 
lower bound on the cycle count, we have achieved 6% 
within the optimal. 

 

1. INTRODUCTION 
 
JPEG2000 [1] [2] is the next-generation still image 
compression standard. It is composed of five parts: pre-
processing, transform, quantization, block coding, and bit-
stream organization, as shown in Figure. 1. The pre-
process part includes DC shift and color transform. The 
transform part use Discrete Wavelet Transform (DWT) to 
transform image from spatial domain to frequency domain. 
The quantization part is performed for lossy compression. 
In the block coding and bit-stream organization parts, 
JPEG2000 adopts a novel coding technology called 
Embedded Block Coding with Optimized Truncation 
(EBCOT) [3]-[5]. EBCOT is a two-tiered coder, where 
Tier-1 is a context-based adaptive binary arithmetic coder, 
and Tier-2 is for rate-distortion optimization and bit-
stream layer formation. 
 
Although JPEG2000 has good SNR performance and new 
functionalities, its computational complexity is much 
higher than JPEG. Especially, EBCOT occupies over half 
of the computation time in coding process. 
In this paper, a new Tier-1 architecture of EBCOT is 
presented. Its advantages are low power consumption and 
high performance. The previous works are presented in 
Section II. Section III will describe our proposed 

architecture. Section IV shows the experimental results 
and Section V makes a concise conclusion 
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Figure. 1. JPEG2000 coding system 

 
2. PREVIOUS WORKS 

 
Due to tedious three-pass coding process and bit-level 
computation of Tier-1, this part is suitable for hardware 
implementation rather than software. There are several 
architectures. We roughly categorize them into two: 
Normal Mode and Pass-Parallel Mode. 
 
2.1. Normal Mode 
 
To achieve higher speed and data reuse, the column-based 
architecture is proposed in [6]-[9] [12]-[13]. They also 
present several speed-up methods, sample skipping (SS), 
group of column skipping (GOCS), multiple column 
skipping (MCOLS) and pass skipping (PS), for the 
context generation. The idea of a skipping scheme is to 
predict which bit needs to be coded and reduce wasted 
cycles.  
Moreover, there is a memory-saving algorithm in [9]. The 
architecture is based on the algorithm can reduce 4K bits 
of memory requirement and memory access. 
 
2.2. Pass-Parallel Mode 
 
A pass-parallel mode is adopted in [10] [16] [17]. In this 
mode, the context modeling scheme merges the three 



coding passes of bit-plane coding process into a single 
pass to improve the system performance. Although this 
architecture has fast computation without wasting cycles 
and low internal memory access, it introduces degradation 
on image quality as little as 0.1 to 0.2 dB (with largest 
code-block). 
There are also other parallel architectures, bit-plane-
parallel architectures in [16] [17] and code-block-parallel 
architectures in [11] [15]. 
 

3. PROPOSED ARCHITECTURE 
 
The reason of EBCOT Tier-1 occupying highest 
computation is that the operations are bit-level processing. 
We exploit parallel and pipelined architecture to 
accelerate the operations and reduce power consumption. 
 
3.1. Context Formation (CF) 
 
There are three factors affecting parallelism of CF: 1) 
scanning order, 2) checking neighbors, and 3) changing 
state. Within a stripe, all bits are scanned in a specific 
order. The context of a bit is generated by checking states 
of its neighborhood bits. However, the state of the coded 
bit can change and affect later coding results, as shown in 
Figure. 2. 
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Figure. 2. Scanning order 

 
We observe the data dependency of sixteen bits and depict 
a DFG, as shown in Figure. 3. The 16-bit parallel 
architecture is proposed. Since its delay is ten, not sixteen, 
times than sample-based architecture, we can use little 
voltage to achieve the identical throughput. We estimate 
that the 16-bit parallel architecture can save about 60% 
power consumption compared with the sample-based 
architecture. 
If we alleviate the frequency of memory access and 
utilized efficient memory bandwidth, we can reduce the 
power consumption as well. We use the memory-saving 
algorithm [9] and propose memory arrangement for 16-bit 
parallel context generating. Every eight bits are grouped 
as word, and words are placed in three memories in an 
interleaving format, as shown in Figure. 4. During 
memory access, the order of memory data depends on the 
stripe. When we want to code Stripe n, the data order is (C, 

A, B). After memory arrangement, we can utilize efficient 
memory bandwidth. 
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Figure. 3. Data dependency within sixteen bits 
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Figure. 4. Memory arrangement 

