I CRAFTING
= A COMPLER

1

Introduction

This chapter presents the basics of compiler history and organization. We begin
in Section 1.1 with an overview of compilers and the history of their develop-
ment. From there, we explain in Section 1.2 what a compiler does and how
various compilers can be distinguished from each other: by the kind of machine
code they generate and by the format of the target code they generate.

In Section 1.3, we discuss a kind of language processor called an interpreter
and explain how an interpreter differs from a compiler. Section 1.4 discusses the
syntax (structure) and semantics (meaning) of programs. Next, in Section 1.5,
we discuss the tasks that a compiler must perform, primarily analysis of the
source program and synthesis of a target program. That section also covers the
parts of a compiler, discussing each in some detail: scanner, parser, type checker,
optimizer and code generator.

In Section 1.6, we discuss the mutual interaction of compiler design and pro-
gramming language design. Similarly, in Section 1.7 the influence of computer
architecture on compiler design is covered.

Section 1.8 introduces a number of important compiler variants, including
debugging and development compilers, optimizing compilers, and retargetable
compilers. Finally, in Section 1.9, we consider program development environ-
ments that integrate a compiler, editor and debugger into a single tool.

1.1 Overview and History of Compilation

Compilers are fundamental to modern computing. They act as translators, trans-
forming human-oriented programming languages into computer-oriented ma-
chine languages. To most users, a compiler can be viewed as a “black box”
that performs the transformation illustrated in Figure 1.1. A compiler allows
virtually all computer users to ignore the machine-dependent details of machine

1

2 Chapter 1. Introduction

Reserving space for: UserView

Figure 1.1: A user's view of a compiler.

language. Compilers therefore allow programs and programming expertise to
be machine-independent. This is a particularly valuable capability in an age in
which the number and variety of computers continue to grow explosively.

The term compiler was coined in the early 1950s by Grace Murray Hopper.
Translation was then viewed as the “compilation” of a sequence of machine-
language subprograms selected from a library. Compilation (as we now know it)
was called “automatic programming,” and there was almost universal skepticism
that it would ever be successful. Today, the automatic translation of program-
ming languages is an accomplished fact, but programming language translators
are still called “compilers.”

Among the first real compilers in the modern sense were the FORTRAN compil-
ers of the late 1950s. They presented the user with a problem-oriented, largely
machine-independent source language. They also performed some rather ambi-
tious optimizations to produce efficient machine code, since efficient code was
deemed essential for FORTRAN to compete successfully against then-dominant as-
sembly languages. These FORTRAN compilers proved the viability of high-level
(that is, mostly machine-independent) compiled languages and paved the way
for the flood of languages and compilers that was to follow.

In the early days, compilers were ad hoc structures; components and tech-
niques were often devised as a compiler was built. This approach to construct-
ing compilers lent an aura of mystery to them, and they were viewed as complex
and costly. Today the compilation process is well-understood and compiler con-
struction is routine. Nonetheless, crafting an efficient and reliable compiler is
still a complex task. Thus, in this book, we seek first to help you master the

1.2. What Compilers Do 3

fundamentals and then we explore some important innovations.

Compilers normally translate conventional programming languages like Java,
C, and C++ into executable machine-language instructions. Compiler technology,
however, is far more broadly applicable and has been employed in rather unex-
pected areas. For example, text-formatting languages like TEX and IETEX [Lam95]
are really compilers; they translate text and formatting commands into detailed
typesetting commands. PostScript [Ado90], which is generated by text-formatters
like ISTEX, Microsoft Word, and Adobe FrameMaker, is really a programming lan-
guage. It is translated and executed by laser printers and document previewers
to produce a readable form of a document. This standardized document repre-
sentation language allows documents to be freely interchanged, independent of
how they were created and how they will be viewed.

Mathmatica [Wol96] is an interactive system that intermixes programming
with mathematics, With it, one can solve intricate problems in both symbolic
and numeric forms. This system relies heavily on compiler techniques to handle
the specification, internal representation, and solution of problems.

Languages like Verilog [Pal96] and VHDL [Coe89] address the creation of VLSI
circuits. A silicon compiler specifies the layout and composition of a VLSI circuit
mask, using standard cell designs. Just as an ordinary compiler must understand
and enforce the rules of a particular machine language, a silicon compiler must
understand and enforce the design rules that dictate the feasibility of a given
circuit.

Compiler technology, in fact, is of value in almost any program that presents
a nontrivial text-oriented command set, including the command and scripting
languages of operating systems and the query languages of database systems.
Thus, while our discussion will focus on traditional compilation tasks, inno-
vative readers will undoubtedly find new and unexpected applications for the
techniques presented.

1.2 What Compilers Do

Figure 1.1 represents a compiler as a translator of the programming language
being compiled (the source) to some machine language (the target). This de-
scription suggests that all compilers do about the same thing, the only difference
being their choice of source and target languages. In fact, the situation is a bit
more complicated. While the issue of the accepted source language is indeed
simple, there are many alternatives in describing the output of a compiler. These
go beyond simply naming a particular target computer. Compilers may be dis-
tinguished in two ways:

¢ By the kind of machine code they generate
¢ By the format of the target code they generate

These are discussed in the following sections.

4 Chapter 1. Introduction

1.2.1 Distinguishing Compilers by the Machine Code Generated

Compilers may generate any of three types of code by which they can be differ-
entiated:

e Pure Machine Code
e Augmented Machine Code
o Virtual Machine Code

Pure Machine Code

Compilers may generate code for a particular machine's instruction set, not as-
suming the existence of any operating system or library routines. Such machine
code is often called pure code because it includes nothing but instructions that
are part of that instruction set. This approach is rare. It is most commonly used
in compilers for system implementation languages—Ilanguages intended for im-
plementing operating systems or embedded applications (like a programmable
controller). This form of target code can execute on bare hardware without
dependence on any other software.

Augmented Machine Code

Far more often, compilers generate code for a machine architecture that is aug-
mented with operating system routines and run-time language support routines.
The execution of a program generated by such a compiler requires that a par-
ticular operating system be present on the target machine and a collection of
language-specific run-time support routines (I/O, storage allocation, mathemat-
ical functions, and so on) be available to the program. The combination of the
target machine's instruction set and these operating system and language support
routines can be thought of as defining a virtual machine. A virtual machine is a
machine that exists only as a hardware/software combination.

The degree to which the virtual machine matches the actual hardware can
vary greatly. Some common compilers translate almost entirely to hardware
instructions; for example, most FORTRAN compilers use software support only
for I/O and mathematical functions. Other compilers assume a wide range of
virtual instructions. These may include data transfer instructions (for example,
to move bit fields), procedure call instructions (to pass parameters, save registers,
allocate stack space, and so on), and dynamic storage instructions (to provide for
heap allocation).

Virtual Machine Code

The third type of code generated is composed entirely of virtual instructions.
This approach is particularly attractive as a technique for producing a trans-
portable compiler, a compiler that can be run easily on a variety of computers.
Transportability is enhanced because moving the compiler entails only writing a

1.2. What Compilers Do S

simulator for the virtual machine used by the compiler. This applies, however,
only if the compiler bootstraps—compiles itself—or is written in an available
language. If this virtual machine is kept simple and clean, the interpreter can be
quite easy to write. Examples of this approach are early Pascal compilers and
the Java compiler included in the Java Development Kit [Sun98]. Pascal uses P-
code [Han85], while Java uses Java virtual machine (JVM) code. Both represent
virtual stack machines. A decent simulator for P-code or JVM code can easily
be written in a few weeks. Execution speed is roughly five to ten times slower
than that of compiled code. Alternatively, the virtual machine code can be ei-
ther translated into C code or expanded to machine code directly. This approach
made Pascal and Java available for almost any platform. It was instrumental in
Pascal's success in the 1970s and has been an important factor in Java's growing
popularity.

As can be seen from the preceding discussion, virtual instructions serve a
variety of purposes. They simplify the job of a compiler by providing prim-
itives suitable for the particular language being translated (such as procedure
calls and string manipulation). They also contribute to compiler transportabil-
ity. Further, they may allow for a significant decrease in the size of generated
code—instructions can be designed to meet the needs of a particular program-
ming language (for example, JVM code for Java). Using this approach, one can
realize as much as a two-thirds reduction in generated program size. When a
program is transmitted over a slow communications path (e.g., a Java applet sent
from a slow server), size can be a crucial factor.

When an entirely virtual instruction set is used as the target language, the
instruction set must be interpreted (simulated) in software. In a just-in-time (JIT)
approach, virtual instructions can be translated to target code just as they are
about to be executed or when they have been interpreted often enough to merit
translation into target code.

If a virtual instruction set is used often enough, it is even possible to develop
special microprocessors (such as the Picolava processor by Sun Microsystems)
that directly implement the virtual instruction set in hardware.

To summarize, almost all compilers, to a greater or lesser extent, generate
code for a virtual machine, some of whose operations must be interpreted in
software or firmware. We consider them compilers because they make use of a
distinct translation phase that precedes execution.

1.2.2 Target Code Formats

Another way that compilers differ from one another is in the format of the target
code they generate. Target formats may be categorized as follows:

¢ Assembly language
¢ Relocatable binary

¢ Memory-image

6 Chapter 1. Introduction

Assembly Language (Symbolic) Format

The generation of assembly code simplifies and modularizes translation. A num-
ber of code generation decisions (how to compute addresses, whether to use
absolute or relative addressing, and so on) can be left for the assembler. This ap-
proach is common among compilers that were developed either as instructional
projects or to support experimental programming language designs.

Generating assembler code is also useful for cross-compilation (running a
compiler on one computer, with its target language being the machine language
of a second computer). This is because a symbolic form is produced that is easily
transferred between different computers. This approach also makes it easier to
check the correctness of a compiler, since its output can be observed.

Often C, rather than a specific assembly language, is generated, with C's being
used as a “universal assembly language.” C is far more platform-independent
than any particular assembly language. However, some aspects of a program
(such as the run-time representations of program and data) are inaccessible using
C code, while they are readily accessible in assembly language.

Most production-quality compilers do not generate assembly language; direct
generation of target code (in relocatable or binary format, discussed next) is more
efficient. However, the compiler writer still needs a way to check the correctness
of generated code. Thus it is wise to design a compiler so that it optionally
will produce pseudoassembly language, that is, a listing of what the assembly
language would look like if it were produced.

Relocatable Binary Format

Target code also may be generated in a binary format. In this case, external
references and local instruction and data addresses are not yet bound. Instead,
addresses are assigned relative either to the beginning of the module or to sym-
bolically named locations. (This latter alternative makes it easy to group together
code sequences or data areas.) This format is the typical output of an assembler,
so this approach simply eliminates one step in the process of preparing a pro-
gram for execution. A linkage step is required to add any support libraries and
other separately compiled routines referenced from within a compiled program
and to produce an absolute binary program format that is executable.

Both relocatable binary and assembly language formats allow modular com-
pilation, the breaking up of a large program into separately compiled pieces.
They also allow cross-language references, calls of assembler routines or subpro-
grams in other high-level languages. Further, they support subroutine libraries,
for example, I/O, storage allocation, and math routines.

Memory-Image (Absolute Binary) Form

The compiled output may be loaded into the compiler's address space and imme-
diately executed, instead of being left in a file as with the first two approaches.
This process is usually much faster than going through the intermediate step of

1.3. Interpreters 7

link/editing. It also allows a program to be prepared and executed in a sin-
gle step. However, the ability to interface with external, library, and precom-
piled routines may be limited. Further, the program must be recompiled for
each execution unless some means is provided for storing the memory image.
Memory-image compilers are useful for student and debugging use, where fre-
quent changes are the rule and compilation costs far exceed execution costs. It
also can be useful to not save absolutes after compilation (for example, in order
to save file space or to guarantee the use of only the most current library routines
and class definitions).

Java is designed to use and share classes defined and implemented at a va-
riety of organizations. Rather than use a fixed copy of a class (which may be
outdated), the JVM supports dynamic linking of externally defined classes. That
is, when a class is first referenced, a class definition may be remotely fetched,
checked, and loaded during program execution. In this way, “foreign code” can
be guaranteed to be up-to-date and secure.

The code format alternatives and the target code alternatives discussed here
show that compilers can differ quite substantially while still performing the same
sort of translation task.

1.3 Interpreters

Another kind of language processor is the interpreter. An interpreter differs
from a compiler in that it executes programs without explicitly performing a
translation. Figure 1.2 illustrates schematically how interpreters work.

Interpreters behave differently than a compiler. To an interpreter, a program
is merely data that can be arbitrarily manipulated, just like any other data. The
locus of control during execution resides in the interpreter, 7ot in the user pro-
gram (that is, the user program is passive rather than active).

Interpreters provide a number of capabilities not found in compilers, as fol-
lows.

¢ Programs may be modified as execution proceeds. This provides a straight-
forward interactive debugging capability. Depending on program struc-
ture, program modifications may require reparsing or repeated semantic
analysis.

¢ Languages in which the type of object a variable denotes may change dy-
namically (e.g., Lisp and Scheme) are easily supported in an interpreter.
Since the user program is continuously reexamined as execution proceeds,
symbols need not have a fixed meaning (for example, a symbol may denote
an integer scalar at one point and a Boolean array at a later point). Such
fluid bindings are obviously much more troublesome for compilers, since
dynamic changes in the meaning of a symbol make direct translation into
machine code impossible.

8 Chapter 1. Introduction

Reserving space for: Idealized

Figure 1.2: An idealized interpreter.

o Interpreters can provide better diagnostics. Since source text analysis is in-
termixed with program execution, especially good diagnostics (re-creation
of source lines in error, use of variable names in error messages, and so on)
are produced more easily than they are by compilers.

o Interpreters provide a significant degree of machine independence, since no
machine code is generated. All operations are performed within the inter-
preter. To move an interpreter to a new machine, you need only recompile
the interpreter on the new machine.

However, direct interpretation of source programs can involve large overheads,
as follows.

e As execution proceeds, program text must be continuously reexamined,
with identifier bindings, types, and operations sometimes recomputed at
each reference. For very dynamic languages, this can represent a 100 to 1
(or worse) factor in execution speed over compiled code. For more static

languages (such as C or Java), the speed degradation is closer to a factor of
Sor10to 1.

o Substantial space overhead may be involved. The interpreter and all sup-
port routines must usually be kept available. Source text is often not as
compact as if it were compiled (for example, symbol tables are present
and program text may be stored in a format designed for easy access and
modification rather than for space minimization). This size penalty may

1.4. Syntax and Semantics of Programming Languages 9

lead to restrictions in, for example, the size of programs and the number
of variables or procedures. Programs beyond these built-in limits cannot
be handled by the interpreter.

¢ Many languages (for example, C, C++, and Java) have both interpreters
(for debugging and program development) and compilers (for production
work).

In summary, all language processing involves interpretation at some level. In-
terpreters directly interpret source programs or some syntactically transformed
versions of them. They may exploit the availability of a source representation
to allow program text to be changed as it is executed and debugged. While a
compiler has distinct translation and execution phases, some form of “interpre-
tation” is still involved. The translation phase may generate a virtual machine
language that is interpreted by software or a real machine language that is inter-
preted by a particular computer, either in firmware or hardware.

1.4 Syntax and Semantics of Programming Languages

A complete definition of a programming language must include the specification
of its syntax (structure) and its semantics (meaning).

Syntax typically means context-free syntax because of the almost universal
use of context-free grammars (CFGs) as a syntactic specification mechanism.
Syntax defines the sequences of symbols that are legal; syntactic legality is in-
dependent of any notion of what the symbols mean. For example, a context-free
syntax might say that a = b + ¢ is syntactically legal, while b + ¢ = a is not. Not
all program structure can be described by context-free syntax, however. For ex-
ample, CFGs cannot specify type compatibility and scoping rules (for instance,
that a = b + ¢ is illegal if any of the variables is undeclared or if b or ¢ is of type
Boolean).

Because of the limitations of CFGs, the semantic component of a program-
ming language is commonly divided into two classes:

e Static semantics

¢ Run-time semantics

1.4.1 Static Semantics

The static semantics of a language is a set of restrictions that determine which
syntactically legal programs are actually valid. Typical static semantic rules
require that all identifiers be declared, that operators and operands be type-
compatible, and that procedures be called with the proper number of parameters.
The common thread through all of these rules is that they cannot be expressed
with a CFG. Static semantics thus augment context-free specifications and com-
plete the definition of valid programs.

10 Chapter 1. Introduction

Static semantics can be specified formally or informally. The prose feature
descriptions found in most programming language manuals are informal speci-
fications. They tend to be relatively compact and easy to read, but often they
are imprecise. Formal specifications might be expressed using any of a variety
of notations. For example, attribute grammars [Knu68] are a popular method
of formally specifying static semantics. They formalize the semantic checks com-
monly found in compilers. The following rewriting rule, called a production,
specifies that an expression, denoted by E, can be rewritten into an expression, E,
plus a term, T.

E — E+T

In an attribute grammar, this production might be augmented with a type at-
tribute for E and T and a predicate testing for type compatibility, such as

Eresult —)
if v1.type = numeric and v2.type = numeric
then result.type < numeric
else call ERROR()

Attribute grammars are a reasonable blend of formality and readability, but they
can still be rather verbose. A number of compiler writing systems employ at-
tribute grammars and provide automatic evaluation of attribute values [RT88].

1.4.2 Run-time Semantics

Run-time, or execution semantics are used to specify what a program computes.
These semantics are often specified very informally in a language manual or re-
port. Alternatively, a more formal operational, or interpreter, model can be used.
In such a model, a program “state” is defined and program execution is described
in terms of changes to that state. For example, the semantics of the statement
a = 1 is that the state component corresponding to a is changed to 1.

A variety of formal approaches to defining the run-time semantics of pro-
gramming languages have been developed. Three of them, natural semantics,
axiomatic semantics and denotational semantics, are described below.

Natural Semantics

Natural semantics [NN92] (sometimes called structured operational semantics)
formalizes the operational approach. Given assertions known to be true before
the evaluations of a construct, we can infer assertions that will hold after the
construct's evaluation. Natural semantics has been used to define the semantics
of a variety of languages, including standard ML [MTH90].

1.4. Syntax and Semantics of Programming Languages 11

Axiomatic Definitions

Axiomatic definitions [Gri81] can be used to model execution at a more abstract
level than operational models. They are based on formally specified relations,
or predicates, that relate program variables. Statements are defined by how they
modify these relations.

As an example of axiomatic definitions, the axiom defining var < exp, states
that a predicate involving var is true after statement execution if, and only if, the
predicate obtained by replacing all occurrences of var by exp is true beforehand.
Thus, for y > 3 to be true after execution of the statement y + x + 1, the predi-
cate x + 1 > 3 would have to be true before the statement is executed. Similarly,
y = 21 is true after execution of x « 1 if y = 21 is true before its execution—this
is a roundabout way of saying that changing x doesn't affect y. However, if x is
an alias (an alternative name) for y, the axiom is invalid. This is one reason why
aliasing is discouraged (or forbidden) in modern language designs.

The axiomatic approach is good for deriving proofs of program correct-
ness because it avoids implementation details and concentrates on how relations
among variables are changed by statement execution. Although axioms can for-
malize important properties of the semantics of a programming language, it is
difficult to use them to define most programming languages completely. For ex-
ample, they do not do a good job of modeling implementation considerations
such as running out of memory.

Denotational Models

Denotational models [Sch86] are more mathematical in form than operational
models. Yet they still present notions of memory access and update that are
central to procedural languages. They rely on notation and terminology drawn
from mathematics, so they are often fairly compact, especially in comparison
with operational definitions.

A denotational definition may be viewed as a syntax-directed definition that
specifies the meaning of a construct in terms of the meaning of its immediate
constituents. For example, to define addition, we might use the following rule:

E[T1 + T2)m = E[T1}m + E[T2)m

This definition says that the value obtained by adding two subexpressions, T1
and T2, in the context of a memory state 7 is defined to be the sum of the arith-
metic values obtained by evaluating T1 in the context of m (denoted E[T1]m)
and T2 in the context of m (denoted E[T2]m).

Denotational techniques are quite popular and form the basis for rigorous
definitions of programming languages. Research has shown it is possible to
convert denotational representations automatically to equivalent representations
that are directly executable [Set83, Wan82, App85].

Again, our concern for precise semantic specification is motivated by the fact
that writing a complete and accurate compiler for a programming language re-
quires that the language itself be well-defined. While this assertion may seem

12 Chapter 1. Introduction

self-evident, many languages are defined by imprecise language reference manu-
als. Such a manual typically includes a formal syntax specification but otherwise
is written in an informal prose style. The resulting definition inevitably is am-
biguous or incomplete on certain points. For example, in Java all functions must
return via a return expr statement, where expr is assignable to the function's
return type. Thus

public static int subr(int b) {
if (b !'= 0)
return b+100;

}

is illegal, since if b is equal to zero, subr will not return a value. But what about
this:

public static int subr(int b) {
if (b '= 0)
return b+100;
else if (10*b == 0)
return 1;

}

In this case, a proper return is always executed, since the else part is reached
only if b equals zero; this implies that 10%b is also equal to zero. Is the com-
piler expected to duplicate this rather involved chain of reasoning? Although
the Java reference manual doesn't explicitly say so, there is an implicit “all paths
reachable” assumption that allows a compiler to assume that both legs of an
conditional are executable even if a detailed program analysis shows this to be
untrue. Thus a compiler may reject subr as semantically illegal and in so doing
trade simplicity for accuracy in its analysis. Indeed, the general problem of de-
ciding whether a particular statement in a program is reachable is undecidable
(this is a variant of the famous halting problem [HU79]). We certainly can't ask
our Java compiler literally to do the impossible!

In practice, a trusted reference compiler can serve as a de facto language defi-
nition. That is, a programming language is, in effect, defined by what a compiler
chooses to accept and how it chooses to translate language constructs. In fact,
the operational and natural semantic approaches introduced previously take this
view. A standard interpreter is defined for a language, and the meaning of a
program is precisely whatever the interpreter says. An early (and very elegant)
example of an operational definition is the seminal Lisp interpreter [McC65].
There, all of Lisp was defined in terms of the actions of a Lisp interpreter, as-
suming only seven primitive functions and the notions of argument binding and
function call.

Of course, a reference compiler or interpreter is no substitute for a clear and
precise semantic definition. Nonetheless, it is very useful to have a reference
against which to test a compiler that is under development.

1.5. Organization of a Compiler 13

Reserving space for: SyntaxDirected

Figure 1.3: A syntax-directed compiler.

1.5 Organization of a Compiler
Any compiler must perform two major tasks:

1. Analysis of the source program being compiled

2. Synthesis of a target program that, when executed, will correctly perform
the computations described by the source program

Almost all modern compilers are syntax-directed. That is, the compilation pro-
cess is driven by the syntactic structure of the source program, as recognized by
the parser. The parser builds this structure out of tokens, the elementary sym-
bols used to define a programming language syntax. Recognition of syntactic
structure is a major part of the syntax analysis task.

Semantic analysis examines the meaning (semantics) of the program on the
basis of its syntactic structure. It plays a dual role. It finishes the analysis task
by performing a variety of correctness checks (for example, enforcing type and
scope rules). It also begins the synthesis phase.

In the synthesis phase, either source language constructs are translated into
some intermediate representation (IR) of the program or target code may be
directly generated. If an IR is generated, it then serves as input to a code gener-
ator component that actually produces the desired machine-language program.
The IR may optionally be transformed by an optimizer so that a more efficient
program may be generated. A common organization of all of these compiler

14 Chapter 1. Introduction
components is depicted schematically in Figure 1.3. The following subsections
describe the components of a compiler:

e Scanner

e Parser

Type checker

Optimizer
e Code generator

Chapter Chapter:global:two presents a simple compiler to provide concrete ex-
amples of many of the concepts introduced in this overview.

1.5.1 The Scanner

The scanner begins the analysis of the source program by reading the input
text—character by character—and grouping individual characters into tokens—
identifiers, integers, reserved words, delimiters, and so on. This is the first of
several steps that produce successively higher-level representations of the input.
The tokens are encoded (often as integers) and are fed to the parser for syntactic
analysis. When necessary, the actual character string comprising the token is also
passed along for use by the semantic phases. The scanner does the following.

o It puts the program into a compact and uniform format (a stream of to-
kens).

o It eliminates unneeded information (such as comments).

o It processes compiler control directives (for example, turn the listing on or
off and include source text from a file).

o It sometimes enters preliminary information into symbol tables (for exam-
ple, to register the presence of a particular label or identifier).

o It optionally formats and lists the source program.

The main action of building tokens is often driven by token descriptions. Regu-
lar expression notation (discussed in Chapter Chapter:global:three) is an effective
approach to describing tokens. Regular expressions are a formal notation suffi-
ciently powerful to describe the variety of tokens required by modern program-
ming languages. In addition, they can be used as a specification for the automatic
generation of finite automata (discussed in Chapter Chapter:global:three) that
recognize regular sets, that is, the sets that regular expressions define. Recog-
nition of regular sets is the basis of the scanner generator. A scanner genera-
tor is a program that actually produces a working scanner when given only a
specification of the tokens it is to recognize. Scanner generators are a valuable
compiler-building tool.

1.5. Organization of a Compiler 15

1.5.2 The Parser

The parser, when given a formal syntax specification, typically as a CFG, reads
tokens and groups them into phrases as specified by the productions of the CFG
being used. (Grammars are discussed in Chapters Chapter:global:two and Chap-
ter:global:four; parsing is discussed in Chapters Chapter:global:five and Chap-
ter:global:six.) Parsers are typically driven by tables created from the CFG by a
parser generator.

The parser verifies correct syntax. If a syntax error is found, it issues a suit-
able error message. Also, it may be able to repair the error (to form a syn-
tactically valid program) or to recover from the error (to allow parsing to be
resumed). In many cases, syntactic error recovery or repair can be done auto-
matically by consulting error-repair tables created by a parser/repair generator.

As syntactic structure is recognized, the parser usually builds an abstract syn-
tax tree (AST). An abstract syntax tree is a concise representation of program
structure, that is used to guide semantic processing Abstract syntax trees are
discussed in Chapter Chapter:global:two, seven.

1.5.3 The Type Checker (Semantic Analysis)

The type checker checks the static semantics of each AST node. That is, it verifies
that the construct the node represents is legal and meaningful (that all identifiers
involved are declared, that types are correct, and so on). If the construct is
semantically correct, the type checker “decorates” the AST node by adding type
information to it. If a semantic error is discovered, a suitable error message is
issued.

Type checking is purely dependent on the semantic rules of the source lan-
guage. It is independent of the compiler's target.

Translator (Program Synthesis)

If an AST node is semantically correct, it can be translated. That is, IR code that
correctly implements the construct the AST represents is generated. Translation
involves capturing the run-time meaning of a construct.

For example, an AST for a while loop contains two subtrees, one representing
the loop's expression and the other representing the loop's body. Nothing in the
AST captures the notion that a while loop loops! This meaning is captured when
a while loop's AST is translated to IR form. In the IR, the notion of testing the
value of the loop control expression and conditionally executing the loop body
is made explicit.

The translator is largely dictated by the semantics of the source language.
Little of the nature of the target machine needs to be made evident. As a con-
venience during translation, some general aspects of the target machine may be
exploited (for example, that the machine is byte-addressable and that it has a run-
time stack). However, detailed information on the nature of the target machine

16 Chapter 1. Introduction

(operations available, addressing, register characteristics, and so on) is reserved
for the code-generation phase.

In simple, nonoptimizing compilers, the translator may generate target code
directly without using an explicit intermediate representation. This simplifies
a compiler's design by removing an entire phase. However, it also makes re-
targeting the compiler to another machine much more difficult. Most compilers
implemented as instructional projects generate target code directly from the AST,
without using an IR.

More elaborate compilers may first generate a high-level IR (that is source
language-oriented) and then subsequently translate it into a low-level IR (that is
target machine-oriented). This approach allows a cleaner separation of source
and target dependencies.

Symbol Tables

A symbol table is a mechanism that allows information to be associated with
identifiers and shared among compiler phases. Each time an identifier is declared
or used, a symbol table provides access to the information collected about it.
Symbol tables are used extensively during type checking, but they can also be
used by other compiler phases to enter, share, and later retrieve information
about variables, procedures, labels, and so on. Compilers may choose to use
other structures to share information between compiler phases. For example, a
program representation such as an AST may be expanded and refined to provide
detailed information needed by optimizers, code generators, linkers, loaders, and
debuggers.

1.5.4 The Optimizer

The IR code generated by the translator is analyzed and transformed into func-
tionally equivalent but improved IR code by the optimizer. This phase can be
complex, often involving numerous subphases, some of which may need to be
applied more than once. Most compilers allow optimizations to be turned off so
as to speed translation. Nonetheless, a carefully designed optimizer can signifi-
cantly speed program execution by simplifying, moving, or eliminating unneeded
computations.

If both a high-level and low-level IR are used, optimizations may be per-
formed in stages. For example, a simple subroutine call may be expanded into
the subroutine's body, with actual parameters substituted for formal parame-
ters. This is a high-level optimization. Alternatively, a value already loaded from
memory may be reused. This is a low-level optimization.

Optimization can also be done after code generation. An example is peephole
optimization. Peephole optimization examines generated code a few instructions
at a time (in effect, through a “peephole”). Common peephole optimizations
include eliminating multiplications by one or additions of zero, eliminating a
load of a value into a register when the value is already in another register, and
replacing a sequence of instructions by a single instruction with the same effect.

1.6. Compiler Design and Programming Language Design 17

A peephole optimizer does not offer the payoff of a full-scale optimizer. However,
it can significantly improve code and is often useful for “cleaning up” after earlier
compiler phases.

1.5.5 The Code Generator

The IR code produced by the translator is mapped into target machine code by
the code generator. This phase requires detailed information about the target
machine and includes machine-specific optimization such as register allocation
and code scheduling. Normally, code generators are hand-coded and can be
quite complex, since generation of good target code requires consideration of
many special cases.

The notion of automatic construction of code generators has been actively
studied. The basic approach is to match a low-level IR to target-instruction
templates, with the code generator automatically choosing instructions that best
match IR instructions. This approach localizes the target-machine dependences
of a compiler and, at least in principle, makes it easy to retarget a compiler to a
new target machine. Automatic retargeting is an especially desirable goal, since
a great deal of work is usually needed to move a compiler to a new machine.
The ability to retarget by simply changing the set of target machine templates
and generating (from the templates) a new code generator is compelling.

A well-known compiler using these techniques is the GNU C compiler [Sta89],
gcc. gec is a heavily optimizing compiler that has machine description files for
more than ten popular computer architectures and at least two language front
ends (C and C++).

1.5.6 Compiler Writing Tools

Finally, note that in discussing compiler design and construction, we often talk
of compiler writing tools. These are often packaged as compiler generators or
compiler-compilers. Such packages usually include scanner and parser genera-
tors. Some also include symbol table routines, attribute grammar evaluators,
and code-generation tools. More advanced packages may aid in error repair
generation.

These sorts of generators greatly aid in building pieces of compilers, but much
of the effort in building a compiler lies in writing and debugging the semantic
phases. These routines are numerous (a type checker and translator are needed
for each distinct AST node) and are usually hand-coded.

1.6 Compiler Design and Programming Language Design

Our primary interest is the design and implementation of compilers for modern
programming languages. An interesting aspect of this study is how program-
ming language design and compiler design influence one another. Obviously,

18 Chapter 1. Introduction

programming language design influences, and indeed often dictates, compiler de-
sign. Many clever and sometimes subtle compiler techniques arise from the need
to cope with some programming language construct. A good example of this is
the closure mechanism that was invented to handle formal procedures. A closure
is a special run-time representation for a function. It consists of a pointer to the
function's body and to its execution environment.

The state of the art in compiler design also strongly affects programming lan-
guage design, if only because a programming language that cannot be compiled
effectively will usually remain unused! Most successful programming language
designers (such as the Java development team) have extensive compiler design
backgrounds.

A programming language that is easy to compile has many advantages, as
follows.

o It often is easier to learn, read, and understand. If a feature is hard to
compile, it may well be hard to understand.

o It will have quality compilers on a wide variety of machines. This fact
is often crucial to a language's success. For example, C, C++, and FOR-
TRAN are widely available and very popular; Ada and Modula-3 have limited
availability and are far less popular.

¢ Often better code will be generated. Poor quality code can be fatal in major
applications.

o Fewer compiler bugs will occur. If a language can't be understood, how
can it be effectively compiled?

o The compiler will be smaller, cheaper, faster, more reliable, and more widely
used.

¢ Compiler diagnostics and program development tools will often be better.

Throughout our discussion of compiler design, we draw ideas, solutions, and
shortcomings from many languages. Our primary focus is on Java and C, but
we also consider Ada, C++, SmallTalk, ML, Pascal, and FORTRAN. We concentrate
on Java and C because they are representative of the issues posed by modern
language designs. We consider other languages so as to identify alternative design
approaches that present new challenges to compilation.

1.7 Architectural Influences of Computer Design

Advances in computer architecture and microprocessor fabrication have spear-
headed the computer revolution. At one time, a computer offering one megaflop
performance (1,000,000 floating-point operations per second) was considered
advanced. Now computers offering in excess of 10 teraflops (10,000,000,000,000
floating-point operations per second) are under development.

1.8. Compiler Variants 19

Compiler designers are responsible for making this vast computing capabil-
ity available to programmers. Although compilers are rarely visibly to the end
users of application programs, they are an essential “enabling technology.” The
problems encountered in efficiently harnessing the capability of a modern micro-
processor are numerous, as follows.

¢ Instruction sets for some popular microprocessors, particularly the x86 se-
ries, are highly nonuniform. Some operations must be done in registers,
while others can be done in memory. Often a number of register classes
exist, each suitable for only a particular class of operations.

¢ High-level programming language operations are not always easy to sup-
port. Heap operations can take hundreds or thousands of machine in-
structions to implement. Exceptions and program threads are far more
expensive and complex to implement than most users suspect.

o Essential architectural features such as hardware caches and distributed
processors and memory are difficult to present to programmers in an ar-
chitecturally independent manner. Yet misuse of these features can impose
immense performance penalties.

Data and program integrity have been undervalued, and speed has been over-
emphasized. As a result, programming errors can go undetected because of a fear
that extra checking will slow down execution unacceptably. A major complexity
in implementing Java is efficiently enforcing the run-time integrity constraints it
1mposes.

1.8 Compiler Variants

Compilers come in many forms, including the following:
e Debugging, or development compilers
¢ Optimizing compilers
e Retargetable compilers

These are discussed in the following sections.

1.8.1 Debugging (Development) Compilers

A debugging, or development compiler such as CodeCenter [KLP88] or Borland
C++[Sch97] is specially designed to aid in the development and debugging of pro-
grams. It carefully scrutinizes programs and details programmer errors. It also
often can tolerate or repair minor errors (for example, insert a missing comma
or parenthesis). Some program errors can be detected only at run-time. Such
errors include invalid subscripts, misuse of pointers, and illegal file manipula-
tions. A debugging compiler may include the checking of code that can detect

20 Chapter 1. Introduction

run-time errors and initiate a symbolic debugger. Although debugging compilers
are particularly useful in instructional environments, diagnostic techniques are
of value in all compilers. In the past, development compilers were used only in
the initial stages of program development. When a program neared completion,
a “production compiler,” which increased compilation and execution speed by
ignoring diagnostic concerns, was used. This strategy has been likened by Tony
Hoare to wearing a life jacket in sailing classes held on dry land but abandoning
the jacket when at sea! Indeed, it is becoming increasingly clear that for almost
all programs, correctness rather than speed is the paramount concern. Java, for
example, mandates run-time checks that C and C++ ignore.

Ways of detecting and characterizing errors in heavily used application pro-
grams are of great interest. Tools such as purify [H]92] can add initialization
and array bounds checks to already compiled programs, thereby allowing illegal
operations to be detected even when source files are not available.

1.8.2 Optimizing Compilers

An optimizing compiler is specially designed to produce efficient target code at
the cost of increased compiler complexity and possibly increased compilation
times. In practice, all production quality compilers—those whose output will
be used in everyday work—make some effort to generate good target code. For
example, no add instruction would normally be generated for the expression
i+0.

The term optimizing compiler is actually a misnomer. This is because no
compiler, no matter how sophisticated, can produce optimal code for all pro-
grams. The reason for this is twofold. First, theoretical computer science has
shown that even so simple a question as whether two programs are equivalent is
undecidable, that is, it cannot be solved by any computer program. Thus finding
the simplest (and most efficient) translation of a program can't always be done.
Second, many program optimizations require time proportional to an exponen-
tial function of the size of the program being compiled. Thus optimal code, even
when theoretically possible, often is infeasible in practice.

Optimizing compilers actually use a wide variety of transformations that im-
prove a program's performance. The complexity of an optimizing compiler arises
from the need to employ a variety of transforms, some of which interfere with
each other. For example, keeping frequently used variables in registers reduces
their access time but makes procedure and function calls more expensive. This is
because registers need to be saved across calls. Many optimizing compilers pro-
vide a number of levels of optimization, each providing increasingly greater code
improvements at increasingly greater costs. The choice of which improvements
are most effective (and least expensive) is a matter of judgment and experience.
In later chapters, we suggest possible optimizations, with the emphasis on those
that are both simple and effective. Discussion of a comprehensive optimizing
compiler is beyond the scope of this book. However, compilers that produce
high-quality code at reasonable cost are an achievable goal.

1.9. Program Development Environment 21

1.8.3 Retargetable Compilers

Compilers are designed for a particular programming language (the source lan-
guage) and a particular target computer (the computer for which it will generate
code). Because of the wide variety of programming languages and computers
that exist, a large number of similar, but not identical, compilers must be writ-
ten. While this situation has decided benefits for those of us in the compiler
writing business, it does make for a lot of duplication of effort and for a wide
variance in compiler quality. As a result, a new kind of compiler, the retargetable
compiler, has become important.

A retargetable compiler is one whose target machine can be changed with-
out its machine-independent components having to be rewritten. A retargetable
compiler is more difficult to write than an ordinary compiler because target ma-
chine dependencies must be carefully localized. It also is often difficult for a
retargetable compiler to generate code that is as efficient as that of an ordinary
compiler because special cases and machine idiosyncrasies are harder to exploit.
Nonetheless, because a retargetable compiler allows development costs to be
shared and provides for uniformity across computers, it is an important inno-
vation. While discussing the fundamentals of compilation, we concentrate on
compilers targeted to a single machine. In later chapters, the techniques needed
to provide retargetability will be considered.

1.9 Program Development Environment

In practice, a compiler is but one tool used in the edit-compile-test cycle. That
is, a user first edits a program, then compiles it, and finally tests its performance.
Since program bugs will inevitably be discovered and corrected, this cycle is re-
peated many times. A popular programming tool, the program development
environment (PDE), has been designed to integrate this cycle within a single tool.
A PDE allows programs to be built incrementally, with program checking and
testing fully integrated. PDEs may be viewed as the next stage in the evolution
of compilers.

We focus on the traditional batch compilation approach in which an entire
source file is translated. Many of the techniques we develop can be reformulated
into incremental form to support PDEs. Thus a parser can reparse only portions
of a program that have been changed [WG97], and a type checker can analyze
only portions of an abstract syntax tree that have been changed.

In this book, we concentrate on the translation of C, C++, and Java. We use
the JVM as our target, but we also address popular microprocessor architectures,
particularly RISC processors such as the MIPS [KHH91] and Sparc [WG94]. At
the code-generation stage, a variety of current techniques designed to exploit
fully a processor's capabilities will be explored. Like so much else in compiler
design, experience is the best guide, so we start with the translation of a very
simple language and work our way up to ever more challenging translation tasks.

22 Chapter 1. Introduction

Exercises

1. The model of compilation we introduced is essentially batch-oriented. In
particular, it assumes that an entire source program has been written and
that the program will be fully compiled before the programmer can execute
the program or make any changes. An interesting and important alterna-
tive is an interactive compiler. An interactive compiler, usually part of an
integrated program development environment, allows a programmer to in-
teractively create and modify a program, fixing errors as they are detected.
It also allows a program to be tested before it is fully written, thereby pro-
viding for stepwise implementation and testing.

Redesign the compiler structure of Figure 1.3 to allow incremental compi-
lation. (The key idea is to allow individual phases of a compiler to be run
or rerun without necessarily doing a full compilation.)

2. Most programming languages, such as C and C++, are compiled directly
into the machine language of a “real” microprocessor (for example, an In-
tel x86 or DEC alpha). Java takes a different approach. It is commonly
compiled into the machine language of the Java virtual machine (JVM).
The JVM isn't implemented in its own microprocessor but rather is inter-
preted on some existing processor. This allows Java to be run on a wide
variety of machines, thereby making it highly “platform-independent.”

Explain why building an interpreter for a virtual machine like the JVM is
easier and faster than building a complete Java compiler. What are the dis-
advantages of this virtual machine approach to compiler implementation?

3. C compilers are almost always written in C. This raises something of a
“chicken and egg” problem—how was the first C compiler for a particular
system created? If you need to create the first compiler for language X on
system Y, one approach is to create a cross-compiler. A cross-compiler runs
on system Z but generates code for system Y.

Explain how, starting with a compiler for language X that runs on system
Z, you might use cross-compilation to create a compiler for language X,
written in X, that runs on system Y and generates code for system Y.

What extra problems arise if system Y is “bare”—that is, has no operating
system or compilers for any language? (Recall that Unix is written in C and
thus must be compiled before its facilities can be used.)

4. Cross-compilation assumes that a compiler for language X exists on some
machine. When the first compiler for a new language is created, this as-
sumption doesn't hold. In this situation, a bootstrapping approach can be
taken. First, a subset of language X is chosen that is sufficient to implement
a simple compiler. Next, a simple compiler for the X subset is written in
any available language. This compiler must be correct, but it should not be
any more elaborate than is necessary, since it will soon be discarded. Next,
the subset compiler for X is rewritten in the X subset and then compiled

1.9. Program Development Environment 23

using the subset compiler previously created. Finally, the X subset, and its
compiler, can be enhanced until a complete compiler for X, written in X, is
available.

Assume you are bootstrapping C++ or Java (or some comparable language).
Outline a suitable subset language. What language features must be in the
language? What other features are desirable?

5. To allow the creation of camera-ready documents, languages like TEX and
IETEX have been created. These languages can be thought of as varieties
of programming language whose output controls laser printers or photo-
typesetters. Source language commands control details like spacing, font
choice, point size, and special symbols. Using the syntax-directed compiler
structure of Figure 1.3, suggest the kind of processing that might occur in
each compiler phase if TEX or BIEX input was being translated.

An alternative to “programming” documents is to use a sophisticated edi-
tor such as that provided in Microsoft Word or Adobe FrameMaker to inter-
actively enter and edit the document. (Editing operations allow the choice
of fonts, selection of point size, inclusion of special symbols, and so on.)
This approach to document preparation is called WYSIWYG—what you
see is what you get—because the exact form of the document is always
visible.

What are the relative advantages and disadvantages of the two approaches?
Do analogues exist for ordinary programming languages?

6. Although compilers are designed to translate a particular language, they
often allow calls to subprograms that are coded in some other language
(typically, FORTRAN, C, or assembler). Why are such “foreign calls” al-
lowed? In what ways do they complicate compilation?

7. Most C compilers (including the GNU gcc compiler) allow a user to exam-
ine the machine instructions generated for a given source program. Run
the following program through such a C compiler and examine the instruc-
tions generated for the for loop. Next, recompile the program, enabling
optimization, and reexamine the instructions generated for the for loop.
What improvements have been made? Assuming that the program spends
all of its time in the for loop, estimate the speedup obtained. Execute and
time the two versions of the program and see how accurate your estimate
is.

int proc(int a[l) {
int sum = 0, 1i;
for (i=0; i < 1000000; i++)
sum += ali]l;
return sum;

24

8.

10.

Chapter 1. Introduction

C is sometimes called the “universal assembly language” in light of its abil-
ity to be very efficiently implemented on a wide variety of computer ar-
chitectures. In light of this characterization, some compiler writers have
chosen to generate C code, rather than a particular machine language, as
their output. What are the advantages to this approach to compilation?
Are there any disadvantages?

. Many computer systems provide an interactive debugger (for example, gdb

or dbx) to assist users in diagnosing and correcting run-time errors. Al-
though a debugger is run long after a compiler has done its job, the two
tools still must cooperate. What information (beyond the translation of a
program) must a compiler supply to support effective run-time debugging?

Assume you have a source program P. It is possible to transform P into
an equivalent program P’ by reformatting P (by adding or deleting spaces,
tabs, and line breaks), systematically renaming its variables (for example,
changing all occurrences of sum to total), and reordering the definition of
variables and subroutines.

Although P and P’ are equivalent, they may well look very different. How
could a compiler be modified to compare two programs and determine if
they are equivalent (or very similar)? In what circumstances would such a
tool be useful?

Bibliography

[Ado90] Adobe Systems Incorporated. PostScript Language Reference Manual,
2nd Edition. Addison-Wesley, Reading, Mass., 1990.

[App85] Andrew W. Appel. Semantics-directed code generation. Conference
Record of the 12th Annual ACM Symposium on Principles of Pro-
gramming Languages, New Orleans, Louisiana, pages 315-324, 1985.

[Coe89] David R. Coelho. The VHDL Handbook. Kluwer Academic Publish-
ers, Boston, Mass., 1989.

[Gri81] David Gries. The Science of Programming. Springer-Verlag, New York,
N.Y., 1981.

[Han85] Per Brinch Hansen. Brinch Hansen on Pascal Compilers. Prentice-Hall,
1985.

[HJ92] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and
access errors. Winter Usenix Conference Proceedings, pages 125-136,
1992.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[KHH91] Gerry Kane, Joe Heinrich, and Joseph Heinrich. Mips Risc Architec-
ture, Second Edition. Prentice Hall, 1991.

[KLP88] S. Kaufer, R. Lopez, and S. Pratap. Saber-c an interpreter-based pro-
gramming environment for the ¢ language. Summer Usenix Conference
Proceedings, pages 161-171, 1988.

[Knu68] Donald E. Knuth. Semantics of context-free languages. Math. Systems
Theory, 2(2):127-145, 1968.

[Lam95] Leslie Lamport. IATEX: A Document Preparation System. Addison-
Wesley Publishing Company, 1995.

[McC635] John McCarthy. Lisp 1.5 Programmer's Manual. The MIT Press,
Cambridge, Massachusetts, and London, England, 1965.

25

26

BIBLIOGRAPHY

[MTH90] Robin Milner, Mads Tofte, and Robert W. Harper. The Definition of

[NN92]

[Pal96]

[RT88]

[Sch86]

[Sch97]

[Set83]

[Sta89]

[Sun98]

[Wan82]

[WG94]

[WG97]

[Wol96]

Standard ML. MIT Press, Cambridge, Massachusetts, 1990.

H.R. Nielson and E Nielson. Semantics with Applications: A Formal
Introduction. John Wiley and Sons, New York, N.Y., 1992.

Samir Palnitkar. Verilog HDL: A Guide to Digital Design and Synthe-
sis. Sun Microsystems Press, 1996.

T. Reps and T. Teitelbaum. The Synthesizer Generator Reference Man-
ual, Third Edition. Springer-Verlag, New York, N.Y., 1988.

David A. Schmidt. Denotational Semantics - A Methodology for Lan-
guage Development. Allyn and Bacon, 1986.

Herbert Schildt. Borland C++ : The Complete Reference. Osborne
McGraw-Hill, 1997.

Ravi Sethi. Control flow aspects of semantics-directed compiling. ACM
Transactions on Programming Languages and Systems, 5(4), 1983.

Richard M. Stallman. Using and Porting GNU CC. Free Siftware
Foundation, Inc., 1989.

Sun Microsystems. Jdk 1.1.6 release notes., 1998.

M. Wand. Deriving target code as a representation of continuation se-
mantics. ACM Transactions on Programming Languages and Systems,
4(3), 1982.

David L. Weaver and Tom Germond. The Sparc Architecture Manual,
Version 9. Prentice Hall, 1994.

Tim A. Wagner and Susan L. Graham. Incremental analysis of real
programming languages. Proceedings of the ACM SIGPLAN '97 Con-
ference on Programming Language Design and Implementation, pages
31-43, June 1997.

Stephen Wolfram. The Mathematica Book, Third Edition. Cambridge
University Press, 1996.

2
A Simple Compiler

In this chapter, we provide an overview of how the compilation process can
be organized by considering in detail how a compiler can be built for a very
small programming language. We begin in Section 2.1 by informally defining
this language, which we call ac. In the rest of the chapter, we present the phases
of a simple compiler for ac.

2.1 An Informal Definition of the ac Language

Our language is called ac (for adding calculator). It is a very simple language, yet
it possesses components that are found in most programming languages. We use
this language to examine the phases and data structures of a compiler. Following
is the informal definition of ac.

e There are two data types: integer and float. An integer type is a decimal
integer, as found in most programming languages. A float type allows five
fractional digits after the decimal point.

e There are three reserved keywords: £ (declares a float variable), i (declares
an integer variable), and p (prints the value of a variable).

e The data type of an identifier is explicitly declared in the program. There
are only 23 possible identifiers, drawn from the lowercase Roman alpha-
bet. The exceptions are the three reserved keywords £, i, and p.

e When expressions are computed, conversion from integer type to float type
is accomplished automatically. Conversion in the other direction is not
allowed.

2 Chapter 2. A Simple Compiler

1 Prog — Dcls Stmts $
2 Dcls — Dcl Dcls
3 | A
4 Dcl — floatdcl id
5 | intdclid
6 Stmts — Stmt Stmts
7 | A
8§ Stmt — id assign Val ExprTail
9 | printid
10 ExprTail — plus Val ExprTail
11 | minus Val ExprTail
12 Y
13 Val — id
14 | num

Figure 2.1: Context-free grammar for ac.

For the target of translation, we chose the Unix program dc (for desk calculator),
which is a stacking (Reverse Polish) calculator. The target instructions must be
acceptable to the dc program and faithfully represent the operations specified
in an ac program. Compilation of ac to dc can be viewed as a study of larger
systems, such as the portable Pascal and Java compilers, which produce a stack
language as an intermediate representation [?].

2.2 Structure of an ac Compiler

The rest of this chapter presents a simple compiler for ac. The compiler's struc-
ture is based on the illustration in Figure Figure:one:onepointthree. Following
are the main compilation steps.

1. The scanner reads a source program as a text file and produces a stream of
tokens.

2. The parser processes tokens, determines the syntactic validity of the com-
piler's input, and creates an abstract syntax tree (AST) suitable for the
compiler's subsequent activities.

3. The AST is walked to create a symbol table. This table associates type and
other contextual information with the input program's variables.

4. Semantic checking is performed on the AST to determine the semantic va-
lidity of the compiler's input. The AST may be decorated with information
required for subsequent compiler activities.

