
A LOW POWER AND HIGH PERFORMANCE
EBCOT ARCHITECTURE OF JPEG2000 ENCODING

Tien-Wei Hsieh and Youn-Long Lin

Department of Computer Science

National Tsing Hua University, Hsin-Chu, Taiwan, R.O.C
clon@nthucad.cs.nthu.edu.tw, ylin@cs.nthu.edu.tw

ABSTRACT

We propose an architecture for Tier-1 of Embedded Block
Coding With Optimized Truncation (EBCOT) in the
JPEG2000 standard. The architecture is composed of a
16-bit parallel context generator and a 3-stage pipelined
binary arithmetic encoder. The former is designed for low
power consumption. The later is used to achieve an high
throughput. The design is verified on an AMBA-based
system as an accelerator. Compared with the best-known
column-based method, we reduce the cycle count by 17%.
Let the number of context-decision (CX, D) pairs be the
lower bound on the cycle count, we have achieved 6%
within the optimal.

1. INTRODUCTION

JPEG2000 [1] [2] is the next-generation still image
compression standard. It is composed of five parts: pre-
processing, transform, quantization, block coding, and bit-
stream organization, as shown in Figure. 1. The pre-
process part includes DC shift and color transform. The
transform part use Discrete Wavelet Transform (DWT) to
transform image from spatial domain to frequency domain.
The quantization part is performed for lossy compression.
In the block coding and bit-stream organization parts,
JPEG2000 adopts a novel coding technology called
Embedded Block Coding with Optimized Truncation
(EBCOT) [3]-[5]. EBCOT is a two-tiered coder, where
Tier-1 is a context-based adaptive binary arithmetic coder,
and Tier-2 is for rate-distortion optimization and bit-
stream layer formation.

Although JPEG2000 has good SNR performance and new
functionalities, its computational complexity is much
higher than JPEG. Especially, EBCOT occupies over half
of the computation time in coding process.
In this paper, a new Tier-1 architecture of EBCOT is
presented. Its advantages are low power consumption and
high performance. The previous works are presented in
Section II. Section III will describe our proposed

architecture. Section IV shows the experimental results
and Section V makes a concise conclusion

Pre-process

Discrete Wavelet
Transform (DWT)

Quantization
Block Coding

(Tier-1 Coding)

Bit-stream
Organization

(Tier-2 Coding)

Original
Image Data

Compressed
Image Data

EBCOT

Figure. 1. JPEG2000 coding system

2. PREVIOUS WORKS

Due to tedious three-pass coding process and bit-level
computation of Tier-1, this part is suitable for hardware
implementation rather than software. There are several
architectures. We roughly categorize them into two:
Normal Mode and Pass-Parallel Mode.

2.1. Normal Mode

To achieve higher speed and data reuse, the column-based
architecture is proposed in [6]-[9] [12]-[13]. They also
present several speed-up methods, sample skipping (SS),
group of column skipping (GOCS), multiple column
skipping (MCOLS) and pass skipping (PS), for the
context generation. The idea of a skipping scheme is to
predict which bit needs to be coded and reduce wasted
cycles.
Moreover, there is a memory-saving algorithm in [9]. The
architecture is based on the algorithm can reduce 4K bits
of memory requirement and memory access.

2.2. Pass-Parallel Mode

A pass-parallel mode is adopted in [10] [16] [17]. In this
mode, the context modeling scheme merges the three

coding passes of bit-plane coding process into a single
pass to improve the system performance. Although this
architecture has fast computation without wasting cycles
and low internal memory access, it introduces degradation
on image quality as little as 0.1 to 0.2 dB (with largest
code-block).
There are also other parallel architectures, bit-plane-
parallel architectures in [16] [17] and code-block-parallel
architectures in [11] [15].

3. PROPOSED ARCHITECTURE

The reason of EBCOT Tier-1 occupying highest
computation is that the operations are bit-level processing.
We exploit parallel and pipelined architecture to
accelerate the operations and reduce power consumption.

3.1. Context Formation (CF)

There are three factors affecting parallelism of CF: 1)
scanning order, 2) checking neighbors, and 3) changing
state. Within a stripe, all bits are scanned in a specific
order. The context of a bit is generated by checking states
of its neighborhood bits. However, the state of the coded
bit can change and affect later coding results, as shown in
Figure. 2.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Current coding bit

Coded bit

Uncoded bit

Context window for a bit
Figure. 2. Scanning order

We observe the data dependency of sixteen bits and depict
a DFG, as shown in Figure. 3. The 16-bit parallel
architecture is proposed. Since its delay is ten, not sixteen,
times than sample-based architecture, we can use little
voltage to achieve the identical throughput. We estimate
that the 16-bit parallel architecture can save about 60%
power consumption compared with the sample-based
architecture.
If we alleviate the frequency of memory access and
utilized efficient memory bandwidth, we can reduce the
power consumption as well. We use the memory-saving
algorithm [9] and propose memory arrangement for 16-bit
parallel context generating. Every eight bits are grouped
as word, and words are placed in three memories in an
interleaving format, as shown in Figure. 4. During
memory access, the order of memory data depends on the
stripe. When we want to code Stripe n, the data order is (C,

A, B). After memory arrangement, we can utilize efficient
memory bandwidth.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(Delay)1 2 3 4 5 6 7 8 9 10
Figure. 3. Data dependency within sixteen bits

Memory A

Memory B

Memory C

Memory A

Memory B

Memory C

Memory A

Stripe n-1

Stripe n

Stripe n+1

Current access bits A word in a memory

Figure. 4. Memory arrangement

We use nine 8-bit shift registers for the context window,
as shown in Figure. 5. The shaded samples represent the
sixteen coding bits, and their neighbors should be
included as well. The context window can reuse data
locally. The memory bandwidth is twenty-four bits.