 
We use nine 8-bit shift registers for the context window, 
as shown in Figure. 5. The shaded samples represent the 
sixteen coding bits, and their neighbors should be 
included as well. The context window can reuse data 
locally. The memory bandwidth is twenty-four bits. 
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Figure. 5. Context window and memory bandwidth 

 
Although 16-bit parallel context generating can reduce 
cycles, there still are many wasted cycles. The stripe-
skipping strategy is proposed. This strategy is easier to 
implement for 16-bit parallel processing than other 
multiple-column-skipping. Moreover, multiple-column-
skipping incurs a little memory overhead, but the memory 
requirement of stripe-skipping is less. We just use three 
16-bit registers to record the coding condition of all 
stripes in three passes enough. 
3.2. Arithmetic Encoder (AE) 



 
Since the context table needs to be updated according to 
previous results, as shown in Figure. 6, it prevents from 
employing simple pipeline facility. We adopt a Modified 
Probability Estimation Table (MPET) [18] and forwarding 
scheme to overcome this problem. Empirically, we 
partition the datapath into three stages to shorten the 
critical path and balance every stage delay. 
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Figure. 6. Feedback data of Arithmetic Encode 

 
The 3-stage pipelined AE architecture is shown in Figure. 
7. In the first stage, we read a context-decision (CX, D) 
pairs from CF and use CX to look up the Context Table 
for the probability estimate. Since the probability estimate 
of CX can be updated by the feedback information from 
the second stage, we need to cope with two identical 
contexts come in continuously. We use the MPET that 
original PET data and two types of updating PET data are 
read simultaneously by one index. Moreover, the result of 
the second stage should forward to select correct PET data. 
In the second stage, we calculate the updating values of 
the A register and the Context Table and dispatch the 
information of shift amount to the third stage. In the third 
stage, we either calculate the updating values of the C 
register and the counter CT or perform the 
renormalization procedure. After all bits of a code-block 
are coded, AE is terminated and flushed to get a complete 
sub-bitstream. 
An important characteristic that the input symbols of the 
MQ Coder in JPEG2000 have a highly skewed 
distribution is also indicated in [9]. In average, a (CX, D) 
pair sent to the MQ Coder only triggers 0.103 BYTEOUT. 
In code-string renormalization, a complex BYTEOUT 
procedure is possibly triggered more than once to send out 
the output byte. BYTEOUT is seldom triggered due to a 
highly skewed distribution. Their MQ Coder takes about 
1.103 clock cycles to encode one (CX, D) pair in average. 
However, we overlap the actions of BYTEOUT and 
register-updating. We can save 10% cycles. 
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Figure. 7. Three-stage pipelined Arithmetic Encoder 

 
TABLE I 

Comparison in cycle count 
Test 

image 
# of (CX, 

D) 
Column based 

[14] This work 

Airplane 4,304,128 1,755,450 1,535,991 

Baboon 4,947,712 2,106,820 2,027,476 

Lena 4,164,352 1,743,283 1,569,606 

Peppers 4,550,656 1,880,388 1,690,997 

Average 4,491,712 1,871,485.25 1,706,017.5

Normalize 0.94 1.17 1 
 

4. EXPERIMENTAL RESULTS 
 

Our experiment uses four standard images Airplane, 
Babbon, Lena and Peppers. All of them are 512x512 gray 
images. Before EBCOT process, test images go through 
5/3 DWT and three decomposition levels. Our process 
unit is a 64x64 code-block. The cycle count of our 
proposed architecture is compare with sample-based 
architecture and column-based architecture, as shown in 
TABLE I. 
We synthesized the proposed architecture with Synopsys 
Design Compiler under the worst case operating 



environment (WCCOM), as shown in TABLE II. The 
PrimePower is used to analyze our design. 

 
TABLE II 

Synthesis report and power analysis 
Technology 

Library TSMC .35 

Area (gate count) 27069 

Frequency (MHz) 43.47 

Power (mW) 22.13 
 

5. CONCLUCSION 
 
In this thesis, we present the characteristic of data 
dependence in the Context Formation. The 16-bit parallel 
architecture can save a great deal of power. We use 
Stripe-Skipping method and adopt the Memory-Saving 
algorithm to reduce wasted cycles and memory access. 
Moreover, we design a 3-stage pipelined Arithmetic 
Encoder by MPET and forwarding strategy. 
This Tier-1 Encoder is an efficient Silicon Intellectual 
Property (SIP) core as an accelerator for the JPEG2000 
encoder. We provide an AHB wrapper for the SIP to 
integrate on an AMBA system. Eventually, we verify the 
design on Altera ExcaliburTM EPXA10DDR. 
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