5. A translator walks the AST to generate dc code.

2.3. Formal Syntax Definition of ac 3

2.3 Formal Syntax Definition of ac

Before proceeding with creating the compiler's parts, in this section we specify
the ac language more formally. For this, we use a context-free grammar (CFG)
to specify the syntax of ac. The full grammar is shown in Figure 2.1. CFGs, first
mentioned in Chapter Chapter:global:one, are discussed thoroughly in Chap-
ter Chapter:global:four. Here, we view a CFG as a set of rewriting rules. A
rewriting rule is also called a production. Following are two productions taken
from the grammar for ac.

Stmt — id assign Val ExprTail
| printid

On its left-hand side (LHS), each production has exactly one symbol; on its
right-hand side (RHS), it may have zero or more symbols. The symbols after
the arrow or bar are a production's RHS. Stmt is the LHS of each production
shown here. In a production, any occurrence of its LHS symbol can be replaced
by the symbols on its RHS. The productions shown here specify that a Stmt can
be replaced by two different strings of symbols. The top production lets a Stmt
be rewritten as an assignment to an identifier, while the bottom production lets
a Stmt be rewritten to specify the printing of an identifier's value.

Productions contains two kinds of symbols: terminals and nonterminals. A
terminal is a grammar symbol that cannot be rewritten. Thus id and assign are
symbols for which there are no productions specifying how they can be changed.
The nonterminal symbols Val and ExprTail have productions that define how they
can be rewritten. To ease readability in the grammar, we adopt the convention
that nonterminals begin with an uppercase letter and terminals are all lowercase
letters.

The purpose of a CFG is to specify a (typically infinite) set of legal token
strings. A CFG does this in a remarkably elegant way. It starts with a single non-
terminal symbol called the start symbol. Then it applies productions, rewriting
nonterminals until only terminals remain. Any string of terminals that can be
produced in this manner is considered syntactically valid. A string of terminals
that cannot be produced by any sequence of nonterminal replacements is deemed
illegal.

There are two special symbols that appear in the grammars of this text. Both
symbols are regarded as terminal symbols, but they lie outside the normal termi-
nal alphabet and cannot be supplied as input.

e The special symbol A represents the empty, or null, string. When present, it
appears as the only symbol on a production's RHS. In Rule 7 of Figure 2.1,
X indicates that the symbol Stmts can be replaced by nothing, effectively
causing its erasure.

e The special symbol $ represents termination of input. An input stream
conceptually has an unbounded number of $ symbols following the actual
input.

Chapter 2. A Simple Compiler

Sentential Form Production
Number
Prog
Dcls Stmts $ 1
Dcl Dcls Stmts $ 2
floatdel id Dcls Stmts $ 4
floatdcl id Dc/ Dels Stmts $ 2
floatdel id intdcl id Dcls Stmts $ S
floatdcl id intdcl id Stmts $ 3
floatdel id intdcl id _Stmt Stmts $ 6
floatdcl id intdcl id id assign Val ExprTail Stmts $ 8
floatdel id intdcl id id assign num ExprTail Stmts $ 14
floatdcl id intdcl id id assigh num Stmts $ 12
floatdcl id intdcl id id assign num Stmt Stmts $ 6
floatdel id intdcl id id assign num id assign Val ExprTail Stmts $ 8
floatdel id intdcl id id assign num id assign id ExprTail Stmts $ 13
floatdcl id intdel id id assign num id assign id plus Val ExprTail Stmts $ 10
floatdcl id intdel id id assign num id assign id plus num ExprTail Stmts $ 14
floatdcl id intdcl id id assign num id assign id plus num Stmts $ 12
floatdcl id intdcl id id assign num id assign id plus num Stmt Stmts $ 6
floatdcl id intdcl id id assign num id assign id plus num print id Stmts $ 9
floatdcl id intdcl id id assign num id assign id plus num print id $ 7
Figure 2.2: Derivation of an ac program using the grammar in Figure 2.1.

Terminal Regular Expression

floatdcl f

intdcl i

print P

id {a,b,c,...,z} - {f,i,p}

assign =

plus +

minus -

num {0,1,...,9}" | {0,1,...,9}".{0,1,...,9}"

Figure 2.3: Formal definition of ac terminal symbols.

2.4. The Scanner's Job S

Grammars often generate a list of symbols from a nonterminal. Consider the
productions for Stmts. They allow an arbitrary number of Stmt symbols to be
produced. The first production for Stmts is recursive, and each use of this pro-
duction generates another Stmt. The recursion is terminated by applying the
second production for Stmts, thereby causing the final Stmts symbol to be erased.

To show how the grammar defines legal ac programs, the derivation of one
such program is given in Figure 2.2, beginning with the start symbol Prog. Each
line represents one step in the derivation. In each line, the leftmost nonterminal
(in italics) is replaced by the underscored text shown on the next line. The right
column shows the production number by which the derivation step is accom-
plished.

The derivation shown in Figure 2.2 explains how the terminal string is gen-
erated for the sample ac program. Although the CFG defines legal terminal se-
quences, how these terminals are “spelled” is another aspect of the language's
definition. The terminal assign represents the assignment operator (typically
spelled as = or :=). The terminal id represents an identifier. In most program-
ming languages, an identifier is a word that begins with a letter and contains
only letters and digits. In some languages, words such as if, then, and while
are reserved and cannot be used as identifiers. It is the job of the scanner to
recognize the occurrence of a string (such as xy4z) and return the corresponding
token (id). Of course, the language designer must specify this correspondence.

Chapter Chapter:global:three defines regular expressions and shows how they
can specify terminal spellings and automate the generation of scanners. By way
of example, the regular expressions for terminals in ac are shown in Figure 2.3.
The keywords are unusually terse so that the scanner can be readily constructed
in Section 2.4. The specification given id allows any lowercase character except
f, i, and p. The regular expression for num is the most complicated: The |
symbol denotes choice, and the T symbol denotes repetition. Thus a num can be
a sequence of digits or a sequence of digits followed by a decimal point followed
by another sequence of digits. For the remainder of this chapter, we consider
translation of the ac program shown in Figure 2.4. The figure also shows the se-
quence of terminal symbols that corresponds to the input program. The deriva-
tion shown textually in Figure 2.2 can be represented as a derivation (or parse)
tree, also shown in Figure 2.4.

In the ensuing sections, we examine each step of the compilation process for
the ac language, assuming an input that would produce the derivation shown in
Figure 2.2. While the treatment is somewhat simplified, the goal is to show the
activity and data structures of each phase.

2.4 The Scanner's Job

The scanner's job is to translate a stream of characters into a stream of tokens.
A token represents an instance of a terminal symbol. Rigorous methods for
constructing scanners based on regular expressions (such as those shown in Fig-
ure 2.3) are covered in Chapter Chapter:global:three. Here, we are content with

6 Chapter 2. A Simple Compiler

Prog
Dcls Stmts

Stmts
Stmt Stmts

Stmt ExprTail

Dcls
/\ ExprTail
Del Dcl Dcls val Val Val Stmt Stmts

A A ExprTail A

floatdcl id intdcl id X\ id assign num N\ id assign id plus num X print id X $

£ b i a a = 5 b = a + 3.2 p b
Figure 2.4: An ac program and its parse tree.

crafting an ad hoc scanner. While the automatic methods are more robust, the
job at hand is sufficiently simple to attack manually.

Figure 2.5 shows the pseudocode for the basic scanner. This scanner exam-
ines an input stream and returns the stream's next token. As seen in this code, a
token actually has two components, as follows.

e A token's type explains the token's membership in the terminal alphabet.
All instances of a given terminal have the same token type.

o A token's semantic value provides additional information about the token.

For some tokens, such as plus and assign in ac, instance-specific information is
unnecessary. Other tokens, such as id and num, require semantic information so
that the compiler can record which identifier or number has been scanned. The
code for scanning a number is the most complex, so it is relegated to the separate
procedure SCANDIGITS. Although this scanner is written ad hoc, a principled
approach supports its construction. The logic is patterned after the num token's
regular expression. A recurring theme of this text is that the algorithms that
enable automatic construction of a compiler's parts can often guide the manual
construction of those parts.

The scanner, when called, must find the beginning of some token. Scanners
are often instructed to ignore blanks and comments. Patterns for such input
sequences are also specified using regular expressions, but the action triggered
by such patterns does nothing. If the scanner encounters a character that cannot

2.4. The Scanner's Job

function SCANNER(s) : Token
if s EOF()
then ans.type < $
else
while s.PEEK() = blank do call s.ADVANCE()
if s.PEEK() € {0,1,2,3,4,5,6,7,8,9}
then
ans.type <— num
ans.val + STRINGTOINT(SCANDIGITS())
else
ch < s.ADVANCE()
switch (ch)
case {a...z} —{i,f,p}
ans.type < id
ans.val « ch
case f
ans.type < floatdcl
case i
ans.type < intdcl
case p
ans.type ¢ print
case =
ans.type <— assign
case +
ans.type < plus
case -
ans.type < minus
case default
call LEXICALERROR()
return (ans)
end

Figure 2.5: Scanner for the ac language.

8 Chapter 2. A Simple Compiler

function SCANDIGITS(s) : String

« »

Str <
while s.PEEK() € {0,1,2,3,4,5,6,7,8,9} do
str ¢— str + s.ADVANCE()
if s.PEEK() = “.”
then
str ¢— str + s.ADVANCE()
if s.PEEK() ¢ {0,1,2,3,4,5,6,7,8,9}
then call ERROR(“Expected a digit”)
while s.PEEK() € {0,1,2,3,4,5,6,7,8,9} do
str <— str + s.ADVANCE()
return (str)
end

Figure 2.6: Digit scanning for the ac language.

begin a token, then a lexical error message is issued; some scanners attempt to
recover from such errors. A simple approach is to skip the offending character
and continue scanning. This process continues until the beginning of some token
is found. Once the scanner has found the beginning of a token, it then matches
the longest possible character sequence that comprises a legal token.

Tokens come in many forms. Some are one character in length and cannot
begin any other token. These are very easy to scan—a single character is read
and the corresponding token is returned. Other tokens, such as + (in Java and C)
are more difficult. When a + is seen, the next character must be inspected (but
not yet read) to see if it extends the current token (for example, ++). Scanners can
generally require a peek at the next character to determine whether the current
token has been fully formed. For example, the end of a num token is signaled
by the presence of a nondigit. Modular construction of the scanner is facilitated
by allowing the next input character to be examined—perhaps many times—
prior to consumption. This is typically accomplished by buffering the input. The
method PEEK returns the contents of the buffer. The method ADVANCE returns
the buffer's contents and advances the next character into the buffer.

Variable-length tokens, such as identifiers, literals, and comments, must be
matched character-by-character. If the next character is part of the current token,
it is consumed. When a character that cannot be part of the current token is
reached, scanning is complete. When scanning is resumed, the last character
inspected will be part of the next token.

2.5 The Parser's Job

The parser is responsible for determining if the stream of tokens provided by the
scanner conforms to the language's grammar specification. In most compilers,
the grammar serves not only to define the syntax of a programming language

2.5. The Parser's Job 9

procedure STMT(s)
if #s.PEEK() = id 1
then
call MATCH(s, id) 2
call MATCH(ts, assign)
call VAL()
call EXPRTAIL()
else
if #s.PEEK() = print 3
then
call MATCH(ts, print)
call MATCH(s, id)
else call ERROR()
end

Figure 2.7: Recursive-descent parsing procedure for Stmt.

but also to guide the automatic construction of a parser, as described in Chap-
ters Chapter:global:five and Chapter:global:six. In this section, we build a parser
for ac using a well-known parsing technique called recursive descent, which is
described more fully in Chapter Chapter:global:five. We also consider a repre-
sentation for the parsed program that serves as a record of the parse and as a
means of conveying information between a compiler's components.

2.5.1 Recursive-Descent Parsing

Recursive descent is one of the simplest parsing techniques used in practical com-
pilers. The name is taken from the recursive parsing routines that, in effect,
descend through the derivation tree that is recognized as parsing proceeds. In
recursive-descent parsing, each nonterminal A has an associated parsing proce-
dure. This procedure must determine if a portion of the program's input contains
a sequence of tokens derivable from A. The productions for A guide the parsing
procedure as follows.

e The procedure contains conditionals that examine the next input token to
predict which of A's productions should be applied. If no production can
be applied then then an error message is issued. For the grammar shown in
Figure 2.1, the parsing procedures associated with the nonterminals Stmt
and Stmts are shown in Figures 2.7 and 2.8.

— id predicts the production Stmt— id assign Val ExprTail and

— print predicts the production Stmt— print id.

The production is selected by the conditionals at Steps 1 and 3.

10 Chapter 2. A Simple Compiler

procedure STMTS(¢s)
if #s.PEEK() = id or ¢s.PEEK() = print 4
then
call ST™mT()
call ST™MTS()
else
if ts.PEEK() = $
then
% do nothing for A-production */ 5
else call ERROR()
end

Figure 2.8: Recursive-descent parsing procedure for Stmts.

e Having selected a production A— a, the parsing procedure next recognizes
the vocabulary symbols in a.

— For terminal t, the procedure MATCH(#s,1) is called to consume the
next token in stream ts. If the token is not t then an error message is
issued.

- For a nonterminal B, the parsing procedure associated with B is in-

voked.

In Figure 2.7, the block of code at Step 2 determines that id, assign, Val, and
ExprTail occur in sequence.

The parsing procedures can be recursive, hence the name “recursive de-
scent.” In the full parser, each nonterminal has a procedure that is analo-
gous to the ones shown in Figure Figure:two:RecDesStmt,RecDesStmts.

In our example, each production for Stmt begins with a distinct terminal symbol,
so it is clear by inspection that id predicts Stmt's first production and print predicts
the second production. In general, an entire set of symbols can predict a given
production; determining these predict sets can be more difficult.

e The production Stmts— Stmt Stmts begins with the nonterminal Stmt. This
production is thus predicted by terminals that predict any production for
Stmt. As a result, the predicate at Step 4 in Figure 2.8 checks for id or print
as the next token.

e The production Stmts— X offers no clues in its RHS as to which terminals
predict this production. Grammar analysis can show that $ predicts this
production, because $ is the only terminal that can appear after Stmts. No
action is performed by the parser at Step 5 when applying the production
Stmts— A, since there are no RHS symbols to match.

2.5. The Parser's Job 11

The grammar analysis needed to compute predict sets for an arbitrary CFG is
discussed in Chapter Chapter:global:four.

Mechanically generated recursive-descent parsers can contain redundant tests
for terminals. For example, the code in Figure 2.7 tests for the presence of an id at
Steps 1 and 2. Modern software practice tolerates such redundancy if it simplifies
or facilitates compiler construction. The redundancy introduced by one compiler
component can often be eliminated by another, as discussed in Exercise 5.

Syntax errors arise when no production for the current nonterminal can be
applied, or when a specific terminal fails to be matched. When such errors are
discovered, a parser can be programmed to recover from the error and continue
parsing. Ambitious parsers may even attempt to repair the error.

In practice, parsing procedures are rarely created ad hoc; they are based on
the theory of LL(k) parsing, which is described in Chapter Chapter:global:five.
Given a grammar for a language, the LL(k) method determines automatically if
a suitable set of procedures can be written to parse strings in the grammar's lan-
guage. Within each procedure, the conditionals that determine which production
to apply must operate independently and without backtracking. Most tools that
perform such analysis go one step further and automatically create the parsing
code or its table representation.

2.5.2 Abstract Syntax Trees

What output should our recursive descent parser generate? It could generate a
derivation tree corresponding to the tokens it has parsed. As Figure 2.4 shows,
such trees can be rather large and detailed, even for very simple inputs. More-
over, CFGs often contain productions that serve only to disambiguate the gram-
mar rather than to lend practical structure to the parsed inputs. In this section,
we consider how to represent parsed inputs faithfully while avoiding unnecessary
detail.

An abstract syntax tree (AST) contains the essential information in a deriva-
tion tree; unnecessary details are “abstracted out.” For example, an AST can
elide inessential punctuation and delimiters (braces, semicolons, parentheses, and
so on). An AST's design is also influenced by the needs of post-parsing activities.
As a result, the AST's design is often revisited and modified during compiler con-
struction. Chapter Chapter:global:seven considers the construction of ASTs in
more detail. For our purposes, we place code in the recursive-descent parser to
create and link the AST nodes into a tree. For example, our Stmt procedure be-
comes responsible for creating (and returning) a subtree that models the parsed
Stmt.

The AST is designed to retain essential syntactic structure in a form that is
amenable to subsequent processing. An AST for ac should be designed as follows.

e Declarations need not be retained in source form. However, a record of
identifiers and their declared types must be retained to facilitate symbol
table construction and semantic type checking, as described in Section 2.6.

12 Chapter 2. A Simple Compiler

floatdcl
b

Figure 2.9: An abstract syntax tree for the ac program shown in Figure 2.4.

e The order of the executable statements is important and must be explicitly
represented, so that code generation (Section 2.7) can issue instructions in
the proper order.

e An assignment statement must retain the identifier that will hold the com-
puted value and the expression that computes the value.

e A print statement must retain the name of the identifier to be printed.

Figure 2.9 shows the AST resulting from the sample ac program. Cleaner and
simpler than the derivation tree, the AST still contains all essential program struc-
ture and detail.

2.6 Semantic Analysis

After the parser builds a program's AST, the next step is semantic analysis, which
is really a catch-all term for checks to ensure that the program truly conforms
to a language's definition. Any aspect of the language's definition that cannot be
readily formulated by grammar productions is fodder for semantic analysis, as
follows.

e Declarations and scopes are processed to construct a symbol table.

e Language- and user-defined types are examined for consistency.

2.6. Semantic Analysis 13

procedure SYMVISITNODE(#)
if n.kind = floatdcl
then call ENTERSYMBOL(7.id, float)
else
if n.kind = intdcl
then call ENTERSYMBOL(#.id, integer)
end
procedure ENTERSYMBOL(name, type)
if SymbolTable[name] = undefined
then SymbolTable[name] « type
else call ERROR(“duplicate declaration™)
end

Figure 2.10: Symbol table construction for ac.

e Operations and storage references are processed so that type-dependent
behavior can become explicit in the program representation.

For example, in the assignment statement x=y, x is typically interpreted as an
address and y is interpreted as a value. After semantic analysis, an AST iden-
tifier node always references the address of the identifier. Explicit operations
are inserted into the AST to generate the value of an identifier from its address.
As another example, some languages allow a single operator to have multiple
meanings depending on the types of its operands. Such operator overloading
greatly extends the notational power of a language. Semantic analysis uses type
information to map an overloaded operator to its specific definition in context.

Most programming languages offer a set of primitive types that are available
to all programs. Some programming languages allow additional types to be
created, effectively extending the language's type system. In languages such as
Java, C++, and Ada, semantic analysis is a significant task, considering the rules
that must be enforced and the richness of the languages' primitive and extended
types. The ensuing sections describe the comparatively simple semantic analysis
for ac.

2.6.1 The Symbol Table

In ac, identifiers must be declared prior to use, but this requirement cannot be
enforced at parse time. Thus, the first semantic-processing activity traverses the
AST to record all identifiers and their types in a symbol table. Although the set of
potential identifiers is infinite in most programming languages, we have simpli-
fied ac so that programs can mention at most 23 distinct identifiers. As a result,
an ac symbol table has 23 entries, indicating each identifier's type: integer, float,
or undefined. In most programming languages, the type information associated
with a symbol includes other attributes, such as the identifier's scope, storage
class, and protection.

14 Chapter 2. A Simple Compiler

Symbol Type Symbol Type Symbol Type

a integer k t
b float 1 u
[m v
d n W
e [¢] X
g q y
h r VA
J s

Figure 2.11: Symbol table for the ac program from Figure 2.4.

To create an ac symbol table, we traverse the AST, counting on the presence
of a declaration node to trigger effects on the symbol table. In Figure 2.10,
SYMVISITNODE shows the code to be applied as each node of the AST is visited.
As declarations are discovered, ENTERSYMBOL checks that the given identifier has
not been previously declared. Figure 2.11 shows the symbol table constructed
for our example ac program. Blank entries in the table indicate that the given
identifier is undefined.

2.6.2 Type Checking

Once symbol type information has been gathered, ac's executable statements can
be examined for consistency of type usage. This process is called type check-
ing. In an AST, expressions are evaluated starting at the leaves and proceeding
upward to the root. To process nodes in this order, we perform type checking
bottom-up over the AST. At each node, we apply SEMVISITNODE, shown in Fig-
ure 2.12, to ensure that operand types are either consistent or that a legal type
conversion can be inserted to render the types consistent, as follows.

e For nodes that represent addition or subtraction, the computation is per-
formed in float if either subtree has type float.

e For nodes representing the retrieval of a symbol's value, the type informa-
tion is obtained by consulting the symbol table.

e Assignment demands that the type of the value match the type of the as-
signment's target.

Most programming language specifications include a type hierarchy that com-
pares the language's types in terms of their generality. Our ac language follows
in the tradition of Java, C, and C++, in which a float type is considered wider (i.e.,
more general) than an integer. This is because every integer can be represented
as a float. On the other hand, narrowing a float to an integer loses precision for
some float values.

2.6. Semantic Analysis 15

procedure SEMVISITNODE(#)
switch (n.kind)
case plus
n.type < CONSISTENT(7.child1,n.child2)
case minus
n.type < CONSISTENT(7.child1, n.child2)
case assign
n.type < CONVERT(n.child1,n.child2)
case id
n.type <— RETRIEVESYMBOL(n.name).type
case num
if CONTAINSDOT(#n.name)
then n.type < float
else n.type « integer
end
function CONSISTENT(c1,c2) : Type
m < GENERALIZE(c1.type, c2.type)
if cl.type #m
then call CONVERT(c1,m)
else
if c2.type # m
then call CONVERT(c2,m)
return ()
end
function GENERALIZE(?1,2) : Type
if t1 = float or t2 = float
then ans + float
else ans < integer
return (ans)
end
procedure CONVERT(7, 1)
if n.type = float and ¢ = integer
then call ERROR(“Illegal type conversion™)
else
if n.type = integer and ¢ = float
then /% replace node 7 by convert-to-float of node 7z x/
else /% nothing needed +/
end

Figure 2.12: Type analysis for ac.

16 Chapter 2. A Simple Compiler

Program

floatdcl
b

Figure 2.13: AST after semantic analysis.

Most languages allow automatic widening of type, so an integer can be con-
verted to a float without the programmer having to specify this conversion ex-
plicitly. On the other hand, a float cannot become an integer in most languages
unless the programmer explicitly calls for this conversion.

CONSISTENT, shown in Figure 2.12, is responsible for reconciling the type of
a pair AST nodes using the following two steps.

1. The GENERALIZE function determines the least general (i.e., simplest) type
that encompasses its supplied pair of types. For ac, if either type is float,
then float is the appropriate type; otherwise, integer will do.

2. The CONVERT procedure is charged with transforming the AST so that the
ac program's implicit conversions become explicit in the AST. Subsequent
compiler passes (particularly code generation) can assume a type-consistent
AST in which all operations are explicit.

The results of applying semantic analysis to the AST of Figure 2.9 are shown in
Figure 2.13.

2.7. Code Generation 17

2.7 Code Generation

With syntactic and semantic analysis complete, the final task undertaken by a
compiler is the formulation of target-machine instructions that faithfully repre-
sent the semantics (i.e., meaning) of the source program. This process is called
code generation. Our translation exercise consists of generating code that is suit-
able for the dc program, which is a simple calculator based on a stack machine
model. In a stack machine, most instructions receive their input from the con-
tents at or near the top of an operand stack. The result of most instructions is
pushed on the stack. Programming languages such as Pascal and Java are fre-
quently translated into a portable, stack-machine representation [?].

Chapters Chapter:global:twelve, Chapter:global:thirteen, and Chapter:global:fifteen

discuss code generation in detail. Automatic approaches generate code based on
a description of the target machine. Such code generators greatly increase the
portability of modern programming languages. Our translation task is suffi-
ciently simple for an ad hoc approach. The AST has been suitably prepared
for code generation by the insertion of type information. Such information is
required for selecting the proper instructions. For example, most computers dis-
tinguish between instructions for float and integer data types.

We walk the AST starting at its root and let the nodes trigger code generation
that is appropriate for their functions in the AST. The code generator shown
in Figure 2.14 is recursive. In most programming languages, this conveniently
accommodates the translation of AST constructs wherever they appear. The
overall effect is to generate code for the program represented by the AST, as
follows.

e For plus and minus, the code generator recursively generates code for the left
and right subtrees. The resulting values are then at top-of-stack, and the
appropriate operator is placed in the instruction stream to add or subtract
the values.

e For assign, the value is computed and the result is stored in the appropriate
de register. The calculator's precision is then reset to integer by setting the
fractional precision to zero; this is shown at Step 6 in Figure 2.14.

e Use of an id causes the value to be loaded from dc's register and pushed
onto the stack.

e The print node is tricky because dc does not discard the value on top-of-
stack after it is printed. The instruction sequence si is generated at Step 7,
thereby popping the stack and storing the value in dc's i register. Con-
veniently, the ac language precludes a program from using this register
because the i token is reserved for spelling the terminal symbol integer.

e The change of type from integer to float at Step 8 requires setting dc's pre-
cision to five fractional decimal digits.

18

procedure CODEGEN(#7)
switch (n.kind)

end

case Program

Chapter 2. A Simple Compiler

foreach ¢ € Children(n) do call CODEGEN(c)

case assign
call CODEGEN(7.child2)
call EMIT(“s”)
call EMIT(n.child1.name)
call EMIT(“0 k”)

case plus
call CODEGEN(n.child1)
call CODEGEN(#.child2)
call EMIT(“+”)

case minus
call CODEGEN(n.child1)
call CODEGEN(n.child2)
call EMIT(“-")

case id
call EMIT(“1”)
call EMIT(n.name)

case print
call CODEGEN(n.child1)
call EMIT(“p”)
call EMIT(“si”)

case int2float
call CODEGEN(n.child1)
call EMIT(“5 k”)

case num
call EMIT(n.name)

Figure 2.14: Code generation for ac

2.7. Code Generation 19

Code | Source Comments
5la=5 Push 5 on stack
sa Store into the a register
0 k Reset precision to integer
la | b = a + 3.2 | Push the value of the a register
5 k Set precision to float
3.2 Push 3.2 on stack
+ Add
sb Store result in the b register
0k Reset precision to integer
1b | p b Push the value of the b register
P Print the value
si Pop the stack by storing into the i register

Figure 2.15: Code generated for the AST shown in Figure 2.9.

Figure 2.15 shows how code is generated for the AST shown in Figure 2.9. The
horizontal lines delineate the code generated in turn for each child of the AST's
root. Even in this ad hoc code generator, one can see principles at work. The code
sequences triggered by various AST nodes dovetail to carry out the instructions
of the input program. Although the task of code generation for real program-
ming languages and targets is more complex, the theme still holds that pieces of
individual code generation contribute to a larger effect.

This finishes our tour of a compiler for the ac language. While each of the
phases becomes more involved as we move toward working with real program-
ming languages, the spirit of each phase remains the same. In the ensuing chap-
ters, we discuss how to automate many of the tasks described in this chapter. We
develop the skills necessary to craft a compiler's phases to accommodate issues
that arise when working with real programming languages.

20 Chapter 2. A Simple Compiler

Exercises

1. The CFG shown in Figure 2.1 defines the syntax of ac programs. Explain
how this grammar enables you to answer the following questions.

(a) Can an ac program contain only declarations (and no statements)?

(b) Can a print statement precede all assignment statements?

2. Sometimes it is necessary to modify the syntax of a programming language.
This is done by changing the CFG that the language uses. What changes
would have to be made to ac's CFG (Figure 2.1) to implement the following
changes?

(a) All ac programs must contain at least one statement.
(b) All integer declarations must precede all float declarations.

(c) The first statement in any ac program must be an assignment state-
ment.

3. Extend the ac scanner (Figure 2.5) so that the following occurs.

(a) A floatdcl can be represented as either £ or float. (That is, a more
Java-like declaration may be used.)

(b) An intdcl can be represented as either i or int.

(c) A num may be entered in exponential (scientific) form. That is, an
ac num may be suffixed with an optionally signed exponent (1.0e10,
123e-22 or 0.31415926535e1).

4. Write the recursive-descent parsing procedures for all nonterminals in Fig-
ure 2.1.

5. The recursive-descent code shown in Figure 2.7 contains redundant tests
for the presence of some terminal symbols. Show how these tests can be
eliminated.

6. In ac, as in many computer languages, variables are considered uninitial-
ized after they are declared. A variable needs to be given a value (in an
assignment statement) before it can be correctly used in an expression or
print statement.

Suggest how to extend ac's semantic analysis (Section 2.6) to detect vari-
ables that are used before they are properly initialized.

7. Implement semantic actions in the recursive-descent parser for ac to con-
struct ASTs using the design guidelines in Section 2.5.2.

8. The grammar for ac shown in Figure 2.1 requires all declarations to precede
all executable statements. In this exercise, the ac language is extended so
that declarations and executable statements can be interspersed. However,
an identifier cannot be mentioned in an executable statement until it has
been declared.

2.7. Code Generation 21

(a) Modify the CFG in Figure 2.1 to accommodate this language exten-
sion.

(b) Discuss any revisions you would consider in the AST design for ac.
(c) Discuss how semantic analysis is affected by the changes you envision
for the CFG and the AST.

9. The code in Figure 2.10 examines an AST node to determine its effect on
the symbol table. Explain why the order in which nodes are visited does or
does not matter with regard to symbol-table construction.

3

Scanning-Theory and
Practice

In this chapter, we discuss the theoretical and practical issues involved in build-
ing a scanner. In Section 3.1, we give an overview of how a scanner operates.
In Section 3.2, we introduce a declarative regular expression notation that is
well-suited to the formal definition of tokens. In Section 3.3, the correspondence
between regular expressions and finite automata is studied. Finite automata are
especially useful because they are procedural in nature and can be directly exe-
cuted to read characters and group them into tokens. As a case study, a well-
known scanner generator, Lex, is considered in some detail in Section 3.4. Lex
takes token definitions (in a declarative form—regular expressions) and produces
a complete scanner subprogram, ready to be compiled and executed. Section 3.5
briefly considers other scanner generators.

In Section 3.6, we discuss the practical considerations needed to build a scan-
ner and integrate it with the rest of the compiler. These considerations include
anticipating the tokens and contexts that may complicate scanning, avoiding
performance bottlenecks, and recovering from lexical errors. We conclude the
chapter with Section 3.7, which explains how scanner generators, such as Lex,
translate regular expressions into finite automata and how finite automata may
be converted to equivalent regular expressions. Readers who prefer to view a
scanner generator as simply a black box may skip this section. However, the
material does serve to reinforce the concepts of regular expressions and finite
automata introduced in earlier sections. The section also illustrates how finite
automata can be built, merged, simplified, and even optimized.

2 Chapter 3. Scanning--Theory and Practice

3.1 Overview of a Scanner

The primary function of a scanner is to transform a character stream into a
token stream. A scanner is sometimes called a lexical analyzer, or lexer. The
names “scanner,” “lexical analyzer,” and “lexer” are used interchangeably. The
ac scanner discussed in Chapter Chapter:global:two was simple and could easily
be coded by any competent programmer. In this chapter, we develop a thorough
and systematic approach to scanning that will allow us to create scanners for
complete programming languages.

We introduce formal notations for specifying the precise structure of tokens.
At first glance, this may seem unnecessary because of the simple token structure
found in most programming languages. However, token structure can be more
detailed and subtle than one might expect. For example, consider simple quoted
strings in C, C++, and Java. The body of a string can be any sequence of characters
except a quote character, which must be escaped. But is this simple definition
really correct? Can a newline character appear in a string? In C it cannot, unless
it is escaped with a backslash. Doing this avoids a “runaway string” that, lacking
a closing quote, matches characters intended to be part of other tokens. While
C, C++, and Java allow escaped newlines in strings, Pascal forbids them. Ada goes
further still and forbids all unprintable characters (precisely because they are
normally unreadable). Similarly, are null (zero-length) strings allowed? C, C++,
Java, and Ada allow them, but Pascal forbids them. In Pascal, a string is a packed
array of characters and zero-length arrays are disallowed.

A precise definition of tokens is necessary to ensure that lexical rules are
clearly stated and properly enforced. Formal definitions also allow a language
designer to anticipate design flaws. For example, virtually all languages allow
fixed decimal numbers, such as 0.1 and 10.01. But should .1 or 10. be allowed?
In C, C++, and Java, they are. But in Pascal and Ada they are not—and for an
interesting reason. Scanners normally seek to match as many characters as pos-
sible so that, for example, ABC is scanned as one identifier rather than three.
But now consider the character sequence 1..10. In Pascal and Ada, this should be
interpreted as a range specifier (1 to 10). However, if we were careless in our
token definitions, we might well scan 1..10 as two real literals, 1. and .10, which
would lead to an immediate (and unexpected) syntax error. (The fact that two
real literals cannot be adjacent is reflected in the context-free grammar (CFG),
which is enforced by the parser, not the scanner.)

When a formal specification of token and program structure is given, it is
possible to examine a language for design flaws. For example, we could analyze
all pairs of tokens that can be adjacent to each other and determine whether the
two if catenated might be incorrectly scanned. If so, a separator may be required.
In the case of adjacent identifiers and reserved words, a blank space (whitespace)
suffices to distinguish the two tokens. Sometimes, though, the lexical or program
syntax might need to be redesigned. The point is that language design is far
more involved than one might expect, and formal specifications allow flaws to
be discovered before the design is completed.

3.2. Regular Expressions 3

All scanners, independent of the tokens to be recognized, perform much the
same function. Thus writing a scanner from scratch means reimplementing com-
ponents that are common to all scanners; this means a significant duplication of
effort. The goal of a scanner generator is to limit the effort of building a scanner
to that of specifying which tokens the scanner is to recognize. Using a formal
notation, we tell the scanner generator what tokens we want recognized. It then
is the generator's responsibility to produce a scanner that meets our specifica-
tion. Some generators do not produce an entire scanner. Rather, they produce
tables that can be used with a standard driver program, and this combination of
generated tables and standard driver yields the desired custom scanner.

Programming a scanner generator is an example of declarative programming.
That is, unlike in ordinary, or procedural programming, we do not tell a scanner
generator how to scan but simply what to scan. This is a higher-level approach
and in many ways a more natural one. Much recent research in computer sci-
ence is directed toward declarative programming styles; examples are database
query languages and Prolog, a “logic” programming language. Declarative pro-
gramming is most successful in limited domains, such as scanning, where the
range of implementation decisions that must be made automatically is limited.
Nonetheless, a long-standing (and as yet unrealized) goal of computer scientists
is to automatically generate an entire production-quality compiler from a speci-
fication of the properties of the source language and target computer.

Although our primary focus in this book is on producing correct compilers,
performance is sometimes a real concern, especially in widely used “produc-
tion compilers.” Surprisingly, even though scanners perform a simple task, they
can be significant performance bottlenecks if poorly implemented. This because
scanners must wade through the text of a program character-by-character.

Suppose we want to implement a very fast compiler that can compile a pro-
gram in a few seconds. We'll use 30,000 lines a minute (500 lines a second) as
our goal. (Compilers such as “Turbo C++” achieve such speeds.) If an average
line contains 20 characters, the compiler must scan 10,000 characters per sec-
ond. On a 10 MIPS processor (10,000,000 instructions executed per second),
even if we did nothing but scanning, we'd have only 1,000 instructions per input
character to spend. But because scanning isn't the only thing a compiler does,
250 instructions per character is more realistic. This is a rather tight budget,
considering that even a simple assignment takes several instructions on a typical
processor. Although multi-MIPS processors are common these days and 30,000
lines per minute is an ambitious speed, clearly a poorly coded scanner can dra-
matically impact a compiler's performance.

3.2 Regular Expressions

Regular expressions are a convenient way to specify various simple (although
possibly infinite) sets of strings. They are of practical interest because they can
specify the structure of the tokens used in a programming language. In particular,
you can use regular expressions to program a scanner generator.

4 Chapter 3. Scanning--Theory and Practice

Regular expressions are widely used in computer applications other than
compilers. The Unix utility grep uses them to define search patterns in files. Unix
shells allow a restricted form of regular expressions when specifying file lists for
a command. Most editors provide a “context search” command that enables
you to specify desired matches using regular expressions.

A set of strings defined by regular expressions is called a regular set. For
purposes of scanning, a token class is a regular set whose structure is defined by
a regular expression. A particular instance of a token class is sometimes called
a lexeme; however, we simply call a string in a token class an instance of that
token. For example, we call the string abc an identifier if it matches the regular
expression that defines the set of valid identifier tokens.

Our definition of regular expressions starts with a finite character set, or
vocabulary (denoted X). This vocabulary is normally the character set used by a
computer. Today, the ASCI/ character set, which contains 128 characters, is very
widely used. Java, however, uses the Unicode character set. This set includes all
of the ASClI characters as well as a wide variety of other characters.

An empty, or null, string is allowed (denoted A). This symbol represents an
empty buffer in which no characters have yet been matched. It also represents an
optional part of a token. Thus an integer literal may begin with a plus or minus,
or, if it is unsigned, it may begin with A.

Strings are built from characters in the character set X via catenation (that is,
by joining individual characters to form a string). As characters are catenated to
a string, it grows in length. For example, the string do is built by first catenating
d to A and then catenating o to the string d. The null string, when catenated with
any string s, yields s. That is, s A = A s = s. Catenating A to a string is like
adding 0 to an integer—nothing changes.

Catenation is extended to sets of strings as follows. Let P and Q be sets of
strings. The symbol € represents set membership. If sy € P and s, € Q, then
string s1s2 € (P Q). Small finite sets are conveniently represented by listing their
elements, which can be individual characters or strings of characters. Parentheses
are used to delimit expressions, and |, the alternation operator, is used to separate
alternatives. For example, D, the set of the ten single digits, is defined as D =
(0]1]213|415]16]7]|8]9). (In this text, we often use abbreviations such
as (0 | ... | 9) rather than enumerate a complete list of alternatives. The “...”
symbol is not part of our regular expression notation.)

A meta-character is any punctuation character or regular expression operator.
A meta-character must be quoted when used as an ordinary character in order
to avoid ambiguity. (Any character or string may be quoted, but unnecessary
quotation is avoided to enhance readability.) The characters (,), ', *, +, and |
are meta-characters. For example the expression ('('|')'|; |,) defines four single
character tokens (left parenthesis, right parenthesis, semicolon, and comma) that
we might use in a programming language. The parentheses are quoted to show
they are meant to be individual tokens and not delimiters in a larger regular
expression.

Alternation can be extended to sets of strings. Let P and Q be sets of strings.
Then string s € (P | Q) if, and only if, s € P or s € Q. For example, if LC is

3.2. Regular Expressions S

the set of lowercase letters and UC is the set of uppercase letters, then (LC | UC)
denotes the set of all letters (in either case).

Large (or infinite) sets are conveniently represented by operations on finite
sets of characters and strings. Catenation and alternation may be used. A third
operation, Kleene closure, as defined below, is also allowed. The operator * is
the postfix Kleene closure operator. Here's an example. Let P be a set of strings.
Then P* represents all strings formed by the catenation of zero or more selections
(possibly repeated) from P. (Zero selections are represented by A.) For example,
LC* is the set of all words composed only of lowercase letters and of any length
(including the zero-length word, A).

Precisely stated, a string s € P* if, and only if, s can be broken into zero or
more pieces: s = s152...S, such that each s; € P(n > 0,1 < i < n). We explicitly
allow n = 0 so that A is always in P*.

Now that we've introduced the operators used in regular expressions, we can
define regular expressions as follows.

e (f is a regular expression denoting the empty set (the set containing no
strings). § is rarely used but is included for completeness.

e) is a regular expression denoting the set that contains only the empty
string. This set is not the same as the empty set because it does contain one
element.

e A string s is a regular expression denoting a set containing the single string
s. If s contains meta-characters, s can be quoted to avoid ambiguity.

o If A and B are regular expressions, then A | B, A B, and A* are also regular
expressions. They denote, respectively, the alternation, catenation, and
Kleene closure of the corresponding regular sets.

Each regular expression denotes a regular set. Any finite set of strings can
be represented by a regular expression of the form (s | s2 | ... | s;). Thus the
reserved words of ANSI C can be defined as (auto | break | case | ...).

The following additional operations are also useful. They are not strictly nec-
essary because their effect can be obtained (perhaps somewhat clumsily) using the
three standard regular operators (alternation, catenation, and Kleene closure).

e PT, sometimes called positive closure, denotes all strings consisting of one
or more strings in P catenated together: P* = (P*| A) and PT = P P*. For
example, the expression (0 | 1)" is the set of all strings containing one or
more bits.

o If A is a set of characters, Not(A) denotes (X - A), that is, all characters in &
not included in A. Since Not(A) can never be larger than ¥ and ¥ is finite,
Not(A) must also be finite. It therefore is regular. Not(A) does not contain
A because A is not a character (it is a zero-length string). As an example,
Not(Eol) is the set of all characters excluding Eol (the end-of-line character;
in Java or C, \n).

6 Chapter 3. Scanning--Theory and Practice

It is possible to extend Not() to strings, rather than just X. If S is a set of
strings, we can define S to be (X* -), that is, the set of all strings except
those in S. Although S is usually infinite, it also is regular if S is. (See
Exercise 18.)

o If k is a constant, the set AX represents all strings formed by catenating k
(possibly different) strings from A. That is, A* = (AAA ...) (k copies). Thus
(0 | 1)32 is the set of all bit strings exactly 32 bits long.
3.2.1 Examples

Next, we explore how regular expressions can be used to specify tokens. Let D
be the set of the ten single digits and L be the set of all letters (52 in all). Then
the following is true.

o A Java or C++, single-line comment that begins with // and ends with Eol
can be defined as

Comment = |/ Not(Eol)™ Eol

This regular expression says that a comment begins with two slashes and
ends at the first end-of-line. Within the comment, any sequence of charac-
ters is allowed that does not contain an end-of-line. (This guarantees that
the first end-of-line we see ends the comment.)

¢ A fixed-decimal literal (for example, 12.345) can be defined as
Lit =D*.Dt

One or more digits must be on both sides of the decimal point, so this
definition excludes .12 and 35.

o An optionally signed integer literal can be defined as
IntLiteral = ('+' | — | A) D*

An integer literal is one or more digits preceded by a plus or minus or no
sign at all (A). So that the plus sign is not confused with the Kleene closure
operator, it is quoted.

e A more complicated example is a comment delimited by ## markers,
which allows single #'s within the comment body:

Comment2 = #4# ((# | A) Not(#))* ##

Any # that appears within this comment's body must be followed by a
non-# so that a premature end of comment marker, #7, is not found.

3.3. Finite Automata and Scanners 7

All finite sets are regular. However, some but not all infinite sets are regular.
For example, consider the set of balanced brackets of the form [[[. . .]]
]. This set is defined formally as {[™]™ | m >1}. This is a set that is known
not to be regular. The problem is that any regular expression that tries to define
it either does not get all balanced nestings or includes extra, unwanted strings.
(Exercise 14 proves this.)

It is easy to write a CFG that defines balanced brackets precisely. In fact,
all regular sets can be defined by CFGs. Thus, the bracket example shows that
CFGs are a more powerful descriptive mechanism than regular expressions. Reg-
ular expressions are, however, quite adequate for specifying token-level syntax.
Moreover, for every regular expression we can create an efficient device, called
a finite automaton, that recognizes exactly those strings that match the regular
expression's pattern.

3.3 Finite Automata and Scanners

A finite automation (FA) can be used to recognize the tokens specified by a reg-
ular expression. An FA (plural: finite automata) is a simple, idealized computer
that recognizes strings as belonging to regular sets. An FA consists of the follow-
ing:

o A finite set of states

A finite vocabulary, denoted .

A set of tramsitions (or moves) from one state to another, labeled with
characters in ¥

A special state called the start state

A subset of the states called the accepting, or final, states

These components of an FA can be represented graphically as shown in Fig-
ure 3.1.

An FA also can be represented graphically using a transition diagram, com-
posed of the components shown in Figure 3.1. Given a transition diagram, we
begin at the start state. If the next input character matches the label on a transi-
tion from the current state, we go to the state to which it points. If no move is
possible, we stop. If we finish in an accepting state, the sequence of characters
read forms a valid token; otherwise, a valid token has not seen. In the transition
diagram shown in Figure 3.2, the valid tokens are the strings described by the
regular expression (ab(c)*)".

As an abbreviation, a transition may be labeled with more than one character
(for example, Not(c)). The transition may be taken if the current input character
matches any of the characters labeling the transition.

8 Chapter 3. Scanning--Theory and Practice

Reserving space for: finaut

Figure 3.1: The four parts of a finite automation.

Reserving space for: transdia

Figure 3.2: Transition diagram of an FA.

3.3.1 Deterministic Finite Automata

An FA that always has a unique transition (for a given state and character) is a
deterministic finite automation (DFA). DFAs are easy to program and are often
used to drive a scanner. A DFA is conveniently represented in a computer by a
transition table. A transition table, T, is a two-dimensional array indexed by a
DFA state and a vocabulary symbol. Table entries are either a DFA state or an
error flag (often represented as a blank table entry). If we are in state s and read
character ¢, then T[s,c] will be the next state we visit, or T|[s,c] will contain an
error flag indicating that ¢ cannot extend the current token. For example, the
regular expression

// Not(Eol)*Eol

which defines a Java or C++ single-line comment, might be translated as shown
in Figure 3.3. The corresponding transition table is shown in Figure 3.4.

3.3. Finite Automata and Scanners 9

Reserving space for: transregexp

Figure 3.3: Translation of the regular expression // Not(Eol)*Eol.

State | Character

/ |Eol |[a|b
1 2
2 3
3 314 313(3
4

Figure 3.4: Transition table of the regular expression // Not(Eol)*Eol.

A full transition table will contain one column for each character. To save
space, table compression is sometimes utilized. In that case, only nonerror entries
are explicitly represented in the table. This is done by using hashing or linked
structures.

Any regular expression can be translated into a DFA that accepts (as valid
tokens) the set of strings denoted by the regular expression. This translation can
be done manually by a programmer or automatically by a scanner generator.

Coding the DFA

A DFA can be coded in one of two forms:
1. Table-driven
2. Explicit control

In the table-driven form, the transition table that defines a DFA's actions is
explicitly represented in a run-time table that is “interpreted” by a driver pro-
gram. In the explicit control form, the transition table that defines a DFA's
actions appears implicitly as the control logic of the program. Typically, individ-
ual program statements correspond to distinct DFA states. For example, suppose
CurrentChar is the current input character. End-of-file is represented by a special
character value, Eof. Using the DFA for the Java comments illustrated previously,
the two approaches would produce the programs illustrated in Figure 3.5 and
3.6.

10 Chapter 3. Scanning--Theory and Practice

/% Assume CurrentChar contains the first character to be scanned +/
State < StartState
while true do
NextState + T[State, CurrentChar]
if NextState = error
then break
State < NextState
READ(CurrentChar)
if State € AcceptingStates
then /x Return or process valid token «/
else /«xsignal a lexical error +/

Figure 3.5: Scanner driver interpreting a transition table.

/% Assume CurrentChar contains the first character to be scanned +/
if CurrentChar ='/'
then
READ(CurrentChar)
if CurrentChar ='/'
then
repeat
READ(CurrentChar)
until CurrentChar € { Eol, Eof }
else / Signal a lexical error +/
else /x Signal a lexical error +/
if CurrentChar = Eol
then /x Return or process valid token «/
else /x Signal a lexical error «/

Figure 3.6: Explicit control scanner.

The table-driven form is commonly produced by a scanner generator; it is
token-independent. It uses a simple driver that can scan any token, provided
the transition table is properly stored in T. The explicit control form may be
produced automatically or by hand. The token being scanned is “hardwired”
into the code. This form of a scanner is usually easy to read and often is more
efficient, but it is specific to a single token definition.

Following are two more examples of regular expressions and their corre-
sponding DFAs.

1. A FORTRAN-like real literal (which requires either digits on either or both
sides of a decimal point or just a string of digits) can be defined as

RealLit = (D* (A | .)) | (D* . D)

3.3. Finite Automata and Scanners 11

Reserving space for: iddia

Figure 3.7: DFA for FORTRAN-like real literal.

which corresponds to the DFA shown in Figure 3.7.

2. An identifier consisting of letters, digits, and underscores. It begins with a
letter and allows no adjacent or trailing underscores. It may be defined as

ID =L (L|D)" ({L|D)")".

This definition includes identifiers such as sum or unit_cost but excludes
one and two and grand_total. The corresponding DFA is shown in
Figure 3.8.

Transducers

So far, we haven't saved or processed the characters we've scanned—they've been
matched and then thrown away. It is useful to add an output facility to an FA;
this makes the FA a transducer. As characters are read, they can be transformed
and catenated to an output string. For our purposes, we limit the transformation
operations to saving or deleting input characters. After a token is recognized,
the transformed input can be passed to other compiler phases for further pro-
cessing. We use the notation shown in Figure 3.9. For example, for Java and
C++ comments, we might write the DFA shown in Figure 3.10. A more inter-
esting example is given by Pascal-style quoted strings, according to the regular
expression

(" (Not(") | ™"}).

A corresponding transducer might be as shown in Figure 3.11. The input
nungivY would produce output "Hi".

12 Chapter 3. Scanning--Theory and Practice

Reserving space for: dfa

Figure 3.8: DFA for identifiers with underscores.

3.4 The Lex Scanner Generator

Next, as a case study in the design of scanner generation tools, we discuss a very
popular scanner generator, Lex. Later, we briefly discuss several other scanner
generators.

Lex was developed by M. E. Lesk and E. Schmidt of AT&T Bell Laboratories.
It is used primarily with programs written in C or C++ running under the Unix
operating system. Lex produces an entire scanner module, coded in C, that can
be compiled and linked with other compiler modules. A complete description
of Lex can be found in [LS75] and [LMB92]. Flex (see [Pax88]) is a widely used,
freely distributed reimplementation of Lex that produces faster and more reliable
scanners. Valid Lex scanner specifications may, in general, be used with Flex
without modification.

The operation of Lex is illustrated in Figure 3.12. Here are the steps:

1. A scanner specification that defines the tokens to be scanned and how they
are to be processed is presented to Lex.

2. Lex then generates a complete scanner coded in C.

3. This scanner is compiled and linked with other compiler components to
create a complete compiler.

Using Lex saves a great deal of effort programming a scanner. Many low-
level details of the scanner (reading characters efficiently, buffering them, match-
ing characters against token definitions, and so on) need not be explicitly pro-
grammed. Rather, we can focus on the character structure of tokens and how
they are to be processed.

3.4. The Lex Scanner Generator 13

Reserving space for: notat

Figure 3.9: Transducer notation.