Current coding bits

Neighbor bits for coding

Memory A

Memory B

Memory C

M

U

X

Context window

8

8

8

8

8

8

Figure. 5. Context window and memory bandwidth

Although 16-bit parallel context generating can reduce
cycles, there still are many wasted cycles. The stripe-
skipping strategy is proposed. This strategy is easier to
implement for 16-bit parallel processing than other
multiple-column-skipping. Moreover, multiple-column-
skipping incurs a little memory overhead, but the memory
requirement of stripe-skipping is less. We just use three
16-bit registers to record the coding condition of all
stripes in three passes enough.
3.2. Arithmetic Encoder (AE)

Since the context table needs to be updated according to
previous results, as shown in Figure. 6, it prevents from
employing simple pipeline facility. We adopt a Modified
Probability Estimation Table (MPET) [18] and forwarding
scheme to overcome this problem. Empirically, we
partition the datapath into three stages to shorten the
critical path and balance every stage delay.

Context
Table

CX

D
LPS Coding

MPS Coding =
Yes

No

Figure. 6. Feedback data of Arithmetic Encode

The 3-stage pipelined AE architecture is shown in Figure.
7. In the first stage, we read a context-decision (CX, D)
pairs from CF and use CX to look up the Context Table
for the probability estimate. Since the probability estimate
of CX can be updated by the feedback information from
the second stage, we need to cope with two identical
contexts come in continuously. We use the MPET that
original PET data and two types of updating PET data are
read simultaneously by one index. Moreover, the result of
the second stage should forward to select correct PET data.
In the second stage, we calculate the updating values of
the A register and the Context Table and dispatch the
information of shift amount to the third stage. In the third
stage, we either calculate the updating values of the C
register and the counter CT or perform the
renormalization procedure. After all bits of a code-block
are coded, AE is terminated and flushed to get a complete
sub-bitstream.
An important characteristic that the input symbols of the
MQ Coder in JPEG2000 have a highly skewed
distribution is also indicated in [9]. In average, a (CX, D)
pair sent to the MQ Coder only triggers 0.103 BYTEOUT.
In code-string renormalization, a complex BYTEOUT
procedure is possibly triggered more than once to send out
the output byte. BYTEOUT is seldom triggered due to a
highly skewed distribution. Their MQ Coder takes about
1.103 clock cycles to encode one (CX, D) pair in average.
However, we overlap the actions of BYTEOUT and
register-updating. We can save 10% cycles.

Context Table A

C

Index Updating

Bit Shifting

Probability Estimation (MPET)

A Calculation

MPS Updating

Table Reading

C Calculation

Renormalization

CX D

Byte
Figure. 7. Three-stage pipelined Arithmetic Encoder

TABLE I

Comparison in cycle count
Test

image
of (CX,

D)
Column based

[14] This work

Airplane 4,304,128 1,755,450 1,535,991

Baboon 4,947,712 2,106,820 2,027,476

Lena 4,164,352 1,743,283 1,569,606

Peppers 4,550,656 1,880,388 1,690,997

Average 4,491,712 1,871,485.25 1,706,017.5

Normalize 0.94 1.17 1

4. EXPERIMENTAL RESULTS

Our experiment uses four standard images Airplane,
Babbon, Lena and Peppers. All of them are 512x512 gray
images. Before EBCOT process, test images go through
5/3 DWT and three decomposition levels. Our process
unit is a 64x64 code-block. The cycle count of our
proposed architecture is compare with sample-based
architecture and column-based architecture, as shown in
TABLE I.
We synthesized the proposed architecture with Synopsys
Design Compiler under the worst case operating

environment (WCCOM), as shown in TABLE II. The
PrimePower is used to analyze our design.

TABLE II

Synthesis report and power analysis
Technology

Library TSMC .35

Area (gate count) 27069

Frequency (MHz) 43.47

Power (mW) 22.13

5. CONCLUCSION

In this thesis, we present the characteristic of data
dependence in the Context Formation. The 16-bit parallel
architecture can save a great deal of power. We use
Stripe-Skipping method and adopt the Memory-Saving
algorithm to reduce wasted cycles and memory access.
Moreover, we design a 3-stage pipelined Arithmetic
Encoder by MPET and forwarding strategy.
This Tier-1 Encoder is an efficient Silicon Intellectual
Property (SIP) core as an accelerator for the JPEG2000
encoder. We provide an AHB wrapper for the SIP to
integrate on an AMBA system. Eventually, we verify the
design on Altera ExcaliburTM EPXA10DDR.