The primary purpose of this section is to show how regular expressions and
related information are presented to scanner generators. A good way to learn
how to use Lex is to start with the simple examples presented here and then grad-
ually generalize them to solve the problem at hand. To inexperienced readers,
Lex's rules may seem unnecessarily complex. It is best to keep in mind that the
key is always the specification of tokens as regular expressions. The rest is there
simply to increase efficiency and handle various details.

3.4.1 Defining Tokens in Lex

Lex's approach to scanning is simple. It allows the user to associate regular ex-
pressions with commands coded in C (or C++). When input characters that match
the regular expression are read, the command is executed. As a user of Lex, you
don't need to tell it how to match tokens. You need only tell it what you want
done when a particular token is matched.

Lex creates a file lex.yy.c that contains an integer function yylex(). This
function is normally called from the parser whenever another token is needed.
The value that yylex() returns is the token code of the token scanned by Lex.
Tokens such as whitespace are deleted simply by having their associated com-
mand not return anything. Scanning continues until a command with a return in
it is executed.

Figure 3.13 illustrates a simple Lex definition for the three reserved words—t¢,
i, and p—of the ac language introduced in Chapter Chapter:global:two. When
a string matching any of these three reserved keywords is found, the appropriate
token code is returned. It is vital that the token codes that are returned when a
token is matched are identical to those expected by the parser. If they are not,
the parser won't “see” the same token sequence produced by the scanner. This
will cause the parser to generate false syntax errors based on the incorrect token
stream it sees.

14 Chapter 3. Scanning--Theory and Practice

Reserving space for: dfajava

Figure 3.10: The DFA for Java and C++ comments.

It is standard for the scanner and parser to share the definition of token codes
to guarantee that consistent values are seen by both. The file y.tab.h, produced
by the Yacc parser generator (see Chapter Chapter:global:seven), is often used to
define shared token codes. A Lex token specification consists of three sections
delimited by the pair %%. The general form of a Lex specification is shown in
Figure 3.14.

In the simple example shown in Figure 3.13, we use only the second section,
in which regular expressions and corresponding C code are specified. The regular
expressions are simple single-character strings that match only themselves. The
code executed returns a constant value representing the appropriate ac token.

We could quote the strings representing the reserved keywords (£, i, or p), but
since these strings contain no delimiters or operators, quoting them is unneces-
sary. If you want to quote such strings to avoid any chance of misinterpretation,
that's fine with Lex.

3.4.2 The Character Class

Our specification so far is incomplete. None of the other tokens in ac have been
correctly handled, particularly identifiers and numbers. To do this, we introduce
a useful concept: the character class. A character class is a set of characters
treated identically in a token definition. Thus, in the definition of an ac identifier,
all letters (except £, i, and p) form a class, since any of them can be used to form
an identifier. Similarly in a number, any of the ten digits characters can be used.

A character class is delimited by [and 1; individual characters are catenated
without any quotation or separators. However \, =, 1, and - must be escaped
because of their special meanings in character classes. Thus [xyz] represents the
class that can match a single %, y, or z. The expression [\1)] represents the class

3.4. The Lex Scanner Generator

15

Reserving space for: dfatrans

Figure 3.11: The transducer for Pascal quoted strings.

Reserving space for: lexscan

Figure 3.12: The operation of the Lex scanner generator.

he

£ { return(FLOATDCL); }
i { return(INTDCL); %}
P { return(PRINT); }
%h
Figure 3.13: A Lex definiton for ac's reserved words.
declarations

hih
regular expression rules
hih

subroutine definitions

Figure 3.14: The structure of Lex definiton files.

16 Chapter 3. Scanning--Theory and Practice

Character Class | Set of Characters Denoted

[abc] Three characters: a, b, and ¢

[cbal Three characters: a, b, and ¢

[a-c] Three characters: a, b, and ¢

[aabbec] Three characters: a, b, and ¢

[~abc All characters except a, b, and ¢

0\ \-\11] Three characters: =, -, and]

] All characters

"[abc]" Not a character class. This is
an example of one five-character
string: [abc].

Figure 3.15: Lex character class definitions.

he
[a-eghj-oq-z] { return(ID); }
he

Figure 3.16: A Lex definition for ac's identifiers.

that can match a single] or). (The] is escaped so that it isn't misinterpreted as
the end-of-character-class symbol.)

Ranges of characters are separated by a —; for example, [x-z] is the same
as [xyz]. [0-9] is the set of all digits, and [a-zA-Z] is the set of all letters,
both uppercase and lowercase. \ is the escape character; it is used to represent
unprintables and to escape special symbols. Following C conventions, \n is the
newline (that is, end-of-line), \t is the tab character, \\ is the backslash symbol
itself, and \010 is the character corresponding to 10 in octal (base 8) form.

The ~ symbol complements a character class; it is Lex's representation of the
Not() operation. For example, [~xy] is the character class that matches any single
character except x and y. The ~ symbol applies to all characters that follow it
in the character class definition, so [~0-9] is the set of all characters that aren't
digits. [~] can be used to match all characters. (Avoid the use of \0 in character
classes because it can be confused with the null character's special use as the end-
of-string terminator in C.) Figure 3.15 illustrates various character classes and
the character sets they define.

Using character classes, we can easily define ac identifiers, as shown in Fig-
ure 3.16. The character class includes the range of characters, a to e, then g
and h, and then the range j to o, followed by the range q to z. We can con-
cisely represent the 23 characters that may form an ac identifier without having
to enumerate them all.

3.4. The Lex Scanner Generator 17

he

(" "+ /* delete blanks */}
£ return(FLOATDCL); }
i return(INTDCL); }
p return(PRINT); }

return(ID); }
return(NUM); 3}
return(ASSIGN);
return(PLUS); }
return(MINUS); }

[a-eghj-oq-z]
(Lo-91+) | CLo-91+"."[0-9]+)
||+||

he

B N N i

Figure 3.17: A Lex definition for ac's tokens.

3.4.3 Using Regular Expressions to Define Tokens

Tokens are defined using regular expressions. Lex provides the standard regular
expression operators, as well as others. Catenation is specified by the juxta-
position of two expressions; no explicit operator is used. Thus [ab] [cd]will
match any of ad, ac, bc, or bd. Individual letters and numbers match themselves
when outside of character class brackets. Other characters should be quoted (to
avoid misinterpretation as regular expression operators.) For example, while
(as used in C, C++, and Java) can be matched by the expressions while, "while",
or [wl[h]1[il[1][e].

Case is significant. The alternation operator is |. As usual, parentheses can
be used to control grouping of subexpressions. Therefore, to match the reserved
word while and allow any mixture of uppercase and lowercase (as required in
Pascal and Ada), we can use

(u|W) (h[H) (i]T) (L|L) (e|E)

Postfix operators * (Kleene closure) and + (positive closure) are also provided,
as is 7 (optional inclusion). For example, expr? matches expr zero times or
once. It is equivalent to (expr) | A and obviates the need for an explicit A
symbol. The character “.” matches any single character (other than a newline).
The character ~ (when used outside a character class) matches the beginning of
a line. Similarly, the character $ matches the end of a line. Thus "A.* e $ could
be used to match an entire line that begins with 4 and ends with e. We now
define all of ac's tokens using Lex's regular expression facilities. This is shown in
Figure 3.17.

Recall that a Lex specification of a scanner consists of three sections. The first,
not used so far, contains symbolic names associated with character classes and
regular expressions. There is one definition per line. Each definition line contains
an identifier and a definition string, separated by a blank or tab. The { and }
symbols signal the macro-expansion of a symbol defined in the first section. For
example, in the definition

Letter [a-zA-Z]

18 Chapter 3. Scanning--Theory and Practice

he

Blank "

Digits [0-91+

Non_f_i_p [a-eghj-oq-z]

%h

{Blank}+ /* delete blanks */}
£ return(FLOATDCL); }
i return(INTDCL); }

p return(PRINT); }
{Non_f_i_p} return(ID); }

{Digits}| ({Digits}"."{Digits})

return(NUM); 3}
return(ASSIGN); ¥
return(PLUS); }
return(MINUS); }

Hyn

he

B N S A N e)

Figure 3.18: An alternative definition for ac's tokens.

the expression {Letter} expands to [a-zA-Z]. Symbolic definitions can often
make Lex specifications easier to read, as illustrated in Figure 3.18.

In the first section can also include source code, delimited by %{ and %},
that is placed before the commands and regular expressions of section two. This
source code may include statements, as well as variable, procedure, and type dec-
larations that are needed to allow the commands of section two to be compiled.
For example,

w{

#include '"tokens.h"

A

can include the definitions of token values returned when tokens are matched.

As shown earlier in the chapter, Lex's second section defines a table of regular
expressions and corresponding commands in C. The first blank or tab not escaped
or not part of a quoted string or character class is taken as the end of the regular
expression. Thus you should avoid embedded blanks that are within regular
expressions.

When an expression is matched, its associated command is executed. If an
input sequence matches no expression, the sequence is simply copied verbatim
to the standard output file. Input that is matched is stored in a global string
variable yytext (whose length is yyleng). Commands may alter yytext in any
way. The default size of yytext is determined by YYLMAX, which is initially de-
fined to be 200. All tokens, even those that will be ignored like comments, are
stored in yytext. Hence, you may need to redefine YYLMAX to avoid overflow.
An alternative approach to scanning comments that is not prone to the danger of
overflowing yytext involves the use of start conditions (see [LS75] or [LMB92]).

3.4. The Lex Scanner Generator 19

Flex, an improved version of Lex discussed in the next section, automatically ex-
tends the size of yytext when necessary. This removes the danger that a very
long token may overflow the text buffer.

The content of yytext is overwritten as each new token is scanned. Therefore
you must be careful if you return the text of a token by simply returning a pointer
into yytext. You must copy the content of yytext (by using perhaps strcpy())
before the next call to yylex().

Lex allows regular expressions to overlap (that is, to match the same input
sequences). In the case of overlap, two rules are used to determine which regular
expression is matched:

1. The longest possible match is performed. Lex automatically buffers charac-
ters while deciding how many characters can be matched.

2. If two expressions match exactly the same string, the earlier expression (in
order of definition in the Lex specification) is preferred.

Reserved words, for example, are often special cases of the pattern used for
identifiers. So their definitions are placed before the expression that defines an
identifier token. Often a “catch-all” pattern is placed at the very end of section
two. It is used to catch characters that don't match any of the earlier patterns
and hence are probably erroneous. Recall that “.” matches any single character
(other than a newline). It is useful in a catch-all pattern. However, avoid a

pattern such as . * because it will consume all characters up to the next newline.

3.4.4 Character Processing Using Lex

Although Lex is often used to produce scanners, it is really a general-purpose
character-processing tool, programmed using regular expressions. Lex provides
no character-tossing mechanism because this would be too special-purpose. So
we may need to process the token text (stored in yytext) before returning a
token code. This is normally done by calling a subroutine in the command as-
sociated with a regular expression. The definitions of such subroutines may be
placed in the final section of the Lex specification. For example, we might want
to call a subroutine to insert an identifier into a symbol table before it is returned
to the parser. For ac, the line

{Non_f_i_p} {insert(yytext); return(ID);}

could do this, with insert defined in the final section. Alternatively, the defini-
tion of insert could be placed in a separate file containing symbol table routines.
This would allow insert to be changed and recompiled without Lex's having to
be rerun. (Some implementations of Lex generate scanners rather slowly.)

In Lex, end-of-file is not handled by regular expressions. A predefined EndFile
token, with a token code of zero, is automatically returned when end-of-file is
reached at the beginning of a call to yylex(). It is up to the parser to recognize
the zero return value as signifying the EndFile token.

20 Chapter 3. Scanning--Theory and Practice

If more than one source file must be scanned, this fact is hidden inside the
scanner mechanism. yylex() uses three user-defined functions to handle character-

level I/O:

input () Reads a single character, zero on end-of-file.
output(c) Writes a single character to output.

unput (c) Puts a single character back into the input to be reread.

When yylex() encounters end-of-file, it calls a user-supplied integer function
named yywrap (). The purpose of this routine is to “wrap up” input processing.
It returns the value 1 if there is no more input. Otherwise, it returns zero and
arranges for input () to provide more characters.

The definitions for the input (), output (), unput (), and yywrap() functions
may be supplied by the compiler writer (usually as C macros). Lex supplies default
versions that read characters from the standard input and write them to the
standard output. The default version of yywrap() simply returns 1, thereby
signifying that there is no more input. (The use of output () allows Lex to be
used as a tool for producing stand-alone data “filters” for transforming a stream
of data.)

Lex-generated scanners normally select the longest possible input sequence
that matches some token definition. Occasionally this can be a problem. For
example, if we allow FORTRAN-like fixed-decimal literals such as 1. and .10 and
the Pascal subrange operator “..”, then 1..10 will most likely be misscanned
as two fixed-decimal literals rather than two integer literals separated by the
subrange operator. Lex allows us to define a regular expression that applies only
if some other expression immediately follows it. For example, r/s tells Lex to
match regular expression r but only if regular expression s immediately follows
it. s is right-context. That is, it isn't part of the token that is matched, but it
must be present for r to be matched. Thus [0-9]1+/". ." would match an integer
literal, but only if “..” immediately follows it. Since this pattern covers more
characters than the one defining a fixed-decimal literal, it takes precedence. The
longest match is still chosen, but the right-context characters are returned to the
input so that they can be matched as part of a later token.

The operators and special symbols most commonly used in Lex are summa-
rized in Figure 3.19. Note that a symbol sometimes has one meaning in a regular
expression and an entirely different meaning in a character class (that is, within
a pair of brackets). If you find Lex behaving unexpectedly, it's a good idea to
check this table to be sure how the operators and symbols you've used behave.
Ordinary letters and digits, as well as symbols not mentioned (such as @), repre-
sent themselves. If you're not sure whether a character is special, you can always
escape it or make it part of a quoted string.

In summary, Lex is a very flexible generator that can produce a complete
scanner from a succinct definition. The difficult part of working with Lex is
learning its notation and rules. Once you've done this, Lex will relieve you of the
many of chores of writing a scanner (for example, reading characters, buffering
them, and deciding which token pattern matches). Moreover, Lex's notation for
representing regular expressions is used in other Unix programs, most notably the
grep pattern matching utility.

3.5. Other Scanner Generators 21

Lex can also transform input as a preprocessor, as well as scan it. It provides
a number of advanced features beyond those discussed here. It does require that
code segments be written in C, and hence it is not language-independent.

3.5 Other Scanner Generators

Lex is certainly the most widely known and widely available scanner generator
because it is distributed as part of the Unix system. Even after years of use, it
still has bugs, however, and produces scanners too slow to be used in production
compilers. This section discussed briefly some of the alternatives to Lex, including
Flex, JLex, Alex, Lexgen, GLA, and re2c.

It has been shown that Lex can be improved so that it is always faster than
a handwritten scanner [Jac87]. This is done using Flex, a widely used, freely
distributed Lex clone. It produces scanners that are considerably faster than the
ones produced by Lex. It also provides options that allow the tuning of the
scanner size versus its speed, as well as some features that Lex does not have
(such as support for 8-bit characters). If Flex is available on your system, you
should use it instead of Lex.

Lex also has been implemented in languages other than C. JLex [Ber97] is a
Lex-like scanner generator written in Java that generates Java scanner classes. It is
of particular interest to people writing compilers in Java. Alex [NF88] is an Ada
version of Lex. Lexgen [AMT89] is an ML version of Lex.

An interesting alternative to Lex is GLA (Generator for Lexical Analyzers)
[Gra88]. GLA takes a description of a scanner based on regular expressions and
a library of common lexical idioms (such as “Pascal comment”) and produces
a directly executable (that is, not transition table-driven scanner written in C.
GLA was designed with both ease of use and efficiency of the generated scan-
ner in mind. Experiments show it to be typically twice as fast as Flex and only
slightly slower than a trivial program that reads and “touches” each character in
an input file. The scanners it produces are more than competitive with the best
handcoded scanners.

Another tool that produces directly executable scanners is re2c [BC93]. The
scanners it produces are easily adaptable to a variety of environments and yet
scanning speed is excellent.

Scanner generators are usually included as parts of complete suites of com-
piler development tools. These suites are often available on Windows and Mac-
intosh systems as well as on Unix systems. Among the most widely used and
highly recommended of these are DLG (part of the PCCTS tools suite, [PDC89]),
CoCo/R [Moe91], an integrated scanner/parser generator, and Rex [Gro89], part
of the Karlsruhe Cocktail tools suite.

22

Chapter 3. Scanning--Theory and Practice

line.

Symbol | Meaning in Regular | Meaning in Character Classes
Expressions

(matches with) to group | Represents itself.
subexpressions.

) matches with (to group | Represents itself.
subexpressions.

[Begins a character class. Represents itself.

] Represents itself. Ends a character class.

{ Matches with } to signal macro- | Represents itself.
expansion.

} Matches with { to signal macro- | Represents itself.
expansion.

" Matches with " to delimit | Represents itself.
strings.

\ Escapes individual characters. | Escapes individual characters.
Also used to specify a character | Also used to specify a character
by its octal code. by its octal code.

Matches any one character ex- | Represents itself.
cept \n.
Alternation (or) operator. Represents itself.

* Kleene closure operator (zero or | Represents itself.
more matches).

+ Positive closure operator (one or | Represents itself.
more matches).

? Optional choice operator (one | Represents itself.
or more matches)

/ Context sensitive matching | Represents itself.
operator.

> Matches only at the beginning | Complements the remaining
of a line. characters in the class.

$ Matches only at the end of a | Represents itself.

Represents itself.

The range of characters

operator.

Figure 3.19: Meaning of operators and special symbols in Lex.

3.6. Practical Considerations of Building Scanners 23

3.6 Practical Considerations of Building Scanners

In this section, we discuss the practical considerations involved in building real
scanners for real programming languages. As one might expect, the finite au-
tomaton model developed earlier in the chapter sometimes falls short and must
be supplemented. Efficiency concerns must be addressed. In addition, some pro-
vision for error handling must be incorporated.

We discuss a number of potential problem areas. In each case, solutions are
weighed, particularly in conjunction with the Lex scanner generator discussed in
Section 3.4.

3.6.1 Processing Identifiers and Literals

In simple languages that have only global variables and declarations, the scanner
commonly will immediately enter an identifier into the symbol table, if it is not
already there. Whether the identifier is entered or is already in the table, a pointer
to the symbol table entry is then returned from the scanner.

In block-structured languages, the scanner generally is not expected to enter
or look up identifiers in the symbol table because an identifier can be used in
many contexts (for example, as a variable, member of a class, or label). The
scanner usually cannot know when an identifier should be entered into the sym-
bol table for the current scope or when it should return a pointer to an instance
from an earlier scope. Some scanners just copy the identifier into a private string
variable (that can't be overwritten) and return a pointer to it. A later compiler
phase, the type checker, then resolves the identifier's intended usage.

Sometimes a string space is used to store identifiers in conjunction with a
symbol table (see Chapter Chapter:global:eight). A string space is an extendible
block of memory used to store the text of identifiers. A string space eliminates
frequent calls to memory allocators such as new or malloc to allocate private
space for a string. It also avoids the space overhead of storing multiple copies
of the same string. The scanner can enter an identifier into the string space and
return a string space pointer rather than the actual text.

An alternative to a string space is a hash table that stores identifiers and
assigns to each a unique serial number. A serial number is a small integer that
can be used instead of a string space pointer. All identifiers that have the same
text get the same serial number; identifiers with different texts get different serial
numbers. Serial numbers are ideal indices into symbol tables (which need not be
hashed) because they are small, contiguously assigned integers. A scanner can
hash an identifier when it is scanned and return its serial number as part of the
identifier token.

In some languages, such as C, C++, and Java, case is significant; in others, such
as Ada and Pascal, it is not. When case is significant, identifier text must be stored
or returned exactly as it was scanned. Reserved word lookup must distinguish
between identifiers and reserved words that differ only in case. However, when
case is insignificant, case differences in the spelling of an identifier or reserved
word must be guaranteed to not cause errors. An easy way to do this is to put

24 Chapter 3. Scanning--Theory and Practice

all tokens scanned as identifiers into a uniform case before they are returned or
looked up in a reserved word table.

Other tokens, such as literals, require processing before they are returned.
Integer and real (floating) literals are converted to numeric form and returned as
part of the token. Numeric conversion can be tricky because of the danger of
overflow or roundoff errors. It is wise to use standard library routines such as
atoi and atof (in C) and Integer.intValue and Float.floatValue (in Java).
For string literals, a pointer to the text of the string (with escaped characters
expanded) should be returned.

The design of C contains a flaw that requires a C scanner to do a bit of special
processing. Consider the character sequence a (* b);

This can be a call to procedure a, with *b as the parameter. If a has been
declared in a typedef to be a type name, this character sequence also can be the
declaration of an identifier b that is a pointer variable (the parentheses are not
needed, but they are legal).

C contains no special marker that separates declarations from statements,
so the parser will need some help in deciding whether it is seeing a procedure
call or a variable declaration. One way to do this is for the scanner to create,
while scanning and parsing, a table of currently visible identifiers that have been
defined in typedef declarations. When an identifier in this table is scanned, a
special typeid token is returned (rather than an ordinary identifier token).
This allows the parser to distinguish the two constructs easily, since they now
begin with different tokens.

Why does this complication exist in C? The typedef statement was not in the
original definition of C in which the lexical and syntactic rules were established.
When the typedef construct was added, the ambiguity was not immediately
recognized (parentheses, after all, are rarely used in variable declarations). When
the problem was finally recognized, it was too late, and the “trick” described
previously had to be devised to resolve the correct usage.

Processing Reserved Words

Virtually all programming languages have symbols (such as if and while) that
match the lexical syntax of ordinary identifiers. These symbols are called key-
words. If the language has a rule that keywords may not be used as programmer-
defined identifiers, then they are reserved words, that is, they are reserved for
special use.

Most programming languages choose to make keywords reserved. This sim-
plifies parsing, which drives the compilation process. It also makes programs
more readable. For example, in Pascal and Ada, subprograms without param-
eters are called as name; (no parentheses required). But what if, for example,
begin and end are not reserved and some devious programmer has declared pro-
cedures named begin and end? The result is a program whose meaning is not
well-defined, as shown in the following example, which can be parsed in many
ways:

3.6. Practical Considerations of Building Scanners 25

begin
begin;
end;
end;
begin;
end

With careful design, you can avoid outright ambiguities. For example, in PL/I
keywords are not reserved; procedures are called using an explicit call keyword.
Nonetheless, opportunities for convoluted usage abound. Keywords may be used
as variable names, allowing the following;:

if if then else = then;

The problem with reserved words is that if they are too numerous, they may
confuse inexperienced programmers, who may unknowingly choose an identifier
name that clashes with a reserved word. This usually causes a syntax error in a
program that “looks right” and in fact would be right if the symbol in question
was not reserved. COBOL is infamous for this problem because it has several
hundred reserved words. For example, in COBOL, zero is a reserved word. So is
zeros. So is zeroes!

In Section 3.4.1, we showed how to recognize reserved words by creating dis-
tinct regular expressions for each. This approach was feasible because Lex (and
Flex) allows more than one regular expression to match a character sequence,
with the earliest expression that matches taking precedence. Creating regular
expressions for each reserved word increases the number of states in the tran-
sition table that a scanner generator creates. In as simple a language as Pascal
(which has only 35 reserved words), the number of states increases from 37 to
165 [Gra88]. With the transition table in uncompressed form and having 127
columns for ASCII characters (excluding null), the number of transition table
entries increases from 4,699 to 20,955. This may not be a problem with modern
multimegabyte memories. Still, some scanner generators, such as Flex, allow you
to choose to optimize scanner size or scanner speed.

Exercise 18 establishes that any regular expression may be complemented to
obtain all strings not in the original regular expression. That is, A, the comple-
ment of A, is regular if A is. Using complementation of regular expressions, we
can write a regular expression for nonreserved identifiers:

(ident | if | while | ...)

That is, if we take the complement of the set containing reserved words and
all nonidentifier strings, we get all strings that are identifiers, excluding the re-
served words. Unfortunately, neither Lex nor Flex provides a complement opera-
tor for regular expressions (~ works only on character sets).

We could just write down a regular expression directly, but this is too com-
plex to consider seriously. Suppose END is the only reserved word and identifiers
contain only letters. Then

L (LL) | (LLL)L*) | (L~ E)E7) | (L(L ' N')L*) | (LL(L = D')L")

26 Chapter 3. Scanning--Theory and Practice

defines identifiers that are shorter or longer than three letters, that do not start
with E, that are without N in position two, and so on.

Many hand-coded scanners treat reserved words as ordinary identifiers (as far
as matching tokens is concerned) and then use a separate table lookup to detect
them. Automatically generated scanners can also use this approach, especially if
transition table size is an issue. After an apparent identifier is scanned, an excep-
tion table is consulted to see if a reserved word has been matched. When case
is significant in reserved words, the exception lookup requires an exact match.
Otherwise, the token should be translated to a standard form (all uppercase or
lowercase) before the lookup.

An exception table may have any of various organizations. An obvious one
is a sorted list of exceptions suitable for a binary search. A hash table also may
be used. For example, the length of a token may be used as an index into a list
of exceptions of the same length. If exception lengths are well-distributed, few
comparisons will be needed to determine whether a token is an identifier or a
reserved word. [Cic86] showed that perfect hash functions are possible. That is,
each reserved word is mapped to a unique position in the exception table and no
position in the table is unused. A token is either the reserved word selected by
the hash function or an ordinary identifier.

If identifiers are entered into a string space or given a unique serial number
by the scanner, then reserved words can be entered in advance. Then when what
looks like an identifier is found to have a serial number or string space position
smaller than the initial position assigned to identifiers, we know that a reserved
word rather than an identifier has been scanned. In fact, with a little care we can
assign initial serial numbers so that they match exactly the token codes used for
reserved words. That is, if an identifier is found to have a serial number s, where
s is less than the number of reserved words, then s must be the correct token
code for the reserved word just scanned.

3.6.2 Using Compiler Directives and Listing Source Lines

Compiler directives and pragmas control compiler options (for example, list-
ings, source file inclusion, conditional compilation, optimizations, and profiling).
They may be processed either by the scanner or by subsequent compiler phases.
If the directive is a simple flag, it can be extracted from a token. The command
is then executed, and finally the token is deleted. More elaborate directives, such
as Ada pragmas, have nontrivial structure and need to be parsed and translated
like any other statement.

A scanner may have to handle source inclusion directives. These directives
cause the scanner to suspend the reading of the current file and begin the reading
and scanning of the contents of the specified file. Since an included file may
itself contain an include directive, the scanner maintains a stack of open files.
When the file at the top of the stack is completely scanned, it is popped and
scanning resumes with the file now at the top of the stack. When the entire stack
is empty, end-of-file is recognized and scanning is completed. Because C has a
rather elaborate macro definition and expansion facility, macro processing and

3.6. Practical Considerations of Building Scanners 27

included files are typically handled by a preprocessing phase prior to scanning
and parsing. The preprocessor, cpp, may in fact be used with languages other
than C to obtain the effects of source file inclusion, macro processing, and so on.

Some languages (such as C and PL/l) include conditional compilation direc-
tives that control whether statements are compiled or ignored. Such directives
are useful in creating multiple versions of a program from a common source.
Usually, these directives have the general form of an if statement; hence, a con-
ditional expression will be evaluated. Characters following the expression will
then either be scanned and passed to the parser or be ignored until an end if de-
limiter is reached. If conditional compilation structures can be nested, a skeletal
parser for the directives may be needed.

Another function of the scanner is to list source lines and to prepare for the
possible generation of error messages. While straightforward, this requires a bit
of care. The most obvious way to produce a source listing is to echo characters
as they are read, using end-of-line characters to terminate a line, increment line
counters, and so on. This approach has a number of shortcomings, however.

o Error messages may need to be printed. These should appear merged with
source lines, with pointers to the offending symbol.

o A source line may need to be edited before it is written. This may involve
inserting or deleting symbols (for example, for error repair), replacing sym-
bols (because of macro preprocessing), and reformatting symbols (to pret-
typrint a program, that is, to print a program with text properly indented,
if-else pairs aligned, and so on).

e Source lines that are read are not always in a one-to-one correspondence
with source listing lines that are written. For example, in Unix a source
program can legally be condensed into a single line (Unix places no limit on
line lengths). A scanner that attempts to buffer entire source lines may well
overflow buffer lengths.

In light of these considerations, it is best to build output lines (which nor-
mally are bounded by device limits) incrementally as tokens are scanned. The
token image placed in the output buffer may not be an exact image of the token
that was scanned, depending on error repair, prettyprinting, case conversion, or
whatever else is required. If a token cannot fit on an output line, the line is writ-
ten and the buffer is cleared. (To simplify editing, you should place source line
numbers in the program'’s listing.) In rare cases, a token may need to be broken;
for example, if a string is so long that its text exceeds the output line length.

Even if a source listing is not requested, each token should contain the line
number in which it appeared. The token's position in the source line may also
be useful. If an error involving the token is noted, the line number and position
marker can used to improve the quality of error messages. by specifying where
in the source file the error occurred. It is straightforward to open the source
file and then list the source line containing the error, with the error message
immediately below it. Sometimes, an error may not be detected until long after

28 Chapter 3. Scanning--Theory and Practice

the line containing the error has been processed. An example of this is a goto
to an undefined label. If such delayed errors are rare (as they usually are), a
message citing a line number can be produced, for example, “Undefined label
in statement 101.” In languages that freely allow forward references, delayed
errors may be numerous. For example, Java allows declarations of methods after
they are called. In this case, a file of error messages keyed with line numbers
can be written and later merged with the processed source lines to produce a
complete source listing. Source line numbers are also required for reporting
post-scanning errors in multipass compilers. For example, a type conversion
error may arise during semantic analysis; associating a line number with the
error message greatly helps a programmer understand and correct the error.

A common view is that compilers should just concentrate on translation and
code generation and leave the listing and prettyprinting (but not error messages)
to other tools. This considerably simplifies the scanner.

3.6.3 Terminating the Scanner

A scanner is designed to read input characters and partition them into tokens.
When the end of the input file is reached, it is convenient to create an end-of-file
pseudo-character.

In Java, for example, InputStream.read(), which reads a single byte, re-
turns -1 when end-of-file is reached. A constant, Eof, defined as -1, can be
treated as an “extended” ASCII character. This character then allows the defini-
tion of an EndFile token that can be passed back to the parser. The EndFile token
is useful in a CFG because it allows the parser to verify that the logical end of
a program corresponds to its physical end. In fact, LL(1) parsers (discussed in
Chapter Chapter:global:five) and LALR(1) parsers (discussed in Chapter Chap-
ter:global:six) require an EndFile token.

What will happen if a scanner is called after end-of-file is reached? Obvi-
ously, a fatal error could be registered, but this would destroy our simple model
in which the scanner always returns a token. A better approach is to continue to
return the EndFile token to the parser. This allows the parser to handle termina-
tion cleanly, especially since the EndFile token is normally syntactically valid only
after a complete program is parsed. If the EndFile token appears too soon or too
late, the parser can perform error repair or issue a suitable error message.

3.6.4 Multicharacter Lookahead

We can generalize FAs to look ahead beyond the next input character. This
feature is important for implementing a scanner for FORTRAN. In FORTRAN, the
statement DO 10 J = 1,100 specifies a loop, with index J ranging from 1 to
100. In contrast, the statement DO 10 J = 1.100 is an assignment to the vari-
able D0O10J. In FORTRAN, blanks are not significant except in strings. A FORTRAN
scanner can determine whether the 0 is the last character of a DO token only after
reading as far as the comma (or period). (In fact, the erroneous substitution of a

«w »

“.” for a “,” in a FORTRAN DO loop once caused a 1960s-era space launch to fail!

3.6. Practical Considerations of Building Scanners 29

Reserving space for: multichar

Figure 3.20: An FA that scans integer and real literals and the subrange operator.

Because the substitution resulted in a valid statement, the error was not detected
until run-time, which in this case was after the rocket had been launched. The
rocket deviated from course and had to be destroyed.)

We've already shown you a milder form of the extended lookahead problem
that occurs in Pascal and Ada. Scanning, for example, 10..100 requires two-
character lookahead after the 10. Using the FA of Figure 3.20 and given 10. . 100,
we would scan three characters and stop in a nonaccepting state. Whenever we
stop reading in a nonaccepting state, we can back up over accepted characters
until an accepting state is found. Characters we back up over are rescanned to
form later tokens. If no accepting state is reached during backup, we have a
lexical error and invoke lexical error recovery.

In Pascal or Ada, more than two-character lookahead is not needed; this sim-
plifies the buffering of characters to be rescanned. Alternatively, we can add a
new accepting state to the previous FA that corresponds to a pseudotoken of
the form (D*.). If this token is recognized, we strip the trailing “.” from the
token text and buffer it for later reuse. We then return the token code of an
integer literal. In effect, we are simulating the effect of a context-sensitive match
as provided by Lex's / operator.

Multiple character lookahead may also be a consideration in scanning invalid
programs. For example, in C (and many other programming languages) 12. 3e+q
is an invalid token. Many C compilers simply flag the entire character sequence
as invalid (a floating-point value with an illegal exponent). If we follow our
general scanning philosophy of matching the longest valid character sequence,
the scanner could be backed up to produce four tokens. Since this token sequence

30 Chapter 3. Scanning--Theory and Practice

Buffered Token Token Flag

1 Integer literal.

12 Integer literal.

12. Floating-point literal.
12.3 Floating-point literal.
12.3e Invalid (but valid prefix).
12.3e+ Invalid (but valid prefix).

Figure 3.21: Building the token buffer and setting token flags when scanning with a
backup.

(12.3, e, +, q) is invalid, the parser will detect a syntax error when it processes
the sequence. Whether we decide to consider this a lexical error or a syntax error
(or both) is unimportant. Some phase of the compiler must detect the error.

It is not difficult to build a scanner that can perform general backup. This
allows the scanner to operate correctly no matter how token definitions overlap.
As each character is scanned, it is buffered and a flag is set indicating whether
the character sequence scanned so far is a valid token (the flag might be the
appropriate token code). If we are not in an accepting state and cannot scan any
more characters, backup is invoked. We extract characters from the right end of
the buffer and queue them for rescanning. This process continues until we reach
a prefix of the scanned characters flagged as a valid token. This token is returned
by the scanner. If no prefix is flagged as valid, we have a lexical error. (Lexical
errors are discussed in Section 3.6.6.

Buffering and backup are essential in general-purpose scanners such as those
generated by Lex. It is impossible to know in advance which regular expression
pattern will be matched. Instead, the generated scanner (using its internal DFA)
follows all patterns that are possible matches. If a particular pattern is found
to be unmatchable, an alternative pattern that matches a shorter input sequence
may be chosen. The scanner will back up to the longest input prefix that can
be matched, saving buffered characters that will be matched in a later call to the
scanner.

As an example of scanning with backup, consider the previous example of
12.3e+q. Figure 3.21 shows how the buffer is built and flags are set. When the
q is scanned, backup is invoked. The longest character sequence that is a valid
token is 12. 3, so a floating-point literal is returned. e+ is requeued so that it can
be later rescanned.

3.6.5 Performance Considerations

Our main concern in this chapter is showing how to write correct and robust
scanners. Because scanners do so much character-level processing, they can be a
real performance bottleneck in production compilers. Hence, it is a good idea to
consider how to increase scanning speed.

3.6. Practical Considerations of Building Scanners 31

| System.out.println("Four score | and seven years ago,"); |

Figure 3.22: An example of double buffering.

One approach to increasing scanner speed is to use a scanner generator such
as Flex or GLA that is designed to generate fast scanners. These generators will
incorporate many “tricks” that increase speed in nonobvious ways.

If you hand-code a scanner, a few general principles can increase scanner
performance dramatically.

Try to block character-level operations whenever possible. It is usually better
to do one operation on n characters rather than # operations on single char-
acters. This is most apparent in reading characters. In the examples herein,
characters are input one at a time, perhaps using Java's InputStream.read (or a
C or C++ equivalent). Using single-character processing can be quite inefficient.
A subroutine call can cost hundreds or thousands of instructions to execute—far
too many for a single character. Routines such as InputStream.read(buffer)
perform block reads, putting an entire block of characters directly into buffer.
Usually, the number of characters read is set to the size of a disk block (512 or
perhaps 1,024 bytes) so that an entire disk block can be read in one operation.
If fewer than the requested number of characters are returned, we know we have
reached end-of-file. An end-of-file (EOF) character can be set to indicate this.

One problem with reading blocks of characters is that the end of a block
won't usually correspond to the end of a token. For example, near the end of a
block may be found the beginning of a quoted string but not its end. Another
read operation to get the rest of the string may overwrite the first part.

Double-buffering can avoid this problem, as shown in Figure 3.22. Input
is first read into the left buffer and then into the right buffer, and then the left
buffer is overwritten. Unless a token whose text we want to save is longer than
the buffer length, tokens can cross a buffer boundary without difficulty. If the
buffer size is made large enough (say 512 or 1,024 characters), the chance of
losing part of a token is very low. If a token's length is near the buffer's length,
we can extend the buffer size, perhaps by using Java-style Vector objects rather
than arrays to implement buffers.

We can speed up a scanner not only by doing block reads, but also by avoid-
ing unnecessary copying of characters. Because so many characters are scanned,
moving them from one place to another can be costly. A block read enables
direct reading into the scanning buffer rather than into an intermediate input
buffer. As characters are scanned, we need not copy characters from the input
buffer unless we recognize a token whose text must be saved or processed (an
identifier or a literal). With care, we can process the token's text directly from
the input buffer.

At some point, using a profiling tool such as qpt, prof, gprof, or pixie may
allow you to find unexpected performance bottlenecks in a scanner.

32 Chapter 3. Scanning--Theory and Practice

3.6.6 Lexical Error Recovery

A character sequence that cannot be scanned into any valid token results in a
lexical error. Although uncommon, such errors must be handled by a scanner.
It is unreasonable to stop compilation because of what is often a minor error,
so usually we try some sort of lexical error recovery. Two approaches come to
mind:

1. Delete the characters read so far and restart scanning at the next unread
character.

2. Delete the first character read by the scanner and resume scanning at the
character following it.

Both approaches are reasonable. The former is easy to do. We just reset the
scanner and begin scanning anew. The latter is a bit harder to do but also is a
bit safer (because fewer characters are immediately deleted). Rescanning non-
deleted characters can be implemented using the buffering mechanism described
previously for scanner backup.

In most cases, a lexical error is caused by the appearance of some illegal
character, which usually appears as the beginning of a token. In this case, the
two approaches work equally well. The effects of lexical error recovery might
well create a syntax error, which will be detected and handled by the parser.
Consider ... for$tnight.... The $ would terminate scanning of for. Since no
valid token begins with $, it would be deleted. Then tnight would be scanned as
an identifier. The result would be ...for tnight..., which will cause a syntax
error. Such occurrences are unavoidable.

However, a good syntactic error-repair algorithm will often make some rea-
sonable repair. In this case, returning a special warning token when a lexical
error occurs can be useful. The semantic value of the warning token is the char-
acter string that is deleted to restart scanning. The warning token warns the
parser that the next token is unreliable and that error repair may be required.
The text that was deleted may be helpful in choosing the most appropriate re-
pair.

Certain lexical errors require special care. In particular, runaway strings and
comments should receive special error messages.

Handling Runaway Strings and Comments Using Error Tokens

In Java, strings are not allowed to cross line boundaries, so a runaway string is
detected when an end-of-line character is reached within the string body. Or-
dinary recovery heuristics are often inappropriate for this error. In particular,
deleting the first character (the double quote character) and restarting scanning
will almost certainly lead to a cascade of further “false” errors because the string
text is inappropriately scanned as ordinary input.

One way to catch runaway strings is to introduce an error token. An error
token is not a valid token; it is never returned to the parser. Rather, it is a pattern

3.6. Practical Considerations of Building Scanners 33

for an error condition that needs special handling. We use an error token to
represent a string terminated by an Eol rather than a double quote. For a valid
string, in which internal double quotes and backslashes are escaped (and no other
escaped characters are allowed), we can use

" (Not(™ | ol |\) [\" [\\) "

For a runaway string, we can use

" (Not(" [Eol [\) [\" [\\)* Eol

When a runaway string token is recognized, a special error message should be
issued. Further, the string may be repaired and made into a correct string by
returning an ordinary string token with the opening double quote and closing Eol
stripped (just as ordinary opening and closing double quotes are stripped). Note,
however, that this repair may or may not be “correct.” If the closing double
quote is truly missing, the repair will be good. If it is present on a succeeding
line, however, a cascade of inappropriate lexical and syntactic errors will follow
until the closing double quote is finally reached.

Some PL/I compilers issue special warnings if comment delimiters appear within
a string. Although such strings are legal, they almost always result from errors
that cause a string to extend farther than was intended. A special string token
can be used to implement such warnings. A valid string token is returned and an
appropriate warning message is issued.

In languages such as C, C++, Java, and Pascal, which allow multiline com-
ments, improperly terminated (that is, runaway) comments present a similar
problem. A runaway comment is not detected until the scanner finds a close
comment symbol (possibly belonging to some other comment) or until end-of-
file is reached. Clearly, a special error message is required.

Consider the Pascal-style comments that begin with a { and end with a }.
(Comments that begin and end with a pair of characters, such as /* and */ in
Java, C, and C++, are a bit trickier to get right; see Exercise 6.)

Correct Pascal comments are defined quite simply: { Not(})* }

To handle comments terminated by Eof, the error token approach can be used:
{ Not(})* Eof

To handle comments closed by a close comment belonging to another com-
ment (for example, {...missing close comment...{ normal comment }), we
issue a warning (but not an error message; this form of comment is lexically
legal). In particular, a comment containing an open comment symbol in its
body is most probably a symptom of the kind of omission depicted previously.
We therefore split the legal comment definition into two tokens. The one that
accepts an open comment in its body causes a warning message to be printed
(“Possible unclosed comment”). The result is three token definitions:

{ Not({ | })* } and { (Not({ | })* { Not({ | })*)* } and { Not(})* Eof

The first definition matches correct comments that do not contain an open
comment in their bodies. The second matches correct, but suspect, comments

34 Chapter 3. Scanning--Theory and Practice

that contain at least one open comment in their bodies. The final definition is an
error token that matches a “runaway comment” terminated by end-of-file.

Single-line comments, found in Java and C++, are always terminated by an
end-of-line character and so do not fall prey to the runaway comment prob-
lem. They do, however, require that each line of a multiline comment contain
an open comment marker. Note, too, that we mentioned previously that bal-
anced brackets cannot be correctly scanned using regular expressions and finite
automata. A consequence of this limitation is that nested comments cannot be
properly scanned using conventional techniques. This limitation causes problems
when we want comments to nest, particularly when we “comment-out” a piece
of code (which itself may well contain comments). Conditional compilation con-
structs, such as #if and #endif in C and C++, are designed to safely disable the
compilation of selected parts of a program.

3.7 Regular Expressions and Finite Automata

Regular expressions are equivalent to FAs. In fact, the main job of a scanner
generator program such as Lex is to transform a regular expression definition
into an equivalent FA. It does this by first transforming the regular expression
into a nondeterministic finite automaton (NFA). An NFA is a generalization of a
DFA that allows transitions labeled with A as well as multiple transitions from a
state that have the same label.

After creating an NFA, a scanner generator then transforms the NFA into a
DFA, introduced earlier in the chapter. Exactly how it does both of these steps is
discussed a little later in this section.

An NFA, upon reading a particular input, need not make a unique (determin-
istic) choice of which state to visit. For example, as shown in Figure 3.23, an
NFA is allowed to have a state that has two transitions (shown by the arrows)
coming out of it, labeled by the same symbol. As shown in Figure 3.24, an NFA
may also have transitions labeled with A.

Transitions are normally labeled with individual characters in X, and al-
though X is a string (the string with no characters in it), it is definitely not a
character. In the last example, when the FA is in the state at the left and the next
input character is a, it may choose either to use the transition labeled a or to first
follow the X transition (you can always find A wherever you look for it) and then
follow an a transition. FAs that contain no A transitions and that always have
unique successor states for any symbol are deterministic.

The algorithm to make an FA from a regular expression proceeds in two
steps. First, it transforms the regular expression into an NFA. Then it transforms
the NFA into a DFA.

3.7.1 Transforming a Regular Expression into an NFA

Transforming a regular expression into an NFA is easy. A regular expression is
built of the atomic regular expressions a (where a is a character in X) and A by

3.7. Regular Expressions and Finite Automata 35

Reserving space for: nfatwo

Figure 3.23: An NFA with two g transitions.

Reserving space for: nfalam

Figure 3.24: An NFA with a A transition.

using the three operations AB, A | B, and A*. Other operations (such as A1) are
just abbreviations for combinations of these. As shown in Figure 3.25, NFAs for
a and A are trivial.

Now suppose we have NFAs for A and B and want one for A | B. We con-
struct the NFA shown in Figure 3.26. The states labeled A and B were the
accepting states of the automata for A and B; we create a new accepting state for
the combined FA.

As shown in Figure 3.27, the construction of AB is even easier. The accepting
state of the combined FA is the same as the accepting state of B.

Finally, the NFA for A* is shown in Figure 3.28. The start state is an accepting
state, so A is accepted. Alternatively, we can follow a path through the FA for A
one or more times so that zero or more strings that belong to A are matched.

36 Chapter 3. Scanning--Theory and Practice

Reserving space for: nfaalam

Figure 3.25: NFAs for g and A.

Reserving space for: nfaab

Figure 3.26: An NFA for A | B.

3.7. Regular Expressions and Finite Automata 37

Reserving space for: nfaabtwo

Figure 3.27: An NFA for AB.

3.7.2 Creating the DFA

The transformation from an NFA N to an equivalent DFA D works by what is
sometimes called the subset construction. The subset construction algorithm is
shown in Figure 3.29. The algorithm associates each state of D with a set of
states of N. The idea is that D will be in state {x, y, z} after reading a given input
string if, and only if, N could be in any of the states x, y, or z, depending on the
transitions it chooses. Thus D keeps track of all of the possible routes N might
take and runs them simultaneously. Because N is a finite automaton, it has only
a finite number of states. The number of subsets of N's states is also finite. This
makes tracking various sets of states feasible.

The start state of D is the set of all states that N could be in without reading
any input characters—that is, the set of states reachable from the start state of
N following only A transitions. Algorithm CLOSE, called from RECORDSTATE, in
Figure 3.29 computes those states that can be reached after only A transitions.
Once the start state of D is built, we begin to create successor states.

To do this, we place each state S of D on a work list when it is created. For
each state S on the work list and each character ¢ in the vocabulary, we compute
S's successor under c. S is identified with some set of N's states {n1,n2,...}.
We find all of the possible successor states to {n1,72,...} under ¢ and obtain
a set {m1,m2,...}. Finally, we include the A-successors of {m1,m2, ...}. The
resulting set of NFA states is included as a state in D, and a transition from §
to it, labeled with ¢, is added to D. We continue adding states and transitions
to D until all possible successors to existing states are added. Because each state

38 Chapter 3. Scanning--Theory and Practice

Reserving space for: nfaa

Figure 3.28: An NFA for A*.

corresponds to a (finite) subset of N's states, the process of adding new states to
D must eventually terminate.

An accepting state of D is any set that contains an accepting state of N.
This reflects the convention that N accepts if there is any way it could get to its
accepting state by choosing the “right” transitions.

To see how the subset construction operates, consider the NFA shown in
Figure 3.30. In the NFA in the figure, we start with state 1, the start state of N,
and add state 2, its A-successor. Hence, D's start state is {1,2}. Under a, {1,2}'s
successor is {3,4, 5}. State 1 has itself as a successor under b. When state 1's A-
successor, 2, is included, {1,2}'s successor is {1,2}. {3,4, 5}'s successors under
a and b are {5} and {4, 5}. {4, 5}'s successor under b is {5}. Accepting states of
D are those state sets that contain N's accepting state (5). The resulting DFA is
shown in Figure 3.31.

It can be established that the DFA constructed by MAKEDETERMINISTIC is
equivalent to the original NFA (see Exercise 20). What is not obvious is the fact
that the DFA that is built can sometimes be much larger than the original NFA.
States of the DFA are identified with sets of NFA states. If the NFA has # states,
there are 2" distinct sets of NFA states and hence the DFA may have as many as
2" states. Exercise 16 discusses an NFA that actually exhibits this exponential
blowup in size when it is made deterministic. Fortunately, the NFAs built from
the kind of regular expressions used to specify programming language tokens do
not exhibit this problem when they are made deterministic. As a rule, DFAs used
for scanning are simple and compact.

When creating a DFA is impractical (either because of speed-of-generation

3.7. Regular Expressions and Finite Automata

function MAKEDETERMINISTIC(N) : DFA
D .StartState <+ RECORDSTATE({ N.StartState })
foreach S € WorkList do
WorkList + WorkList — { S}
foreach ¢ € ¥ do D.T(S, c) + RECORDSTATE(| JN.T{(s,¢))
SES
D.AcceptStates < { S € D.States | SN N.AcceptStates # 0 }
end
function CLOSE(S, T') : Set
ans S
repeat
changed « false
foreach s € ans do
foreach ¢ € T(s, \) do
if ¢ ¢ ans
then
ans < ans\U {t}
changed + true
until not changed
return (ans)
end
function RECORDSTATE(s) : Set
s ¢ CLOSE(s, N.T)
if s & D.States
then
D .States < D .StatesU {s}
Work List < WorkList U {s}
return (s)
end

Figure 3.29: Construction of a DFA D from an NFA N.

39

40 Chapter 3. Scanning--Theory and Practice

Reserving space for: nfasub

Figure 3.30: An NFA showing how subset construction operates.

Reserving space for: dfa2

Figure 3.31: DFA created for NFA of Figure 3.30.

3.7. Regular Expressions and Finite Automata 41

or size concerns), an alternative is to scan using an NFA (see Exercise 17). Each
possible path through an NFA can be tracked, and reachable accepting states can
be identified. Scanning is slower using this approach, so it is usually used only
when the construction of a DFA is not cost-effective.

3.7.3 Optimizing Finite Automata

We can improve the DFA created by MAKEDETERMINISTIC. Sometimes this DFA
will have more states than necessary. For every DFA, there is a unique smallest
(in terms of number of states) equivalent DFA. Suppose a DFA D has 75 states
and there is a DFA D’ with 50 states that accepts exactly the same set of strings.
Suppose further that no DFA with fewer than 50 states is equivalent to D. Then
D’ is the only DFA with 50 states equivalent to D. Using the techniques discussed
in this section, we can optimize D by replacing it with D',

Some DFAs contain unreachable states, states that cannot be reached from
the start state. Other DFAs may contain dead states, states that cannot reach
any accepting state. It is clear that neither unreachable states nor dead states can
participate in scanning any valid token. So we eliminate all such states as part of
our optimization process.

We optimize the resulting DFA by merging states we know to be equivalent.
For example, two accepting states that have no transitions out of them are equiv-
alent. Why? Because they behave exactly the same way—they accept the string
read so far but will accept no additional characters. If two states, s; and s;, are
equivalent, then all transitions to s, can be replaced with transitions to s1. In
effect, the two states are merged into one common state.

How do we decide what states to merge? We take a greedy approach and try
the most optimistic merger. By definition, accepting and nonaccepting states are
distinct, so we initially try to create only two states: one representing the merger
of all accepting states and the other representing the merger of all nonaccepting
states. Only two states is almost certainly too optimistic. In particular, all of
the constituents of a merged state must agree on the same transition for each
possible character. That is, for character ¢ all of the merged states either must
have no successor under ¢ or must go to a single (possibly merged) state. If all
constituents of a merged state do not agree on the transition to follow for some
character, the merged state is split into two or more smaller states that do agree.

As an example, assume we start with the FA shown in Figure 3.32. Initially,
we have a merged nonaccepting state {1,2,3,5,6} and a merged accepting state
{4,7}. A merger is legal if, and only if, all constituent states agree on the same
successor state for all characters. For example, states 3 and 6 would go to an
accepting state when given character ¢; states 1, 2, and § would not, so a split
must occur. We add an error state sg to the original DFA that will be the suc-
cessor state under any illegal character. (Thus reaching sg becomes equivalent to
detecting an illegal token.) sg is not a real state. Rather, it allows us to assume
that every state has a successor under every character. sg is never merged with
any real state.

42

Chapter 3. Scanning--Theory and Practice

Reserving space for: faaccept

Figure 3.32: Example FA before merging.

3.7. Regular Expressions and Finite Automata 43

procedure SPLIT(MergedStates)
repeat
changed « false
foreach S € MergedStates,c € ¥ do
targets U TARGETBLOCK(s, ¢, MergedStates)
SES
if |targets| > 1
then
changed + true
foreach ¢ € targets do

newblock < {s € S | TARGETBLOCK(s, ¢, MergedStates) = t }
MergedStates < MergedStates U { newblock }
MergedStates < MergedStates — { S }
until not changed
end
function TARGETBLOCK (s, ¢, MergedStates) : MergedState
return (B € MergedStates | T(s, c) € B)
end

Figure 3.33: An algorithm to split FA states.

Algorithm SPLIT, shown in Figure 3.33, splits merged states whose constituents
do not agree on a single successor state for a particular character. When SPLIT
terminates, we know that the states that remain merged are equivalent in that
they always agree on common successors.

Returning to the example, we initially have states {1,2,3,5,6} and {4, 7}.
Invoking SPLIT, we first observe that states 3 and 6 have a common successor
under ¢ and states 1, 2, and 5 have no successor under ¢ (or, equivalently, they
have the error state sg). This forces a split that yields {1,2,5},43,6},and {4, 7}.
Now, for character b states 2 and 5 go to the merged state {3, 6}, but state 1 does
not, so another split occurs. We now have {1}, {2, 5}, {3,6}, and {4, 7}. At this
point, all constituents of merged states agree on the same successor for each input
symbol, so we are done.

Once SPLIT is executed, we are essentially done. Transitions between merged
states are the same as the transitions between states in the original DFA. That
is, if there was a transition between states s; and s; under character ¢, there is
now a transition under ¢ from the merged state containing s; to the merged state
containing s;. The start state is that merged state that contains the original start
state. An accepting state is a merged state that contains accepting states (recall
that accepting and nonaccepting states are never merged).

Returning to the example, the minimum state automaton we obtain is shown
in Figure 3.34.

A proof of the correctness and optimality of this minimization algorithm can
be found in most texts on automata theory, such as [HU79].

44

Chapter 3. Scanning--Theory and Practice

Reserving space for: minstate

Figure 3.34: The minimum state automaton obtained.

3.7. Regular Expressions and Finite Automata 45

Reserving space for: newstates

Figure 3.35: An FA with new start and accepting states added.

Translating Finite Automata into Regular Expressions

So far, we have concentrated on the process of converting a given regular expres-
sion into an equivalent FA. This is the key step in Lex's construction of a scanner
from a set of regular expression token patterns.

Since regular expressions, DFAs, and NFAs are interconvertible, it is also
possible to derive for any FA a regular expression that describes the strings that
the FA matches. In this section, we briefly discuss an algorithm that does this
derivation. This algorithm is sometimes useful when you already have an FA you
want to use but you need an regular expression to program Lex or to describe the
FA's effect. This algorithm also helps you to see that regular expressions and FAs
really are equivalent.

The algorithm we use is simple and elegant. We start with an FA and simplify
it by removing states, one-by-one. Simplified FAs are equivalent to the original,
except that transitions are now labeled with regular expressions rather than indi-
vidual characters. We continue removing states until we have an FA with a single
transition from the start state to a single accepting state. The regular expression
that labels that single transition correctly describes the effect of the original FA.

46 Chapter 3. Scanning--Theory and Practice

Reserving space for: ttrans

Figure 3.36: The T'1, T2, and T3 transformations.

To start, we assume our FA has a start state with no transitions into it and
a single accepting state with no transitions out of it. If it doesn't meet these re-
quirements, we can easily transform it by adding a new start state and a new
accepting state linked to the original automaton with A transitions. This is il-
lustrated in Figure 3.35 using the FA we created with MAKEDETERMINISTIC in
Section 3.7.2. We define three simple transformations, T1, T2, and T3, that will
allow us to progressively simplify FAs. The first, illustrated in Figure 3.36(a),
notes that if there are two different transitions between the same pair of states,
with one transition labeled R and the other labeled S, then we can replace the
two transitions with a new one labeled R | S. T1 simply reflects that we can
choose to use either the first transition or the second.

Transformation T2, illustrated in Figure 3.36(b) allows us to by pass a state.
That is, if state s has a transition to state r labeled X and state » has a transition to
state u# labeled Y, then we can go directly from state s to state # with a transition
labeled XY.

Transformation T3, illustrated in Figure 3.36(c), is similar to transformation
T2. It, too, allows us to bypass a state. Suppose state s has a transition to state
r labeled X and state r has a transition to itself labeled Z, as well as a transition

3.7. Regular Expressions and Finite Automata 47

to state # labeled Y. We can go directly from state s to state # with a transition
labeled XZ*Y. The Z* term reflects that once we reach state 7, we can cycle back
into 7 zero or more times before finally proceeding to u.

We use transformations T2 and T3 as follows. We consider, in turn, each
pair of predecessors and successors a state s has and use T2 or T3 to link a
predecessor state directly to a successor state. In this case, s is no longer needed—
all paths through the FA can bypass it! Since s isn't needed, we remove it. The FA
is now simpler because it has one fewer states. By removing all states other than
the start state and the accepting state (using transformation T1 when necessary),
we will reach our goal. We will have an FA with only one transition, and the
label on this transition will be the regular expression we want. FINDRE, shown
in Figure 3.37, implements this algorithm. The algorithm begins by invoking
AUGMENT, which introduces new start and accept states. The loop at Step 1
considers each state s of the FA in turn. Transformation T1 ensures that each pair
of states is connected by at most one transition. This transformation is performed
prior to processing s at Step 3. State s is then eliminated by considering the
cross-product of states with edges to and from s. For each such pair of states,
transformation T2 or T3 is applied. State s is then removed at Step 2, along with
all edges to or from state s. When the algorithm terminates, the only states left
are NewStart and NewAccept, introduced by AUGMENT. The regular expression
for the FA labels the transition between these two states.

As an example, we find the regular expression corresponding to the FA in
Section 3.7.2. The original FA, with a new start state and accepting state added,
is shown in Figure 3.38(a). State 1 has a single predecessor, state 0, and a single
successor, state 2. Using a T3 transformation, we add an arc directly from state
0 to state 2 and remove state 1. This is shown in Figure 3.38(b). State 2 has a
single predecessor, state 0, and three successors, states 2, 4, and 5. Using threeT2
transformations, we add arcs directly from state O to states 3, 4, and 5. State 2
is removed. This is shown in Figure 3.38(c).

State 4 has two predecessors, states 0 and 3. It has one successor, state 5.
Using two T2 transformations, we add arcs directly from states 0 and 3 to state 5.
State 4 is removed. This is shown in Figure 3.38(d). Two pairs of transitions are
merged using T'1 transformations to produce the FA in Figure 3.38(e). Finally,
state 3 is bypassed with a T2 transformation and a pair of transitions are merged
with a T1 transformation, as shown in Figure 3.38(f). The regular expression
we obtain is

b*ab(a | b | \) | b*aa | b*a.

By expanding the parenthesized subterm and then factoring a common term,
we obtain

b*aba | b*abb | b*ab | b*aa | b*a = b*a(ba | bb | b | a | N).

Careful examination of the original FA verifies that this expression correctly
describes it.

Chapter 3. Scanning--Theory and Practice

function FINDRE(N) : RegExpr

OrigStates + N.States
call AUGMENT(N)

foreach s € OrigStates do 1
call ELIMINATE(s)
N.States + N.States — {s } 2

/% return the regular expression labeling the only remaining transition +/
end
procedure ELIMINATE(s)
foreach (x,y) € N.States x N.States | COUNTTRANS(x,y) > 1do 3
% Apply transformation T1 to x and y */
foreach p € PREDS(s) | p # s do
foreach u € Succs(s) | u # s do
if CountTrans(s,s) =0
then /% Apply Transformation T2 to p, s, and z x/
else /x Apply Transformation T3 to p, s, and u */
end
function COUNTTRANS(x,y) : Integer
return (number of transitions from x to)
end
function PREDS(s) : Set
return ({p | (3a)(N.T(p,a) = 5) }
end
function SUCCS(s) : Set
return ({# | (3a)(N.T(s,a) = u) })
end
procedure AUGMENT(N)
OldStart < N.StartState
NewStart <+ NEWSTATE()
/% Define N.T(NewStart, \) = { OldStart } */
N .StartState « NewStart
OldAccepts < N.AcceptStates
NewAccept <+ NEWSTATE()
foreach s € OldAccepts do
I Define N.T(s, \) = { NewAccept } */
N.AcceptStates + { NewAccept }
end

Figure 3.37: An algorithm to generate a regular expression from an FA.

3.8. Summary 49

Reserving space for: findre

Figure 3.38: Finding a regular expression using FINDRE.

3.8 Summary

We have discussed three equivalent and interchangeable mechanisms for defin-
ing tokens: the regular expression, the deterministic finite automaton, and the
nondeterministic finite automaton. Regular expressions are convenient for pro-
grammers because they allow the specification of token structure without regard
for implementation considerations. Deterministic finite automata are useful in
implementing scanners because they define token recognition simply and cleanly,
on a character-by-character basis. Nondeterministic finite automata form a mid-
dle ground. Sometimes they are used for definitional purposes, when it is con-
venient to simply draw a simple automaton as a “flow diagram” of characters
that are to be matched. Sometimes they are directly executed (see Exercise 17),
when translation to deterministic finite automata is too costly or inconvenient.
Familiarity with all three mechanisms will allow you to use the one best-suited
to your needs.

50 Chapter 3. Scanning--Theory and Practice

Exercises

1. Assume the following text is presented to a C scanner:

main(){
const float payment = 384.00;
float bal;
int month = 0;
bal=15000;

while (bal>0){
printf("Month: %2d Balance: %10.2f\n", month, bal);
bal=bal-payment+0.015*bal;
month=month+1;

What token sequence is produced? For which tokens must extra informa-
tion be returned in addition to the token code?

2. How many lexical errors (if any) appear in the following C program? How
should each error be handled by the scanner?

main(){
if(1<2.)a=1.0else a=1.0e-n;
subr(’aa’,"aaaaaa
aaaaaa'");
/* That’s all

3. Write regular expressions that define the strings recognized by the FAs in
Figure 3.39.

4. Write DFAs that recognize the tokens defined by the following regular ex-
pressions.
() (a|(bey*d)*
(b) ((0]1)*(2]3)*)]0011
(c) (a Not(a))*aaa
5. Write a regular expression that defines a C-like, fixed-decimal literal with

no superfluous leading or trailing zeros. Thatis, 0.0, 123.01, and 123005.0
are legal, but 00.0,001.000, and 002345. 1000 are illegal.

3.8. Summary 51

Reserving space for: regexpstr

10.

Figure 3.39: FA for Exercise 3.

. Write a regular expression that defines a C-like comment delimited by /*

and */. Individual #'s and /'s may appear in the comment body, but the
pair */ may not.

Define a token class AlmostReserved to be those identifiers that are not
reserved words but that would be if a single character were changed. Why
is it useful to know that an identifier is “almost” a reserved word? How
would you generalize a scanner to recognize AlmostReserved tokens as well
as ordinary reserved words and identifiers?

. When a compiler is first designed and implemented, it is wise to concen-

trate on correctness and simplicity of design. After the compiler is fully im-
plemented and tested, you may need to increase compilation speed. How
would you determine whether the scanner component of a compiler is a
significant performance bottleneck? If it is, what might you do to improve
performance (without affecting compiler correctness)?

. Most compilers can produce a source listing of the program being com-

piled. This listing is usually just a copy of the source file, perhaps embel-
lished with line numbers and page breaks. Assume you are to produce a
prettyprinted listing.

(a) How would you modify a Lex scanner specification to produce a pret-
typrinted listing?

(b) How are compiler diagnostics and line numbering complicated when
a prettyprinted listing is produced?

For most modern programming languages, scanners require little context
information. That is, a token can be recognized by examining its text and

52

11.

12.

13.

14.

15.

16.

Chapter 3. Scanning--Theory and Practice

perhaps one or two lookahead characters. In Ada, however, additional con-
text is required to distinguish between a single tic (comprising an attribute
operator, as in data’size) and a tic-character-tic sequence (comprising a
quoted character, as in ’x’). Assume that a Boolean flag can_parse_char
is set by the parser when a quoted character can be parsed. If the next
input character is a tic, can_parse_char can be used to control how the
tic is scanned. Explain how the can_parse_char flag can be cleanly in-
tegrated into a Lex-created scanner. The changes you suggest should not
unnecessarily complicate or slow the scanning of ordinary tokens.

Unlike C, C++, and Java, FORTRAN generally ignores blanks and therefore
may need extensive lookahead to determine how to scan an input line. We
noted earlier a famous example of this: D0 10 I = 1 , 10, which pro-
duces seven tokens, in contrast withDO 10 I = 1 . 10, which produces
three tokens.

(a) How would you design a scanner to handle the extended lookahead
that FORTRAN requires?

(b) Lex contains a mechanism for doing lookahead of this sort. How
would you match the identifier (D0101I) in this example?

Because FORTRAN generally ignores blanks, a character sequence containing
n blanks can be scanned as many as 2” different ways. Are each of these
alternatives equally probable? If not, how would you alter the design you
proposed in Exercise 11 to examine the most probable alternatives first?

You are to design the ultimate programming language, “Utopia 2010.”
You have already specified the language's tokens using regular expressions
and the language's syntax using a CFG. Now you want to determine those
token pairs that require whitespace to separate them (such as else a) and
those that require extra lookahead during scanning (such as 10.0e-22).
Explain how you could use the regular expressions and CFG to automati-
cally find all token pairs that need special handling.

Show that the set {[¥]¥ | k > 1} is not regular. Hint: Show that no fixed
number of FA states is sufficient to exactly match left and right brackets.

Show the NFA that would be created for the following expression using
the techniques of Section 3.7:
(ab*c) | (abc*)

Using MAKEDETERMINISTIC, translate the NFA into a DFA. Using the tech-
niques of Section 3.7.3, optimize the DFA you created into a minimal state
equivalent.

Consider the following regular expression:
O [1*0(0 [D)(O[1)(0|1)...(0]1)

3.8. Summary 53

17.

18.

19.

20.

21.

22.

Display the NFA corresponding to this expression. Show that the equiva-
lent DFA is exponentially bigger than the NFA you presented.

Translation of a regular expression into an NFA is fast and simple. Cre-
ation of an equivalent DFA is slower and can lead to a much larger au-
tomaton. An interesting alternative is to scan using NFAs, thus obviat-
ing the need to ever build a DFA. The idea is to mimic the operation of
the CLOSE and MAKEDETERMINISTIC routines (as defined in Section 3.7.2)
while scanning. A set of possible states, rather than a single current state,
is maintained. As characters are read, transitions from each state in the
current set are followed, thereby creating a new set of states. If any state
in the current set is final, the characters read will comprise a valid token.

Define a suitable encoding for an NFA (perhaps a generalization of the
transition table used for DFAs) and write a scanner driver that can use this
encoding by following the set-of-states approach outlined previously. This
approach to scanning will surely be slower than the standard approach,
which uses DFAs. Under what circumstances is scanning using NFAs at-
tractive?

Assume e is any regular expression. € represents the set of all strings not in
the regular set defined by e. Show that ¢ is a regular set.

Hint: If e is a regular expression, there is an FA that recognizes the set
defined by e. Transform this FA into one that will recognize e.

Let Rev be the operator that reverses the sequence of characters within a
string. For example, Rev(abc) = cba. Let R be any regular expression.
Rev(R) is the set of strings denoted by R, with each string reversed. Is
Rev(R) a regular set? Why?

Prove that the DFA constructed by MAKEDETERMINISTIC in Section 3.7.2
is equivalent to the original NFA. To do so, you must show that an input
string can lead to a final state in the NFA if, and only if, that same string
will lead to a final state in the corresponding DFA.

You have scanned an integer literal into a character buffer (perhaps yytext).
You now want to convert the string representation of the literal into nu-

meric (int) form. However, the string may represent a value too large to

be represented in int form. Explain how to convert a string representation

of an integer literal into numeric form with full overflow checking.

Write Lex regular expressions (using character classes if you wish) that
match the following sets of strings:

(a) The set of all unprintable ASCII characters (those before the blank
and the very last character)

(b) The string ["""] (that is, a left bracket, three double quotes, and a
right bracket)

54

23.

24.

25.

26.

27.

28.

Chapter 3. Scanning--Theory and Practice

(c) The string x12:3%5 (

acters in length)

your solution should be far less than 12,345 char-

Write a Lex program that examines the words in an ASCII file and lists
the ten most frequently used words. Your program should ignore case and
should ignore words that appear in a predefined “don't care” list.

What changes in your program are needed to make it recognize singular
and plural nouns (for example, cat and cats) as the same word? How
about different verb tenses (walk versus walked versus walking)?

Let Double be the set of strings defined as {s | s = ww}. Double contains
only strings composed of two identical repeated pieces. For example, if
you have a vocabulary of the ten digits O to 9, then the following strings
(and many more!) are in Double: 11, 1212, 123123, 767767, 98769876,

Assume you have a vocabulary consisting only of the single letter a. Is
Double a regular set? Why?

Assume you now have a vocabulary consisting of the two letters, a and b.
Is Double a regular set? Why?

Let Seq(x,y) be the set of all strings (of length 1 or more) composed of
alternating x's and y's. For example, Seq(a, b) contains a, b, ab, ba, aba,

bab, abab, baba, and so on.
Write a regular expression that defines Seq(x, y).

Let S be the set of all strings (of length 1 or more) composed of a's, b's,
and c's that start with an a and in which no two adjacent characters are
equal. For example, S contains a, ab, abc, abca, acab, acac, ... but not c,
aa, abb, abcc, aab, cac, Write a regular expression that defines S. You
may use Seq(x,y) within your regular expression if you wish.

Let AllButLast be a function that returns all of a string but its last character.
For example, AllButLast(abc) = ab. AllButLast(}) is undefined. Let R be
any regular expression that does not generate A\. AllButLast(R) is the set
of strings denoted by R, with Al[ButLast applied to each string. Thus
AllButLast(atb) = a*. Show that AllButLast(R) is a regular set.

Let F be any NFA that contains Atransitions. Write an algorithm that
transforms F into an equivalent NFA F’ that contains no Atransitions.

Note: You need not use the subset construction, since you're creating a
NFA, not a DFA.

Let s be a string. Define Insert(s) to be the function that inserts a # into
each possible position in s. If s is # characters long, Insert(s) returns a set
of n+1 strings (since there are 7+ 1 places, a # may be inserted in a string
of length 7).

3.8. Summary 55

29.

For example, Insert(abc) = { #abc, a#bc, abitc,abc# }. Insert applied to
a set of strings is the union of Insert applied to members of the set. Thus

Insert(ab, de) = { #ab, a#b, ab#, #de, d#e, de# }.

Let R be any regular set. Show that Insert(R) is a regular set.

Hint: Given an FA for R, construct one for Insert(R).

Let D be any deterministic finite automaton. Assume that you know D
contains exactly #z states and that it accepts at least one string of length 7

or greater. Show that D must also accept at least one string of length 27 or
greater.

56

Chapter 3. Scanning--Theory and Practice

S

Bibliography

[AMT89] Andrew W. Appel, James S. Mattson, and David R. Tarditi. A lexi-

[BCI3]

[Ber97]

[Cic86]

[Gra88]

[Gro89]

[HU79]

[Jac87]

cal analyzer generator for Standard ML. Princeton University, 1989.
distributed with SML/NJ software.

Peter Bumbulis and Donald D. Cowan. Re2c: a more versatile scanner
generator. ACM Letters on Programming Languages and Systems,
2(1-4):70-84, 1993.

Elliot Berk. Jlex: A lexical analyzer generator for java. Princeton
University, available at http://wuw.cs.princeton.edu/ appel/-
modern/java/JLex/manual.html, 1997.

R.J. Cichelli. Minimal perfect hash functions made simple. Commu-
nications of the ACM, 23:17-19, 1986.

Robert W. Gray. ~v-gla: A generator for lexical analyzers that pro-
grammers can use. Summer Usenix Conference Proceedings, 1988.

J. Grosch. Efficient generation of lexical analysers. Software — Practice
and Experience, 19:1089-1103, 1989.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

Van Jacobsen. Tuning unix lex, or it's not true what they say about
lex. Winter Usenix Conference Proceedings, pages 163-164, 1987.

[LMB92] John R. Levine, Tony Mason, and Doug Brown. lex and yacc.

[LS75]

[Moe91]

[NF88]

O'Reilly and Associates, 1992.

M.E. Lesk and E. Schmidt. Lex—a lexical analyzer generator. Unix
Programmer's Manual 2, 1975.

H. Moessenboeck. A generator for production quality compilers.
Proc. of the 3rd int. workshop on compiler compilers, 1991. Lec-
ture Notes in Computer Science 477.

T. Nguyen and K. Forester. Alex — an ada lexical analysis generator.
Arcadia Document UCI-88-17, University of California, Irvine, 1988.

57

58 BIBLIOGRAPHY
[Pax88] V. Paxson. Flex man pages. In ftp distribution from
//ftp.ee.1bl.gov, 1988.

[PDC89] T.J. Parr, H.G. Dietz, and W.E. Cohen. PCCTS Reference Manual.
Purdue University, 1989.

4

Grammars and Parsing

Formally a language is a set of finite-length strings over a finite alphabet. Because
most interesting languages are infinite sets, we cannot define such languages by
enumerating their elements. A grammar is a compact, finite representation of a
language. In Chapter Chapter:global:two, we discuss the rudiments of context-
free grammars (CFGs) and define a simple language using a CFG. Due to their ef-
ficiency and precision, CFGs are commonly used for defining the syntax of actual
programming languages. In Chapter 4, we formalize the definition and notation
for CFGs and present algorithms that analyze such grammars in preparation
for the parsing techniques covered in Chapters Chapter:global:five and Chap-
ter:global:six.

4.1 Context-Free Grammars: Concepts and Notation

A CFG is defined by the following four components.

1. A finite terminal alphabet . This is the set of tokens produced by the
scanner. We always augment this set with the token $, which signifies end-
of-input.

2. A finite nonterminal alphabet N. Symbols in this alphabet are variables of
the grammar.

3. A start symbol S € N that initiates all derivations. S is also called the goal
symbol.

4. P, a finite set of productions (sometimes called rewriting rules) of the form
A=Xy ... X, where Aec N, X; e NUX, 1 <i<m,and m > 0. The

1

2 Chapter 4. Grammars and Parsing

only valid production with m = 0 is of the form A—), where A denotes
the empty string.

These components are often grouped into a four-tuple, G = (N, X, P,S), which
is the formal definition of a CFG. The terminal and nonterminal alphabets must
be disjoint (i.e., ¥ N N = (). The vocabulary V of a CFG is the set of terminal
and nonterminal symbols (i.e., V = X U N).

A CFG is essentially a recipe for creating strings. Starting with S, nontermi-
nals are rewritten using the grammar's productions until only terminals remain.
A rewrite using the production A— « replaces the nonterminal A with the vocab-
ulary symbols in «. As a special case, a rewrite using the production A— X causes
A to be erased. Each rewrite is a step in a derivation of the resulting string. The
set of terminal strings derivable from S comprises the context-free language of
grammar G, denoted L(G).

In describing parsers, algorithms, and grammars, consistency is useful in de-
noting symbols and strings of symbols. We follow the notation set out in the
following chart.

Names Beginning With Represent Symbols In Examples
Uppercase N A, B, C, Prefix
Lowercase and punctuation X a, b, ¢, if, then, (, ;
AN NUX Xiy Vs

Other Greek letters (NUDY a,y

Using this notation, we write a production as A—a or A— X ... X, depending
on whether the detail of the production's right-hand side (RHS) is of interest.
This format emphasizes that a production's left-hand side (LHS) must be a single
nonterminal but the RHS is a string of zero or more vocabulary symbols.

There is often more than one way to rewrite a given nonterminal; in such
cases, multiple productions share the same LHS symbol. Instead of repeating the
LHS symbol, an “or notation” is used.

A — «a
| 8
| ¢
This is an abbreviation for the following sequence of productions.
A — «a
A —- g
A — ¢

If A=~ is a production, then «AB = a3 denotes one step of a derivation using
this production. We extend = to =71 (derived in one or more steps) and
=* (derived in zero or more steps). If S=* 3, then j is said to be a sentential

4.1. Context-Free Grammars: Concepts and Notation 3

1 E — Prefix (E)
2 | vTail

3 Prefix — f

4 | A

5 Tail - +E

6 | A

Figure 4.1: A simple expression grammar.

form of the CFG. SF(G) denotes the set of sentential forms of grammar G. Thus
L@ ={we X |S=Tw}. Also, L(G) = SF(G) N X*. That is, the language of G is
simply those sentential forms of G that are terminal strings.

Throughout a derivation, if more than one nonterminal is present in a sen-
tential form, then there is a choice as to which nonterminal should be expanded
in the next step. Thus to characterize a derivation sequence, we need to specify,
at each step, which nonterminal is expanded and which production is applied.
We can simplify this characterization by adopting a convention such that non-
terminals are rewritten in some systematic order. Two such conventions are the

o leftmost derivation and

e rightmost derivation.

4.1.1 Leftmost Derivations

A derivation that always chooses the lefimost possible nonterminal at each step
is called a leftmost derivation. If we know that a derivation is leftmost, we
need only specify the productions in order of their application; the expanded
nonterminal is implicit. To denote derivations that are leftmost, we use =,
=i ,and =% . A sentential form produced via a leftmost derivation is called
a left sentential form. The production sequence discovered by a large class of
parsers—the top-down parsers—is a leftmost derivation. Hence, these parsers
are said to produce a leftmost parse.

As an example, consider the grammar shown in Figure 4.1, which generates
simple expressions (v represents a variable and f represents a function). A
leftmost derivation of f (v + v) is as follows.

E =, Prefix(E)
= f(E)
=, f(vTail)
=m f(v+E)
=>m f(v+vTail)
= f(v+v)

4 Chapter 4. Grammars and Parsing

4.1.2 Rightmost Derivations

An alternative to a leftmost derivation is a rightmost derivation (sometimes called
a canonical derivation). In such derivations the rightmost possible nonterminal
is always expanded. This derivation sequence may seem less intuitive given the
English convention of processing information left-to-right, but such derivations
are produced by an important class of parsers, namely the bottom-up parsers
discussed in Chapter Chapter:global:six.

As a bottom-up parser discovers the productions that derive a given token
sequence, it traces a rightmost derivation, but the productions are applied in
reverse order. That is, the last step taken in a rightmost derivation is the first
production applied by the bottom-up parser; the first step involving the start
symbol is the parer's final production. The sequence of productions applied by a
bottom-up parser is called a rightmost or canonical parse. For derivations that
are rightmost, the notation =, =% , and =%, is used. A sentential form
produced via a rightmost derivation is called a right sentential form. A rightmost
derivation of the grammar shown in Figure 4.1 is as follows.

E E)

v Tail)
Prefix (v+ E)
Prefix (v + v Tail)
Prefix (v +v)

f(v+v)

Prefix
Prefix

rm

iy

8

h,
8
—_—_——

5

bU Uy
=

5

4.1.3 Parse Trees

A derivation is often represented by a parse tree (sometimes called a derivation
tree). A parse tree has the following characteristics.

¢ Itis rooted by the grammar's start symbol S.
e Each node is either a grammar symbol or A.

o Its interior nodes are nonterminals. An interior node and its children rep-
resent the application of a production. That is, a node representing a non-
terminal A can have offspring Xy, x>, ..., X, if, and only if, there exists
a grammar production A— Xy X ... X,,. When a derivation is complete,
each leaf of the corresponding parse tree is either a terminal symbol or A.

Figure 4.2 shows the parse tree for f (v + v) using the grammar from Figure 4.1.
Parse trees serve nicely to visualize how a string is structured by a grammar.
A leftmost or rightmost derivation is essentially a textual representation of a
parse tree, but the derivation conveys also the order in which the productions
are applied.

A sentential form is derivable from a grammar's start symbol. Hence, a parse
tree must exist for every sentential form. Given a sentential form and its parse
tree, a phrase of the sentential form is a sequence of symbols descended from

4.1. Context-Free Grammars: Concepts and Notation S

E

PANN

Prefix (E)

> _

v Tail

Figure 4.2: The parse tree for f (v + V).

a single nonterminal in the parse tree. A simple or prime phrase is a phrase
that contains no smaller phrase. That is, it is a sequence of symbols directly
derived from a nonterminal. The handle of a sentential form is the leftmost
simple phrase. (Simple phrases cannot overlap, so “leftmost” is unambiguous.)
Consider the parse tree in Figure 4.2 and the sentential form f (v Tail). f and
v Tail are simple phrases and f is the handle. Handles are important because they
represent individual derivation steps, which can be recognized by various parsing
techniques.

4.1.4 Other Types of Grammars

Although CFGs serve well to characterize syntax, most programming languages
contain rules that are not expressible using CFGs. For example, the rule that
variables must be declared before they are used cannot be expressed, because
a CFG provides no mechanism for transmitting to the body of a program the
exact set of variables that has been declared. In practice, syntactic details that
cannot be represented in a CFG are considered part of the static semantics and
are checked by semantic routines (along with scope and type rules). The non-
CFGs that are relevant to programming language translation are the

o regular grammars, which are less powerful than CFGs, and the

e context-sensitive and unrestricted grammars, which are more powerful.

6 Chapter 4. Grammars and Parsing

Regular Grammars

A CFG that is limited to productions of the form A—a B or C—d is a regular
grammar. Each rule's RHS consists of either a symbol from ¥ U { A} followed
by a nonterminal symbol or just a symbol from X U {A}. As the name sug-
gests, a regular grammar defines a regular set (see Exercise 13.) We observed in
Chapter Chapter:global:three that the language {[']' | i > 1} is not regular; this
language is generated by the following CFG.

S -
T — [T]

This grammar establishes that the languages definable by regular grammars (reg-
ular sets) are a proper subset of the context-free languages.

W N =

Beyond Context-Free Grammars

CFGs can be generalized to create richer definitional mechanisms. A context-
sensitive grammar requires that nonterminals be rewritten only when they appear
in a particular context (for example, «A3 — ad3), provided the rule never causes
the sentential form to contract in length. An unrestricted or type-0 grammar is
the most general. It allows arbitrary patterns to be rewritten.

Although context-sensitive and unrestricted grammars are more powerful
than CFGs, they also are far less useful.

o Efficient parsers for such grammars do not exist. Without a parser, a gram-
mar definition cannot participate in the automatic construction of compiler
components.

o It is difficult to prove properties about such grammars. For example, it
would be daunting to prove that a given type-0 grammar generates the C
programming language.

Efficient parsers for many classes of CFGs do exist. Hence, CFGs present a
nice balance between generality and practicality. Throughout this text, we focus
on CFGs. Whenever we mention a grammar (without saying which kind), you
should assume that the grammar is context-free.

4.2 Properties of CFGs

CEGs are a definitional mechanism for specifying languages. Just as there are
many programs that compute the same result, so there are many grammars that
generate the same language. Some of these grammars may have properties that
complicate parser construction. The most common of these properties are

o the inclusion of useless nonterminals,

4.2. Properties of CFGs 7

o allowing a derived string to have two or more different parse trees, and
e generating the wrong language.

In this section, we discuss these properties and their implication for language
processing.

4.2.1 Reduced Grammars

A grammar is reduced if each of its nonterminals and productions participates in
the derivation of some string in the grammar's language. Nonterminals that can
be safely removed are called useless.

1 S —= A
2 | B
3 A — a
4 B — Bb
S C — ¢

The above grammar contains two kinds of nonterminals that cannot participate
in any derived string.

e With S as the start symbol, the nonterminal C cannot appear in any phrase.
e Any phrase that mentions B cannot be rewritten to contain only terminals.

Exercises 14 and 15 consider how to detect both forms of useless nonterminals.
When B, C, and their associated productions are removed, the following reduced
grammar is obtained.
1 S —- A
2 A — a

Many parser generators verify that a grammar is reduced. An unreduced gram-
mar probably contains errors that result from mistyping of grammar specifica-
tions.

4.2.2 Ambiguity

Some grammars allow a derived string to have two or more different parse trees
(and thus a nonunique structure). Consider the following grammar, which gen-
erates expressions using the infix operator for subtraction.

1 Expr — Expr- Expr
2 | id

8 Chapter 4. Grammars and Parsing

Expr Expr
SN I
Expr - Expr Expr - Expr
Expr - Expr id id Expr - Expr
id id id id

Figure 4.3: Two parse trees forid - id - id.

This grammar allows two different parse trees for id - id - id, as illustrated in
Figure 4.3.

Grammars that allow different parse trees for the same terminal string are
called ambiguous. They are rarely used because a unique structure (i.e., parse
tree) cannot be guaranteed for all inputs. Hence, a unique translation, guided by
the parse tree structure, may not be obtained.

It seems we need an algorithm that checks an arbitrary CFG for ambigu-
ity. Unfortunately, no algorithm is possible for this in the general case [HU79,
Mar91]. Fortunately, for certain grammar classes, successful parser construc-
tion by the algorithms we discuss in Chapters Chapter:global:five and Chap-
ter:global:six proves a grammar to be unambiguous.

4.2.3 Faulty Language Definition

The most potentially serious flaw that a grammar might have is that it generates
the “wrong” language. That is, the terminal strings derivable by the grammar
do not correspond exactly to the strings present in the desired language. This
is a subtle point, because a grammar typically serves as the very definition of a
language's syntax.

The correctness of a grammar is usually tested informally by attempting to
parse a set of inputs, some of which are supposed to be in the language and some
of which are not. One might try to compare for equality the languages defined
by a pair of grammars (considering one a standard), but this is rarely done. For
some grammar classes, such verification is possible; for others, no comparison
algorithm is known. A general comparison algorithm applicable to all CFGs is
known to be impossible to construct [Mar91].

4.3. Transforming Extended Grammars 9

foreach p € Prods of the form “A—a [X;... X,]3> do
N < NEWNONTERM()
pe“AsaNpB”
Prods « ProdsU{“N—=X1...X,” }
Prods < Prods U{“N—=A"}
foreach p € Prods of the form “B—~ { A4... 4, } > do
M NEWNONTERM()
p “B=yM3”
Prods < ProdsU{“M—=Xy... X, M” }
Prods < ProdsU{“M—X"}

Figure 4.4: Algorithm to transform a BNF grammar into standard form.

4.3 Transforming Extended Grammars

Backus-Naur form (BNF) extends the grammar notation defined in Section 4.1
with syntax for defining optional and repeated symbols.

e Optional symbols are enclosed in square brackets. In the production
Asal[Xi.. X153

the symbols X; ... X, are entirely present or absent between the symbols

of o and 3.

¢ Repeated symbols are enclosed in braces. In the production
B—>7{X1Xm}6

the entire sequence of symbols X; ..., can be repeated zero or more
times.

These extensions are useful in representing many programming language con-
structs. In Java, declarations can optionally include modifiers such as final,
static, and const. Each declaration can include a list of identifiers. A produc-
tion specifying a Java-like declaration could be as follows.

Declaration — [final] [static | [const | Type identifier { , identifier }

This declaration insists that the modifiers be ordered as shown. Exercises 11
and 12 consider how to specify the optional modifiers in any order.

Although BNF can be useful, algorithms for analyzing grammars and build-
ing parsers assume the standard grammar notation as introduced in Section 4.1.
The algorithm in Figure 4.4 transforms extended BNF grammars into standard
form. For the BNF syntax involving braces, the transformation uses right re-
cursion on M to allow zero or more occurrences of the symbols enclosed within
braces. This transformation also works using left recursion—the resulting gram-
mar would have generated the same language.

10 Chapter 4. Grammars and Parsing

Program Program Program

AN

begin Stmts end $ begin Stmts end $ begin Stmts end $
Sthwt Stﬁ\ts Stmt ; Stvrr‘]ts Stmt ; Stmts
simplestmt : . simplestmt : . simplestmt : .
Stmt ; Stmts St@t ; Stmts Stmt ; Stmts
simpléstmt X simpléstmt N simpléstmt N
Program Program Program

AN

TR

begln Stmts end beg|n Stmts end begin Stmts end

2

Stmt ; Stmts Stmt ; Stmts Stmt ; Stmts
simplestmt simplestmt simplestmt /N
Stmt ; Stmts Stmt ; Stmts Stmt ; Stmts
simplestmt N simplestmt N simplestmt N

Figure 4.5: A top-down parse of begin simplestmt ; simplestmt ; end $.

As discussed in Section 4.1, a particular derivation (e.g., leftmost or right-
most) depends on the structure of the grammar. It turns out that right-recursive
rules are more appropriate for top-down parsers, which produce leftmost deriva-
tions. Similarly, left-recursive rules are more suitable for bottom-up parsers,
which produce rightmost derivations.

4.4 Parsers and Recognizers

Compilers are expected to verify the syntactic validity of their inputs with respect
to a grammar that defines the programming language's syntax. Given a grammar
G and an input string x, the compiler must determine if x € L(G). An algorithm
that performs this test is called a recognizer.

4.4. Parsers and Recognizers

Program
begin Stmts end $

Stmt ; Stmts

Program
begin Stmts end $

Stmt ; Stmts

11

Program
begin Stmts end $

Stmt ; Stmts

simplestmt simplestmt simplestmt ‘ .
Stmt ; Stmts Stmt ; Stmts Stmt ; Stmts
simpléstmt N simplestmt N simplestmt N
Prqg}»r}am Program Program
beg‘i‘ﬁ Strﬁts e;wd $ beg‘i‘ﬁ Str%ts e;d $ begin Stmts end $
St&;t S;rﬁts Stmt ; Stmts Stmt ; Stmts
simplestmt simplestmt simplestmt /N
Stmt ; Stmts Stmt ; Stmts Stmt ; Stmts
simplestmt N simplestmt N simplestmt N

Figure 4.6: A bottom-up parse of begin simplestmt ; simplestmt ; end $.

For language translation, we must determine not only the string's validity,
but also its structure, or parse tree. An algorithm for this task is called a parser.
Generally, there are two approaches to parsing.

o A parser is considered top-down if it generates a parse tree by starting at the
root of the tree (the start symbol), expanding the tree by applying produc-
tions in a depth-first manner. A top-down parse corresponds to a preorder
traversal of the parse tree. Top-down parsing techniques are predictive in
nature because they always predict the production that is to be matched
before matching actually begins. The top-down approach includes the
recursive-descent parser discussed in Chapter Chapter:global:two.

e The bottom-up parsers generate a parse tree by starting at the tree's leaves
and working toward its root. A node is inserted in the tree only after its

12 Chapter 4. Grammars and Parsing
children have been inserted. A bottom-up parse corresponds to a postorder
traversal of the parse tree.

The following grammar generates the skeletal block structure of a programming
language.

1 Program — begin Stmtsend $
2 Stmts — Stmt; Stmts

3 | A

4 Stmt — simplestmt

S

| begin Stmts end

Using this grammar, Figures 4.5 and 4.6 illustrate a top-down and bottom-up
parse of the string begin simplestmt ; simplestmt ; end $.

When specifying a parsing technique, we must state whether a leftmost or
rightmost parse will be produced. The best-known and most widely used top-
down and bottom-up parsing strategies are called LL and LR, respectively. These
names seem rather arcane, but they reflect how the input is processed and which
kind of parse is produced. In both cases, the first character (L) states that the
token sequence is processed from left to right. The second letter (L or R) indicates
whether a leftmost or rightmost parse is produced. The parsing technique can be
further characterized by the number of lookahead symbols (i.e., symbols beyond
the current token) that the parser may consult to make parsing choices. LL(1) and
LR(1) parsers are the most common, requiring only one symbol of lookahead.

4.5 Grammar Analysis Algorithms

It is often necessary to analyze a grammar to determine if it is suitable for parsing
and, if so, to construct tables that can drive a parsing algorithm. In this section,
we discuss a number of important analysis algorithms, and so strengthen the
basic concepts of grammars and derivations. These algorithms are central to the
automatic construction of parsers, as discussed in Chapters Chapter:global:five
and Chapter:global:six.

4.5.1 Grammar Representation

The algorithms presented in this chapter refer to a collection of utilities for ac-
cessing and modifying representations of a CFG. The efficiency of these algo-
rithms is affected by the data structures upon which these utilities are built. In
this section, we examine how to represent CFGs efficiently. We assume that the
implementation programming language offers the following constructs directly
or by augmentation.

¢ A set is an unordered collection of distinct objects.

o A list is an ordered collection of objects. An object can appear multiple
times in a list.

4.5. Grammar Analysis Algorithms 13

e An iterator is a construct that enumerates the contents of a set or list.

As discussed in Section 4.1, a grammar formally contains two disjoint sets of
symbols, ¥ and N, which contain the grammar's terminals and nonterminals,
respectively. Grammars also contain a designated start symbol and a set of pro-
ductions. The following observations are relevant to obtaining an efficient rep-
resentation for grammars.

¢ Symbols are rarely deleted from a grammar.

¢ Transformations such as those shown in Figure 4.4 can add symbols and
productions to a grammar.

¢ Grammar-based algorithms typically visit all rules for a given nonterminal
or visit all occurrences of a given symbol in the productions.

¢ Most algorithms process a production's RHS one symbol at a time.

Based on these observations, we represent a production by its LHS and a list of
the symbols on its RHS. The empty string A is not represented explicitly as a
symbol. Instead, a production A— X has an empty list of symbols for its RHS.
The collection of grammar utilities is as follows.

GRAMMAR(S): Creates a new grammar with start symbol S and no productions.

PRODUCTION(A, rbs): Creates a new production for nonterminal A and returns
a descriptor for the production. The iterator rhs supplies the symbols for
the production's RHS.

PRODUCTIONS(): Returns an iterator that visits each production in the gram-
mar.

NONTERMINAL(A): Adds A to the set of nonterminals. An error occurs if A
is already a terminal symbol. The function returns a descriptor for the
nonterminal.

TERMINAL(x): Adds x to the set of terminals. An error occurs if x is already a
nonterminal symbol. The function returns a descriptor for the terminal.

NONTERMINALS(): Returns an iterator for the set of nonterminals.
TERMINALS(): Returns an iterator for the set of terminal symbols.
ISTERMINAL(X'): Returns true if X is a terminal; otherwise, returns false.
RHS(p): Returns an iterator for the symbols on the RHS of production p.
LHS(p): Returns the nonterminal defined by production p.

PRODUCTIONSFOR(A): Returns an iterator that visits each production for non-
terminal A.

14 Chapter 4. Grammars and Parsing

procedure DERIVESEMPTYSTRING()
foreach A € NONTERMINALS() do SymbolDerivesEmpty(A) « false
foreach p € PRODUCTIONS() do
RuleDerivesEmpty(p) « false

call COUNTSYMBOLS(p) 1
call CHECKFOREMPTY(p)

foreach X € WorkList do 2
WorkList + WorkList — { X'} 3
foreach x € OCCURRENCES(X') do 4

p < PRODUCTION(x)
Count(p) + Count(p) — 1
call CHECKFOREMPTY(p)
end
procedure COUNTSYMBOLS(p)
Count(p) «+ 0
foreach X € RHS(p) do Count(p) + Count(p) + 1
end
procedure CHECKFOREMPTY(p)
if Count(p) =0

then

RuleDerivesEmpty(p) « true 5

A« LHS(p)

if not SymbolDerivesEmpty(A)

then
SymbolDerivesEmpty(A) < true 6
WorkList + WorkList U { A} 7

end

Figure 4.7: Algorithm for determining nonterminals and productions that can derive A.

OCCURRENCES(X): Returns an iterator that visits each occurrence of X in the
RHS of all rules.

PRODUCTION(y): Returns a descriptor for the production A— o where o con-
tains the occurrence y of some vocabulary symbol.

TAIL(y): Accesses the symbols appearing after an occurrence. Given a sym-
bol occurrence y in the rule A—« y 3, TAIL(y) returns an iterator for the
symbols in S.

4.5. Grammar Analysis Algorithms 15

4.5.2 Deriving the Empty String

One of the most common grammar computations is determining which nonter-
minals can derive A. This information is important because such nonterminals
may disappear during a parse and hence must be carefully handled. Determining
if a nonterminal can derive A is not entirely trivial because the derivation can
take more than one step:

A= BCD=BC=B= A\.

An algorithm to compute the productions and symbols that can derive A is shown
in Figure 4.7. The computation utilizes a worklist at Step 2. A worklist is a set
that is augmented and diminished as the algorithm progresses. The algorithm
is finished when the worklist is empty. Thus the loop at Step 2 must account
for changes to the set WorkList. To prove termination of algorithms that utilize
worklists, it must be shown that all worklist elements appear a finite number of
times.

In the algorithm of Figure 4.7, the worklist contains nonterminals that are
discovered to derive A. The integer Count(p) is initialized at Step 1 to the number
of symbols on p's RHS. The count for any production of the form A— X is 0.
Once a production is known to derive A, its LHS is placed on the worklist at
Step 7. When a symbol is taken from the worklist at Step 3, each occurrence
of the symbol is visited at Step 4 and the count of the associated production is
decremented by 1. This process continues until the worklist is exhausted. The
algorithm establishes two structures related to derivations of A, as follows.

¢ RuleDerivesEmpty(p) indicates whether production p can derive A. When
every symbol in rule p's RHS can derive A, Step 5 establishes that p can
derive A.

o SymbolDerivesEmpty(A) indicates whether the nonterminal A can derive A.
When any production for A can derive A, Step 6 establishes that A can
derive A.

Both forms of information are useful in the grammar analysis and parsing al-
gorithms discussed in Chapters 4, Chapter:global:five, and Chapter:global:six.

4.5.3 First Sets

A set commonly consulted by parser generators is First(«). This is the set of all
terminal symbols that can begin a sentential form derivable from the string of
grammar symbols in «. Formally,

First(a) ={aeX |a=*a g}

Some texts include A in First(«) if o =* A. The resulting algorithms require fre-
quent subtraction of A from symbol sets. We adopt the convention of never

16 Chapter 4. Grammars and Parsing

function FIRST() : Set

foreach A € NONTERMINALS() do VisitedFirst(A) «+ false 8
ans < INTERNALFIRST(«)
return (ans)

end
function INTERNALFIRST(X3) : Set
if ¥g= 1 9
then return (()
ifrvex 10
then return ({ X'})
% */
% X is a nonterminal. */ "
% */
ans «)
if not VisitedFirst(X)
then
VisitedFirst(X) + true 12
foreach rhs € ProductionsFor(X) do
ans < ans U INTERNALFIRST(7hs) 13
if SymbolDerivesEmpty(t) 14
then ans < ans U INTERNALFIRST(3)
return (ans) 15
end

Figure 4.8: Algorithm for computing First().

including A in First(«). Testing whether a given string of symbols o derives A
is easily accomplished—when the results from the algorithm of Figure 4.7 are
available.

First(a) is computed by scanning « left-to-right. If o begins with a terminal
symbol a, then clearly First(«) = { a }. If a nonterminal symbol A is encountered,
then the grammar productions for A must be consulted. Nonterminals that can
derive A potentially disappear during a derivation, so the computation must ac-
count for this as well.

As an example, consider the nonterminals Tail and Prefix from the grammar in
Figure 4.1. Each nonterminal has one production that contributes information
directly to the nonterminal's First set. Each nonterminal also has a A-production,
which contributes nothing. The solutions are as follows.

First(Tail) = {+}
First(Prefix) = {f}

In some situations, the First set of one symbol can depend on the First sets of
other symbols. To compute First(E), the production E— Prefix (E) requires com-

4.5. Grammar Analysis Algorithms 17

putation of First(Prefix). Because Prefix =* A, First((E)) must also be included.
The resulting set is as follows.

First(E) = {v,f,(}

Termination of First(A) must be handled properly in grammars where the com-
putation of First(A) appears to depend on First(A), as follows.

A — B
B —- C
c — A

In this grammar, First(A) depends on First(B), which depends on First(C), which
depends on First(A). In computing First(A), we must avoid endless iteration or
recursion. A sophisticated algorithm could preprocess the grammar to determine
such cycles of dependence. We leave this as Exercise 17 and present a clearer
but slightly less efficient algorithm in Figure 4.8. This algorithm avoids endless
computation by remembering which nonterminals have already been visited, as
follows.

e First(«r) is computed by invoking FIRST().

o Before any sets are computed, Step 8 resets VisitedFirst(A) for each nonter-
minal A.

o VisitedFirst(X) is set at Step 12 to indicate that the productions of A already
participate in the computation of First(a).

The primary computation is carried out by the function INTERNALFIRST, whose
input argument is the string X'8. If X3 is not empty, then X is the string's first
symbol and S is the rest of the string. INTERNALFIRST then computes its answer
as follows.

o The empty set is returned if X3 is empty at Step 9. We denote this condi-
tion by L to emphasize that the empty set is represented by a null list of
symbols.

o If X is a terminal, then First(X3) is { X'} at Step 10.

o The only remaining possibility is that X" is a nonterminal. If VisitedFirst(X)
is false, then the productions for X are recursively examined for inclusion.
Otherwise, X''s productions already participate in the current computation.

o If X can derive A at Step 14—this fact has been previously computed by
the algorithm in Figure 4.7—then we must include all symbols in First(3).