11. REFERENCES

[1] “JPEG 2000 Part I Final Committee Draft Version
1.0”, ISO/IEC JTC 1/SC 29/WG 1 N1646R, March 2000.
Available from http://www.jpeg.org
[2] Michael D. Adams, “The JPEG-2000 Still Image
Compression Standard”, ISO/IEC JTC 1/SC 29/WG 1
N2412, September 2001.
[3] David Taubman, “High Performance Scalable Image
Compression with EBCOT”, IEEE Transactions on Image
Processing, Vol. 9, No. 7, pp 1158-1170, July 2000.
[4] David Taubman, Erik Ordentlich, Marcelo Weinberger,
Gadiel Seroussi, Ikuro Ueno and Fumitaka Ono,
“Embedded Block Coding in JPEG2000”, Proceedings of
the IEEE International Conference on Image Processing
(ICIP), Vol. 2, pp 33-36, September 2000.
[5] David Taubman, Erik Ordentlich, Marcelo Weinberger
and Gadiel Seroussi, “Embedded Block Coding in
JPEG2000”, HPL-2001-35, February 2001.
[6] Kuan-Fu Chen, Chung-Jr Lian, Hong-Hui Chen and
Liang-Gee Chen, “Analysis and Architecture Design of
EBCOT for JPEG-2000”, IEEE International Symposium
on Circuits and Systems, Vol. 2, pp 765-768, May 2001.
[7] Chung-Jr Lian, Kuan-Fu Chen, Hong-Hui Chen and
Liang-Gee Chen, “Analysis and Architecture Design of
Lifting Based DWT and EBCOT for JPEG 2000”,
Proceedings of Technical Papers of 2001 International

Symposium on VLSI Technology, Systems, and
Applications, pp 180-183, April 2001.
[8] Hong-Hui Chen, Chung-Jr Lian, Te-Hao Chang and
Liang-Gee Chen, “Analysis of EBCOT Decoding
Algorithm and its VLSI Implementation for JPEG 2000”,
IEEE International Symposium on Circuits and Systems,
Vol. 4, pp 329-332, May 2002.
[9] Yun-Tai Hsiao, Hung-Der Lin, Kun-Bin Lee and
Chein-Wei Jen, “High-Speed Memory-Saving
Architecture for the Embedded Block Coding in
JPEG2000”, IEEE International Symposium on Circuits
and Systems, Vol. 5, pp 133-136, May 2002.
[10] Jen-Shiun Chiang, Yu-Sen Lin and Chang-Yo Hsieh,
“Efficient Pass-Parallel Architecture for EBCOT in
JPEG2000”, IEEE International Symposium on Circuits
and Systems, Vol. 1, pp 773-776, May 2002.
[11] Kishore Andra, Chaitali Chakrabarti and Tinku
Acharya, “A High Performance JPEG2000 Architecture”,
IEEE International Symposium on Circuits and Systems,
Vol. 1, pp 765-768, May 2002.
[12] Yijun Li, Ramy E. Aly, Beth Wilson and Magdy A.
Bayoumi, “Analysis and Enhancements for EBCOT in
High-Speed JPEG2000 Architectures”, the 45th Midwest
Symposium on Circuits and Systems, Vol. 2, pp 207-210,
August 2002.
[13] Tsung-Han Tsai and Kuei-Lan Lin, “A High Speed
and Low Complexity Integrated Framework for
JPEG2000”, the 8th International Conference on
Communication Systems, Vol. 1, pp 493-496, November
2002.
[14] Chung-Jr Lian, Kuan-Fu Chen, Hong-Hui Chen and
Liang-Gee Chen, “Analysis and Architecture Design of
Block-Coding Engine for EBCOT in JPEG 2000”, IEEE
Transactions on Circuits and Systems for Video
Technology, Vol. 13, No. 3, pp 219-230, March 2003.
[15] Kishore Andra, Chaitali Chakrabarti and Tinku
Acharya, “A High Performance JPEG2000 Architecture”,
IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 13, No. 3, pp 209-218, March 2003.
[16] Hung-Chi Fang, Tu-Chih Wang, Chung-Jr Lian, Te-
Hao Chang and Liang-Gee Chen, “High Speed Memory
Efficient EBCOT Architecture for JPEG2000”,
Proceedings of the 2003 International Symposium on
Circuits and Systems, Vol. 2, pp 736-739, May 2003.
[17] Paul R. Schumacher, “An Efficient JPEG2000 Tier-1
Coder Hardware Implementation for Real-Time Video
Processing”, IEEE Transactions on Consumer Electronics,
Vol. 49, No. 4, November 2003.
[18] Masaya Tarui, Masaru Oshita, Takao Onoye and Isao
Shirakawa, “High-Speed Implementation of JBIG
Arithmetic Coder”, Proceedings of the IEEE Region 10
Conference, Vol. 2, pp 1291-1294, September 1999.