18

Chapter 4. Grammars and Parsing

Level First ans Step Done? Comment
X 8
COMPUTEFIRST(Tail)
0 Tail L {} Step 11
1 + E {+} Step10 * Tail — +E
1 1 1 {} Step 9 * Tail = A
0 {+} Step13 After all rules for Tail
1 1 1 {} Step 9 * Since 3 = L
0 {+} Step14 * Final answer
COMPUTEFIRST(Prefix)
0 Prefix L {} Step 11
1 f L {f} Step 10 * Prefix— f
1 1 1 {} Step 9 * Prefix— A
0 {f} Step 13 After all rules for Prefix
1 1 1 {} Step 9 * Since 8 = L
0 {f} Step 14 * Final answer
COMPUTEFIRST(E)
0 E 1 {} Step 11
1 Prefix (E) {} Step 1 E— Prefix (E)
1 {f} Step 15 Computation shown
above
2 (E) {(} Step 10 * Since Prefix =* A
1 {f(} Step 14 * Results due to
E— Prefix (E)

1 v Tail {v} Step10 * E— v Tail
1 L L {} Step 9 Since 3= L

{f(v} Step14 * Final answer

Figure 4.9: First sets for the nonterminals of Figure 4.1.

Figure 4.9 shows the progress of COMPUTEFIRST as it is invoked on the nonter-
minals of Figure 4.1. The level of recursion is shown in the leftmost column.
Each call to FIRST(X'3) is shown with nonblank entries in the X and 2 columns.
A “x” indicates that the call does not recurse further. Figure 4.10 shows an-
other grammar and the computation of its First sets; for brevity, recursive calls to
INTERNALFIRST on null strings are omitted.

4.5.4 Follow Sets

Parser-construction algorithms often require the computation of the set of ter-
minals that can follow a nonterminal A in some sentential form. Because we
augment grammars to contain an end-of-input token ($), every nonterminal ex-

4.5. Grammar Analysis Algorithms

1 S — ABc
2 A — a
3 | A
4 B — b
S | A
Level First ans Step Done? Comment
X B

COMPUTEFIRST(B)

0 B L {} Step 11

1 b L {b} Step 10 * B—b

1 L 1 {} Step 9 * B—A

0 {b} Step 14 * Final answer
COMPUTEFIRST(A)

0 A L {} Step 11

1 a L {a} Step 10 * A—a

1 L 1 {} Step 9 * A— X

0 {a} Step 14 * Final answer

COMPUTEFIRST(S)

0 S 1 {} Step 11

1 A Bec {a} Step 15 Computation shown
above

2 B ¢ {b} Step 15 Because A = \;
computation shown
above

c L {c} Step 10 Because B =* A

{bc} Step 14

{abc} Step14

S| = | W
% | % | |

{abc} Step14

Figure 4.10: A grammar and its First sets.

20 Chapter 4. Grammars and Parsing

function FOLLOW(A) : Set
foreach A € NONTERMINALS() do
VisitedFollow(A) «+ false 16
ans < INTERNALFOLLOW(A)
return (ans)

end
function INTERNALFOLLOW(A) : Set
ans <)
if not VisitedFolow(A) 17
then
VisitedFollow(A) < true 18
foreach 2 € OCCURRENCES(A) do 19
ans < ans U FIRST(TAIL(a)) 20
if ALLDERIVEEMPTY (TAIL(a)) 21
then
targ < LHS(PRODUCTION(a))
ans < ans U INTERNALFOLLOW/(targ) 22
return (ans) 23
end

function ALLDERIVEEMPTY (7) : Boolean
foreach X € v do
if not SymbolDerivesEmpty(X) or X € &
then return (false)
return (true)
end

Figure 4.11: Algorithm for computing Follow(A).

cept the goal symbol must be followed by some terminal. Formally, for A € N,
Follow(A) = {be X |S=T oAb A}.

Follow(A) provides the right context associated with nonterminal A. For example,
only those terminals in Follow(A) can occur after a production for A is applied.

The algorithm shown in Figure 4.11 computes Follow(A). Many aspects of
this algorithm are similar to the First(«) algorithm given in Figure 4.8.

e Follow(A) is computed by invoking FOLLOW(A).

o Before any sets are computed, Step 16 resets VisitedFollow(A) for each
nonterminal A.

o VisitedFollow(A) is set at Step 18 to indicate that the symbols following A
are already participating in this computation.

4.5. Grammar Analysis Algorithms 21

Level Rule Step Result Comment

COMPUTEFOLLOW/(Prefix)

0 FoLLow/(Prefix)
0 E— Prefix(E) Step20 {(}

COMPUTEFOLLOW/(E)
0 FoLLow(E)
0 E—Prefix(E) Step20 {)}
0 Tal>+E Sep22 {]
1 FOLLOW(Tail)
1 E— v Tail Step22 { }
2 FOLLOW(E)

Step 17 {} Recursion avoided
1 Step 23 {} Returns
0 Step23 {)} Returns
COMPUTEFOLLOW/(Tail)
0 FoLLow/(Tail)
0 E— v Tail Step 22 {1
1 FOLLOW(E)
1 E—Prefix(E) Step20 {)}
1 Tail >+ E Step22 { }
2 FOLLOW(Tail)
Step 17 {} Recursion avoided

1 Step23 {)} Returns
0 Step23 {)} Returns

Figure 4.12: Follow sets for the nonterminals of Figure 4.1.

The primary computation is performed by INTERNALFOLLOW(A). Each occur-
rence a of A is visited by the loop at Step 19. TAIL(a) is the list of symbols
immediately following the occurrence of A.

¢ Any symbol in First(TAIL(a)) can follow A. Step 20 includes such symbols
in the returned set.

o Step 21 detects if the symbols in TAIL(a) can derive A. This situation arises
when there are no symbols appearing after this occurrence of A or when
the symbols appearing after A can each derive A. In either case, Step 22
includes the Follow set of the current production's LHS.

Figure 4.12 shows the progress of COMPUTEFOLLOW as it is invoked on the non-
terminals of Figure 4.1. As another example, Figure 4.13 shows the computa-
tion of Follow sets for the grammar in Figure 4.10.

22 Chapter 4. Grammars and Parsing

Level Rule Step Result Comment

COMPUTEFOLLOW/(B)

0 ForLLow(B)

0 S—ABc Step20 {c}

0 Step23 {c} Returns
COMPUTEFOLLOW(A)

0 FoLLow(A)

0 S— ABc Step20 {bc}

0 Step23 {bc} Returns
COMPUTEFOLLOW(S)

0 FoLLOW(S)

0 Step23 { } Returns

Figure 4.13: Follow sets for the grammar in Figure 4.10. Note that Follow(S) = { }
because S does not appear on the RHS of any production.

First and Follow sets can be generalized to include strings of length k rather
than length 1. First,(a) is the set of k-symbol terminal prefixes derivable from
«. Similarly, Followy(A) is the set of k-symbol terminal strings that can follow A
in some sentential form. First;, and Follow, are used in the definition of parsing
techniques that use k-symbol lookaheads (for example, LL(k) and LR(k)). The
algorithms that compute First;(«) and Follow;(A) can be generalized to compute
First, (o) and Followg (A) sets (see Exercise 24).

This ends our discussion of CFGs and grammar-analysis algorithms. The First
and Follow sets introduced in this chapter play an important role in the automatic
construction of LL and LR parsers, as discussed in Chapters Chapter:global:five
and Chapter:global:six, respectively.

4.5. Grammar Analysis Algorithms 23

Exercises

1. Transform the following grammar into a standard CFG using the algorithm
in Figure 4.4.

1 S — Number

2 Number — [Sign]|[Digs period | Digs
3 Sign — plus

4 | minus

5 Digs — digit { digit }

2. Design a language and context-free grammar to represent the following
languages.
(a) The set of strings of base-8 numbers.
(b) The set of strings of base-16 numbers.
(c) The set of strings of base-1 numbers.
(d)

d) A language that offers base-8, base-16, and base-1 numbers.
3. Describe the language denoted by each of the following grammars.
) ({A,B,C} {ab,c},0,A)

b) ({A,B,C}, {a,b,c},{A—>BC}A)

c) {AB,C},{a,b,c},{A>Aa,A>Db} A)

d) {AB,C},{a,b,c},{A—>BB,B—a,B—b,B—c}A)

(a
(
(
(

4. What are the difficulties associated with constructing a grammar whose
generated strings are decimal representations of irrational numbers?

5. A grammar for infix expressions follows.

1 Start — ES$

2 E — TplusE
3 | T

4 T — TtimesF
5 | F

6 F — (E)

7 | num

(a) Show the leftmost derivation of the following string.
num plus num times num plus num $

(b) Show the rightmost derivation of the following string.
num times num plus num times num $

c) Describe how this grammar structures expressions, in terms of the
g p 5
precedence and left- or right- associativity of operators.

24

Chapter 4. Grammars and Parsing

6. Consider the following two grammars.

(a)

[\SRIEE

1
2
3

Start
E

Start

- E$

— (EplusE
| num

- E$

— E(plusE
| num

Which of these grammars, if any, is ambiguous? Prove your answer by
showing two distinct derivations of some input string for the ambiguous

grammar(s).

7. Compute First and Follow sets for the nonterminals of the following gram-

mar.

AN b W~

aSe
| B

bBe
| C

cCe
| d

8. Compute First and Follow sets for each nonterminal in ac grammar from
Chapter Chapter:global:two, reprised as follows.

NN L b W~

10
11
12
13
14

Prog
Dels

Dcl

Stmts

Stmt

ExprTail

Val

%
%

Dcls Stmts $

Dcl Dcls

A

floatdcl id

intdcl id

Stmt Stmts

A

id assign Val ExprTail
print id

plus Val ExprTail
minus Val ExprTail
A

id

num

9. Compute First and Follow sets for each nonterminal in Exercise 1.

4.5. Grammar Analysis Algorithms 25

10.

11.

12.

13.

14.

15.

16.

As discussed in Section 4.3, the algorithm in Figure 4.4 could use left-
or right-recursion to transform a repeated sequence of symbols into stan-
dard grammar form. A production of the form A—A « is said to be left
recursive. Similarly, a production of the form A— 3 A is said to be right
recursive. Show that any grammar that contains left- and right-recursive
rules for the same LHS nonterminal must be ambiguous.

Section 4.3 describes extended BNF notation for optional and repeated
symbol sequences. Suppose the # grammar symbols X ... X, represent a
set of 7 options. What is the effect of the following grammar with regard
to how the options can appear?

Options — Options Option
| A

Option — 1
| A2

| X
Consider 7 optional symbols XyX, as described in Exercise 11.
(a) Devise a CFG that generates any subset of these options. That is, the

symbols can occur in any order, any symbol can be missing, and no
symbol is repeated.

(b) What is the relation between the size of your grammar and #, the
number of options?

(c) How is your solution affected if symbols A; and A; are present only if
1< g?
Show that regular grammars and finite automata have equivalent defini-
tional power by developing
(a) an algorithm that translates regular grammars into finite automata
and
(b) an algorithm that translates finite automata into regular grammars.

Devise an algorithm to detect nonterminals that cannot be reached from a
CFG's goal symbol.

Devise an algorithm to detect nonterminals that cannot derive any terminal
string in a CFG.

A CFG is reduced by removing useless terminals and productions. Con-
sider the following two tasks.

(a) Nonterminals not reachable from the grammar's goal symbol are re-
moved.

(b) Nonterminals that derive no terminal string are removed.

26

17.

18.
19.

20.

21.

22.

23.

24.

Chapter 4. Grammars and Parsing

Does the order of the above tasks matter? If so, which order is preferred?

The algorithm presented in Figure 4.8 retains no information between in-
vocations of FIRST. As a result, the solution for a given nonterminal might
be computed multiple times.

(a) Modify the algorithm so it remembers and references valid previous
computations of First(A),Ae N

(b) Frequently an algorithm needs First sets computed for all X € N.
Devise an algorithm that efficiently computes First sets for all nonter-
minals in a grammar. Analyze the efficiency of your algorithm.

Hint: Consider constructing a directed graph whose vertices represent
nonterminals. Let an edge (A, B) represent that First(B) depends on
First(A).

(c) Repeat this exercise for the Follow sets.
Prove that COMPUTEFIRST(A) correctly computes First(A) for any A € N.

Prove that COMPUTEFOLLOW(A) correctly computes Follow(A) for any A €
N.

Let G be any CFG and assume A & L(G). Show that G can be transformed
into a language-equivalent CFG that uses no A-productions.

A unit production is a rule of the form A—B. Show that any CFG that
contains unit productions can be transformed into a language-equivalent
CFG that uses no unit productions.

Some CFGs denote a language with an infinite number of strings; others
denote finite languages. Devise an algorithm that determines whether a
given CFG generates an infinite language.

Hint: Use the results of Exercises 20 and 21 to simplify the analysis.
Let G be an unambiguous CFG without A-productions.
(a) If x € L(G), show that the number of steps needed to derive x is linear
in the length of x.
(b) Does this linearity result hold if A-productions are included?

(c) Does this linearity result hold if G is ambiguous?
The algorithms in Figures 4.8 and 4.11 compute First(«) and Follow(A).

(a) Modify the algorithm in Figure 4.8 to compute First, (o).

Hint: Consider formulating the algorithm so that when First;(«) is
computed, enough information is retained to compute First;11().

(b) Modify the algorithm in Figure 4.11 to compute Follow,(A).

Bibliography

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[Mar91] John C. Martin. Introduction to Langauges and the Theory of Com-
putation. McGraw-Hill, 1991.

27

5

LL Grammars and Parsers

Chapter Chapter:global:two presents a recursive-descent parser for the syntax-
analysis phase of a small compiler. Manual construction of such parsers is both
time consuming and error prone—especially when applied at the scale of a real
programming language. At first glance, the code for a recursive-descent parser
may appear to be written ad hoc. Fortunately, there are principles at work. This
chapter discusses these principles and their application in tools that automate the
parsing phase of a compiler.

Recursive-descent parsers belong to the more general class of LL parsers, which
were introduced in Chapter Chapter:global:four. In this chapter, we discuss LL
parsers in greater detail, analyzing the conditions under which such parsers can be
reliably and automatically constructed from context-free grammars (CFGs). Our
analysis builds on the algorithms and grammar-processing concepts presented in
Chapter Chapter:global:four. Because of their simplicity, performance, and excel-
lent error diagnostics, recursive-descent parsers have been constructed for most
modern programming languages.

In Section 5.2, we identify a subset of CFGs known as the LL(k) grammars.
In Sections 5.3 and 5.4, we show how to construct recursive-descent and table-
driven LL parsers from LL(1) grammars—an efficient subset of the LL(k) grammars.
For grammars that are not LL(1), Section 5.5 considers grammar transformations
that can eliminate non-LL(1) properties. Unfortunately, some languages have no
LL(k) grammar, as discussed in Section 5.6. Section 5.7 establishes some useful
properties of LL grammars and parsers. Parse-table representations are considered
in Section 5.8. Because parsers are typically responsible for discovering syntax
errors in programs, Section 5.9 considers how an LL(k) parser might respond to
syntactically faulty inputs.

2 Chapter 5. LL Grammars and Parsers

5.1 Overview

In this chapter, we study the following two forms of LL parsers.

o recursive-descent parsers contain a set of mutually recursive procedures that
cooperate to parse a string. The appropriate code for these procedures is
determined by the particular LL(k) grammar.

o table-driven LL parsers use a generic LL(k) parsing engine and a parse table
that directs the activity of the engine. The entries for the parse table are
determined by the particular LL(k) grammar.

Fortunately, CFGs with certain properties can be used to generate such parsers
automatically. Tools that operate in this fashion are generally called compiler-
compilers or parser generators. They take a grammar description file as input and
attempt to produce a parser for the language defined by the grammar. The term
“compiler-compiler” applies because the parser generator is itself a compiler—it
accepts a high-level expression of a program (the grammar definition file) and gen-
erates an executable form of that program (the parser). This approach makes
parsing one of the easiest and most reliable phases of compiler construction for the
following reasons.

e When the grammar serves as a language's definition, parsers can be automat-
ically constructed to perform syntax analysis in a compiler. The rigor of the
automatic construction guarantees that the resulting parser is faithful to the
language's syntactic specification.

e When a language is revised, updated, or extended, the associated modifica-
tions can be applied to the grammar description to generate a parser for the
new language.

e When parser construction is successful through the techniques described in
this chapter, the grammar is proved unambiguous. While devising an algo-
rithmic test for grammar ambiguity is impossible, parsing techniques such as
LL(k) are of great use to language designers in developing intuition as to why
a grammar might be ambiguous.

As discussed in Chapters Chapter:global:two and Chapter:global:four, every string
in a grammar's language can be generated by a derivation that begins with the
grammar's start symbol. While it is relatively straightforward to use a grammar's
productions to generate sample strings in its language, reversing this process does
not seem as simple. That is, given an input string, how can we show why the string
is or is not in the grammar's language? This is the parsing problem, and in this
chapter, we consider a parsing technique that is successful with many CFGs. This
parsing technique is known by the following names:

¢ Top-down, because the parser begins with the grammar's start symbol and
grows a parse tree from its root to its leaves

5.2. LL(k) Grammars 3

o Predictive, because the parser must predict at each step in the derivation
which grammar rule is to be applied next

o LL(k), because these techniques scan the input from left-to-right, produce a
leftmost derivation, and use k& symbols of lookahead

¢ Recursive-descent, because this kind of parser can be implemented by a col-
lection of mutually recursive procedures

5.2 LL(k) Grammars

Following is a reprise from Chapter Chapter:global:two of the process for con-
structing a recursive-descent parser from a CFG.

A parsing procedure is associated with each nonterminal A.

¢ The procedure associated with A is charged with accomplishing one step of a
derivation by choosing and applying one of A's productions.

o The parser chooses the appropriate production for A by inspecting the next k
tokens (terminal symbols) in the input stream. The Predict set for production
A— « is the set of tokens that trigger application of that production.

o The Predict set for A— « is determined primarily by the detail in a—the right-
hand side (RHS) of the production. Other CFG productions may participate
in the computation of a production's Predict set.

Generally, the choice of production can be predicated on the next k tokens of input,
for some constant k chosen before the parser is pressed into service. These k tokens
are called the lookahead of an LL(k) parser. If it is possible to construct an LL(k)
parser for a CFG such that the parser recognizes the CFG's language, then the CFG
is an LL(k) grammar.

An LL(k) parser can peek at the next k tokens to decide which production to
apply. However, the strategy for choosing productions must be established when
the parser is constructed. In this section, we formalize this strategy by defining a
function called Predict,(p). This function considers the grammar production p and
computes the set of length-k token strings that predict the application of rule p.
We assume henceforth that we have one token of lookahead (k = 1). We leave
the generalization as Exercise 18. Thus, for rule p, Predict(p) is the set of terminal
symbols that call for applying rule p.

Consider a parser that is presented with the input string ca@ € ¥*. Suppose
the parser has constructed the derivation S=7_ a AYj...)Y,. At this point, « has
been matched and A is the leftmost nonterminal in the derived sentential form.
Thus some production for A must be applied to continue the leftmost derivation.
Because the input string contains an a as the next input token, the parse must
continue with a production for A that derives a as its first terminal symbol.

4 Chapter 5. LL Grammars and Parsers

function Predict(p : A= X7 ... X,,) : Set

ans + First(A7...4,,) 1
if RuleDerivesEmpty(p) 2
then
ans < ans U Follow(A) 3
return (ans)
end

Figure 5.1: Computation of Predict sets.

Recalling the notation from Section Subsection:four:gramrep, we must exam-
ine the set of productions

P = {p € PRODUCTIONSFOR(A) | a € Predict(p) }.
One of the following conditions must be true of the set P.

o P is the empty set. In this case, no production for A can cause the next input
token to be matched. The parse cannot continue and a syntax error is issued,
with a as the offending token. The productions for A can be helpful in issuing
error messages that indicate which terminal symbols could be processed at
this point in the parse. Section 5.9 considers error recovery and repair in
greater detail.

e P contains more than one production. In this case, the parse could continue,
but nondeterminism would be required to pursue the independent applica-
tion of each production in P. For efficiency, we require that our parsers op-
erate deterministically. Thus parser construction must ensure that this case
cannot arise.

¢ P contains exactly one production. In this case, the leftmost parse can pro-
ceed deterministically by applying the only production in set P.

Fortunately, Predict sets are based on a grammar and not on any particular input
string. We can analyze a grammar to determine whether each terminal predicts (at
most) one of A's rules. In such cases, we can construct a deterministic parser and
we call the associated grammar LL(1).

We next consider a rule p in greater detail and show how to compute Predict(p).
Consider a production p : A= Xy ... &,,,m > 0.1 As shown in Figure 5.1, the set
of symbols that predict rule p is drawn from one or both of the following:

o The set of possible terminal symbols that are first produced in some deriva-
tion from ;... 4,

o Those terminal symbols that can follow A in some sentential form

1Recall that by convention, if 72 = 0, then we have the rule A— X.

5.2. LL(k) Grammars 5

1 S — ACS
2 C — ¢

3 | A
4 A —- aBCd
5 | BQ
6 B — bB
7 | A
§ 0 — q

9 | A

Figure 5.2: A CFG.

In the algorithm of Figure 5.1, Step 1 initializes the result to First(.X; ...,)—the
set of terminal symbols that can appear leftmost in any derivation of Xy ... X,,.
The algorithm for computing this set is given in Figure Figure:four:computefirst.
Step 2 detects when Xy ... X, =* A, using the results of the algorithm presented
in Figure Figure:four:derivelambda. RuleDerivesEmpty(p) is true if, and only if, pro-
duction p can derive A. In this case, Step 3 includes those symbols in Follow(A),
as computed by the algorithm in Figure Figure:four:computefollow. Such symbols
can follow A after A=* \. Thus, the function shown in Figure 5.1 computes the
set of length-1 token strings that predict rule p. By convention, X is 7ot a terminal
symbol, so it does not participate in any Predict set.

In an LL(1) grammar, the productions for each A must have disjoint predict sets,
as computed with one symbol of lookahead. Experience indicates that creating an
LL(1) grammar is possible for most programming languages. However, not all
CFGs are LL(1). For such grammars, the following may apply.

e More lookahead may be needed, in which case the grammar is LL(k) for some
constant k > 1.

¢ A more powerful parsing method may be required. Chapter Chapter:global:six
describes such methods.

o The grammar may be ambiguous. Such grammars cannot be accommodated
by any deterministic parsing method.

We now apply the algorithm in Figure 5.1 to the grammar shown in Figure 5.2. Fig-
ure 5.3 shows the Predict calculation; for each production of the form A— Xy ... X,
First(Xy ... X,,) is shown. The next column indicates whether X ... X, =* A. The
rightmost column shows Predict(A— .y . .. X,)—the set of symbols that predict the
production A— Xy ... X,,. This set includes First(.Xy ... X,), as well as Follow(A) if
Xi... X, =%\

The algorithm shown in Figure 5.4 determines whether a grammar is LL(1),
based on the grammar's Predict sets. The Predict sets for each nonterminal A are
checked for intersection. If no two rules for A have any symbols in common, then

6 Chapter 5. LL Grammars and Parsers

Rule A X;...A&, First(X;...X,,) Derives Follow(A) Answer

Number Empty?

1 S ACS$ abg.c$ No abg.c$
2 C c c No c

3 A Yes d$ d$

4 A aBCd a No a

5 BQ b.q Yes c.$ ba.c.$
6 B bB b No b

7 A Yes q.c,d,$ q.c,d.$
8 Q q q No q

9 A Yes c.$ c$

Figure 5.3: Predict calculation for the grammar of Figure 5.2.
function ISLL1(G) : Boolean
foreach A € N do
PredictSet <+ ()
foreach p € ProductionsFor(A) do
if Predict(p) N PredictSet #) 4
then return (false)
PredictSet «+ PredictSet U Predict(p)
return (true)
end

Figure 5.4: Algorithm to determine if a grammar G is LL(1).

the grammar is LL(1). The grammar of Figure 5.2 passes this test, and is therefore
LL(1).

5.3 Recursive-Descent LL(1) parsers

We are now prepared to generate the procedures of a recursive-descent parser. The
parser's input is a sequence of tokens provided by the stream ts. We assume that s
offers the following methods.

e PEEK, which examines the next input token without advancing the input.
e ADVANCE, which advances the input by one token

The parsers we construct rely on the MATCH method shown in Figure 5.5. This
method checks the token stream s for the presence of a particular token.

To construct a recursive-descent parser for an LL(1) grammar, we write a sepa-
rate procedure for each nonterminal A. If A has rules p1, P2, . . ., pu, we formulate
the procedure shown in Figure 5.6. The code constructed for each p; is obtained

5.3. Recursive-Descent LL(1) parsers

procedure MATCH(ts, token)
if ts.PEEK() = token
then call #s.ADVANCE()

else call ERROR(Expected token)
end

Figure 5.5: Utility for matching tokens in an input stream.

procedure A(#s)
switch ()
case £s.PEEK() € Predict(p1)
[% Code for pq
case £s.PEEK() € Predict(p;)
[% Code for p»
/%
%
%
case £s.PEEK() € Predict(p,)
[% Code for p,,
case default
% Syntax error
end

Figure 5.6: A typical recursive-descent procedure.

by scanning the RHS of rule p; (X7 ...,,) from left to right. As each symbol is
visited, code is inserted into the parsing procedure. For productions of the form
A— X, m = 0 so there are no symbols to visit; in such cases, the parsing procedure

simply returns immediately.

In considering X, there are two possible cases, as follows.

1. A is a terminal symbol. In this case, a call to MATCH(s, X;) is placed in the
parser to insist that A} is the next symbol in the token stream. If the token
is successfully matched, the token stream is advanced. Otherwise, the input
string cannot be in the grammar's language and an error message is issued.

2. X; is a nonterminal symbol. In this case, there is a procedure responsible for
continuing the parse by choosing an appropriate production for ;. Thus, a

call to X;(#s) is placed in the parser.

Figure 5.7 shows the parsing procedures created for the LL(1) grammar shown
in Figure 5.2. For presentation purposes, the default case—representing a syntax

error—is not shown in the parsing procedures of Figure 5.7.

*/
*/
*/
*/
*/

*/

*

8 Chapter 5. LL Grammars and Parsers

procedure S(zs)
switch ()
case ts.PEEK() € {a, b,q, ¢, $ }
call A()
call C()
call MATCH(zs, $)
end
procedure C(zs)
switch ()
case £s.PEEK() € {c}
call MATCH(ts, c)
case ts.PEEK() € {d, $ }
return ()
end
procedure A(zs)
switch ()
case #s.PEEK() € {a }
call MATCH(#s,a)
call B()
call C()
call MATCH(s, d)
case ts.PEEK() € {b,q, ¢, $}
call B()
call Q()

end
procedure B(zs)
switch ()
case #s.PEEK() € {b}
call MATCH(2s,b)
call B()
case ts.PEEK() € {q,¢c,d, $}

return ()
end
procedure Q(zs)

switch ()
case #s.PEEK() € {q}
call MATCH(s, q)
case ts.PEEK() € {c, $ }

return ()
end

Figure 5.7: Recursive-Descent Code.

5.4. Table-Driven LL(1) Parsers 9

5.4 Table-Driven LL(1) Parsers

The task of creating recursive-descent parsers as presented in Section 5.3 is me-
chanical and can therefore be automated. However, the size of the parser's code
grows with the size of the grammar. Moreover, the overhead of method calls and
returns can be a source of inefficiency. In this section we examine how to con-
struct a table-driven LL(1) parser. Actually, the parser itself is standard across all
grammars; we need only to provide an adequate parse table.

To make the transition from explicit code to table-driven processing, we use a
stack to simulate the actions performed by MATCH and by the calls to the nonter-
minals' procedures. In addition to the methods typically provided by a stack, we
assume that the top-of-stack contents can be obtained nondestructively (without
popping the stack) via the method TOS().

In code form, the generic LL(1) parser is given in Figure 5.8. At each iteration
of the loop at Step 5, the parser performs one of the following actions.

o If the top-of-stack is a terminal symbol, then MATCH is called. This method,
defined in Figure 5.5, ensures that the next token of the input stream matches
the top-of-stack symbol. If successful, the call to MATCH advances the token
input stream. For the table-driven parser, the matching top-of-stack symbol
is popped at Step 9.

o If the top-of-stack is a nonterminal symbol, then the appropriate production
is determined at Step 10. If a valid production is found, then APPLY is called
to replace the top-of-stack symbol with the RHS of production p. These
symbols are pushed such that the resulting top-of-stack is the first symbol on
p's RHS.

The parse is complete when the end-of-input symbol is matched at Step 8.

Given a CFG that has passed the ISLL1 test in Figure 5.4, we next examine
how to build its LL(1) parse table. The rows and columns of the parse table are
labeled by the nonterminals and terminals of the CFG, respectively. The table—
consulted at Step 10 in Figure 5.8—is indexed by the top-of-stack symbol (TOS())
and by the next input token (#s.PEEK()).

Each nonblank entry in a row is a production that has the row's nonterminal
as its left-hand side (LHS) symbol. A production is typically represented by its rule
number in the grammar. The table is used as follows.

1. The nonterminal symbol at the top-of-stack determines which row is chosen.

2. The next input token (i.e., the lookahead) determines which column is cho-
sen.

The resulting entry indicates which, if any, production of the CFG should be ap-
plied at this point in the parse.

For practical purposes, the nonterminals and terminals should be mapped to
small integers to facilitate table lookup by (two-dimensional) array indexing. The

Chapter 5. LL Grammars and Parsers

procedure LLPARSER(¢s)
call PUSH(S)
accepted « false
while not accepted do
if TOS()e X
then
call MATCH(ts, TOS())
if TOS()=2%8
then accepted + true
call rop()
else
p < LLtable[TOS(), ts.PEEK()]
ifp=0
then call ERROR(Syntax error—no production applicable)
else call APPLY(p)
end
procedure APPLY (p : A= X7 ... Ay)
call rop()
for i = m downto 1 do
call PUSH(;)
end

Figure 5.8: Generic LL(1) parser.

procedure FILLTABLE(LLtable)
foreach A € N do
foreach a € ¥ do LLtable[A][a] + 0
foreach A € N do
foreach p € ProductionsFor(A) do
foreach a € Predict(p) do LLtable[A][a] < p
end

Figure 5.9: Construction of an LL(1) parse table.

10

5.5. Obtaining LL(1) Grammars 11

Lookahead
Nonterminal |a b ¢ d q $
S 1 1 1 1 1
C 2 3 3
A 4 5 5 S S
B 6 7 7 7 7
Q 9 8 9

Figure 5.10: LL(1) table. Error entries are not shown.

procedure for constructing the parse table is shown in Figure 5.9. Upon the proce-
dure's completion, any entry marked O will represent a terminal symbol that does
not predict any production for the associated nonterminal. Thus, if a 0 entry is
accessed during parsing, the input string contains an error.

Using the grammar shown in Figure 5.2 and its associated Predict sets shown
in Figure 5.3, we construct the LL(1) parse table shown in Figure 5.10. The table's
contents are the rule numbers for productions as shown in Figure 5.2, with blanks
rather than zeros to represent errors.

Finally, using the parse table shown in Figure 5.10, we trace the behavior of
an LL(1) parser on the input string ab b d ¢ $ in Figure 5.11.

5.5 Obtaining LL(1) Grammars

It can be difficult for inexperienced compiler writers to create LL(1) grammars. This
is because LL(1) requires a unique prediction for each combination of nonterminal
and lookahead symbol. It is easy to write productions that violate this requirement.

Fortunately, most LL(1) prediction conflicts can be grouped into two categories:
common prefixes and left-recursion. Simple grammar transformations that elim-
inate common prefixes and left-recursion are known, and these transformations
allow us to obtain LL(1) form for most CFGs.

5.5.1 Common Prefixes

In this category of conflicts, two productions for the same nonterminal share a
common prefix if the productions' RHSs begin with the same string of grammar
symbols. For the grammar shown in Figure 5.12, both Stmt productions are pre-
dicted by the if token. Even if we allow greater lookahead, the else that distin-
guishes the two productions can lie arbitrarily far ahead in the input, because Expr
and Stmtlist can each generate a terminal string larger than any constant k. The
grammar in Figure 5.12 is therefore not LL(k) for any k.

Prediction conflicts caused by common prefixes can be remedied by the simple
factoring transformation shown in Figure 5.13. At Step 11 in this algorithm, a

12 Chapter 5. LL Grammars and Parsers

Parse Action Remaining
Stack Input
S abbdc$
Apply 1: S—AC$
$CA abbdc$
Apply 4: A—aBCd
$CdCBa abbdc$
Match
$CdCB bbdc$
Apply 6: B—bB
$CdCBb bbdc$
Match
$CdCB bdc$
Apply 6: B—bB
$CdCBb bdc$
Match
$CdCB dc$
Apply 7: B—= A
$CdC dc$
Apply 3: C— A
$Cd dc$
Match
$C c$
Apply 2: C—c
$c c$
Match
$ $
Accept

Figure 5.11: Trace of an LL(1) parse. The stack is shown in the left column, with top-of-
stack as the rightmost character. The input string is shown in the right column, processed
from left-to-right.

1 Stmt — if Expr then Stmtlist endif

2 | if Expr then Stmtlist else Stmtlist endif
3 Stmtlist — Stmtlist ; Stmt

4 | Stmt

S Expr — var + Expr

6 | var

Figure 5.12: A grammar with common prefixes.

5.5. Obtaining LL(1) Grammars 13

procedure FACTOR()
foreach A € N do
« + LongestCommonPrefix(ProductionsFor(A))
while || > 0 do
V + NewNonTerminal()
Productions «+ Productions U{A—aV }
foreach p € ProductionsFor(A) | RHS(p) = a3, do n
Productions «+ Productions — {p }
Productions <+ Productions U{V—f, }
« + LongestCommonPrefix(ProductionsFor(A))
end

Figure 5.13: Factoring common prefixes.

1 Stmt — if Expr then StmtList V4
2 Vi — endif

3 | else StmtList endif

4 Stmtlist — Stmtlist ; Stmt

5 | Stmt

6 Expr — var Vb

7 Vs — + Expr

8 | A

Figure 5.14: Factored version of the grammar in Figure 5.12.

production is identified whose RHS shares a common prefix « with other produc-
tions; the remainder of the RHS is denoted £, for production p. With the common
prefix factored and placed into a new production for A, each production sharing
« is stripped of this common prefix. Applying the algorithm in Figure 5.13 to the
grammar in Figure 5.12 produces the grammar in Figure 5.14.

5.5.2 Left-Recursion

A production is left-recursive if its LHS symbol is also the first symbol of its RHS.
In Figure 5.14, the production StmtList— StmtList ; Stmt is left-recursive. We extend
this definition to nonterminals, so a nonterminal is left-recursive if it is the LHS
symbol of a left-recursive production.

Grammars with left-recursive productions can never be LL(1). To see this, as-
sume that some lookahead symbol t predicts the application of the left-recursive
production A— A3. With recursive-descent parsing, the application of this produc-
tion will cause procedure A to be invoked repeatedly, without advancing the input.
With the state of the parse unchanged, this behavior will continue indefinitely. Sim-
ilarly, with table-driven parsing, application of this production will repeatedly push

14 Chapter 5. LL Grammars and Parsers

procedure ELIMINATELEFTRECURSION()
foreach A € N do
if 3 7 € ProductionsFor(A) | RHS(r) = Aa
then
X + NewNonTerminal()
Y + NewNonTerminal()
foreach p € ProductionsFor(A) do
ifp=r
then Productions «+ Productions U {A—X Y}
else Productions < Productions U { X—RHS(p) }
Productions «+ Productions U{Y—aY, Y—=A}
end

Figure 5.15: Eliminating left-recursion.

AS on the stack without advancing the input.

The algorithm shown in Figure 5.15 removes left-recursion from a factored
grammar. Consider the following left-recursive rules.

Each time Rule 1 is applied, an « is generated. The recursion ends when Rule 2
prepends a 3 to the string of a symbols. Using the regular-expression notation
developed in Chapter Chapter:global:three, the grammar generates So*. The al-
gorithm in Figure 5.15 obtains a grammar that also generates So*. However, the
3 is generated first. The o symbols are then generated via right-recursion. Apply-
ing this algorithm to the grammar in Figure 5.14 results in the grammar shown in
Figure 5.16. Since X appears as the LHS of only one production, X's unique RHS
can be automatically substituted for all uses of X. This allows Rules 4 and 5 to be
replaced with StmtList— Stmt Y.

The algorithms presented in Figures 5.13 and 5.15 typically succeed in ob-
taining an LL(1) grammar. However, some grammars require greater thought to
obtain an LL(1) version; some of these are included as exercises at the end of this
chapter. All grammars that include the $ (end-of-input) symbol can be rewritten
into a form in which all right-hand sides begin with a terminal symbol; this form
is called Greibach Normal Form (GNF) (see Exercise 19). Once a grammar is in
GNF, factoring of common prefixes is easy. Surprisingly, even this transforma-
tion does not guarantee that a grammar will be LL(1) (see Exercise 20). In fact,
as we discuss in the next section, language constructs do exist that have no LL(1)
grammar. Fortunately, such constructs are rare in practice and can be handled by
modest extensions to the LL(1) parsing technique.

5.6. A Non-LL(1) Language 15

1 Stmt — if Expr then StmtList V4
2 Vi — endif

3 | else StmtList endif

4 Stmtlist — XY

S5 X — Stmt

6 Y — ;StmtY

7 | A

8 Expr — var Vp

9V, — + Expr

10 | A

Figure 5.16: LL(1) version of the grammar in Figure 5.14.

S — Stmt $

Stmt — if expr then Stmt else Stmt
| if expr then Stmt
| other

AN WM~

Figure 5.17: Grammar for if-then-else.

5.6 A Non-LL(1) Language

Almost all common programming language constructs can be specified by LL(1)
grammars. One notable exception, however, is the if-then-else construct present in
programming languages such as Pascal and C. The if-then-else language defined in
Figure 5.16 has a token that closes an if—the endif. For languages that lack this
delimiter, the if-then-else construct is subject to the so-called dangling else problem:
A sequence of nested conditionals can contain more thens than elses, which leaves
open the correspondence of thens to elses. Programming languages resolve this
issue by mandating that each else is matched to its closest, otherwise unmatched
then.

We next show that no LL(k) parser can handle languages that embed the if-then-
else construct shown in Figure 5.17. This grammar has common prefixes that can
be removed by the algorithm in Figure 5.13, but this grammar has a more serious
problem. As demonstrated by Exercises 12 and 15, the grammar in Figure 5.17
is ambiguous and is therefore not suitable for LL(k) parsing. An ambiguous gram-
mar can produce (at least) two distinct parses for some string in the grammar's
language. Ambiguity is considered in greater detail in Chapter Chapter:global:six.

We do not intend to use the grammar of Figure 5.17 for LL(k) parsing. Instead,
we study the language of this grammar to show that no LL(k) grammar exists for
this language. In studies of this kind, it is convenient to elide unnecessary detail
to expose a language's problematic aspects. In the language defined by the gram-
mar of Figure 5.17, we can, in effect, regard the “if expr then Stmt” portion as an

16 Chapter 5. LL Grammars and Parsers

1S = [sc 1S 5 [s
2 | A 2 | T
3L -] 3T = [T]
4 | A 4 | A

(a) (b)
Figure 5.18: Attempts to create an LL(1) grammar for DBL.

opening bracket and the “else Stmt” part as an optional closing bracket. Thus, the
language of Figure 5.17 is structurally equivalent to the dangling bracket language,
or DBL, defined by

DBL={[J]i>j>0}

We next show that DBL is not LL(k) for any k.

We can gain some insight into the problem by considering some grammars
for DBL. Our first attempt is the grammar shown in Figure 5.18(a), in which CL
generates an optional closing bracket. Superficially, the grammar appears to
be LL(1), because it is free of left-recursion and common prefixes. However, the
ambiguity present in the grammar of Figure 5.17 is retained this grammar. Any
sentential form containing CL CL can generate the terminal] two ways, depending
on which CL generates the] and which generates A. Thus, the string [[] has two
distinct parses.

To resolve the ambiguity, we create a grammar that follows the Pascal and
C rules: Each] is matched with the nearest unmatched [. This approach results
in the grammar shown in Figure 5.18(b). This grammar generates zero or more
unmatched opening brackets followed by zero or more pairs of matching brackets.
In fact, this grammar is parsable using most bottom-up techniques (such as SLR(1),
which is discussed in Chapter Chapter:global:six). While this grammar is factored
and is not left-recursive, it is not LL(1) according to the definitions given previously.
The following analysis explains why this grammar is not LL(k) for any k.

[
[
[l
[l

Predict(S—[S)
Predict(S—T)
Predicty(S—[S)
Predict,(S—T)

Mm M M M

[* ¢ Predicty(S—[S)
€ Predicty(S—T)

In particular, seeing only open brackets, LL parsers cannot decide whether to predict
a matched or an unmatched open bracket. This is where bottom-up parsers have an

5.7. Properties of LL(1) Parsers 17

1 S — Stmt $
2 Stmt — if expr then Stmt V
3 | other
4 VvV — else Stmt
S | A
Lookahead
Nonterminal | if expr then else other $
S 1 1
Stmt 2 3
V 4,5 S

Figure 5.19: Ambiguous grammar for if-then-else and its LL(1) table. The ambiguity is
resolved by favoring Rule 4 over Rule 5 in the boxed entry.

advantage: They can delay applying a production until an entire RHS is matched.
Top-down methods cannot delay—they must predict a production based on the
first (or first k) symbols derivable from a RHS. To parse languages containing if-
then-else constructs, the ability to postpone segments of the parse is crucial.

Our analysis thus concludes that LL(1) parser generators cannot automatically
create LL(1) parsers from a grammar that embeds the if-then-else construct. This
shortcoming is commonly handled by providing an ambiguous grammar along
with some special-case rules for resolving any nonunique predictions that arise.

Factoring the grammar in Figure 5.17 yields the ambiguous grammar and (cor-
respondingly nondeterministic) parse table shown in Figure 5.19. As expected, the
else symbol predicts multiple productions—Rules 4 and 5. Since the else should
match the closest then, we resolve the conflict in favor of Rule 4. Favoring Rule 5
would defer consumption of the else. Moreover, the parse table entry for nonter-
minal V and terminal else is Rule 4's only legitimate chance to appear in the parse
table. If this rule is absent from the parse table, then the resulting LL(1) parser
could never match any else. We therefore insist that rule V— else Stmt be predicted
for V when the lookahead is else. The parse table or recursive-descent code can be
modified manually to achieve this effect. Some parser generators offer mechanisms
for establishing priorities when conflicts arise.

5.7 Properties of LL(1) Parsers

We can establish the following useful properties for LL(1) parsers.

¢ A correct, leftmost parse is constructed.

This follows from the fact that LL(1) parsers simulate a leftmost derivation.
Moreover, the algorithm in Figure 5.4 finds a CFG to be LL(1) only if the

18

Chapter 5. LL Grammars and Parsers

Predict sets of a nonterminal's productions are disjoint. Thus, the LL(1) parser
traces the unique, leftmost derivation of an accepted string.

All grammars in the LL(1) class are unambiguous.

If a grammar is ambiguous, then some string has two or more distinct left-
most derivations. If we compare two such derivations, then there must be a
nonterminal A for which at least two different productions could be applied
to obtain the different derivations. In other words, with a lookahead to-
ken of x, a derivation could continue by applying A— a or A— 3. It follows
that x € Predict(A—«) and x € Predict(A— §). Thus, the test at Step 4 in
Figure 5.4 determines that such a grammar is not LL(1).

All table-driven LL(1) parsers operate in linear time and space with respect
to the length of the parsed input. (Exercise 16 examines whether recursive-
descent parsers are equally efficient.)

Consider the number of actions that can be taken by an LL(1) parser when
the token x is presented as lookahead. Some number of productions will be
applied before x either is matched or is found to be in error.

— Suppose a grammar is A-free. In this case, no production can be ap-
plied twice without advancing the input. Otherwise, the cycle involving
the same production will continue to be applied indefinitely; this condi-
tion should have been reported as an error when the LL(1) parser was
constructed.

— If the grammar does include), then the number of nonterminals that
could pop from the stack because of the application of A-rules is pro-
portional to the length of the input. Exercise 17 explores this point in
more detail.

Thus each input token induces a bounded number of parser actions. It fol-
lows that the parser operates in linear time.

The LL(1) parser consumes space for the lookahead buffer—of constant size—
and for the parse stack. The stack grows and contracts during parsing. How-
ever, the maximum stack used during any parse is proportional to the length
of the parsed input, for either of the following reasons.

— The stack grows only when a production is applied of the form A— a.
As argued previously, no production could be applied twice without ad-
vancing the input and, correspondingly, decreasing the stack size. If we
regard the number and size of a grammar's productions to be bounded
by some constant, then each input token contributes to a constant in-
crease in stack size.

— If the parser's stack grew superlinearly, then the the parser would require
more than linear time just to push entries on the stack.

5.8. Parse-Table Representation 19

Column
Row |1 2 3 4 5
1 L P
2 Q R
3 U
4 W X
S Y Z

Figure 5.20: A sparse table.

5.8 Parse-Table Representation

Most entries in an LL(1) parse table are zero, indicating an error in the parser's
input. LL(1) parse tables tend to be sparsely populated because the Predict sets for
most productions are small relative to the size of the grammar's terminal vocab-
ulary. For example, an LL(1) parser was constructed for a subset of Ada, using a
grammar that contained 70 terminals and 138 nonterminals. Of the 9660 potential
LL(1) parse-table entries, only 629 (6.5%) allowed the parse to continue.

Given such statistics, it makes sense to view the blank entries as a default;
we then strive to represent the nondefault entries efficiently. Generally, consider a
two-dimensional parse table with N rows, M columns, and E nondefault entries.
The parse table constructed in Section 5.4 occupies space proportional to N x
M. Especially when E <« N x M, our goal is to represent the parse table using
space proportional to E. Although modern workstations are equipped with ample
storage to handle LL(1) tables for any practical LL(1) grammar, most computers
operate more efficiently when storage accesses exhibit greater locality. A smaller
parse table loads faster and makes better use of high-speed storage. Thus, it is
worthwhile to consider sparse representations for LL(1) parse tables. However, any
increase in space efficiency must not adversely affect the efficiency of accessing the
parse table. In this section, we consider strategies for decreasing the size of a parse
table T, such as the table shown in Figure 5.20.

5.8.1 Compaction

We begin by considering compaction methods that convert a table T into a repre-
sentation devoid of default entries. Such methods operate as follows.

1. The nondefault entries of T are stored in compacted form.
2. A mapping is provided from the index pair (7,;) to the set E U { default }.

3. The LL(1) parser is modified. Wherever the parser accesses T[i,j], the map-
ping is applied to (7, 7) and the compacted form supplies the contents of T[i, f].

20 Chapter 5. LL Grammars and Parsers

Compact Entry Table T Compact Entry Table T Hashes
Index Contents Row Column Index Contents Row Column to
0 L 1 1 0 R 2 S 10=0
1 P 1 4 1 L 1 1 1
2 Q 2 2 2 Y S 2 10=0
3 R 2 5 3 Z 5 4 20=0
4 U 3 3 4 P 1 4 4
5 W 4 1 5 Q 2 2 4
6 X 4 2 6 W 4 1 4
7 Y 5 2 7
8 Z S 4 8 X 4 2 8
9 U 3 3 9
Binary Search Hash
(a) (b)

Figure 5.21: Compact versions of the table in Figure 5.20. Only the boxed information is
stored in a compact table.

Binary Search

The compacted form can be achieved by listing the nondefault entries in order of
their appearance in T, scanning from left-to-right, top-to-bottom. The resulting
compact table is shown in Figure 5.21(a). If row of the compact table contains
the nondefault entry TT[i,], then row r contains also i and j, which are necessary
for key comparison when the table is searched. We save space if 3 x E < N x M,
assuming each table entry takes one unit of storage. Because the data is sorted by
row and column, the compact table can be accessed by binary search. Given E
nondefault entries, each access takes O(log(E)) time.

Hash Table

The compact table shown in Figure 5.21(b) uses |E| + 1 slots and stores TTi, ;] at a
location determined by hashing i and j, using the hash function

h(i,j) = (i % j) mod (|E| + 1),

To create the compact table, we process the nondefault entries of T in any order.
The nondefault entry at T[4, j] is stored in the compact table at h(i, f) if that position
is unoccupied. Otherwise, we search forward in the table, storing T[i,j] at the
next available slot. This method of handling collisions in the compact table is
called linear resolution. Because the compact table contains |E| + 1 slots, one slot
is always free after all nondefault entries are hashed. The vacant slot avoids an
infinite loop when searching the compact table for a default entry.

Hash performance can be improved by allocating more slots in the compact
table and by choosing a hash function that results in fewer collisions. Because the

5.8. Parse-Table Representation 21

nondefault entries of T are known in advance, both goals can be achieved by using
perfect hashing [?]. With this technique, each nondefault entry TJ[i, ;] maps to one
of |E]| slots using the key (#,7). A nondefault entry is detected when the perfect hash
function returns a value greater than |E|.

5.8.2 Compression

Compaction reduces the storage requirements of a parse table by eliminating de-
fault entries. However, the indices of a nondefault entry must be stored in the
compact table to facilitate nondefault entry lookup. As shown in Figure 5.21, a
given row or column index can be repeated multiple times. We next examine a
compression method that tries to eliminate such redundancy and take advantage
of default entries.

The compression algorithm we study is called double-offset indexing. The
algorithm, shown in Figure 5.22, operates as follows.

1. The algorithm initializes a vector V at Step 12. Although the vector could
hold N x M entries, the final size of the vector is expected to be closer to |E]|.
The entries of V are initialized to the parse table's default value.

2. Step 13 considers the rows of T in an arbitrary order.

3. When row i is considered, a shift value for the row is computed by the
FINDSHIFT method. The shift value, retained in R[i], records the amount
by which an index into row i is shifted to find its entry in vector V. Method
FITS checks that, when shifted, row i fits into V without any collision with
the nondefault entries already established in V.

4. The size of V is reduced at Step 14 by removing all default values at V's high
end.

To use the compressed tables, entry TJi,j] is found by inspecting V at location
I = R[i] +j. If the row recorded at V.fromrowll] is i, then the table entry at
V .entry|l] is the nondefault table entry from TJ[i, j]. Otherwise, T[i, j] has the default
value.

We illustrate the effectiveness of the algorithm in Figure 5.22 by applying it to
the sparse table shown in Figure 5.20. Suppose the rows are considered in order
1,2,3,4,5. The resulting structures, shown in Figure 5.23, can be explained as
follows.

1. This row cannot be negatively shifted because it has an entry in column 1.
Thus, R[1] is 0 and V[1...5] represents row 1, with nondefault entries at
index 1 and 4.

2. This row can merge into V without shifting, because its nondefault values
(columns 2 and 5) can be accommodated at 2 and 5, respectively.

3. Simiarly, row 3 can be accommodated by V without any shifting.

22 Chapter 5. LL Grammars and Parsers

procedure COMPRESS()

fori=1to N x M do 12
V .entryli] < default
foreach row € {1,2,...,N} do 13

R[row] + FINDSHIFT(row)
forj=1to M do
if T[row,j) # default
then
place < R[row| +j
V.entry[place] < T[row,j]
V.fromrow|place] + row
call TRUNC(V) 14
end
function FINDSHIFT(row) : Integer
NxM—M
return (~min FITS(row, shift))
shift=—M+1
end
function FITS(row, shift) : Boolean
forj = 1to Mdo
if T[row,j] # default and not ROOMINV(shift + ;) 15
then return (false)
return (true)
end
function ROOMINV(where) : Boolean
if where > 1
then
if V.entry[where] = default
then return (true)
return (false)
end
procedure TRUNC(V)
for i = N x M downto 1 do
if V.entryli] # default
then
% Retain V[1...4] */
return ()
end

Figure 5.22: Compression algorithm.

5.9. Syntactic Error Recovery and Repair 23

R \%

Row Shift Index Entry From
i R[] Row
1 0 1 L 1
2 0 2 Q 2
3 0 3 U 3
4 S 4 P 1
5 6 5 R 2

6 W 4
7 X 4
8 Y 5
9
10 zZ S

Figure 5.23: Compression of the table in Figure 5.20. Only the boxed information is
actually stored in the compressed structures.

4. When this row is considered, the first slot of V that can accommodate its
leftmost column is slot 6. Thus, R[4] = 5 and row 4's nondefault entries are
placed at 6 and 7.

5. Finally, columns 2 and 4 of row 5 can be accommodated at 8 and 10, respec-
tively. Thus, R[5] = 6.

As suggested by the pseudocode at Step 13, rows can be presented to FINDSHIFT
in any order. However, the size of the resulting compressed table can depend on
the order in which rows are considered. Exercises 22 and 23 explore this point fur-
ther. In general, finding a row ordering that achieves maximum compression is an
NP-complete problem. This means that the best-known algorithms for obtaining
optimal compression would have to try all row permutations. However, compres-
sion heuristics work well in practice. When compression is applied to the Ada LL(1)
parse table mentioned previously, the number of entries drops from 9660 to 660.
This result is only 0.3% from the 629 nondefault entries in the original table.

5.9 Syntactic Error Recovery and Repair

A compiler should produce a useful set of diagnostic messages when presented
with a faulty input. Thus, when a single error is detected, it is usually desirable
to continue processing the input to detect additional errors. Generally, parsers can
continue syntax analysis using one of the following approaches.

o With error recovery, the parser attempts to ignore the current error. The
parser enters a configuration where it is able to continue processing the input.

24 Chapter 5. LL Grammars and Parsers

o Error repair is more ambitious. The parser attempts to correct the syntacti-
cally faulty program by modifying the input to obtain an acceptable parse.

In this section, we explore each of these approaches in turn. We then examine error
detection and recovery for LL(1) parsers.

5.9.1 Error Recover

With error recovery, we try to reset the parser so that the remaining input can be
parsed. This process may involve modifying the parse stack and remaining input.
Depending on the success of the recovery process, subsequent syntax analysis may
be accurate. Unfortunately, it is more often the case that faulty error recovery
causes errors to cascade throughout the remaining parse. For example, consider
the C fragment a=func c+d). If error recovery continues the parse by predicting
a Statement after the func, then another syntax error is found at the parenthesis.
A single syntax error has been amplified by error recovery by issuing two error
messages.

The primary measure of quality in an error-recovery process is how few false
or cascaded errors it induces. Normally, semantic analysis and code generation are
disabled upon error recovery because there is no intention to execute the code of a
syntactically faulty program.

A simple form of error recovery is often called panic mode. In this approach,
the parser skips input tokens until it finds a frequently occurring delimiter (e.g., a
semicolon). The parser then continues by expecting those nonterminals that derive
strings that can follow the delimiter.

5.9.2 Error Repair

With error repair, the parse attempts to repair the syntactically faulty program by
modifying the parsed or (more commonly) the unparsed portion of the program.
The compiler does not presume to know or to suggest an appropriate revision of
the faulty program. The purpose of error repair is to analyze the offending input
more carefully so that better diagnostics can be issued.

Error-recovery and error-repair algorithms can exploit the fact that LL(1) parsers
have the correct-prefix property: For each state entered by such parsers, there is a
string of tokens that could result in a successful parse. Consider the input string
« X 3, where token x causes an LL(1) parser to detect a syntax error. The correct-
prefix property means that there is at least one string @ v # « x 3 that can be
accepted by the parser.

What can a parser do to repair the faulty input? The following options are
possible:

e Modification of o

o Insertion of text § to obtain a § x 3

5.9. Syntactic Error Recovery and Repair 25

G W =
=<
)

Figure 5.24: An LL(1) grammar.

¢ Deletion of x to obtain a 3

These options are not equally attractive. The correct-prefix property implies that o
is at least a portion of a syntactically correct program. Thus, most error recovery
methods do not modify a except in special situations. One notable case is scope re-
pair, where nesting brackets may be inserted or deleted to match the corresponding
brackets in x 3.

Insertion of text must also be done carefully. In particular, error repair based
on insertion must ensure that the repaired string will not continually grow so that
parsing can never be completed. Some languages are insert correctable. For such
languages, it is always possible to repair syntactic faults by insertion. Deletion is a
drastic alternative to insertion, but it does have the advantage of making progress
through the input.

5.9.3 Error Detection in LL(1) Parsers

The recursive-descent and table-driven LL(1) parsers constructed in this chapter are
based on Predict sets. These sets are, in turn, based on First and Follow information
that is computed globally for a grammar. In particular, recall that the production
A— X is predicted by the symbols in Follow(A).

Suppose that A occurs in the productions V—v A b and W—w A ¢, as shown in
Figure 5.24. For this grammar, the production A— X is predicted by the symbols
in Follow(A) = {b,c}. Examining the grammar in greater detail, we see that the
application of A— A should be followed only by b if the derivation stems from
V. However, if the derivation stems from W, then A should be followed only by
¢. As described in this chapter, LL(1) parsing cannot distinguish between contexts
calling for application of A— . If the next input token is b or ¢, the production
A— X is applied, even though the next input token may not be acceptable. If the
wrong symbol is present, the error is detected later, when matching the symbol
after Ain V—=vAb or W—wAc. Exercise 25 considers how such errors can be
caught sooner by full LL(1) parsers, which are more powerful than the strong LL(1)
parsers defined in this chapter.

26 Chapter 5. LL Grammars and Parsers

W N =
Q —~
m m
N —

procedure S(¢s, termset)
switch ()
case ts.PEEK() € {[}
call MATCH([)
call E(ts, termset U{]}) 16
call MATCH(])
case ts.PEEK() € { (}
call MATCH(()
call E(zs, termser U{) }) 17
call MATCH())
end
procedure E(zs, termset)
if ts.PEEK() = a
then call MATCH(ts,a)
else
call ERROR(Expected an a)
while #s.PEEK() ¢ termset do call ts.ADVANCE()
end

Figure 5.25: A grammar and its Wirth-style, error-recovering parser.

5.9.4 Error Recovery in LL(1) Parsers

The LR(1) parsers described in Chapter Chapter:global:six are formally more pow-
erful than the LL(1) parsers. However, the continued popularity of LL(1) parsers can
be attributed, in part, to their superior error diagnosis and error recovery. Because
of the predictive nature of an LL(1), leftmost parse, the parser can easily extend the
parsed portion of a faulty program into a syntactically valid program. When an
error is detected, the parser can produce messages informing the programmer of
what tokens were expected so that the parse could have continued.

A simple and uniform approach to error recovery in LL(1) parsers is discussed
by Wirth [Wir76]. When applied to recursive-descent parsers, the parsing pro-
cedures described in Section 5.3 are augmented with an extra parameter that re-
ceives a set of terminal symbols. Consider the parsing procedure A(ts, termset)
associated with some nonterminal A. When A is called during operation of the
recursive-descent parser, any symbol passed via termset can legitimately serve as
the lookahead symbol when this instance of A returns. For example, consider the

5.9. Syntactic Error Recovery and Repair 27

grammar and Wirth-style parsing procedures shown in Figure 5.25. Error recovery
is placed in E so that if an a is not found, the input is advanced until a symbol is
found that can follow E. The set of symbols passed to E includes those symbols
passed to S as well as a closing bracket (if called from Step 16) or a closing paren-
thesis (if called from Step 17). If E detects an error, the input is advanced until a
symbol in termset is found. Because end-of-input can follow S, every termset in-
cludes $. In the worst case, the input program is advanced until $, at which point
all pending parsing procedures can exit.

Summary

This concludes our study of LL parsers. Given an LL(1) grammar, it is easy to con-
struct recursive-descent or table-driven LL(1) parsers. Grammars that are not LL(1)
can often be converted to LL(1) form by eliminating left-recursion and by factoring
common prefixes. Some programming language constructs are inherently non-
LL(1). Intervention by the compiler writer can often resolve the conflicts that arise
in such cases. Alternatively, more powerful parsing methods can be considered,
such as those presented in Chapter Chapter:global:six.

28 Chapter 5. LL Grammars and Parsers

Exercises

1. Show why the following grammar is or is not LL(1).

1 S —- ABec
2 A — a
3 | A
4 B — b
5 | A

2. Show why the following grammar is or is not LL(1).

1 S —- Ab
2 A — a
3 | B
4 | A
5 B — b
6 | A

3. Show why the following grammar is or is not LL(1).

ABBA

—
— d

| A
B — b
| A

4. Show why the following grammar is or is not LL(1).

S
A

L AW =

1 S — aSe
2 | B
3 B — bBe
4 | C
S5 C —- =c¢Ce
6 | d

5. Construct the LL(1) parse table for the following grammar.

1 Expr — - Expr

2 | (Expr)

3 | Var ExprTail
4 ExprTail — - Expr

S | A

6 Var — id VarTail
7 VarTail — (Expr)

8 | A

5.9. Syntactic Error Recovery and Repair 29

6.

Trace the operation of an LL(1) parser for the grammar of Exercise 5 on the
following input.

id - -id ((id))

7. Transform the following grammar into LL(1) form, using the techniques pre-

10.

11.

12.

sented in Section 5.5.

1 DeclList — DeclList ; Decl

2 | Decl

3 Decl — IdList : Type

4 IdList — ldList, id

S | id

6 Type — ScalarType

7 | array (ScalarTypeList) of Type
8 ScalarType - id

9 | Bound .. Bound

10 Bound — Sign intconstant

11 | id

12 Sign - o+

13 | -

14 | A

15 ScalarTypelist — ScalarTypelist , ScalarType
16 | ScalarType

Run your solution to Exercise 7 through any LL(1) parser generator to verify
that it is actually LL(1). How do you know that your solution generates the
same language as the original grammar?

Show that every regular language can be defined by an LL(1) grammar.

A grammar is said to have cycles if it contains a nonterminal A such that
A =7 A. Show that an LL(1) grammar must not have cycles.

Construct an LL(2) parser for the following grammar.

1 Stmt — id;

2 | id (IdList) ;
3 ldList — id
4 | id, IdList

Show the two distinct parse trees that can be constructed for
if expr then if expr then other else other

using the grammar given in Figure 5.17. For each parse tree, explain the
correspondence of then and else.

30

13.

14.

15.

16.

17.

18.
19.

20.

21.

Chapter 5. LL Grammars and Parsers

In Section 5.7, it is established that LL(1) parsers operate in linear time. That
is, when parsing an input, the parser requires on average only a constant-
bounded amount of time per input token.

Is it ever the case that an LL(1) parser requires more than a constant-bounded
amount of time to accept some particular symbol? In other words, can we
bound by a constant the time interval between successive calls to the scanner
to obtain the next token?

Design an algorithm that reads an LL(1) parse table and produces the corre-
sponding recursive-descent parser.

An ambiguous grammar can produce two distinct parses for some string in
the grammar's language. Explain why an ambiguous grammar is never LL(k)
for any k, even if the grammar is free of common prefixes and left-recursion.

Section 5.7 argues that table-driven LL(1) parsers operate in linear time and
space. Explain why this claim does or does not hold for recursive-descent
LL(1) parsers.

Explain why the number of nonterminals that can pop from an LL(1) parse
stack is not bounded by a grammar-specific constant.

Design an algorithm that computes Predict,, sets for a CFG.

As discussed in Section 5.5, a grammar is in Greibach Normal Form (GNF)
if all productions are of the form A— ac, where a is a terminal symbol and o
is a string of zero or more grammar (i.e., terminal or nonterminal) symbols.

Let G be a grammar that does not generate A. Design an algorithm to trans-
form G into GNF.

If we construct a GNF version of a grammar using the algorithm developed
in Exercise 19, the resulting grammar is free of left-recursion. However, the
resulting grammar can still have common prefixes that prevent it from being
LL(1). If we apply the algorithm presented in Figure 5.13 of Section 5.5.1, the
resulting grammar will be free of left-recursion and common prefixes. Show
that the absence of common prefixes and left-recursion in an unambiguous
grammar does not necessarily make a grammar LL(1).

Section 5.7 and Exercises 16 and 17 examine the efficiency of LL(1) parsers.

(a) Analyze the efficiency of operating a table-driven LL(k) parser, assuming
an LL(k) table has already been constructed. Your answer should be
formulated in terms of the length of the parsed input.

(b) Analyze the efficiency of constructing an LL(k) parse table. Your answer
should be formulated in terms of the size of the grammar—its vocabu-
laries and productions.

(c) Analyze the efficiency of operating a recursive-descent LL(k) parser.

5.9. Syntactic Error Recovery and Repair 31

22.

23.

24.

25.

26.

27.

Apply the table compression algorithm in Figure 5.22 to the table shown in
Figure 5.20, presenting rows in the order 1,5,2,4,3. Compare the success
of compression with the result presented in Figure 5.23.

Although table-compression is an NP-complete problem, explain why the
following heuristic works well in practice.

Rows are considered in order of decreasing density of nondefault
entries. (That is, rows with the greatest number of nondefault en-
tries are considered first.)

Apply this heuristic to the table shown in Figure 5.20 and describe the results.

A sparse array can be represented as a vector of rows, with each row rep-
resented as a list of nondefault column entries. Thus, the nondefault entry
at T[i,j] would appear as an element of list R[{]. The element would contain
both its column identification (j) and the nondefault entry (TJ7, /]).

(a) Express the table shown in Figure 5.20 using this format.

(b) Compare the effectiveness of this representation with those given in
Section 5.8. Consider both the savings in space and any increase or
decrease in access time.

Section 5.9.3 contains an example where the production A— X is applied
using an invalid lookahead token. With Follow sets computed globally for a
given grammar, the style of LL(1) parsing described in this chapter is known
as strong LL(1). A full LL(1) parser applies a production only if the next input
token is valid. Given an algorithm for constructing full LL(1) parse tables.

Hing: If a grammar contains 7 occurrences of the nonterminal A, then con-
sider splitting this nonterminal so that each occurrence is a unique symbol.
Thus, A is split into A, A, ..., A,. Each new nonterminal has productions
similar to A, but the context of each nonterminal can differ.

Consider the following grammar:

S -

G b W =

vV =
W —
A —

Is this grammar LL(1)? Is the grammar full LL(1), as defined in Exercise 25?

Section 5.9.4 describes an error recovery method that relies on dynamically
constructed sets of Follow symbols. Compare these sets with the Follow infor-
mation computed for full LL(1) in Exercise 25.

32

Chapter 5. LL Grammars and Parsers

S

Bibliography

[Cic86] R.J. Cichelli. Minimal perfect hash functions made simple. Communica-
tions of the ACM, 23:17-19, 1986.

[Wir76] Niklaus Wirth. Algorithms + Data Structures = Programs. Prentice-Hall,
1976.

33

6
LR Parsing

Because of its power and efficiency, LR parsers are commonly used for the syntax-
checking phase of a compiler. In this chapter, we study the operation and con-
struction of LR parsers. Tools for the automatic construction of such parsers are
available for a variety of platforms. These parser generators are useful not only
because they automatically construct tables that drive LR parsers, but also because
they are powerful diagnostic tools for developing or modifying grammars.

The basic properties and actions of a generic LR parser are introduced in Sec-
tions 6.1 and 6.2. Section 6.3 presents the most basic table-construction method
for LR parsers. Section 6.4 considers problems that prevent automatic LR parser
construction. Sections 6.5 and 6.6 discuss table-building algorithms of increasing
sophistication and power. Of particular interest is the LALR(1) technique, which is
used in most LR parser generators. The formal definition of most modern program-
ming languages includes an LALR(1) grammar to specify the language's syntax.

1

2 Chapter 6. LR Parsing

6.1 Introduction

In Chapter Chapter:global:five, we learned how to construct LL (top-down) parsers
based on context-free grammars (CFGs) that had certain properties. The funda-
mental concern of a LL parser is which production to choose in expanding a given
nonterminal. This choice is based on the parser's current state and on a peek at the
unconsumed portion of the parser's input string. The derivations and parse trees
produced by LL parsers are easy to follow: the leftmost nonterminal is expanded at
each step, and the parse tree grows systematically—top-down, from left to right.
The LL parser begins with the tree's root, which is labeled with the grammar's goal
symbol. Suppose that A is the next nonterminal to be expanded, and that the parser
chooses the production A—~. In the parse tree, the node corresponding to this A
is supplied with children that are labeled with the symbols in ~.

In this chapter, we study LR (bottom-up) parsers, which appear to operate in

the reverse direction of LL parsers.

e The LR parser begins with the parse tree's leaves and moves toward its root.

o The rightmost derivation is produced in reverse.

o An LR parser uses a grammar rule to replace the rule's right-hand side (RHS)

with its left-hand side (LHS).

Figures Figure:four:tdparse and Figure:four:buparse illustrate the differences be-
tween a top-down and bottom-up parse. Section 6.2 considers bottom-up parses

in greater detail.

6.1. Introduction 3

Unfortunately, the term “LR” denotes both the generic bottom-up parsing en-
gine as well as a particular technique for building the engine's tables. Actually, the

style of parsing considered in this chapter is known by the following names.

¢ Bottom-up, because the parser works its way from the terminal symbols to

the grammar's goal symbol

o Shift-reduce, because the two most prevalent actions taken by the parser are
to shift symbols onto the parse stack and to reduce a string of such symbols

located at the top-of-stack to one of the grammar's nonterminals

o LR(k), because such parsers scan the input from the left (L) producing a right-

most derivation (R) in reverse, using k symbols of lookahead

In an LL parser, each state is committed to expand a particular nonterminal. On
the other hand, an LR parser can concurrently anticipate the eventual success of
multiple nonterminals. This flexibility makes LR parsers more general than LL
parsers. For example, LL parsers cannot accommodate left-recursive grammars and
they cannot automatically handle the “dangling-else” problem described in Chap-
ter Chapter:global:five. LR parsers have no systematic problem with either of these
areas.

Tools for the automatic construction of LR parsers are available for a variety of
platforms, including ML, Java, C, and C++. Chapter Chapter:global:seven discusses
such tools in greater detail. It is important to note that a parser generator for a
given platform performs syntax analysis for the language of its provided grammar.

For example, the Yacc is a popular parser generator that emits C code. If Yacc is

4 Chapter 6. LR Parsing

given a grammar for the syntax of FORTRAN, then the resulting parser compiles
using C but performs syntax analysis for FORTRAN. The syntax of most modern
programming languages is defined by grammars that are suitable for automatic

parser generation using LR techniques.

6.2 Shift-Reduce Parsers

In this section, we examine the operation of an LR parser, assuming that an LR parse
table has already been constructed to guide the parser's actions. The reader may
be understandably curious about how the table's entries are determined. However,
table-construction techniques are best considered after obtaining a solid under-
standing of an LR parser's operation.

We describe the operation of an LR parser informally in Sections 6.2.1 and 6.2.2.
Section 6.2.3 describes a generic LR parsing engine whose actions are guided by the
LR parse table defined in Section 6.2.4. Section 6.2.5 presents LR(k) parsing more

formally.

6.2.1 LR Parsers and Rightmost Derivations

One method of understanding an LR parse is to appreciate that such parses con-
struct rightmost derivations in reverse. Given a grammar and a rightmost deriva-
tion of some string in its language, the sequence of productions applied by an LR
parser is the sequence used by the rightmost derivation—played backwards. Fig-

ure 6.1 shows a grammar and the rightmost derivation of a string in the grammar's

6.2. Shift-Reduce Parsers S

1 Start — ES$
2 E — plus EE
3 | num

Rule Derivation
1 Start =, E$
2 = . plusEES$
3 =, plus Enum $
3 = plus num num $

Figure 6.1: Rightmost derivation of plus num num $.

language. The language is suitable for expressing sums in a prefix (Lisp-like) nota-
tion. Each step of the derivation is annotated with the production number used at
that step. For this example, the derivation uses Rules 1, 2, 3, and 3.

A bottom-up parse is accomplished by playing this sequence backwards—
Rules 3, 3, 2, and 1. In contrast with LL parsing, an LR parser finds the RHS of
a production and replaces it with the production's LHS. First, the leftmost num is
reduced to an E by the rule E—num. This rule is applied again to obtain plus E E $.
The sum is then reduced by E—plus E E to obtain E $. This can then be reduced by

Rule 1 to the goal symbol Start.

6.2.2 LR Parsing as Knitting

Section 6.2.1 presents the order in which productions are applied to perform
a bottom-up parse. We next examine how the RHS of a production is found so
that a reduction can occur. The actions of an LR parser are analogous to knitting.
Figure 6.2 illustrates this by showing a parse in progress for the grammar and

string of Figure 6.1. The right needle contains the currently unprocessed portion

Chapter 6. LR Parsing

Stack Input
(a)
plus num num
Stack Input
(b) plus E num
num
Stack Input
@ L J
(c) plus E E $
num num
Stack Input
@ L J
E $
(d) plus E E
num num

Figure 6.2: Bottom-up parsing resembles knitting.

of the string. The left needle is the parser's stack, which represents the processed

portion of the input string.

A shift operation transfers a symbol from the right needle to the left needle.
When a reduction by the rule A—~~ is performed, the symbols in v must occur
at the pointed end of the left needle—at the top of the parse stack. Reduction by
A— ~ removes the symbols in 4 and prepends the LHS symbol A to the unprocessed
input of the right needle. A is then treated as an input symbol to be shifted onto
the left needle. To illustrate the parse tree under construction, Figure 6.2 shows the

symbols in v as children of A.

We now follow the parse that is illustrated in Figure 6.2. In Figure 6.2(a),

6.2. Shift-Reduce Parsers 7

the left needle shows that two shifts have been performed. With plus num on the
left needle, it is time to reduce by E—num. Figure 6.2(b) shows the effect of this
reduction, with the resulting E prepended to the input. This same sequence of
activities is repeated to obtain the state shown in Figure 6.2(c)—the left needle
contains plus EE. When reduced by E—plus EE, we obtain Figure 6.2(d). The
resulting E $ would then be shifted, reduced by Start—E $, and the parse would be

accepted.

Based on the input string and the sequence of shift and reduce actions, symbols
transfer back and forth between the needles. The “product” of the knitting is the

parse tree, shown on the left needle if the input string is accepted.

6.2.3 LR Parsing Engine

Before considering an example in some detail, we present a simple driver for our
shift-reduce parser in Figure 6.3. The parsing engine is driven by a table, whose
entries are discussed in Section 6.2.4. The table is indexed at Step 1, using the
parser's current state and the next (unprocessed) input symbol. The current state
of the parser is defined by the contents of the parser's stack. To avoid rescanning
the stack's contents prior to each parser action, state information is computed and
stored with each symbol shifted onto the stack. Thus, Step 1 need only consult the
state information associated with the stack's topmost symbol. The parse table calls

for a shift or reduce as follows.

¢ Step 2 performs a shift of the next input symbol to state s.

call Stack.PUSH(StartState)
accepted + false
while not accepted do
action + Table[Stack. TOS()|[InputStream PEEK()]
if action = shift s
then
call Stack.PUSH(s)
if s € AcceptStates
then accepted «+ true
else call InputStream.ADVANCE()
else
if action = reduce A—~
then
call Szack.POP(|v|)
call InputStream.PREPEND(A)
else
call ERROR()

Figure 6.3: Driver for a bottom-up parser.

Chapter 6. LR Parsing

¢ A reduction occurs at Steps 4 and 5. The RHS of a production is popped off

the stack and its LHS symbol is prepended to the input.

The parser continues to perform shift and reduce actions until one of the following

situations occurs.

e The input is reduced to the grammar's goal symbol at Step 3. The input string

is accepted.

o No valid action is found at Step 1. In this case, the input string has a syntax

€rror.

6.2. Shift-Reduce Parsers 9

6.2.4 The LR Parse Table

We have seen that an LR parse constructs a rightmost derivation in reverse. Each
reduction step in the LR parse uses a grammar rule such as A—~ to replace v by A.
A sequence of sentential forms is thus constructed, beginning with the input string

and ending with the grammar's goal symbol.

Given a sentential form, the handle is defined as the sequence of symbols that
will next be replaced by reduction. The difficulties lie in identifying the handle and
in knowing which production to employ in the reduction (should there be multiple
productions with the same RHS). These activities are choreographed by the parse

table.

A suitable parse table for the grammar in Figure 6.4 is shown in Figure 6.5.
This grammar appeared in Figure Figure:five:simplegram to illustrate top-down
parsing. Readers familiar with top-down parsing can use this grammar to compare

the methods.

To conserve space, a shift and reduce actions are distinguished graphically in
our parse tables. A shift to State s is denoted by [s]. An unboxed number is the
production number for a reduction. Blank entries are error actions, and the parser
accepts when the Start symbol is shifted in the parser's starting state. Using the table
in Figure 6.5, Figure 6.6 shows the steps of a bottom-up parse. For pedagogical
purposes, each stack cell is shown as two elements: |n|. The bottom element 7 is
the parser state entered when the cell is pushed. The top symbol a is the symbol

causing the cell to be pushed. The parsing engine described in Figure 6.3 keeps

10 Chapter 6. LR Parsing

1 Stat — S$
2 S — AC
3 C - cC
4 | A
5 A — aBCd
6 | BQ
7 B — b B
8 | A
9 Q - q
10 | A
Rule Derivation
1 Start =, S$
2 =>mAC$
3 =mAc$
5 =.,aBCdc$
4 = maBdc$
7 =.,abBdc$
7 =.,abbBdc$
8 =.,abbdc$

Figure 6.4: Rightmost derivation ofab bdc $.

track only of the state.

The reader should verify that the reductions taken in Figure 6.6 trace a right-
most derivation in reverse. Moreover, the shift actions are essentially implied by
the reductions: tokens are shifted until the handle appears at the top of the parse

stack, at which time the next reduction in the reverse derivation can be applied.

Of course, the parse table plays a central role in determining the shifts and
reductions that are necessary to recognize a valid string. For example, the rule
C— X could be applied at any time, but the parse table calls for this only in certain

states and only when certain tokens are next in the input stream.

6.2. Shift-Reduce Parsers 11

Start S A

$

8 | 8 | accept
4
8

State a

[]
[~]}=
[~]|=

C
8
8
8

0
1
2 8 | 8
3 8]
4
5 10 10 (€]
6 6 6
7 9 9
8 1
9 4
10
11 3 3
12 5
13 71071717
14 2

Figure 6.5: Parse table for the grammar shown in Figure 6.4.

6.2.5 LR(k) Parsing

The concept of LR parsing was introduced by Knuth [?]. As was the case with LL
parsers, LR parsers are parameterized by the number of lookahead symbols that
are consulted to determine the appropriate parser action: an LR(k) parser can peek
at the next k tokens. This notion of “peeking” and the term LR(0) are confusing,
because even an LR(0) parser must refer to the next input token, for the purpose
of indexing the parse table to determine the appropriate action. The “0” in LR(0)

refers not to the lookahead at parse-time, but rather to the lookahead used in

|I\JU||I\JU||I\JU”I\JO‘”I\JO‘”I\J0‘|

[wo [eo [ue Jus e Jue [eo [ue Jus [ue [Jue [we]

@

—_
w

EE R R

=>]=->]->]-=>]

[+u][+v]

Start

[}

Initial Configuration
shift a
shift b
shift b
Reduce A to B
shift B
Reduce b Bto B
shift B
Reduce b Bto B
shift B
Reduce A to C
shift C
shift d
Reducea B C dto A
shift A
shift ¢
Reduce c to C
shift C
Reduce A Cto S
shift S
shift $
Reduce S $ to Start

shift Start

Accept

Figure 6.6: Bottom-up parse of abbdc$.

Chapter 6. LR Parsing

abbdc$
bbdc$
bdc$
de$
Bdc$
de$
Bdc$
dc$
Bdc$
dc$
Cdc$
dc$
c$
Ac$

c$

c$

S$
$
$

Start $

$

6.2. Shift-Reduce Parsers 13

constructing the parse table. At parse-time, LR(0) and LR(1) parsers index the
parse table using one token of lookahead; for k > 2, an LR(k) parser uses k tokens
of lookahead.

The number of columns in an LR(k) parse table grows dramatically with k. For
example, an LR(3) parse table is indexed by the parse state to select a row, and by
the next 3 input tokens to select a column. If the terminal alphabet has # symbols,
then the number of distinct three-token sequences is 7#°. More generally, an LR(k)
table has 7#* columns for a token alphabet of size 7. To keep the size of parse tables
within reason, most parser generators are limited to one token of lookahead. Some
parser generators do make selected use of extra lookahead where such information
is helpful.

Most of this chapter is devoted to the problems of constructing LR parse tables.
Before we consider such techniques, it is instructive to formalize the definition of
LR(k) in terms of the properties an LR(k) parser must possess. All shift-reduce
parsers operate by shifting symbols and examining lookahead information until
the end of the handle is found. Then the handle is reduced to a nonterminal, which
replaces the handle on the stack. An LR(k) parser, guided by its parse table, must
decide whether to shift or reduce, knowing only the symbols already shifted (left
context) and the next k lookahead symbols (right context).

A grammar is LR(k) if and only if it is possible to construct an LR parse ta-
ble such that k tokens of lookahead allows the parser to recognize exactly those
strings in the grammar's language. An important property of an LR parse table is

that each cell accommodates only one entry. In other words, the LR(k) parser is

14 Chapter 6. LR Parsing

deterministic—exactly one action can occur at each step.
We next formalize the properties of an LR(k) grammar, using the following

definitions from Chapter Chapter:global:four.
o If S=* 3, then j is a sentential form of a grammar with goal symbol S.
e Firsty(«) is the set of length-k terminal prefixes that can be derived from «.

Assume that in some LR(k) grammar there are two sentential forms afw and
afy, with w,y € ¥*. These sentential forms share a common prefix «3. Fur-
ther, with the prefix a8 on the stack, their k-token lookahead sets are identical:
Firsty(2w) = Firsty(y). Suppose the parse table calls for reduction by A— 3 given
the left context of a3 and the k-token lookahead present in wj this results in cAw.
With the same lookahead information in vy, the LR(k) parser insists on making the
same decision: a3y becomes aAy. Formally, a grammar is LR(k) if and only if the

following conditions imply aAy — ~Bx.
1. S=%, cAw =, afw
2. S=%, vBx =, By
3. Firsty(2w) = Firstg(y)

This implication allows reduction by A— 2 whenever 7 is on top-of-stack and the
k-symbol lookahead is Firsty(w).

This definition is instructive in that it defines the minimum properties a gram-
mar must possess to be parsable by LR(k) techniques. It does not tell us how to

build a suitable LR(k) parser; in fact, the primary contribution of Knuth's early

6.3. LR(0) Table Construction 15

work was an algorithm for LR(k) construction. We begin with the simplest LR(0)
parser, which lacks sufficient power for most applications. After examining prob-
lems that arise in LR(0) construction we turn to the more powerful LR(1) parsing

method and its variants.

When LR parser construction fails, the associated grammar may be ambiguous
(discussed in Section 6.4.1). For other grammars, the parser may require more
information about the unconsumed input string (lookahead). In fact, some gram-
mars require an unbounded amount of lookahead (Section 6.4.2). In either case,
the parser-generator identifies inadequate parsing states that are useful for resolv-
ing the problem. While it can be shown that there can be no algorithm to deter-
mine if a grammar is ambiguous, Section 6.4 describes techniques that work well

in practice.

6.3 LR(0) Table Construction

The table-construction methods discussed in this chapter analyze a grammar to
devise a parse table suitable for use in the generic parser presented in Figure 6.3.
Each symbol in the terminal and nonterminal alphabets corresponds to a column
of the table. The analysis proceeds by exploring the state-space of the parser.
Each state corresponds to a row of the parse table. Because the state-space is
necessarily finite, this exploration must terminate at some point. After the parse
table's rows have been determined, analysis then attempts to fill in the cells of

the table. Because we are interested only in deterministic parsers, each table cell

16 Chapter 6. LR Parsing

LR(0) item Progress of rule in this state

E— eplus E E Beginning of rule

E—pluseE E Processed a plus, expect an E

E—plus EeE Expect another E

E—plus E Ee Handle on top-of-stack, ready to reduce

Figure 6.7: LR(0) items for production E— plus E E.

can hold one entry. An important outcome of the LR construction methods is the
determination of inadequate states—states that lack sufficient information to place

at most one parsing action in each column.

We next consider LR(0) table construction for the grammar shown in Fig-
ure 6.1. In constructing the parse table, we are required to consider the parser's
progress in recognizing a rule's right-hand side (RHS). For example, consider the
rule E— plus E E. Prior to reducing the RHS to E, each component of the RHS must
be found. A plus must be identified, then two Es must be found. Once these three
symbols are on top-of-stack, then it is possible for the parser to apply the reduction

and replace the three symbols with the left-hand side (LHS) symbol E.

To keep track of the parser's progress, we introduce the notion of an LR(0)
item—a grammar production with a bookmark that indicating the current progress
through the production's RHS. The bookmark is analogous to the “progress bar”
present in many applications, indicating the completed fraction of a task. Fig-
ure 6.7 shows the possible LR(0) items for the production E—plusEE. A fresh
item has its marker at the extreme left, as in E— o plus E E. When the marker is at
the extreme right, as in E—plus E Ee, we say the item is reducible. As a special

case, consider the rule A— A. The symbol “A” denotes that there is nothing on this

6.3. LR(0) Table Construction

function COMPUTELRO(Grammar) : (Set, State)
States + ()
Startltems < { Start— ¢ RHS(p) | p € PRODUCTIONSFOR(Start) }
StartState < ADDSTATE(States, StartItems)
while (s + WorkList. EXTRACTELEMENT()) # L do
call COMPUTEGOTO(States, s)
return ((States, StartState))
end
function ADDSTATE(States, items) : State
if items ¢ States
then
s « newState(items)
States < States U {s }
Work List + WorkList U {s}
Table[s][x] « error
else s < FindState(items)
return (s)
end
function ADVANCEDOT(state, X') : Set
return ({A—aX e8| A—a e X3 € state })
end

Figure 6.8: LR(0) construction.

10

1
12

13

17

rule's RHS. We make this clear when representing such rules as items. For A— A,

the only possible item is the reducible A— e .

We now define a parser state as a set of LR(0) items. While each state is for-

mally a set, we drop the usual braces notation and simply list the the set's elements

(items). The LR(0) construction algorithm is shown in Figure 6.8.

The start state for our parser—nominally state 0—is formed at Step 7 by in-

cluding fresh items for each of the grammar's goal-symbol productions. For our

example grammar in Figure 6.1, we initialize the start state with Start— e E $. The

algorithm maintains WorkList—a set of states that need to be processed by the

18 Chapter 6. LR Parsing

function CLOSURE(state) : Set

ans « state
repeat 14
prev «+ ans
foreach A— « ¢ By € ans do 15
foreach p € PRODUCTIONSFOR(B) do
ans < ansU {B— ¢ RHS(p) } 16

until ans = prev
return (ans)

end
procedure COMPUTEGOTO(States, s)
closed + CLOSURE(s) 17
foreach ¥ € (NUX) do 18
Relevantltems + ADVANCEDOT(closed, X') 19
if Relevantltems # 0
then
Table[s][X] < shift ADDSTATE(States, Relevantliems) 20
end

Figure 6.9: LR(0) closure and transitions.

loop at Step 8. Each state formed during processing is passed through ADDSTATE,
which determines at Step 9 if the set of items has already been identified as a state.
If not, then a new state is constructed at Step 10. The resulting state is added to
Work List at Step 11. The state's row in the parse table is initialized at Step 12.
The processing of a state begins when the loop at Step 8 extracts a state s from
the WorkList. When COMPUTEGOTO is called on state s, the following steps are

performed.

1. The closure of state s is computed at Step 17. If a nonterminal B appears
just after the bookmark symbol (e), then in state s we can process a B once
one has been found. Transitions from state s must include actions that can

lead to discovery of a B. CLOSURE in Figure 6.9 returns a set that includes its

6.3. LR(0) Table Construction 19

supplied set of items along with fresh items for B's rules. The addition of fresh
items can trigger the addition of still more fresh items. Because the computed
answer is a set, no item is added twice. The loop at Step 14 continues until

nothing new is added. Thus, this loop eventually terminates.

2. Step 18 determines transitions from s. When a new state is added during
LR(0) construction, Step 12 sets all actions for this state as error. Transitions
are defined for each grammar symbol X that appears after the bookmark.
COMPUTEGOTO in Figure 6.9 defines a transition at Step 20 from s to a (po-
tentially new) state that reflects the parser's progress after shifting across ev-
ery item in this state with X after the bookmark. All such items indicate
transition to the same state, because the parsers we construct must operate
deterministically. In other words, the parse table has only one entry for a

given state and symbol.

We now construct an LR(0) parse table for the grammar shown in Figure 6.1. In
Figure 6.10 each state is shown as a separate box. The kernel of state s is the set of
items explicitly represented in the state. We use the convention of drawing a line
within a state to separate the kernel and closure items, as in States 0, 1, and §; the
other states did not require any closure items. Next to each item in each state is

the state number reached by shifting the symbol next to the item's bookmark.
In Figure 6.10 the transitions are also shown with labeled edges between the
states. If a state contains a reducible item, then the state is double-boxed. The edges

and double-boxed states emphasize that the basis for LR parsing is a deterministic

20 Chapter 6. LR Parsing

State 0 Goto E State 3 Goto $ State 4 Goto
Start— e E § 3 — | Start—~Ee $ 4 Start—E $ o
E — eplusEE 1
E — enum 2

p|US num
., State 1 Goto L State 2 Goto
E—pluse EE N E—nume
plus E— eplsEE 1
— E— ¢ num 2 num
E plus
State 5 Goto E State 6 Goto
E—plus EeE 6 | E—plus EEe
E— eplus EE 1
E— ¢ num 2

Figure 6.10: LR(0) computation for Figure 6.1

finite-state automaton (DFA), called the characteristic finite-state machine (CFSM).

A viable prefix of a right sentential form is any prefix that does not extend
beyond its handle. Formally, a CFSM recognizes its grammar's viable prefixes.
Each transition shifts the symbols of a (valid) sentential form. When the automaton
arrives in a double-boxed state, it has processed a viable prefix that ends with a
handle. The handle is the RHS of the (unique) reducible item in the state. At
this point, a reduction can be performed. The sentential form produced by the
reduction can be processed anew by the CFSM. This process can be repeated until
the grammar's goal symbol is shifted (successful parse) or the CFSM blocks (an
input error).

For the input string plus plus num num num $, Figure 6.11 shows the results of
repeatedly presenting the (reverse) derived sentential forms to the CFSM. This ap-
proach serves to illustrate how a CFSM recognizes viable prefixes. However, it is

wasteful to make repeated passes over an input string's sentential forms. For ex-

6.3. LR(0) Table Construction 21

Sentential Transitions Resulting
Prefix Sentential Form

plus plus num num num $
plus plus num States 1, 1, and 2 plus plus E num num $

plus plus Enum States 1, 1, 5,and 2 plus plus EE num $§
plus plus E E States 1,1, 5,and 6 plusEnum $

plus E num States 1, 5, and 2 plusEES$
plus E E States 1, 5, and 6 ES$
ES$ States 1, 3, and 4 Start

Figure 6.11: Processing of plus plus num num num by the LR(0) machine in Figure 6.10.

ample, the repeated passes over the input string's first two tokens (plus plus) always
cause the parser to enter State 1. Because the CFSM is deterministic, processing a
given sequence of vocabulary symbols always has the same effect. Thus, the pars-
ing algorithm given in Figure 6.3 does not make repeated passes over the derived
sentential forms. Instead, the parse state is recorded after each shift so that current
parse state is always associated with whatever symbol happens to be on top of
stack. As reductions eat into the stack, the symbol exposed at the new top-of-stack
bears the current state, which is the state the CFSM would reach if it rescanned
the entire prefix of the current sentential form up to and including the current

top-of-stack symbol.

If a grammar is LR(0), then the construction discussed in this section has the

following properties:

¢ Given a syntactically correct input string, the CFSM will block in only double-
boxed states, which call for a reduction. The CFSM clearly shows that no

progress can occur unless a reduction takes place.

22 Chapter 6. LR Parsing

e There is at most one item present in any double-boxed state—the rule that
should be applied upon entering the state. Upon reaching such states, the
CFSM has completely processed a rule. The associated item is reducible,

with the marker moved as far right as possible.

o If the CFSM's input string is syntactically invalid, then the parser will enter a

state such that the offending terminal symbol cannot be shifted.

The table established during LR(0) construction at Step 20 in Figure 6.9 is almost
suitable for parsing by the algorithm in Figure 6.3. Each state is a row of the table,
and the columns represent grammar symbols. Entries are present only where the
LR(0) construction allows transition between states—these are the shift actions. To
complete the table, we apply the algorithm in Figure 6.12, which establishes the

appropriate reduce actions.

For LR(0), the decision to call for a reduce is reflected in the code of Figure 6.13;
arrival in a double-boxed state signals a reduction irrespective of the next input
token. As reduce actions are inserted, ASSERTENTRY reports any conflicts that
arise when a given state and grammar symbol call for multiple parsing actions.
Step 22 allows an action to be asserted only if the relevant table cell was previously
undefined (error). Finally, Step 21 calls for acceptance when the goal symbol is
shifted in the table's start state. Given the construction in Figure 6.10 and the

grammar in Figure 6.1, LR(0) analysis yields the parse table is shown in Figure 6.14.

6.3. LR(0) Table Construction 23

procedure COMPLETETABLE(Table, grammar)
call COMPUTELOOKAHEAD()
foreach state € Table do

foreach rule € Productions(grammar) do
call TRYRULEINSTATE(state, rule)

call ASSERTENTRY(StartState, GoalSymbol, accept) 21
end
procedure ASSERTENTRY(state, symbol, action)

if Table[state][symbol] = error 22

then Table[state]|[symbol] « action

else

call REPORTCONEFLICT(Table[state][symbol], action) 23

end

Figure 6.12: Completing an LR(0) parse table.

procedure COMPUTELOOKAHEAD()

/% Reserved for the LALR(k) computation given in Section 6.5.2 /
end
procedure TRYRULEINSTATE(s, 7)

if LHS(7)—RHS(7)e €s

then

foreach X' € (X UN) do call ASSERTENTRY(s, X, reduce r)

end

Figure 6.13: LR(0) version of TRYRULEINSTATE.

State || num | plus | § | Start

E
0 accept
1
2 reduce 3
s | (@]]
4 reduce 1
s|E o] [[0
6 reduce 2

Figure 6.14: LR(0) parse table for the grammar in Figure 6.1.

24 Chapter 6. LR Parsing

6.4 Conflict Diagnosis

Sometimes LR construction is not successful, even for simple languages and gram-
mars. In the following sections we consider table-construction methods that are
more powerful than LR(0), thereby accommodating a much larger class of gram-
mars. In this section, we examine why conflicts arise during LR table construction.

We develop approaches for understanding and resolving such conflicts.

The generic LR parser shown in Figure 6.3 is deterministic. Given a parse state
and an input symbol, the parse table can specify exactly one action to be performed
by the parser—shift, reduce, accept, or error. In Chapter Chapter:global:three we
tolerated nondeterminism in the scanner specification because we knew of an effi-
cient for transforming a nondeterministic DFA into a deterministic DFA. Unfortu-
nately, no such algorithm is possible for stack-based parsing engines. Some CFGs
cannot be parsed deterministically. In such cases, perbaps there is another gram-
mar that generates the same language. but for which a deterministic parser can
be constructed. There are context-free languages (CFLs) that provably cannot be
parsed using the (deterministic) LR method (see Exercise 9). However, program-

ming languages are typically designed to be parsed deterministically.

A parse-table conflict arises when the table-construction method cannot decide
between multiple alternatives for some table-cell entry. We then say that the asso-
ciated state (row of the parse table) is inadequate for that method. An inadequate
state for a weaker table-construction algorithm can sometimes be resolved by a

stronger algorithm. For example, the grammar of Figure 6.4 is not LR(0)—a mix

6.4. Conflict Diagnosis 25

of shift and reduce actions can be seen in State 0. However, the table-construction
algorithms introduced in Section 6.5 resolve the LR(0) conflicts for this grammar.
If we consider the possibilities for multiple table-cell entries, only the following

two cases are troublesome for LR(k) parsing.

o shift/reduce conflicts exist in a state when table construction cannot use the
next k tokens to decide whether to shift the next input token or call for a
reduction. The bookmark symbol must occur before a terminal symbol t
in one of the state's items, so that a shift of t could be appropriate. The
bookmark symbol must also occur at the end of some other item, so that a

reduction in this state is also possible.

o reduce/reduce conflicts exist when table construction cannot use the next &
tokens to distinguish between multiple reductions that could be applied in
the inadequate state. Of course, a state with such a conflict must have at

least two reducible items.

Other combinations of actions in a table cell do not make sense. For example, it
cannot be the case that some terminal t could be shifted but also cause an error.
Also, we cannot obtain a shift/shift error: if a state admits the shifting of terminal
symbols t and u, then the target state for the two shifts is different, and there is
no conflict. Exercise 11 considers the impossibility of a shift/reduce conflict on a
nonterminal symbol.

Although the table-construction methods we discuss in the following sections

vary in power, each is capable of reporting conflicts that render a state inadequate.

26 Chapter 6. LR Parsing

Conflicts arise for one of the following reasons.

o The grammar is ambiguous. No (deterministic) table-construction method
can resolve conflicts that arise due to ambiguity. Ambiguous grammars are
considered in Section 6.4.1, but here we summarize possibilities for address-
ing the ambiguity. If a grammar is ambiguous, then some input string has at

least two distinct parse trees.

— If both parse trees are desirable (as in Exercise 37), then the grammar's
language contains a pun. While puns may be tolerable in natural lan-
guages, they are undesirable in the design of computer languages. A
program specified in a computer language should have an unambiguous

interpretation.

— If only one tree has merit, then the grammar can often be modified
to eliminate the ambiguity. While there are inherently ambiguous lan-

guages (see Exercise 12), computer languages are not designed with this

property.

e The grammar is not ambiguous, but the current table-building approach
could not resolve the conflict. In this case, the conflict might disappear if

one or more of the following approaches is followed:

— The current table-construction method is given more lookahead.

— A more powerful table-construction method is used.

It is possible that no amount of lookahead or table-building power can re-

6.4. Conflict Diagnosis 27

1 Stat — E$
2 E — E plus E
3 | num
State 0 Goto State 1 Goto State 2 Goto
Start— e E § 2 E— num e E —EepluskE 3
E — eEplusE 2 Start—Ee $§ 4
E — enum 1
State 3 Goto State 4 Goto State § Goto
E—E pluse E N Start—>E $ e E—EplusEe
E— o Eplus E N E— E e plus E 3
E— & num 1

Figure 6.15: An ambiguous expression grammar.

solve the conflict, even if the grammar is unambiguous. We consider such a

grammar in Section 6.4.2 and in Exercise 36.

When an LR(k) construction algorithm develops an inadequate state, it is an unfor-
tunate but important fact is that it is not possible automatically to decide which of
the above problem afflicts the grammar [?]. It is impossible to construct an algo-
rithm to determine if a CFG is ambiguous. It is therefore also impossible to deter-
mine whether a bounded amount of lookahead can resolve an inadequate state. As
a result, human (instead of mechanical) reasoning is required to understand and re-
pair grammars for which conflicts arise. Sections 6.4.1 and 6.4.2 develop intuition

and strategies for such reasoning.

6.4.1 Ambiguous Grammars

Consider the grammar and its LR(0) construction shown in Figure 6.15. The gram-

mar generates sums of numbers using the familiar infix notation. In the LR(0)

28 Chapter 6. LR Parsing

construction, all states are adequate except State 5. In this state a plus can be
shifted to arrive in State 3. However, State 5 also allows reduction by the rule
E— E plus E. This inadequate state exhibits a shift/reduce conflict for LR(0). To re-
solve this conflict, it must be decided how to fill in the LR parse table for State 5
and the symbol plus. Unfortunately, this grammar is ambiguous, so a unique entry

cannot be determined.

While there is no automatic method for determining if an arbitrary grammar is
ambiguous, the inadequate states can provide valuable assistance in finding a string
with multiple derivations—should one exist. Recall that a parser state represents
transitions made by the CFSM when recognizing viable prefixes. The bookmark
symbol shows the progress made so far; symbols appearing after the bookmark are
symbols that can be shifted to make progress toward a successful parse. While our
ultimate goal is the discovery of an input string with multiple derivations, we begin
by trying to find an ambiguous sentential form. Once identified, the sentential form
can easily be extended into a terminal string, by replacing nonterminals using the

grammar's productions.

Using State 5 in Figure 6.15 as an example, the steps taken to understand

conflicts are as follows.

1. Using the parse table or CFSM, determine a sequence of vocabulary symbols
that cause the parser to move from the start state to the inadequate state.
For Figure 6.15, the simplest such sequence is E plus E, which passes through

States 0, 2, 3, and 5. Thus, in State 5 we have E plus E on the top-of-stack; one

6.4. Conflict Diagnosis 29

Start
E
E

E plus E plus E $

E
E
Start

Figure 6.16: Two derivations for E plus E plus E $. The parse tree on top favors reduction
in State 5; the parse tree on bottom favors a shift.
option is a reduction by E— E plus E. However, with the item E—E e plus E it

is also possible to shift a plus and then an E.

2. If we line up the dots of these two items, we obtain a snapshot of what is on
the stack upon arrival in this state and what may be successfully shifted in
the future. Here we obtain the sentential form prefix E plus E o plus E. The
shift/reduce conflict tells us that there are two potentially successful parses.
We therefore try to construct two derivation trees for E plus E plus E, one as-
suming the reduction at the bookmark symbol and one assuming the shift.
Completing either derivation may require extending this sentential prefix so

that it becomes a sentential form: a string of vocabulary symbols derivable

30 Chapter 6. LR Parsing

1 Start — E$

2 E — E plus num

3 | num

State 0 Goto State 1 Goto State 2 Goto
Start— ¢ E § 2 E— num e E —Eeplus num 3
E — ¢ E plus num 2 Start—>Ee $ 4
E — enum 1
State 3 Goto State 4 Goto State 5 Goto

E—E plus ¢ num N Start—>E $ e E—E plus num e

Figure 6.17: Unambiguous grammar for infix sums and its LR(0) construction.

(in two different ways) from the goal symbol.

For our example, E plus E plus E is almost a complete sentential form. We need only
append $ to obtain E plus E plus E $.

To emphasize that the derivations are constructed for the same string, Fig-
ure 6.16 shows the derivations above and below the sentential form. If the re-
duction is performed, then the early portion of E plus E plus E $ is structured under
a nonterminal; otherwise, the input string is shifted so that the latter portion of
the sentential form is reduced first. The parse tree that favors the reduction in
State 5 corresponds to left-association for addition, while the shift corresponds to
right-association.

Having analyzed the ambiguity in the grammar of Figure 6.15, we next elimi-
nate the ambiguity by creating a grammar that favors left-association—the reduc-
tion instead of the shift. Such a grammar and its LR(0) construction are shown in
Figure 6.17. The grammars in Figures 6.15 and 6.17 generate the same language.

In fact, the language is regular, denoted by the regular expression num (plus num)* $.

6.4. Conflict Diagnosis 31

1 Start — Exprs $
2 Exprs — Ea
3 | Fb
4 E — E plus num
5 | num
6 F — F plus num
7 | num
State 0 Goto State 2 Goto
Start — ¢ Exprs § 1 E— num e
Exprs— ¢ E a 4 F—nume
Exprs— ¢ F b 3
E — e E plus num 4
E — enum 2
F — e F plus num 3
F — enum 2

Figure 6.18: A grammar that is not LR(k).

So we see that even simple languages can have ambiguous grammars. In practice,
diagnosing ambiguity can be more difficult. In particular, finding the ambiguous
sentential form may require significant extension of a viable prefix. Exercises 36

and 37 provide practice in finding and fixing a grammar's ambiguity.

6.4.2 Grammars that are not LR(k)

Figure 6.18 shows a grammar and a portion of its LR(0) construction for a
language similar to infix addition, where expressions end in either a or b. The
complete LR(0) construction is left as Exercise 13. State 2 contains a reduce/reduce
conflict. In this state, it is not clear whether num should be reduced to an E or an
F. The viable prefix that takes us to State 2 is simply num. To obtain a sentential
form, this must be extended either to numa$ or numb $. If we use the former

sentential form, then F cannot be involved in the derivation. Similarly, if we use the

32 Chapter 6. LR Parsing

latter sentential form, E is not involved. Thus, progress past num cannot involve
more than one derivation, and the grammar is not ambiguous.

Since LR(0) construction failed for the grammar in Figure 6.18, we could try
a more ambitious table-construction method from among those discussed in Sec-
tions 6.5 and 6.6. It turns out that none can succeed. All LR(k) constructions
analyze grammars using k lookahead symbols. If a grammar is LR(k), then there
is some value of k for which all states are adequate in the LR(k) construction de-
scribed in Section 6.6. The grammar in Figure 6.18 is not LR(k) for any k. To see

this, consider the following rightmost derivation of num plus ... plus num a.

Start =, Exprs$
=, Ea$
=., Eplusnuma$
=%, Eplus..plusnuma$

= num plus ... plus numa $

rm

A bottom-up parse must play the above derivation backwards. Thus, the first few
steps of the parse will be:

m Initial Configuration num plus plusnuma $§

num .
2 shift num plus plusnuma $

With num on top-of-stack, we are in State 2. A deterministic, bottom-up parser
must decide at this point whether to reduce num to an E or an F. If the decision
were delayed, then the reduction would have to take place in the middle of the

stack, and this is not allowed. The information needed to resolve the reduce/reduce

6.5. Conflict Resolution for LR(0) Tables 33

conflict appears just before the $§ symbol. Unfortunately, the relevant a or b could
be arbitrarily far ahead in the input, because strings derived from E or F can be
arbitrarily long.

In summary, simple grammars and languages can have subtle problems that
prohibit generation of a bottom-up parser. It follows that a top-down parser would
also fail on such grammars (Exercise 14). The LR(0) construction can provide im-
portant clues for diagnosing a grammar's inadequacies; understanding and resolv-
ing such conflicts requires human intelligence. Also, the LR(0) construction forms

the basis of the SLR(k) and LALR(k) constructions—techniques we consider next.

6.5 Conflict Resolution for LR(0) Tables

While LR(0) construction succeeded for the grammar in Figure 6.17, most gram-
mars require some lookahead during table construction. In this section we consider
methods that are based on the LR(0) construction. Where conflicts arise, these
methods analyze the grammar to determine if the conflict can be resolved without
expanding the number of states (rows) in the LR(0) table. Section 6.5.1 presents
the SLR(k) construction, which is simple but does not work as well as the LALR(k)

construction introduced in Section 6.5.2.

6.5.1 SLR(k) Table Construction

The SLR(k) method attempts to resolve inadequate states using grammar anal-

ysis methods presented in Chapter Chapter:global:four. To demonstrate the SLR(k)

34 Chapter 6. LR Parsing

1 Start — E$
2 E — E plus num
3 | E times num
4 | num

Start

E
E

E
\
num plus num times num $

Figure 6.19: Expressions with sums and products.

construction, we require a grammar that is not LR(0). We begin by extending the
grammar in Figure 6.17 to accommodate expressions involving sums and prod-
ucts. Figure 6.19 shows such a grammar along with a parse tree for the string
num plus num times num $. Exercise 15 shows that this grammar is LR(0). However,
it does not produce the parse trees that structure the expressions appropriately.
The parse tree shown in Figure 6.19 structures the computation by adding the first
two nums and then multiplying that sum by the third num. As such, the input string
3+4+7 would produce a value of 49 if evaluation were guided by the computation's

parse tree.

A common convention in mathematics is that multiplication has precedence
over addition. Thus, the computation 3 + 4 x 7 should be viewed as adding 3 to
the product 4 * 7, resulting in the value 31. Such conventions are typically adopted

in programming language design, in an effort to simplify program authoring and

6.5. Conflict Resolution for LR(0) Tables 35

readability. We therefore seek a parse tree that appropriately structures expressions

involving multiplication and addition.

To develop the grammar that achieves the desired effect, we first observe that a
string in the language of Figure 6.19 should be regarded as a sum of products. The
grammar in Figure 6.17 generates sums of nums. A common technique to expand
a language involves replacing a terminal symbol in the grammar by a nonterminal
whose role in the grammar is equivalent. To produce a sum of Ts rather than a
sum of nums, we need only replace num with T to obtain the rules for E shown in
Figure 6.20. To achieve a sum of products, each T can now derive a product, with
the simplest product consisting of a single num. Thus, the rules for T are based on
the rules for E, substituting times for plus. Figure 6.20 shows a parse tree for the

input string from Figure 6.19, with multiplication having precedence over addition.

Figure 6.21 shows a portion of the LR(0) construction for our precedence-
respecting grammar. States 1 and 6 are inadequate for LR(0): in each of these states,
there is the possibility of shifting a times or applying a reduction to E. Figure 6.21
shows a sequence of parser actions for the sentential form E plus num times num $,

leaving the parser in State 6.

Consider the shift/reduce conflict of State 6. To determine if the grammar in
Figure 6.20 is ambiguous, we turn to the methods described in Section 6.4. We
proceed by assuming the shift and reduce are each possible given the sentential

form E plus T times num $.

o If the shift is taken, then we can continue the parse in Figure 6.21 to obtain

36 Chapter 6. LR Parsing

1 Stat — E$
2 E — Eplus T
3 | T
4 T — T times num
5 | num
Start

E
T
num plus num times num $

Figure 6.20: Grammar for sums of products.

the parse tree shown in Figure 6.20.

¢ Reduction by rule E—E plus T yields E times num $, which causes the CFSM in
Figure 6.21 to block in State 3 with no progress possible. If we try to reduce
using T—num, then we obtain E times T §, which can be further reduced to

E times E $. Neither of phrases can be further reduced to the goal symbol.

Thus, E times num $ is not a valid sentential form for this grammar and a reduction

in State 6 for this sentential form is inappropriate.

6.5. Conflict Resolution for LR(0) Tables

37

State 0 Goto State 1 Goto State 2 Goto
Start— e E § E—Te T—num e
E — eEplusT 3 T—Te times num 7
E — T 1
T — T times num 1
T — enum 2
State 3 Goto State 4 Goto State 5 Goto
Start—Ee § N E—EpluseT 6 Start—E $
E —EeplusT 4 T— ¢ T times num 6
T— & num 2
State 6 Goto State 7 Goto State 8 Goto
E—EplusTe T—T times ¢ num 8 T—T times num e
T— T ¢ times num 7
0 Initial Configuration E plus num times num $
E . .
10]]3] shift E plus num times num $
[? plus
0|31 4 shift plus num times num $
E || Plus|| num . .
ol|31]| 4| 2 shift num times num $
E || plus
10]]3]] 4 Reduce numto T T times num $
[] ? plus || T
ofll3|| 4 ||e shift T times num $

Figure 6.21: LR(0) construction and parse leading to inadequate State 6.

With the item E—E plus Te in State 6, reduction by E—E plus T must be ap-

propriate under some conditions. If we examine the sentential forms E plus T $ and

E plus T plus num $, we see that the E—E plus T must be applied in State 6 when the

next input symbol is plus or $, but not times. LR(0) could not selectively call for a

reduction in any state; perhaps methods that can consult lookahead information

in TRYRULEINSTATE can resolve this conflict.

Consider the sequence of parser actions that could be applied between a reduc-

tion by E—E plus T and the next shift of a terminal symbol. Following the reduc-

38 Chapter 6. LR Parsing

procedure TRYRULEINSTATE(s, 7)
if LHS(7)—>RHS(7) e € s
then
foreach X € Follow(LHS(7)) do
call ASSERTENTRY(s, X, reduce r)
end

Figure 6.22: SLR(1) version of TRYRULEINSTATE.

tion, E must be shifted onto the stack. At this point, assume terminal symbol plus
is the next input symbol. If the reduction to E can lead to a successful parse, then
plus can appear next to E in some valid sentential form. An equivalent statement is
plus € Follow(E), using the Follow computation from Chapter Chapter:global:four.
SLR(k) parsing uses Follow,(A) to call for a reduction to A in any state con-
taining a reducible item for A. Algorithmically, we obtain SLR(k) by performing the
LR(0) construction in Figure 6.8; the only change is to the method TRYRULEINSTATE,
whose SLR(1) version is shown in Figure 6.22. For our example, States 1 and 6 are
resolved by computing Follow(E) = { plus,$}. The SLR(1) parse table that results

from this analysis is shown in Figure 6.23.

6.5.2 LALR(k) Table Construction

SLR(k) attempts to resolve LR(0) inadequate states using Follow, information. Such
information is computed globally for a grammar. Sometimes SLR(k) construction
fails only because the Follow, information is not rule-specific. Consider the gram-
mar and its partial LR(0) construction shown in Figure 6.24. This grammar
generates the language { a, ab, ac,xac }. The grammar is not ambiguous, because

each of these strings has a unique derivation. However, State 3 has an LR(0)

6.5. Conflict Resolution for LR(0) Tables

State || num | plus | times | § | Start | E | T

accept

[+]
[«]| v | w

XN N[B~ W|DN|—|O
[~]
[>]

Figure 6.23: SLR(1) parse table for the grammar in Figure 6.20.

1 Start — S$
2 S — AB
3 | ac
4 | xAc
S A — a
6 B — b
7 A
State 0 Goto State 3 Goto
Start— ¢S § 4 S—aec 6
S — e¢AB 2 A—ae
S —eac 3
S —exAc 1
A —ea 3

Figure 6.24: A grammar that is not SLR(k).

40 Chapter 6. LR Parsing

1 Start — S$
2 S — A1 B
3 | ac
4 | xAyc
5 A1 — a
6 Az — a
7 B — b
8 A
State 0 Goto State 2 Goto
Start— ¢S $ 3 S —aec 8
S — A B 4 Al—ae
S —eac 2
S —SexAc 1
Al — ea 2

Figure 6.25: An SLR(1) grammar for the language defined in Figure 6.24.

shift/reduce conflict. SLR(R) tries to resolve the shift/reduce conflict, computing
Followg(A) = {b$*~! c$*~' $*1. A can be followed in some sentential form by
any number of end-of-string symbols, possibly prefaced by b or c. If we examine
States 0 and 3 more carefully, we see that it is not possible for ¢ to occur after the
expansion of A in State 3. In the closure of State 0, the fresh item for A was created
by the item S— e A B. Following the shift of A, only b or $ can occur—there is no
sentential form A ¢ $. Given the above analysis, we can fix the shift/reduce conflict
by modifying the grammar to have two “versions” of A. Using A; and A,, the re-
sulting SLR(1) grammar is shown in Figure 6.25. Here, State 2 is resolved, since

Follow(A;) = {$,b}.

SLR(k) has difficulty with the grammar in Figure 6.24 because Follow sets are
computed globally across the grammar. Copying productions and renaming non-

terminals can cause the Follow computation to become more production-specific, as

6.5. Conflict Resolution for LR(0) Tables 41

in Figure 6.25. However, this is tedious and can complicate the understanding and
maintenance of a programming language's grammar. In this section we consider

b2}

LALR(k) parsing, which offers a more specialized computation of “follow” infor-
mation. Short for “lookahead” LR, the term LALR is not particularly informative—

SLR and LR also use lookahead. However, LALR offers superior lookahead analysis

for the LR(0) table.

Like SLR(k), LALR(k) is based on the LR(0) construction given in Section 6.3.
Thus, an LALR(k) table has the same number of rows (states) as does an LR(0) table
for the same grammar. While LR(k) (discussed in Section 6.6) offers more powerful

lookahead analysis, this is achieved at the expense of introducing more states.

Due to its balance of power and efficiency, LALR(1) is the most popular LR table-
building method. Chapter Chapter:global:seven describes tools that can automati-
cally construct parsers for grammars that are LALR(1). For LALR(1), we redefine the

following two methods from Figure 6.13.

COMPUTELOOKAHEAD Figure 6.26 contains code to build and evaluate a looka-
head propagation graph. This computation establishes ItemFollow((state, item))
as the set of (terminal) symbols that can follow the reducible item as of the

given state. The propagation graph is described below in greater detail.

TRYRULEINSTATE In the LALR(1) version, the ItemFollow set for a reducible item

is consulted for symbols that can apparently occur after this reduction.

42 Chapter 6. LR Parsing

Propagation Graph

We have not formally named the LR(0) items, but an item occurs at most once in
any state. Thus, the pair (s,A—« e 3) suffices to identify the item A— « e 3 that
occurs in state s. For each valid state and item pair, Step 24 in Figure 6.26 creates
a vertex v in the propagation graph. Each item in an LR(0) construction is repre-
sented by a vertex in this graph. The ItemFollow sets are initially empty, except
for the augmenting item Start— ¢S $ in the LR(0) start-state. Edges are placed in
the graph between items i and j when the symbols that follow the reducible form
of item 7 should be included in the corresponding set of symbols for item j. For
the purposes of lookahead analysis, the input string can be considered to have an
arbitrary number of “end-of-string” characters. Step 25 forces the entire program,

derived from any rule for Start, to be followed by $.

Step 26 of the algorithm in Figure 6.26 considers items of the form A— o e By
in state s. This generic item indicates that the bookmark is just before the symbol B,
with grammar symbols in « appearing before the bookmark, and grammar symbols
in v appearing after B. Note that « or v could be absent, in which case & = A or
v = A, respectively. The symbol B is always present, unless the grammar rule is
A— . The lookahead computation is specifically concerned with A— « e By when
B is a nonterminal, because CLOSURE in Figure 6.9 adds items to state s for each of
B's productions. The symbols that can follow B depend on =, which is either absent
or present in the item. Also, even when v is present, it is possible that ¥ =* A. The

algorithm in Figure 6.26 takes these cases into account as follows.

6.5. Conflict Resolution for LR(0) Tables 43

o For the item A— « e By, any symbol in First(+y) can follow each closure item
B— e 4. This is true even when + is absent: in such cases, First(A) = (. Thus,
Step 28 places symbols from First(+) in the ItemFollow sets for each B— o §

in state s.

ItemFollow sets are useful only when the bookmark progresses to the point
of a reduction. B— ed is only the promise of a reduction to B once § has
been found. Thus, the lookahead symbols must accompany the bookmark's
progress across d so they are available for B—d e in the appropriate state.
Such migration of lookahead symbols is represented by propagation edges,

as described next.

o Edges must be placed in the propagation graph when the symbols that are
associated with one item should be added to the symbols associated with
another item. Following are two situations that call for the addition of prop-

agation edges.

— As described above, the lookahead symbols introduced by Step 28 are
useful only when the bookmark has advanced to the end of the rule. In
LR(0), the CFSM contains an edge from state s to state ¢ when the ad-
vance of the bookmark symbol for an item in state s creates an item
in state . For lookahead propagation in LALR, the edges are more
specific—Step 27 places edges in the propagation graph between items.
Specifically, an edge is placed from an item A— « e By in state s to the

itetm A— aB e~ in state ¢ obtained by advancing the bookmark, if ¢ is

44 Chapter 6. LR Parsing

procedure COMPUTELOOKAHEAD()
call BUILDITEMPROPGRAPH()
call EVALITEMPROPGRAPH()
end
procedure BUILDITEMPROPGRAPH()
foreach s € States do
foreach item € state do
v < Graph.ADDVERTEX((s, item)) 24
ItemFollow(v) <+ 0
foreach p € PRODUCTIONSFOR(Start) do

ItemFollow((StartState, Start— e RHS(p))) «+ {$} 25
foreach s € States do
foreach A—~«a eBy c s do 26
v < Graph FINDVERTEX((s, A— « e By))
call Graph.ADDEDGE(v, (Table[s|[B],A—aBe~)) 27
foreach (w <« (s,B— 4)) € Graph.Vertices do
ItemFollow(w) + ItemFollow(w) U First(v) 28
if ALLDERIVEEMPTY(~) 29
then call Graph.ADDEDGE(v, w)
end
procedure EVALITEMPROPGRAPH()
repeat 30

changed « false

foreach (v,w) € Graph.Edges do
old «+ TtemFollow(w)
ItemFollow(w) + ItemFollow(w) U ItemFollow(v)
if ItemFollow(w) # old
then changed + true

until not changed
end

Figure 6.26: LALR(1) version of COMPUTELOOKAHEAD.
procedure TRYRULEINSTATE(s, 7)
if LHS(7)—>RHS(7) e € s
then
foreach X € ¥ do
if X € ItemFollow((s, LHS(7)—RHS(7)e))
then call ASSERTENTRY(s, X, reduce)
end

Figure 6.27: LALR(1) version of TRYRULEINSTATE.

6.5. Conflict Resolution for LR(0) Tables

State LR(0) Item Goto | Prop Edges Initialize
State | Placed by Step ItemFollow
27 29 First(v) 28
0| 1 Start—>eS $ 4 |13 $ 2,3,4
2 S>eAB 2 8 5 b 5
3 S—seac 3 |11
4 S»exAc 1 6
S A= ea 3 |12
1] 6 S—xeAc 9 |18 c 7
7 A ea 10 | 19
2| 8 S—AeB 8 | 17 9,10
9 B—eb 7 | 16
10 B— o
3|11 S—aec 6 |15
12 A—ae
4 | 13 Start—Se$ S |14
S| 14 Start—S $e
6|15 S—ace
7116 B—=be
8|17 S—ABe
9118 S=xAec 11 | 20
10 | 19 A—ae
11 | 20 S—xAce

Figure 6.28: LALR(1) analysis of the grammar in Figure 6.24.

the CFSM state reached by processing a B in state s.

45

— Consider again the item A— « e By and the closure items introduced

when B is a nonterminal. When v =* A, either because ~ is absent or

because the string of symbols in v can derive A, then any symbol that

can follow A can also follow B. Thus, Step 29 places a propagation edge

from the item for A to the item for B.

46 Chapter 6. LR Parsing

The edges placed by these steps are used at Step 30 to affect the appropriate
ItemFollow sets. The loop at Step 30 continues until no changes are observed
in any ItemFollow set. This loop must eventually terminate, because the
lookahead sets are only increased, by symbols drawn from a finite alphabet

(2).

Now consider the grammar in Figure 6.24 and its LALR(1) construction shown in
Figure 6.28. The items listed under the column for Step 27 are the targets of edges
placed in the propagation graph to carry symbols to the point of reduction. For
example, consider Items 6 and 7. For the item S—xe A ¢, we have v = c. Thus,
when the item A— ea is generated in Item 7, ¢ can follow the reduction to A.
Step 28 therefore adds c directly to Item 5's ItemFollow set. However, ¢ is not
useful until it is time to apply the reduction A—a. Thus, propagation edges are

placed between Items 7 and 19 by Step 27.

In most cases, lookahead is either generated (when First(vy) # 0) or propagated
(when v = X). However, it is possible that First(y) # @ and v =* A, as in Item 2.
Here, v = B; we have First(B) = { b} but we also have B=* A. Thus, Step 28
causes b to contribute to Item S's ItemFollow set. Additionally, the ItemFollow
set at Item 2 is forwarded to Item 5 by a propagation edge placed by Step 29.
Finally, the lookahead present at Item 2 must make its way to Item 17 where it can
be consulted when the reduction S— A B is applied. Thus, propagation edges are

placed by Step 27 between Items 2 and 8 and between Items 8 and 17.

Constructing the propagation graph is only half of the process we need to

6.5. Conflict Resolution for LR(0) Tables 47

Item | Prop To Initial | Pass 1

1 13 $

2 5.8 $

3 11 $

4 6 $

5 12 b $

6 18 $

7 19 ¢

8| 9,10,17 $

9 16 $
10 $
11 15 $
12 b$
13 14 $
14 $
15 $
16 $
17 $
18 20 $
19 c
20 $

Figure 6.29: Iterations for LALR(1) follow sets.

compute lookahead sets. Once LALR(1) construction has established the propaga-
tion graph and has initialized the ItemFollow sets, as shown in Figure 6.28, the
propagation graph can be evaluated. EVALITEMPROPGRAPH in Figure 6.26 evalu-
ates the graph by iteratively propagating lookahead information along the graph's

edges until no new information appears.

In Figure 6.29 we trace the progress of this algorithm on our example. The
“Initial” column shows the lookahead sets established by Step 28. The loop at
Step 30 unions lookahead sets as determined by the propagation graph's edges.

For the example we have considered thus far, the loop at Step 30 converges after

48 Chapter 6. LR Parsing

1 Stat — S$

2 S — x C1 y1 Cn yn
3 | A1

4 A1 — b1 C1

5 | a1

6 An — bn Cn

7 | an

8 (1 — An

9 Cn — A1

Figure 6.30: LALR(1) analysis: grammar.

a single pass. As written, the algorithm requires a second pass to detect that no
lookahead sets change after the first pass. We do not show the second pass in

Figure 6.29.

The loop at Step 30 continues until no ItemFollow set is changed from the
previous iteration. The number of iterations prior to convergence depends on the
structure of the propagation graph. The graph with edges specified in Figure 6.29

is acyclic—such graphs can be evaluated completely in a single pass.

In general, multiple passes can be required for convergence. We illustrate this
using Figure 6.31, which records how an LALR(1) propagation graph is constructed
for the grammar shown in Figure 6.30. Figure 6.32 shows the progress of the loop
at Step 30. The lookahead sets for a given item are the union of the symbols dis-
played in the three right-most columns. For this example, the sets converge after
two passes, but a third pass is necessary to detect this. Two passes are necessary,
because the propagation graph embeds the graph shown in Figure 6.33. This

graph contains a cycle with one “retreating” backedge. Information cannot prop-

6.5. Conflict Resolution for LR(0) Tables

State LR(0) Item Goto | Prop Edges Initialize
State | Placed by Step | ItemFollow
27 29 First(v) 28
0| 1 Start— S $ 3 |11 $ 2,3
2 S— exClylCnyn 1 6
3 S— e Al 5|16 4,5
4 A1— eb1 C1 4 |12
5 Al— eal 2 |10
1 6 S—xeClyl Cnyn 13 | 27 y1 7
7 C1— e An 7 |18 8,9
8 An— ebn Cn 8 | 19
9 An— ean 9 |23
2|10 Al—ale
3| 11 Start—=Se$ 12 | 26
4|12 Al—=bleCl 6 | 17 13
13 C1— o An 7 |18 14,15
14 An— ebn Cn 8 | 19
15 An— ean 9 |23
5116 S—=Ale
6| 17 A1—bl Cle
7118 Cl—=Ane
8| 19 An—bneCn 10 | 24 20
20 Cn— o Al 11 | 25 21,22
21 A1— eb1 C1 4 |12
22 Al— eal 2 |10
9|23 An—ane
10 | 24 An—bn Cne
11 | 25 Ch—Ale
12 | 26 Start—S $e
13 | 27 S—x Cleyl Cnyn 14 | 28
14 | 28 S—x C1 yleCn yn 15 | 32 yn 29
29 Cn— e Al 11 | 25 30,31
30 A1— ebl C1 4 |12
31 A= eal 2 |10
15 | 32 S—x C1 yl Cneyn 16 | 33
16 | 33 S—=xClyl Cnyne

Figure 6.31

: LALR(1) analysis.

49

50 Chapter 6. LR Parsing

Item | Prop To Initial | Pass1 Pass2
1 11 $
2 6 $
3| 45,16 $
4 12 $
5 10 $
6 27 $
71 8,9,18 y1
8 19 y1
9 23 y1
10 $ y1 yn
11 26 $
12 | 13,17 $ y1 yn
13 | 14,15,18 $ y1 yn
14 19 $ y1 yn
15 23 $ y1 yn
16 $
17 $ y1 yn
18 y1 $ yn
19 | 20,24 vyl $ yn
20 | 21,22,25 y1'$ yn
21 12 vyl $ yn
22 10 v1'$ yn
23 y1 $ yn
24 y1 $ yn
25 y1 $ yn
26 $
27 28 $
28 32 $
29 | 25,30,31 yn
30 12 yn
31 10 yn
32 33 $
33 $

Figure 6.32: Iterations for LALR(1) follow sets.

Figure 6.33: Embedded propagation subgraph.

6.6. LR(k) Table Construction 51

agate from item 20 to 12 in a single pass. Exercise 27 explores how to extend the
grammar in Figure 6.30 so that convergence can require any number of iterations.
In practice, LALR(1) lookahead computations converge quickly, usually in one or
two passes.

In summary, LALR(1) is a powerful parsing method and is the basis for most
bottom-up parser generators. To achieve greater power, more lookahead can be
applied, but this is rarely necessary. LALR(1) grammars are available for all popular

programming languages.

6.6 LR(k) Table Construction

In this section we describe an LR table-construction method that accommodates all
deterministic, context-free languages. While this may seem a boon, LR(k) parsing
is not very practical, because even LR(1) tables are typically much larger than the
LR(0) tables upon which SLR(k) and LALR(k) parsing are based. Moreover, it is rare
that LR(1) can handle a grammar for which LALR(1) construction fails. We present
such a grammar in Figure 6.34, but gramamrs such as these do not arise very often

in practice. When LALR(1) fails, it is typically for one of the following reasons.

e The grammar is ambiguous—LR(k) cannot help.

¢ More lookahead is needed—LR(k) can help (for & > 1). However, LALR(k)

would probably also work in such cases.

¢ No amount of lookahead suffices—LR(k) cannot help.

52 Chapter 6. LR Parsing

1 Stat — S§
2 S — Ip Mrp
3 | b Mrb
4 | IpUrb
5 | 1bUrp
6 M — expr
7 U — expr

Figure 6.34: A grammar that is not LALR(k).

The grammar in Figure 6.34 allows strings generated by the nonterminal M to
be surrounded by matching parentheses (Ip and rp) or braces (Ib and rb). The gram-
mar also allows S to generate strings with unmatched punctuation. The unmatched
expressions are generated by the nonterminal U. The grammar can easily be ex-
panded by replacing the terminal expr with a nonterminal that derives arithmetic
expressions, such as E in the grammar of Figure 6.20. While M and U generate the
same terminal strings, the grammar distinguishes between them so that a semantic

action can report the mismatched punctuation—using reduction by U—expr.

A portion of the LALR(1) analysis of the grammar in Figure 6.34 is shown in
Figure 6.36; the complete analysis is left for Exercise 28. Consider the looka-
heads that will propagate into State 6. For Item 14, which calls for the reduction
M—expr, rp is sent to Item 8 and then to Item 14. Also, rb is sent to Item 12
and then to Item 14. Thus, ItemFollow(14) = {rb,rp}. Similarly, we compute
ItemFollow(15) = {rb,rp}. Thus, State 6 contains a reduce/reduce conflict. For

LALR(1), the rules M— expr and U— expr can each be followed by either rp or rb.

6.6. LR(k) Table Construction 53
State 0 Goto State 1 Goto State 2 Goto State 3 Goto
Start— ¢S § 1 ‘ Start—+Se § 13 ‘ S —lpeMrp 10 S —lbeMrb 5
S —elpMrp 2 S—=lpeUrb 9 S—lbeUrp 4
S —elbMrb 3 M— e expr 6 M— e expr 6
S —elpUrb 2 U— eexpr 6 U— eexpr 6
S —elbUrp 3
State 4 Goto State 5 Goto State 6 Goto State 7 Goto
S=lbUer 8 S=IlbMerb 7 M — expr e S=>IbMrbe
U —expre
State 8 Goto State 9 Goto State 10 Goto State 11 Goto
S—=lbUre S—IlpUerb 12 S—=IpMerp 11 S=lpMrmpe
State 12 Goto State 13 Goto
‘ S—lpUrbe ‘ ‘ Start—+S $ e ‘
Figure 6.35: LR(0) construction.
State LR(0) Item Goto | Prop Edges Initialize
State | Placed by Step ItemFollow
27 29 First(v) 28
0 1 Start— ¢S $ 1 2? $ 2,3,4,5
2 S—elp Mrp 2 6
3 S—>elbMrb 3 (110
4 S— elpUrb 2 7
S S—elbUrp 3 |11
2 6 S—lpeMrp 10 2? rp 8
7 S—lpeU rb 9 | 22 rb 9
8 M— eexpr 6 | 14
9 U— eexpr 6 |15
3110 S—lbeMrb S| 2 rb 12
11 S—lbeU rp 4 2? rp 13
12 M— eexpr 6 | 14
13 U— eexpr 6 | 15
6 | 14 M—expre
15 U—expre

Figure 6.36:

Partial LALR(1) analysis.

54 Chapter 6. LR Parsing

Because LALR(1) is based on LR(0), there is exactly one state with the kernel of
State 6. Thus, States 2 and 3 must share State 6 when shifting an expr. If only we
could split State 6, so that State 2 shifts to one version and State 3 shifts to the other,
then the lookaheads in each state could resolve the conflict between M — expr and
U—expr. The LR(1) construction causes such splitting, because a state is uniquely

identified not only by its kernel from LR(0) but also its lookahead information.

SLR(k) and LALR(k) supply information to LR(0) states to help resolve conflicts.
In LR(k), such information is part of the items themselves. For LR(k), we extend
an item's notation from A—a e 3 to [A—«a e 3,w]. For LR(1), w is a (terminal)
symbol that can follow A when this item becomes reducible. For LR(k), & > 0, w
is a k-length string that can follow A after reduction. If symbols x and y can both
follow A when A—« e 3 becomes reducible, then the corresponding LR(1) state

contains both [A—= e 3,x]and [A—ae3,y].

Notice how nicely the notation for LR(k) generalizes LR(0). For LR(0), v must
be a 0-length string. The only such string is A, which provides no information at a

possible point of reduction, since A does not occur as input.

Examples of LR(1) items for the grammar in Figure 6.34 include [S—IpeM rp,$]
and [M—expre ,rp]. The first item is not ready for reduction, but indicates that
$ will follow the reduction to S when the item becomes reducible in State 11. The
second item calls for a reduction by rule M— expr when rp is the next input token.
It is possible and likely that a given state contains several items that differ only in

their follow symbol.

6.6. LR(k) Table Construction 55

The following steps must be modified in Figures 6.8 and 6.9.

Step 7: We initialize Startltems by including LR(1) items that have $ as the follow
symbol:

StartItems <« {[Start— ¢ RHS(p),$]| p € PRODUCTIONSFOR(Start) }

Step 13: We augment the LR(0) item so that ADVANCEDOT returns the appropriate
LR(1) items:
return ({ [A—aX e 3 a] | [Asae X5, a] € state })

Step 15: This entire loop is replaced by the following:
foreach [A—« eBv,a] € ans do
foreach p € PRODUCTIONSFOR(B) do
foreach b € First(~va) do 31
ans < ansU{[B— ¢ RHS(p),b]}

Figure 6.37: LR(1) construction.

In LR(k), a state is a set of LR(k) items, and construction of the CFSM is ba-
sically the same as with LR(0). States are represented by their kernel items, and
new states are generated as needed. Figure 6.37 presents an LR(1) construction
algorithm in terms of modifications to the LR(0) algorithm shown in Figures 6.8
and 6.9. At Step 31, any symbol that can follow B due to the presence of ~ is
considered; when v =* A, then any symbol a that can follow A can also follow
B. Thus, Step 31 considers each symbol in First(ya). The current state receives
an item for reach rule for B and each possible follow symbol. Figure 6.13 shows
TRYRULEINSTATE—the LR(0) method for determining if a state calls for a particular

reduction. The LR(1) version of TRYRULEINSTATE is shown in Figure 6.38.

Figure 6.39 shows the LR(1) construction for the grammar in Figure 6.34.
States 6 and 14 would be merged under LR(0). For LR(1), these states differ by

the lookaheads associated with the reducible items. Thus, LR(1) is able to resolve

56 Chapter 6. LR Parsing

procedure TRYRULEINSTATE(s, 7)

if [LHS(7)—RHS(7)e ,w] € s

then call ASSERTENTRY(s, w, reduce r)
end

Figure 6.38: LR(1) version of TRYRULEINSTATE.

what would have been a reduce/reduce conflict under LR(0).

The number of states such as States 6 and 14 that split during LR(1) construc-
tion is usually much larger. Instead of constructing a full LR(1) parse table, one
could begin with LALR(1), which is based on the LR(0) construction. States could
then be split selectively. As discussed in Exercise 34, LR(k) can resolve only the re-
duce/reduce conflicts that arise during LALR(k) construction. A shift/reduce conflict
in LALR(k) will also be present in the correponding LR(k) construction. Exercise 35
considers how to split LR(0) states on-demand, in response to reduce/reduce con-

flicts that arise in LALR(k) constructions.

Summary

This concludes our study of LR parsers. We have investigated a number of LR table-
building methods, from LR(0) to LR(1). The intermediate methods—SLR(1) and
LALR(1)—are the most practical. In particular, LALR(1) provides excellent conflict
resolution and generates very compact tables. Tools based on LALR(1) grammars
are discussed in Chapter Chapter:global:seven. Such tools are indispensible for
language modification and extension. Changes can be prototyped using an LALR(1)
grammar for the language's syntax. When conflicts occur, the methods discussed

in Section 6.4 help identify why the proposed modification may not work. Because

6.6. LR(k) Table Construction 57

State 0 GOTO State 1 GOTO State 2 GOTO
[Start— ¢S $,$1] 1 [Start—+Se $,$] 13 [S—lpeMr,$] 10
[S — elpMrmp,$] 2 [S—lpeUrb,$] 9
[S — elbMrb,$] 3 [M— eexpr ,rmp] 6
[S — elpUrb,$] 2 [U— eexpr,rb] 6
[S — elbUrp,$] 3

State 3 GOTO State 4 GOTO State 5 GOTO
[S—=TbeMrb, $] 5 [S—=IlbUerp,$] 8 [S=>TboMerb,$] 7
[S—lbeUrp,$] 4
[M— eexpr ,rb] 14
[U— eexpr,rmp] 14

State 6 GOTO State 7 GOTO State 8 GOTO
[M—expre ,rp] [S=>lbMrbe ,§] [S—=IlbUrpe ,$]
[U—expre ,rb]

State 9 GOTO State 10 GOTO State 11 GOTO
[S—IpUerb,$] 12 [S—=IpMerp,$] 11 [S—=IpMrmpe ,$]

State 12 GOTO State 13 GOTO State 14 GOTO

[S=lpUrbe ,$] [Start—S $o ,$] [M—expre ,rb]
[U—expre ,rp]

Figure 6.39: LR(1) construction.

of their efficiency and power, LALR(1) grammars are available for most modern
programming languages. Indeed, the syntax of modern programming languages is

commonly designed with LALR(1) parsing in mind.

58 Chapter 6. LR Parsing

Exercises

1. Build the CFSM and the parse table for the grammar shown in Figure 6.1.

2. Using the knitting analogy of Section 6.2.2, show the sequence of LR shift and

reduce actions for the grammar of Figure 6.1 on the following strings.

(a) plus plus num num num $

(b) plus num plus num num $

3. Figure 6.6 traces a bottom-up parse of an input string using the table shown

in Figure 6.5. Trace the parse of the following strings.

4. Build the CFSM for the following grammar.

6.6. LR(k) Table Construction

5. Show the LR parse table for the CFSM constructed in Exercise 4.

10

11

12

Prog

Block

StmtList

Stmt

Var

Expr

%

%

Block $

begin StmtList end
StmtList semi Stmt
Stmt

Block

Var assign Expr

id

id Ib Expr rb

Expr plus T

T

Var

Ip Expr rp

6. Which of following grammars are LR(0)? Explain why.

S

StmtList

Stmt

%

%

%

StmtList $
StmtList semi Stmt

Stmt

59

Chapter 6. LR Parsing

1 S — StmtList $

2 StmtList — Stmt semi StmtList
(b)

3 | Stmt

4 Stmt — s

1 S — StmtList $

2 StmtlList — StmtList semi StmtList

3 | Stmt
4 Stmt — s
1 S — StmtList $

(d) 2 Stmtlist — s StTail
3 StTail — semi StTail
4 | A
. Show that the CFSM corresponding to a LL(1) grammar has the following

property. Each state has exactly one kernel item if the grammar is A-free.
. Prove or disprove that all A-free LL(1) grammars are LR(0).

. Explain why the language defined by the following grammar is inberently

nondeterministic—there is no LALR(k) grammar for this language.

6.6. LR(k) Table Construction 61

1 Start — Single a

2 | Double b

3 Single — 0 Single 1

4 | 01

S Double — 0 Double 1 1

6 | 011

10. Given the claim of Exercise 9, explain why the following statement is true or

false. There is no LR(k) grammar for the language

{0"1"a} U {0"12"b}.

11. Discuss why is it not possible during LR(0) construction to obtain a shift/reduce

conflict on a nonterminal.

12. Discuss why there cannot be an unambiguous CFG for the language

{abick |i=jorj=k;ij k>1}).

13. Complete the LR(0) construction for the grammar in Figure 6.18.

14. Show that LL(1) construction fails for an unambiguous grammar that is not

LR(1).

15. Show that the grammar in Figure 6.19 is LR(0).

62 Chapter 6. LR Parsing

16. Complete the LR(0) construction for the grammar shown in Figure 6.24.
Your state numbers should agree with those shown in the partial LR(0) con-

struction.

17. Show the LR(0) construction for the following grammars.

1 Start — S §$

2 S — id assign E semi
3 E — E plus P
(@) 4 | P

5 P — id
6 | IpErp

7 | id assign E

1 Stat — S §
2 S — id assign A semi

3 A — id assign A

4 | E

(b)
S E — E plus P
6 | P

8 | IpArp

6.6. LR(k) Table Construction

Start

Start

Pre

%

%

63

S$

id assign A semi
id assign A

E

E plus P

P plus

lp Arp

S$
id assign A semi
Pre E

Pre id assign

Ip A rp

64

1

10

11

12

Start

Pre

Start

%

%

Chapter 6. LR Parsing

S$

id assign A semi
Pre E

id assign Pre

A

E plus P

Ip A rp

S$
id assign A semi

id assign A

lp A semi A rp
lp V comma V rp
lb A comma A rb
b V semi V rb

id

6.6. LR(k) Table Construction 65

18.

19.

20.

21.

22.

1 Stat — S§
2 S — id assign A semi

3 A — id assign A

4 | E
(8 5 E — Eplus P
6 | P

8 | Ip id semi id rp
9 | IpArp

Which of the grammars in Exercise 17 are LR(0)? Justify your answers.

Complete the SLR(1) construction for the grammar shown in Figure 6.25.

Show the resulting parse table.

Extend the grammar given in Figure 6.20 to accommodate standard expres-
sions involving addition, subtraction, multiplication, and division. Model

the syntax and semantics for these operators according to Java or C.

Extend the grammar as directed in Exercise 20, but introduce an exponen-
«w »

tiation operator that is right-associating. Let the operator (denoted by “x”)

have the highest priority, so that the value of 3+ 4 x 5 %2 is 103.

Repeat Exercise 21 but add the ability to enclose expressions with paren-
theses, to control how expressions are grouped together. Thus, the value of

((3+4) x 5) 2 is 1225.

66 Chapter 6. LR Parsing

23. Which of the grammars in Exercise 17 are SLR(1)? Justify your answers.

24. Generalize the algorithm given in Section 6.5.1 from SLR(1) to SLR(k).

25. Show that

(a) For any state s containing the item A— « o 3, ItemFollow((s,A—a e 3)) C

Follow(A)

U U ItemFollow((s, A— «; e 3;)) = Follow(A)
s A= ;e Gies

26. Perform the LALR(1) construction for the following grammar:

6.6. LR(k) Table Construction

27.

28.

29.

30.

10

11

12

13

Start —
S —
A1 —
A2 —
A3 —

|
C1 —
C2 —

|
C3 —

67

S$

x C1 y1 C2 y2 C3 y3

A1

b1

al

b2

a2

b3

a3

A2

A1

A3

A2

1

C2

C3

Using the grammars in Figure 6.30 and Exercise 26 as a guide, show how to

generate a grammar that requires # iterations for LALR(1) convergence.

For the grammar shown in Figure 6.34, complete the LALR(1) construction

from Figure 6.36.

Which of the grammars in Exercise 17 are LALR(1)? Justify your answers.

Show the LR(1) construction for the grammar in Exercise 4.

68 Chapter 6. LR Parsing

31. Define the quasi-identical states of an LR(1) parsing machine to be those states
whose kernel productions are identical. Such states are distinguished only by
the lookahead symbols associated with their productions. Given the LR(1)

machine built for Exercise 30, do the following.
(a) List the quasi-identical states of the LR(1) machine.
(b) Merge each set of quasi-identical states to obtain an LALR(1) machine.
32. Starting with the CFSM built in Exercise 4, compute the LALR(1) lookahead

information. Compare the resulting LALR(1) machine with the machine ob-

tained in Exercise 31

33. Which of the grammars in Exercise 17 are LR(1)? Justify your answers.

34. Consider a grammar G and its LALR(1) construction. Suppose that a shift/reduce
conflict occurs in G's LALR(1) construction. Prove that G's LR(1) construction

also contains a shift/reduce conflict.

35. Describe an algorithm that computes LALR(1) and then splits states as needed

in an attempt to address conflicts. Take note of the issue raised in Exercise 34.

36. Using a grammar for the C programming language, try to extend the syntax
to allow nested function definitions. For example, you might allow function

definitions to occur inside any compound statement.

Report on any difficulties you encounter, and discuss possible solutions. Jus-

tify the particular solution you adopt.

6.6. LR(k) Table Construction 69

37. Using a grammar for the C programming language, try to extend the syntax

38.

39.

40.

so that a compound statement can appear to compute a value. In other
words, allow a compound statement to appear wherever a simple constant
or identifier could appear. Semantically, the value of a compound statement

could be the value associated with its last statement.

Report on any difficulties you encounter, and discuss possible solutions. Jus-

tify the particular solution you adopt.

In Figure 6.3, Step 2 pushes a state on the parse stack. In the bottom-up
parse shown in Figure 6.6, stack cells show both the state and the input sym-
bol causing the state's shift onto the stack. Explain why the input symbol's

presence in the stack cell is superfluous.

Recall the dangling else problem introduced in Chapter Chapter:global:five.
Following is a grammar for a simplified language that allows conditional

statements.

1 Start — Stmt $
2 Stmt — if e then Stmt else Stmt
3 | if e then Stmt

4 | other

Explain why the following grammar is or is not LALR(1).

Consider the following grammar.

70

Start

Stmt

Matched

Unmatched

%

%

Chapter 6. LR Parsing

Stmt $

Matched

Unmatched

if e then Matched else Matched
other

if e then Matched else Unmatched

if e then Unmatched

(a) Explain why the grammar is or is not LALR(1).

(b) Is the language of this grammar the same as the language of the gram-

mar in Exercise 39? Why or why not?

41. Repeat Exercise 40, adding the production Unmatched— other to the gram-

mar.

42. Consider the following grammar.

1

Start

Stmt

Matched

Unmatched

%

%

Stmt $

Matched

Unmatched

if e then Matched else Matched
other

if e then Matched else Unmatched

if e then Stmt

(a) Explain why the grammar is or is not LALR(1).

6.6. LR(k) Table Construction 71

(b) Is the language of this grammar the same as the language of the gram-

mar in Exercise 39? Why or why not?

43. Based on the material in Exercises 39, 40, and 42, construct an LALR(1) gram-

mar for the language defined by the following grammar.

1 Start — Stmt $

2 Stmt — if e then Stmt else Stmt

3 | if e then Stmt

4 | while e Stmt

5 | repeat Stmt until e
6 | other

44. Show that there exist non-LL(1) grammars that are

(a) LR(0)
(b) SLR(1)

(c) LALR(1)

45. Normally, an LR parser traces a rightmost derivation (in reverse).

(a) How could an LR parser be modified to produce a leftmost parse as
LL(1) parsers do? Describe your answer in terms of the algorithm in

Figure 6.3.

(b) Would it help if we knew that the LR table was constructed for an LL

grammar?

72 Chapter 6. LR Parsing

46. For each of the following, construct an appropriate grammar.

(a) The grammar is SLR(3) but not SLR(2).
(b) The grammar is LALR(2) but not LALR(1).
(c) The grammar is LR(2) but not LR(1).

(d) The grammar is LALR(1) and SLR(2) but not SLR(1).

47. Construct a single grammar that has all of the following properties.

e Itis SLR(3) but not SLR(2).
o It is LALR(2) but not LALR(1).
o ItisLR(1).

48. For every k > 1 show that there exist grammars that are SLR(k+ 1), LALR(k +

1), and LR(k + 1) but not SLR(k), LALR(k), or LR(k).

49. Consider the grammar generated by 1 < i,j < n, i # j using the following

template.

S — X,‘ Z;
Xi =y X
| Y;

The resulting grammar has O(#?) productions.

(a) Show that the CFSM for this grammar has O(2") states.

(b) Is the grammar SLR(1)?

7

Syntax-Directed
Translation

The parsers discussed in Chapters Chapter:global:five and Chapter:global:six can
recognize syntactically valid inputs. However, compilers are typically required to
perform some translation of the input source into a target representation, as dis-
cussed in Chapter Chapter:global:two. Some compilers are single-pass, translating
programs as they parse without taking any intermediate steps. Most compilers
accomplish translation using multiple passes. Instead of repeatedly scanning the
input program, compilers typically create an intermediate structure called the ab-
stract syntax tree (AST) as a by-product of the parse. The AST then serves as a
mechanism for conveying information between compiler passes. In this chapter we
study how to formulate grammars and production-specific code sequences for the
purpose of direct translation or the creation of ASTs. Sections 7.3 and 7.4 consider
bottom-up and top-down translation, respectively; Section 7.5 considers the design

1

2 Chapter 7. Syntax-Directed Translation

and synthesis of ASTs.

7.1 Overview

The work performed by a compiler while parsing is generally termed syntax-directed
translation. The grammar on which the parser is based causes a specific sequence
of derivation steps to be taken for a given input program. In constructing the
derivation, a parser performs a sequence of syntactic actions as described in Chap-
ters Chapter:global:five and Chapter:global:six; such actions (e.g., shift and reduce
for LR parsing) pertain only with the grammar's terminal and nonterminal symbols.
To achieve syntax-directed translation, most parser generators allow a segment of
computer code to be associated with each grammar production; such code is exe-
cuted whenever the production participates in the derivation. Typically, the code
deals with the meaning of the grammar symbols. For example, the syntactic token
identifier has a specific value when a production involving identifier is applied. The
semantic actions performed by the parser through execution of the supplied code
segment can reference the actual string comprising the terminal, perhaps for the

purpose of generating code to load or store the value associated with the identifier.

In automatically generated parsers, the parser driver (Figure Figure:six:driver
for LR parsing) is usually responsible for executing the semantic actions. To simplify
calling conventions, the driver and the grammar's semantic actions are written
in the same programming language. Parser generators also provide a mechanism

for the supplied semantic actions to reference semantic values associated with the

7.2. Synthesized and inherited attributes 3

associated production's grammar symbols. Semantic actions are also easily inserted
into ad hoc parsers by specifying code sequences that execute in concert with the

parser.

Formulating an appropriate set of semantic actions requires a firm understand-
ing of how derivations are traced in a parse, be it bottom-up or top-down. When
one encouters difficulties in writing clear and elegant semantic actions, grammar
reformulation can often simplify the task at hand by computing semantic values at
more appropriate points. Even after much work is expended to obtain an LALR(1)
grammar for a programming language, it is not unusual to revise the grammar

during this phase of compiler construction.

7.2 Synthesized and inherited attributes

In a parse (derivation) tree, each node corresponds to a grammar symbol utilized
in some derivation step. The information associated with a grammar symbol by
semantic actions become atributes of the parse tree. In Section 7.3 we examine
how to specify semantic actions for bottom-up (LALR(1)) parsers, which essen-
tially create parse trees in a postorder fashion. For syntax-directed translation,
this style nicely accommodates situations in which attributes primarily flow from
the leaves of a derivation tree toward its root. If we imagine that each node of a
parse tree can consume and produce information, then nodes consume informa-
tion from their children and produce information for their parent in a bottom-up

parse. An example using such synthetic attributes flow is shown in Figure 7.1: the

4 Chapter 7. Syntax-Directed Translation

Start Declarations

E Declarations

\
T Declarations
I¢E Declarations
;'P' %’ Declaiations
num plus num times num $ Statements Statements $
Synthesized Inherited

Figure 7.1: Synthesized and inherited attributes.

attribute associated with each node is an expression value, and the value of the

entire computation becomes available at the root of the parse tree.

By contrast, consider the problem of propagating symbol table information
through a parse tree, so that inner scopes have access to information present in
outer scopes. As shown in Figure 7.1, such inberited attributes flow from the root
of the parse tree toward its leaves. As discussed in Section 7.4, top-down parsing
nice accommodates such information flow because its parse trees are created in a

preorder fashion.

Most programming languages require information flow in both directions.
While some tools allow both styles of propagation to coexist peacefully, such tools
are not in widespread use; moreover, choreographing attribute flow can be difficult
to specify and maintain. In the ensuing sections we focus only on syntax-directed

parsers that allow attributes to be synthesized or inherited, but not both. In prac-

7.3. Bottom-up translation S

tice, this is not a serious limitation. attributes flowing in the opposite direction are
typically accommodated by global structures. For example, symbol information

can be stored in a global symbol table in a parser based on synthesized attributes.

7.3 Bottom-up translation

In this section we consider how to incorporate semantic actions into bottom-up
parsers. Such parsers are almost always generated automatically by tools such as
Cup, Yacc, or Bison, which allow specification of code sequences that execute as

reductions are performed.

Consider an LR parser that is about to perform a reduction using the rule
A— Xy ... X,. As discussed in Chapter Chapter:global:six, the symbols A7 ... 4,
are on top-of-stack prior to the reduction, with X, topmost. The # symbols are
popped from the stack and the symbol A is pushed on the stack. In such a bottom-
up parse, it is possible that previous reductions have associated semantic informa-
tion with the symbols Xy ... X,. The semantic action associated with A— A7 ... A,
can take such information into consideration in synthesizing the semantic informa-
tion to be associated with A. In other words, the bottom-up parser operates two
stacks: the syntactic stack manipulates terminal and nonterminal symbols as de-
scribed in Chapter Chapter:global:six, while the semantic stack manipulates values
associated with the symbols. The code for maintaining both stacks is generated
automatically by the parser generator, based on the grammar and semantic-action

code provided by the compiler writer.

6 Chapter 7. Syntax-Directed Translation

1 Start — Digs,, $
call PRINT(ans)
2 Digsup — DigSpein drext
up + below x 10 + next

3 | dﬁrst
up <+ first
Start
Digs
431
Digs
43
Digs
4
d, dg; d,; $

Figure 7.2: Possible grammar and parse tree for decimal 4 3 1 $.

7.3.1 Left recursive rules

To illustrate a bottom-up style of translation, we begin with the grammar shown
in Figure 7.2. The translation task consists of computing the value of a string of
digits, base 10. Compilers normally process such strings during lexical analysis,
as described in Chapter Chapter:global:three. Our example serves pedagogically
to illustrate the problems that can arise with syntax-directed translation during a

bottom-up parse.

Syntactically, the terminal d represents a single digit; the nonterminal Digs gen-

erates one or more such symbols. Some of the grammar symbols are annotated

7.3. Bottom-up translation 7

with tags, as in Digs,,. The symbol Digs is a grammar terminal or nonterminal
symbol; the symbol up represents the semantic value associated with the symbol.
Such values are provided by the scanner for terminal symbols; for nonterminals,
the grammar's semantic actions establish the values. For example, Rule 3 contains
dsrse. The syntactic element d represents an integer, as discovered by the scanner;
the semantic tag first represents the integer's value, also provided by the scanner.
Parser generators offer methods for declaring the #ype of the semantic symbols; for
the sake of language-neutrality and clarity we omit type declarations in our exam-
ples. In the grammar of Figure 7.2, all semantic tags would be declared to have
integer value.

We now analyze how the semantic actions in Figure 7.2 compute the base-10
value of the digit string. To appreciate the interaction of Rules 2 and 3, we examine
the order in which a bottom-up parse applies these rules. Figure 7.2 shows a parse
tree for the input string 4 3 1 $. In Chapter Chapter:global:six we learned that a
bottom-up parse traces a rightmost derivation in reverse. The rules for Digs are

applied as follows:

Digs—d This rule must be applied first; d corresponds to the input digit 4. The
semantic action causes the value of the first digit (4) to be transferred as the
semantic value for Digs. Semantic actions such as these are often called copy

rules because they serve only to propagate values up the parse tree.

Digs— Digs d Each subsequent d is processed by this rule. The semantic action

up + below x 10 + next

8 Chapter 7. Syntax-Directed Translation

multiplies the value computed thus far (below) by 10 and then adds in the

semantic value of the current d (next).

As seen in the above example, left-recursive rules are amenable to semantic
processing of input text from left to right. Exercise 1 considers the difficulty of

computing a digit string's value when the grammar rule is right-recursive.

7.3.2 Rule cloning

We extend our language slightly, so that a string of digits can be prefaced by an
X, in which case the digit string should be interpreted base-8 rather than base-10;
any input digit out of range for a base-8 number is ignored. For this task we
propose the grammar shown in Figure 7.3. Rule 3 generates strings of digits as
before; Rule 2 generates such strings prefaced with an x. Prior to inserting semantic
actions, we examine the parse tree shown in Figure 7.3. As was the case with our
previous example, the first d symbol is processed first by Rule 4 and the reamining
d symbols are processed by Rule 5. If the string is to be interpreted base-8, then the
semantic action for Rule 5 should multiply the number passed up the parse tree by
8; otherwise, 10 should be used at the multiplier.

The problem with the parse tree shown in Figure 7.3 is that the x is shifted on
the stack with no possible action to perform: actions are possible only on reduc-
tions. Thus, when the semantic actions for Rule 5 execute, it is unknown whether

we are processing a base-10 or base-8 number.

There are several approaches to remedy this problem, but the one we consider

7.3. Bottom-up translation 9

1 Start — Num $
2 Num — x Digs

3 | Digs
4 Digs — Digs d
5 | d

Start

Num

Figure 7.3: Possible grammar and parse tree for octal x 4 3 1 $.

first involves cloning productions in the grammar. We construct two kinds of digit
strings, one derived from OctDigs and the other derived from DecDigs, to obtain the
grammar and semantic actions shown in Figure 7.4. Rules 4 and 5 interpret strings
of digits base-10; Rules 6 and 7 generate the same syntactic strings but interpret
their meaning base-8. The semantic check for octal digits is left as Exercise 2. With
this example, we see that grammars are modified for reasons other than the parsing
issues raised in Chapters Chapter:global:four and Chapter:global:five. Often, a
translation task can become significantly easier if the grammar can be modified to

accommodate efficient flow of semantic information.

If the grammars in Figures 7.3 and 7.4 were examined without their seman-

tic actions, the grammar in Figure 7.3 would be favored because of its simplicity.

10

1 Start

2 Numgy;

3

4 DecDigs,,
S

6 OctDigs,,
7

Chapter 7. Syntax-Directed Translation

Numg,.s $

call PRINT(ans)
x OctDigs, ;4

ans <+ octans
DeCDingeams

ans <+ decans
DeCDingelow dngxt

up + below x 10 + next

dﬁrst
up <+ first
OctDigSpeio drext
up + below x 8 + next

dﬁrst
up <+ first

Figure 7.4: Grammar with cloned productions.

Insertion of semantic actions often involves inflating a grammar with productions

that are not necessary from a syntactic point of view. These extra productions al-

low needed flexibility in accomplishing semantic actions at appropriate points in

the parse. However, grammar modifications can affect the parsability of a gram-

mar. Such modifications should be made in small increments, so that the compiler

writer can respond quickly and accurately to any parsability problems raised by

the parser generator.

7.3.3 Global variables and)\-rules

We now examine an alternative for the grammar shown in Figure 7.3. Recall

that the x was shifted without semantic notice: actions are performed only at re-

7.3. Bottom-up translation 11

1 Start — Numg,s $
call PRINT(ans)
2 Numgs — SignalOctal Digs, ;s
ans + octans
3 | SignalDecimal Digs .,
ans + decans
4 SignalOctal - X
base + 8
5 SignalDecimal — A
base + 10
6 Digs,, = DSy next
up « below x base + next
7 | et
up <+ first

Figure 7.5: Use of A-rules to take semantic action.

ductions. We can modify the grammar from Figure 7.3 so that a reduction takes
place after the x has been shifted but prior to processing any of the digits. The
resulting grammar is shown in Figure 7.5. This grammar avoids copying the
productions that generate a string of digits; however, the grammar assigns and
references a global variable (base) as a side-effect of processing an x (Rule 4) or
nothing (Rule §).

In crafting a grammar with appropriate semantic actions, care must be taken
to avoid changing the actual language. Although octal strings are preceded by an
X, decimal strings are unheralded in this language; the A-rule present in Figure 7.5
serves only to cause a reduction when an x has 7ot been seen. This semantic action
is required to initialize base to its default value of 10. If the A-rule were absent

and base were initialized prior to operating the parser, then the parser would not

12 Chapter 7. Syntax-Directed Translation

correctly parse a base-8 number followed by a base-10 number, because base would

have the residual value of 8.

While they can be quite useful, global variables are typically considered unde-
sirable because they can render a grammar difficult to write and maintain. Synthe-
sized attributes, such as the digits that are pushed up a parse tree, can be localized
with regard to a few productions; on the other hand, global variables can be refer-
enced in any semantic action. However, programming language constructs that lie
outside the context-free languages must be accommodated using global variables;
symbol tables (Chapter Chapter:global:eight) are the most common structure de-

serving of global scope.

7.3.4 Aggressive grammar restructuring

We expand our digits example further, so that a single-digit base is supplied along
with the introductory x. Some examples of legal inputs and their interpretation are

as follows:

Input Meaning Value (base-10)
431% 43149 431
x8431% 431; 281
x5431% 4315 116

A grammar for the new language is shown in Figure 7.6; semantic actions are
included that use the global variable base to enforce the correct interpretation of

digit strings.

7.3. Bottom-up translation 13

1 Start - Numg.s $
call PRINT(ans)
2 Numgys — x SetBase Digs,,qpums
ans + baseans
3 | SetBaseTen Digs .,
ans + decans
4 SetBase = dyu
base « val
S SetBaseTen — A
base « 10
6 Digs,, — Digsy,ipp Anext
up + below x base + next
7 | dﬁrst
up <+ first

Figure 7.6: Strings with an optionally specified base.

While the solution in Figure 7.6 suffices, there is a solution that avoids use of
global variables. The grammar as given does not place information in the parse tree
where it is useful for semantic actions. This is a common problem, and the follow-
ing steps are suggested as a mechanism for obtaining a grammar more appropriate

for bottom-up, syntax-directed translation:

1. Sketch the parse tree that would allow bottom-up synthesis and translation

without use of global variables.

2. Revise the grammar to achieve the desired parse tree.

3. Verify that the revised grammar is still suitable for parser construction. For
example, if Cup or Yacc must process the grammar, then the grammar should

remain LALR(1) after revision.

14 Chapter 7. Syntax-Directed Translation

Figure 7.7: Desired parse tree.

4. Verify that the grammar still generates the same language, using proof tech-

niques or rigorous testing.

The last step is the trickiest, because it is easy to miss subtle variations among

grammars and languages.

For the problem at hand, we can avoid a global base variable if we can process
the base early and have it propagate up the parse tree along with the value of the
processed input string. Figure 7.7 sketches the parse tree we desire for the input
x 5 4 3 1 $. The x and the first d, which specifies the base are processed in the
triangle; the base can then propagate up the tree and participate in the semantic
actions. From this tree we rewrite the rules for Digs to obtain the grammar shown

in Figure 7.8.

7.3. Bottom-up translation 15

1 Start

2 Digsup

3

4 Setbase,
5

%

Digsans $
call PRINT(ans.val)
SetBaseasespec
up.base « basespec
up.val + 0

Digsbelow Orexct
up.val + below.val x below.base + next

up.base «+ below.base

A

n+ 10
X dnum

n < num

Figure 7.8: Grammar that avoids global variables.

The grammar in Figure 7.8 is fairly concise but it involves one novelty: the

semantic value for Digs consists of two components

val which contains the interpreted value of the processed input string

base which conveys the base for interpretation

The semantic actions for Rule 3 serve to copy the base from its inception at Rule 2.

Experienced compiler writers make frequent use of rich semantic types and

grammar restructuring to localize the effects of semantic actions. The resulting

parsers are (mostly) free of global variables and easier to understand and modify.

Unfortunately, our grammar modification is deficient because it involves a sub-

tle change in the language; this point is explored in great detail in Exercise 3.

16 Chapter 7. Syntax-Directed Translation

1 Start — Value $

2 Value — num

3 | Ip Expr rp

4 Expr — plus Value Value
5 | prod Values

6 Values — Value Values

7 | A

Figure 7.9: Grammar for Lisp-like expressions.

7.4 Top-down translation

In this section we discuss how semantic actions can be performed in top-down
parsers. Such parsers are typically generated by hand in the recursive-descent style
discussed in Chapters Chapter:global:two and Chapter:global:five. The result of
such parser construction is a program; semantic actions are accomplished by code
sequences inserted directly into the parser.

To illustrate this style of translation, we consider the processing of Lisp-like
expressions, defined by the grammar shown in Figure 7.9. Rule 1 generates an
outermost expression whose value should be printed by the semantic actions. A
Value is defined by Rules 2 and 3, which generate an atomic value via a num or a
parenthesized expression, respectively. Rules 4 and 5 generate a the sum of two
values and a product of zero or more values, respectively. Follwowing are some

observations about this grammar.

¢ This disparate treatment of addition (which takes two operands) and mul-
tiplication (which takes arbitrary operands) is for pedagogical purposes; it

would otherwise be considered poor language design.

7.4. Top-down translation 17

e A more complete expression grammar is considered in Exercises 5 and 6.

e The recursive rule for Values is right-recursive to accommodate top-down

parsing.

A recursive-descent parser for the grammar in Figure 7.9 is shown in Fig-
ure 7.10. As discussed in Chapter Chapter:global:five, the parser contains a pro-
cedure for each nonterminal in the grammar. To conserve space, the error checks
normally present at the end of each switch statement are absent in Figure 7.10. If
top-down parsers applied semantic actions only when a derivation step is taken,
then information could only be passed from the root of a parse tree toward its
leaves. To evaluate programs written in the language of Figure 7.9, the tree must
be evaluated bottom-up. It is common in recursive descent parsing to allow seman-
tic actions both before and after a rule's right-hand side has been discovered. Of

course, in an ad hoc parser, code can be inserted anywhere.

In bottom-up parsing, semantic values are associated with grammar symbols.
This effect can be accomplished in a recursive-descent parser by instrumenting the
parsing procedures to return semantic values. The code associated with seman-
tically active nonterminal symbols is modified to return an appropriate semantic

value as follows.

o In Figure 7.10, each method except START is responsible for computing a
value associated with the string of symbols it derives; these methods are

therefore instrumented to return an integer.

18

procedure START(#s)
switch ()
case #s.PEEK() € { num, Ip }
ans + VALUE()
call MATCH(#s, $)
call PRINT(ans)
end
function VALUE(ts) : int
switch ()
case #s.PEEK() € { num }
call MATCH(ts, num)
ans + num.VALUEOF()
return (ans)
case #s.PEEK() € {Ip}
call MATCH(s, Ip)
ans +— EXPR()
call MATCH(s, rp)
return (ans)
end
function EXPR(?s) : int
switch ()
case ¢s.PEEK() € { plus}
call MATCH(s, plus)
opl < VALUE()
op2 + VALUE()
return (op1 + op2)
case ¢s.PEEK() € { prod }
call MATCH(s, prod)
ans < VALUES()
return (ans)
end
function VALUES(ts) : int
switch ()
case #s.PEEK() € { num, Ip }
factor < VALUE()
product «+ VALUES()
return (factor x product)
case #s.PEEK() € {rp }
return (1)
end

Chapter 7. Syntax-Directed Translation

Figure 7.10: Recursive-descent parser with semantic actions.

7.5. Abstract Syntax Trees 19

¢ The code for Rule 4 captures the values of its two operands at Steps 1 and 2,

returning their sum at Step 3.

e The code at Step 4 anticipates that VALUES will return the product of its

expressions.

o Because Values participates only in Rule 5, the semantic actions in VALUES can
be customized to form such a product. Exercise 5 considers accommodation

of functionally separate distinct uses of the nonterminal Values.

¢ The most subtle aspect of the semantic actions concerns the formation of
a product of values in VALUES. With reference to the parse tree shown in
Figure 7.11, a leftmost derivation generates the Value symbols from left to
right. However, the semantic actions compute values after a rule has been
applied, in the style of an LR bottom-up parse. Thus, the invocation of VALUES
that finishes first is the one corresponding to Values— A; this rule seeds the
product at Step 6. The semantic actions then progress up the tree applying

the code at Step 5, incorporating Value expressions from right to left.

7.5 Abstract Syntax Trees

While most of a compiler's tasks can be performed in a single pass via syntax-
directed translation, modern software practice frowns upon delegating so much
functionality to a single component such as the parser. Tasks such as semantic

analysis, symbol table construction, program optimization, and code generation

20 Chapter 7. Syntax-Directed Translation

Start
Value
Expr
Values
A
Value Values
/\
Value Values
/\
Value Values
Value Values
Ip prod num num num num N n $

Figure 7.11: Parse tree involving Values.

are each deserving of separate treatment in a compiler; squeezing them into a single
compiler pass is an admirable feat of engineering, but the resulting compiler is

difficult to extend or maintain.

In designing multipass compilers, considerable attention should be devoted to
designing the compiler's intermediate representation (IR): the form that serves to
communicate information between compiler passes. In some systems, the source
language itself serves as the IR; such source-to-source compilers are useful in re-
search and educational settings, where the effects of a compiler's restructuring
transformations (Chapter Chapter:global:sixteen) can be easily seen. Such systems
can also serve as preprocessors. For example, a source Java program could be

compiled into an optimized Java program, suitable as input for any Java compiler.

7.5. Abstract Syntax Trees 21

However, tasks such as semantic analysis and code generation create artifacts
of a source program's representation that are difficult to express in the source lan-
guage itself. For example, it seems difficult and pointless to encode a symbol table
in the source language so that it could be passed along with the source program to
subsequent compiler passes. We therefore seek an IR that can represent a source
program faithfully, but in a form that is easily annotated and digested by the com-

piler's passes.

Parse trees such those shown in Figures 7.2 and 7.3 are concrete, in the sense
that they result directly from application of a grammar. Consider the nonterminal
Digs and its parse subtree shown in Figure 7.2. The tree leans to the left because the
rules for Digs are left-recursive. If these rules were right-recursive, then the parse
subtree for Digs changes accordingly. Abstractly, the symbol Digs represents a list
of d symbols. The order in which these symbols occur as input tokens is important;
whether these tokens are derived by left- or right-recursive rules does not affect the

meaning of the list of symbols.

In a practice that has become quite common, the parser can create an artifact
of syntax analysis called the abstract syntax tree (AST). The symbols derived from
Digs can be represented abstractly by the AST shown in Figure 7.12. There is
no grammar that can generate such a concrete syntax tree directly: each produc-
tion has a fixed number of symbols on its right-hand side. However, the tree in

Figure 7.12 captures the order in which the d symbols appear, which suffices to

However, the rules can simplify or hinder syntax-directed translation; see Exercise 1.

22 Chapter 7. Syntax-Directed Translation

Figure 7.12: Abstract syntax tree for Digs.

translate the sequence of symbols into a number.

Because the AST is centrally involved in most of a compiler's activities, its
design can and should evolve with the functionality of the compiler. A properly
designed AST simplies both the work required in a single compiler pass as well as
the manner in which the compiler passes communicate. Given a source program-
ming language L, the development of a grammar and an AST typically proceeds as

follows:

1. An unambiguous grammar for L is devised. The grammar may contain pro-
ductions that serve to disambiguate the grammar. The grammar is proved

unambiguous through successful construction of an LR or LL parser.

2. An AST for L is devised. The AST design typically elides grammar details

concerned with disambiguation. Semantically useless symbols such as

and “;” are also omitted.

3. Semantic actions are placed in the grammar to construct the AST. The design

of the AST may require grammar modifications to simplify or localize con-

7.5. Abstract Syntax Trees 23

struction. The semantic actions often rely upon utility methods for creating

and manipulating AST components.

4. Passes of the compiler are designed. Each pass may place new requirements
on the AST in terms of its structure and contents; grammar and AST redesign

may then be desirable.

To illustrate the process of AST design, we consider the language Cicada, which
offers constants, identifiers, conditionals, assignment, dereferences, and arithmetic
expressions. While this language is relatively simple, its components are found in
most programming languages; moreover, issues that arise in real AST design are

present in Cicada.

7.5.1 Devising an unambiguous grammar.

The defining grammar for Cicada is shown in Figure 7.13. This grammar is already
unambiguous and is suitable for LALR(1); however, it is not suitable for LL(1) pars-
ing because of its left-recursion. Strings derived from the nonterminal E are in the
language of standard expressions, as discussed in Chapter Chapter:global:six. We
add assignment expressions and conditionals through Rules 2, 4, and 5. Rule 3
allows a statement to resolve to an expression, whose value in this language is

ignored.

24 Chapter 7. Syntax-Directed Translation

1 Start — Stmt$

2 Stmt — L assign E

3 | E

4 | if (E) Stmt fi
N | if (E) Stmt else Stmt fi
6 L — id

7 | deref R

8§ R - L

9 | num

10 | addr L

11 E — EplusT

12 | T

13 7 — T times F

14 | F

15 F — (E)

16 | R

Figure 7.13: Infix assignment and expression grammar.

Left and right values

It is a common convention in programming languages for an assignment statement
x < y to have the effect of storing the value of variable y at location x: the mean-
ing of an identifier differs across the assignment operator. On the left-hand side,
x refers to the address at which x is stored; on the right-hand side, y refers to the
current value stored in y. Programming languages are designed with this dispar-
ity in semantics because the prevalent case is indeed x < y; consistent semantics
would require special annotation on the left- or right-hand side, which would ren-
der programs difficult to read. Due to the change in meaning on the left- and
right-hand sides of the assignment operator, the location and value of a variable
are called the variable's left value (Lvalue) and right value (Rvalue), respectively.

In Figure 7.13, the rules involving nonterminals L and R derive syntactically valid

7.5. Abstract Syntax Trees 25

Lvalues and Rvalues:

e An assignment is generated by Rule 2, which expects an Lvalue prior to the

assignment operator and an expression afterwards.

e An Lvalue is by definition any construct that can be the target of an assign-
ment. Thus, Rule 6 defines the prevalent case of an identifier as the target of

assignment.

Some languages allow addresses to be formed from values, introduced by a
deferencing operator (x in C). Rule 7 can therefore also serve as an Lvalue,

with the semantics of assignment to the address formed from the value R.

e The nonterminal R appears in Figure 7.13 wherever an Rvalue is expected.
Semantically, an Lvalue can serve as an Rvalue by implicit dereference, as
is the case for y in x < y. Programming languages are usually designed to
obviate the need for explicit syntax to dereference y. Transformation of an
Lvalue into an Rvalue is accommodated by Rule 8. Additionally, constructs
such as constants and addresses—which cannot be Lvalues—are explicitly

included as Rvalues by Rules 9 and 10.

Although the dereference operator appears syntactically in Rule 7, code gen-
eration will call for dereferencing only when Rule 8 is applied. This point is

emphasized in Exercise 9.

e Expressions are generated by Rule 3, with multiplication having precedence

over addition. An expression (E) is a sum of one or more terms (T); a term is

26 Chapter 7. Syntax-Directed Translation

Start

Stmt
Stmt
L E
\
T
E
|
T T F
E |
F
E |
| T R F
T ‘ R
| L
F F
| R
R R L
| R |
L L L
| |
if (id plus num) id assign deref id plus addr id times id
if (a + 5) x = * w + & Y * b4

Figure 7.14: Parse tree for a Cicada program.

the product of one or more factors (F). Finally, a factor can derive either a

parenthesized expression or an Rvalue. Rule 15 provides syntax to alter the

default evaluation order for expressions. Rule 16 allows F to generate any

construct that has an Rvalue.

7.5.2 Designing the AST

As a first attempt at an AST design, it is helpful to expose unnecessary detail by ex-

amining concrete syntax trees such as the one shown in Figure 7.14. We examine

7.5. Abstract Syntax Trees 27

address

Figure 7.15: AST for a simple assignment.

each syntactic construct and determine which portions are relevant to the meaning

of a Cicada program.

Consistency

It is important that each node type in the AST have consistent meaning. Return-
ing to our Lvalue and Rvalue discussion, an AST node representing an identifier
should have consistent meaning, regardless of its occurrence in the AST. It is easy
to dereference an address to obtain the current value at that address; it is not al-
ways possible to go the other way. We therefore adopt the convention that an
identifier node always means the Lvalue of the identifier; if a value is desired, then
the AST will require a deference operator.

Consider the assignment x < y. The AST we desire for this fragment is shown
in Figure 7.15. The assignment AST node is therefore defined as a binary node
(two children): its left child evaluates to the address at which the assignment
should store the value obtained by evaluating the right child. In Chapter Chap-

ter:global:codegen, code generation for such subtrees will rely upon this AST de-

28 Chapter 7. Syntax-Directed Translation

sign; consistency of design will allow the same code sequence to be generated each
time an identifier node is encountered.

Cicada has two conditional statements, defined by Rules 4 and 5. Syntactically
it is expedient to offer both forms, so that programmers need not supply an empty
alternative when one is not needed. However, for consistency it may be desirable to
summarize both forms of conditional statement by a single AST construct, whose

alternative under a false predicate is empty.

Elimination of detail

Programming languages often contain syntactic components that serve aesthetic
or technical purposes without adding any semantic value. For example, parenthe-
ses surround predicates in if and while statements in C and Java. These serve to
punctuate the statement, and the closing parenthesis is needed to separate the con-
ditional from the rest of the if statement; in Pascal, the keyword then serves this
same purpose. As shown in Figure 7.16, The AST design for conditionals in Cicada
retains only the predicate and the subtree for the branch executed when the pred-
icate holds; as discussed above, a single AST construct represents the semantics of
Rules 4 and 5.

Given our convention that identifiers are always interpreted as Lvalues in the
AST, the address operator's appearance in an AST through Rule 10 would be re-
dundant. Our AST design therefore does not use the address operator. Similarly,
the parentheses surrounding an expression for Rule 15 are unnecessary for group-

ing, since the AST we create implies an evaluation order for expressions.

7.5. Abstract Syntax Trees 29

predicate alternative alternative

Figure 7.16: AST for a conditional statement.

Unnecessary detail can occur in concrete syntax trees for the purpose of struc-
ture and disambiguation in the grammar. The rules for E, T, and F enforce the
precedence of dereference over multiplication over addition; the rules also struc-
ture the parse so that arithmetic operators are left-associating. As a result, the
grammar contains a number of unit productions: rules of the form A— B that sup-
ply no semantic content. Rules such as E—T escape the recursion on E, but the
value under the E is identical to the value under the T. Moreover, the concrete sub-
tree for E—E plus T contains detail in excess of the sum of two values. As shown
in Figure 7.17, the AST for this construct retains only the operator and the two
values to be summed. The other arithmetic operators for Cicada are similarly

accommodated.

7.5.3 Constructing the AST

After designing the AST, semantic actions need to be installed into the parser to

construct the vertices and edges that comprise the tree. It is often useful at this

30 Chapter 7. Syntax-Directed Translation

value value

Figure 7.17: AST for E—E plus T.

point to reconsider the grammar with an eye toward simplifying AST construc-
tion. In Cicada we have decided to represent Rules 4 and 5 with the single AST
construct shown in Figure 7.16. If we insert semantic actions into the grammar of
Figure 7.13 we would find that Rules 4 and 5 have much of their semantic code in
common. It is therefore convenient to rewrite Stmt as shown in Figure 7.18: a new
nonterminal CondStmt generates the two statements previously contained directly
under Stmt. No change to the language results from this modification; however,
the semantic actions needed to construct a conditional AST node can be confined
to Stmt— CondStmt if we arrange for each rule for CondStmt to provide a predicate

and two alternatives for conditional execution.

An efficient AST data structure

While any tree data structure can in theory represent an AST, a better design can

result by observing the following:

7.5. Abstract Syntax Trees 31

10

11

12

13

14

15

16

17

Start

— Stmtys $
return (ast)

Stmt, psir — Liarger assign Egouree

result < MAKEFAMILY (assign, source, target)
| Eexpr
result «— expr

| CondStmt,,,
result < MAKEFAMILY (if, triple.pred, triple.t, triple.f)

CondStmtt,iple — if (Eexpr) Stmtgg fi

Lresult

Rresult

Eresult

Tresult

Fresult

triple.pred « expr
triple.t < stmt
triple.f < MAKECONSTNODE(0)

| if (Eexpr) Stmtg else Stmty fi
triple.pred < expr
triple.t + s1
triple.f + s2

= idugme
result <+ MAKEIDNODE(name)
| deref R,y
result « val
= La

result <+ MAKEFAMILY(deref, val)

| numy,,;
result < MAKECONSTNODE(val)
| addr Lyal
result «+ val
— Ey1 plus Tpn
result <+ MAKEFAMILY(plus, v1,2v2)
| T
result «— v
— T,1 times Fpn
result «+ MAKEFAMILY (times, v1,v2)
| F
result «— v
- (E)
result «— v
| Ro
result «— v

Figure 7.18: Semantic actions for AST creation in Cicada.

10

32 Chapter 7. Syntax-Directed Translation

e The AST is typically constructed bottom-up. A list of siblings is generated,
and the list is later adopted by a parent. The AST data structure should

therefore support siblings of temporarily unknown descent.

o Lists of siblings are typically generated by recursive rules. The AST data

structure should simplify adoption of siblings at either end of a list.

o Some AST nodes have a fixed number of children. For example, binary ad-
dition and multiplication require two children; the conditional AST node de-
veloped for Cicada requires three children. However, some programming lan-
guage constructs may require an arbitrarily large number of children. Such
constructs include compound statements, which accommodate zero or more
statements, and method parameter and argument lists. The data structure

should efficiently support tree nodes with arbitrary degree.

Figure 7.19 depicts an organization for an AST data structure that accommodates
the above with a constant number of fields per node. Each node contains a
reference to its parent, its next (right) sibling, its leftmost child, and its leftmost

sibling.

Infrastructure for creating ASTs

To facilitate construction of an AST we rely upon the following set of constructors
and methods to create and link AST nodes. create and link AST nodes. methods

for creating and linking AST nodes:

MAKECONSTNODE(val) creates a node that represents the integer constant val.

7.5. Abstract Syntax Trees 33

e e e e e :?,Q;\;
/ PSPt
’ T
, - -

A

// ,/’/ 7 ’ parent \\\
[T)_>[.)9[j leftmost sibling right sibling @
f e L |-
P : o “| leftmost child ‘
7) AN
o> >—CD

N

Figure 7.19: Internal format of an AST node. A dashed line connects a node with its
parent; a dotted line connects a node with its leftmost sibling. Each node also has a solid
connection to its leftmost child and right sibling.

MAKEIDNODE(#d) creates a node for the identifier id. During symbol-table con-
struction (Chapter Chapter:global:8), this node is often replaced by a node
that references the appropriate symbol table entry. This node refers to the

Lvalue of id.

MAKEOPERATORNODE(oper) creates an AST node that represents the operation
oper. It is expedient to specify oper as an actual terminal symbol in the

grammar. For Cicada, oper could be plus, times, or deref.

x.MAKESIBLINGS(y) causes y to become x's right sibling. To facilitate chaining of
nodes through recursive grammar rules, this method returns a reference to

the rightmost sibling resulting from the invocation.

x.HEAD() returns the leftmost sibling of x.

34 Chapter 7. Syntax-Directed Translation

x.ADOPTCHILDREN(y) adopts y and its siblings under the parent x.

MAKEFAMILY(op, kid1, kids, . . ., kid,) generates a family with exactly » children
under the operation op. The code for the most common case (n = 2) is:
function MAKEFAMILY (op, kid1, kid2) : node
kids < kid1 . MAKESIBLINGS(kid2)
parent < MAKEOPERATORNODE(0p)
call parent. ADOPTCHILDREN(kids)
return (parent)

end

The semantic actions for constructing a Cicada AST are shown in Figure 7.18. The
prevalent action is to glue siblings and a parent together via MAKEFAMILY; condi-

tionals and dereferences are processed as follows:

e The conditional statements at Rules 5 and 6 generate three values that are
passed to Rule 4. These values are consistently supplied as the predicate and

the two alternatives of the if statement.

o Step 7 (arbitrarily) synthesizes the constant 0 for the missing else alternative
of Rule 5. The AST design should be influenced by the source language's def-
inition, which should specify the particular value—if any—that is associated

with a missing else clause.

o Step 10 executes when an object's address is taken. However, the actual

work necessary to perform this task is less than one might think. Instead

7.5. Abstract Syntax Trees 35

of expending effort to take an object's address, the addr operator actually
prevents the dereference that would have been performed had the id been

processed by the rule R— L.

o Step 8 represents a syntactic dereference. However, the AST does not call for
a dereference, and the subtree corresponding to the dereferenced Rvalue is
simply copied as the result. While this may seem a mistake, the actual deref-
erence occurs further down the tree, when an Lvalue becomes an Rvalue, as

described next.

o Step 9 generates an AST node that represents an actual dereference, in re-

sponse to the transformation of an Lvalue into an Rvalue.

e The AST is complete at Rule 1; the root is contained in the semantic value

ast.

Figure 7.20 shows the AST that results from the parse of Figure 7.14. The double
dereference of w occurs in response to the input string's “x w”, used as an Rvalue.
Indeed, the tree shown in Figure 7.14 contains two R—L productions above the
terminal w. The use of y without dereference in Figure 7.20 occurs because of the

addr operator in Figure 7.14.

List processing using left-recursive rules

A common idiom in grammars and semantic actions is the processing of a list of

grammar symbols via a recursive production. In bottom-up parsing, such rules

36 Chapter 7. Syntax-Directed Translation
=
D D

D
=D =D

Figure 7.20: AST for the Cicada program in Figure 7.14.

are usually left-recursive, which minimizes stack usage and creates the prevalent

left-association. In top-down parsing, such rules are necessarily right-recursive.

To illustrate how such left- or right-recursive lists can be distilled into an AST
we recall the grammar from Section 7.3 that defined base-10 numbers. In Fig-
ure 7.2, the semantic actions compute the value of a number. Figure 7.21 reprises
the grammar, but with the goal of generating an AST to represent the list of digits.
The utility method MAKESIBLINGS was carefully defined to return the rightmost of
a list of siblings. Thus, Step 12 returns the most recently processed digit, made into

an AST node by Step 11.

7.5. Abstract Syntax Trees 37

1 Start,e — Digsyy $
ast +— MAKEOPERATORNODE(Digs)
call ast. ADOPTCHILDREN(kids)

2 Digs,, = DigSpep, next

sib <+ MAKECONSTNODE(next) n
up + below MAKESIBLINGS(sib) 12
3 | dﬁrst

up + MAKECONSTNODE(first)

Figure 7.21: AST construction for a left-recursive rule.
Summary

Syntax-directed translation can accomplish translation directly via semantic ac-
tions that execute in concert with top-down or bottom-up parses. More commonly,
an AST is constructed as a by-product of the parse; the AST serves as a record of
the parse as well as a repository for information created and consumed by a com-
piler's passes. The design of an AST is routinely revised to simplify or facilitate

compilation.

38 Chapter 7. Syntax-Directed Translation

Exercises

1. Consider a right-recursive formulation for Digs of Figure 7.2, resulting in the

following grammar.

1 Start — Digs,, $

call PRINT(ans)
2 Digs,, — duext DigSpepp,

up + below x 10 + next
3 | dprse

up <+ first

Are the semantic actions still correct? If so, explain why they are still valid;

if not, provide a set of semantic actions that does the job properly.

2. The semantic actions in Figure 7.4 fail to ensure that digits interpreted base-8
are in the range 0...7. Show the semantic actions that need to be inserted

into Figure 7.4 so that digits that lie outside the octal range are effectively

ignored.

3. The grammar in Figure 7.8 is almost faithful to the language originally de-
fined in Figure 7.6. To appreciate the difference, consider how each grammar

treats the input string x 5 $.

(a) In what respects do the grammars generate different languages?

7.5. Abstract Syntax Trees 39

(b) Modify the grammar in Figure 7.8 to maintain its style of semantic pro-

cessing but to respect the language definition in Figure 7.6.

4. The language generated by the grammar in Figure 7.8 uses the terminal x
to introduce the base. A more common convention is to separate the base
from the string of digits by some terminal symbol. Instead of x 8 4 3 1
to represent 431g, a language following the common convention would use

8 x 4 3 1.

(a) Design an LALR(1) grammar for such a language and specify the seman-
tic actions that compute the string's numeric value. In your solution,
allow the absence of a base specification to default to base 10, as in

Figure 7.8.

(b) Discuss the tradeoffs of this language and your grammar as compared

with the language and grammar of Figure 7.8.

5. Consider the addition of the the rule

Expr—sum Values

to the grammar in Figure 7.9.

(a) Does this change make the grammar ambiguous?
(b) Is the grammar still LL(1) parsable?

(c) Show how the semantic actions in Figure 7.10 must be changed to ac-

commodate this new language construct; modify the grammar if neces-

40 Chapter 7. Syntax-Directed Translation

sary but avoid use of global variables.

6. Consider the addition of the rule
Expr—mean Values

to the grammar in Figure 7.9. This rule defines an expression that computes
the average of its values, defined by:

Doizi ViJ

(mean vivy...v,) = L
n

(a) Does this render the grammar ambiguous?
(b) Is the grammar still LL(1) parsable?

(c) Describe your approach for syntax-directed translation of this new con-

struct.

(d) Modify the grammar of Figure 7.10 accordingly and insert the appro-

priate semantic actions into Figure 7.10.

7. Although arithmetic expressions are typically evaluated from left to right,
the semantic actions in VALUES cause a product computed from right to left.
Modify the grammar and semantic actions of Figures 7.9 and 7.10 so that

products are computed from left to right.

8. Verify that the grammar in Figure 7.13 is unambiguous using an LALR(1)

parser generator.

7.5. Abstract Syntax Trees 41

9. Suppose that the terminals assign, deref, and addr correspond to the input

symbols =, x, and &, respectively. Using the grammar in Figure 7.13

¢ show parse trees for the following strings;

e show where indirections actually occur by circling the parse tree nodes

that correspond to the rule R— L.

(f) « 16 = 256

10. Construct an LL(1) grammar for the langauge in Figure 7.13.

11. Suppose Cicada were extended to include binary subtraction and unary nega-
tion, so that the expression minus y minus x times 3 has the effect of

negating y prior to subtraction of the product of x and 3.

(a) Following the steps outlined in Section 7.5, modify the grammar to
include these new operators. Your grammar should grant negation
strongest precedence, at a level equivalent to deref. Binary subtraction

can appear at the same level as binary addition.

42 Chapter 7. Syntax-Directed Translation

(b) Modify the chapter's AST design to include subtraction and negation by

including a minus operator node.

(c) Install the appropriate semantic actions into the parser.

12. Modify the grammar and semantic actions of Figure 7.21 so that the rule for

Digs is right-recursive. Your semantic actions should create the identical AST.

13. Using a standard LALR(1) grammar for C or Java, find syntactic punctuation
that can be eliminated without introducing LALR(1) conflicts. Explain why
the (apparently unnecessary) punctuation is included in the language. As a

hint, consider the parentheses that surround the predicate of an if statement.

8
Symbol Tables

Chapter Chapter:global:seven considered the construction of an abstract syntax
tree (AST) as an artifact of a top-down or bottom-up parse. On its own, a top-
down or bottom-up parser cannot fully accomplish the compilation of modern
programming languages. The AST serves to represent the source program and to
coordinate information contributed by the various passes of a compiler. This chap-
ter presents one such pass—the harvesting of symbols from an AST. Most pro-
gramming languages allow the declaration, definition, and use of symbolic names
to represent constants, variables, methods, types, and objects. The compiler checks
that such names are used correctly, based on the programming language's defini-
tion. This chapter describes the organization and implementation of a symbol
table. This structure records the names and important attributes of a program's
names. Examples of such attributes include a name's type, scope, and accessibility.

We are interested in two aspects of a symbol table: its use and its organization.
Section 8.1 defines a simple symbol table interface and shows how to use this inter-
face to manage symbols for a block-structured language. Section 8.2 explains the
effects of program scopes on symbol-table management. Section 8.3 examines var-
ious implementations of a symbol table. Advanced topics, such as type definitions,
inheritance, and overloading are considered in Section 8.4.

8.1 Use of a Symbol Table

In this section, we consider how to construct a symbol table for a simple, block-
structured language. Assuming an AST has been constructed as described in Chap-
ter Chapter:global:seven, we walk (make a pass over) the AST to

e process symbol declarations and

2 Chapter 8. Symbol Tables

¢ connect each symbol reference with its declaration.

Symbol references are connected with declarations through the symbol table. An
AST node that mentions a symbol by name is enriched with a reference to the
name's entry in the symbol table. If such a connection cannot be made, then the
offending reference is improperly declared and an error message is issued. Other-
wise, subsequent passes can use the symbol table reference to obtain information
about the symbol, such as its type, storage requirements, and accessibility.

The block-structured program shown in Figure 8.1(a) contains two nested
scopes. Although the program uses keywords such as float and int, no sym-
bol table action is required for these symbols if they are recognized by the scanner
as the terminal symbols float and int, respectively. Most programming-language
grammars demand such precision of the scanner to avoid ambiguity in the gram-
mar.

The program in Figure 8.1(a) begins by importing function definitions for £
and g. The compiler finds these, determines that their return types are void, and
then records the functions in the symbol table as its first two entries. The declara-
tions for w and x in the outer scope are entered as symbols 3 and 4, respectively.
The inner scope's redeclaration of x and its declaration of z are entered as sym-
bols 5 and 6, respectively. The AST in Figure 8.1(b) refers to symbols by name. In
Figure 8.1(d), the names are replaced by symbol table references. In particular, the
references to x—shown only by name in Figure 8.1(b)—are declaration-specific in
Figure 8.1(d). In the symbol table, the references contain the original name as well
as type information processed from the symbol declarations.

8.1.1 Static Scoping

Modern programming languages offer scopes to confine the activity of a name to
a prescribed region of a program. A name may be declared at most once in any
given scope. For statically scoped, block-structured languages, references are typ-
ically resolved to the declaration in their closest containing scope. Additionally,
most languages contain directives to promote a given declaration or reference to
the program's global scope—a name space shared by all compilation units. Sec-
tion 8.4.4 discusses these issues in greater detail.

Proper use of scopes results in programs whose behavior is easier to under-
stand. Figure 8.1(a) shows a program with two nested scopes. Declared in the
program's outer scope, w is available in both scopes. The activity of z is confined
to the inner scope. The name x is available in both scopes, but the meaning of x
changes—the inner scope redeclares x. In general, the static scope of an identifier
includes its defining block as well as any contained blocks that do not themselves
contain a declaration for the identifier.

Languages such as C, Pascal, and Java use the following keywords or punctua-
tion to define static scopes.

o For Pascal, the reserved keywords begin and end open and close scopes, re-
spectively. Within each scope, types, variables, and methods can be declared.

8.1. Use of a Symbol Table

import f(float, float, float)

import g(int)

Dcl w

Dcl x

Block

Call

{
int w,x
{
float x,z
f(x,w,z)
¥
g(x)
¥
(a)
Symbol | Symbol Attributes
Number | Name
1 f void func(float, float, float)
2 g void func(int)
3 W int
4 X int
5 X float
6 z float

(c)

Figure 8.1: Symbol table processing for a block-structured program.

Args
|
ef of w ef
(b)
Block
Dc! Code
bel 3 Del 4 Block call
Dcls Code Ref 2 Args
Del 5 Dl 6 call
Ref 1 Args
|
Ref 5 Ref 3 Ref 6
(d)

4 Chapter 8. Symbol Tables

¢ For C and Java, scopes are opened and closed by the appropriate braces, as
shown in Figure 8.1(a). In these languages, a scope can declare types and
variables. However, methods (function definitions) cannot appear in inner
scopes.

As considered in Exercises 1 and 2, compilers sometimes create scopes to make
room for temporaries and other compiler-generated names. For example, the con-
tents of a register may be temporarily deposited in a compiler-generated name to
free the register for some other task. When the task is finished, the register is
reloaded from the temporary storage. A scope nicely delimits the useful life of such
temporaries.

In some languages, references to names in outer scopes can incur overhead at
runtime. As discussed in Chapter Chapter:global:eleven, an important considera-
tion is whether a language allows the nested declaration of methods. C and Java
prohibit this, while Pascal allows methods to be defined in any scope. For C and
Java, a method's local variables can be flattened by renaming nested symbols and
moving their declaration to the method's outermost scope. Exercise 3 considers
this in greater detail.

8.1.2 A Symbol Table Interface

A symbol table is responsible for tracking which declaration is in effect when a
reference to the symbol is encountered. In this section, we define a symbol-table
interface for processing symbols in a block-structured, statically scoped language.
The methods in our interface are as follows.

INCRNESTLEVEL() opens a new scope in the symbol table. New symbols are en-
tered in the resulting scope.

DECRNESTLEVEL() closes the most recently opened scope in the symbol table.
Symbol references subsequently revert to outer scopes.

ENTERSYMBOL(name, type) enters the name in the symbol table's current scope.
The parameter type conveys the data type and access attributes of name's
declaration.

RETRIEVESYMBOL(name) returns the symbol table's currently valid declaration for
name. If no declaration for name is currently in effect, then a null pointer
can be returned.

To illustrate the use of this interface, Figure 8.2 contains code to build the symbol
table for the AST shown in Figure 8.1. The code is specialized to the type of the
AST node. Actions can be performed both before and after a given node's children
are visited. Prior to visiting the children of a Block node, Step 1 increases the static
scope depth. After the subtree of the Block is processed, Step 2 abandons the scope.
The code for Ref retrieves the symbol's current definition in the symbol table. If
none exists, then an error message is issued.

8.2. Block-Structured Languages and Scope Management S

procedure BUILDSYMBOLTABLE()
call PROCESSNODE(ASTroot)

end

procedure PROCESSNODE(#ode)
switch (node.kind)

case Block

call symtab INCRNESTLEVEL() 1
case Dcl

call symtab . ENTERSYMBOL(name, type)
case Ref

sym < symtab RETRIEVESYMBOL(name)

if sym=_1

then call ERROR(“Undeclared symbol”)
foreach ¢ € Children(node) do call PROCESSNODE(¢)
switch (node.kind)

case Block
call symtab.DECRNESTLEVEL() 2
end

Figure 8.2: Building the symbol table.

8.2 Block-Structured Languages and Scope Management

Most programming languages allow scopes to be nested statically, based on con-
cepts introduced by Algol 60. Languages that allow nested name scopes are known
as block-structured languages. While the mechanisms that open and close scopes
can vary by language, we assume that the INCRNESTLEVEL and DECRNESTLEVEL
methods are the uniform mechanism for opening and closing scopes in the sym-
bol table. In this section, we consider various language constructs that call for the
opening and closing of scopes. We also consider the issue of allocating a symbol
table per scope as compared with a single, global symbol table.

8.2.1 Scopes

Every symbol reference in an AST occurs in the context of defined scopes. The
scope defined by the innermost such context is known as the current scope. The
scopes defined by the current scope and its surrounding scopes are known as the
open or currently active scopes. All other scopes are said to be closed. Based on
these definitions, current, open, and closed scopes are not fixed attributes; instead,
they are defined relative to a particular point in the program.

Following are some common visibility rules that define the interpretation of a
name in the presence of multiple scopes.

6 Chapter 8. Symbol Tables

o At any point in the text of a program, the accessible names are those that are
declared in the current scope and in all other open scopes.

¢ If a name is declared in more than one open scope, a reference to the name is
resolved to the innermost declaration—the one that most closely surrounds
the reference.

¢ New declarations can be made only in the current scope.

Most languages offer mechanisms to install or resolve symbol names in the outer-
most, program-global scope. In C, names bearing the extern attribute are resolved
globally. In Java, a class can reference any class's public static fields, but these
fields do not populate a single, flat name space. Instead, each such field must be
fully qualified by its containing class.

Programming languages have evolved to allow various useful levels of scoping.
C and C++ offer a compilation-unit scope—names declared outside of all methods
are available within the compilation unit's methods. Java offers a package-level
scope—classes can be organized into packages that can access the package-scoped
methods and fields. In C, every function definition is available in the global scope,
unless the definition has the static attribute. In C++ and Java, names declared
within a class are available to all methods in the class. In Java and C++, a class's
fields and methods bearing the protected attribute are available to the class's sub-
classes. The parameters and local variables of a method are available within the
given method. Finally, names declared within a statement-block are available in all
contained blocks, unless the name is redeclared in an inner scope.

8.2.2 One Symbol Table or Many?

There are two common approaches to implementing block-structured symbol ta-
bles, as follows.

e A symbol table is associated with each scope.
o All symbols are entered in a single, global table.

A single symbol table must accommodate multiple, active declarations of the same
symbol. On the other hand, searching for a symbol can be faster in a single symbol
table. We next consider this issue in greater detail.

An Individual Table for Each Scope

If an individual table is created for each scope, some mechanism must be in place to
ensure that a search produces the name defined by the nested-scope rules. Because
name scopes are opened and closed in a last-in, first-out (LIFO) manner, a stack is
an appropriate data structure for organizing such a search. Thus, a scope stack of
symbol tables can be maintained, with one entry in the stack for each open scope.
The innermost scope appears at the top of the stack. The next containing scope is

8.3. Basic Implementation Techniques 7

second from the top, and so forth. When a new scope is opened, INCRNESTLEVEL
creates and pushes a new symbol table on the stack. When a scope is closed,
DECRNESTLEVEL, the top symbol table is popped.

A disadvantage of this approach is that we may need to search for a name
in a number of symbol tables before the symbol is found. The cost of this stack
search varies from program to program, depending on the number of nonlocal
name references and the depth of nesting of open scopes. In fact, studies have
shown that most lookups of symbols in block-structured languages return symbols
in the inner- or outer-most scopes. With a table per scope, intermediate scopes
must be checked before an outermost declaration can be returned.

An example of this symbol table organization is shown in Figure 8.8.

One Symbol Table

In this organization, all names in a compilation unit's scopes are entered into the
same table. If a name is declared in different scopes, then the scope name or
depth helps identify the name uniquely in the table. With a single symbol ta-
ble, RETRIEVESYMBOL need not chain through scope tables to locate a name. Sec-
tion 8.3.3 describes this kind of symbol table in greater detail. Such a symbol table
is shown in Figure 8.7.

8.3 Basic Implementation Techniques

Any implementation of the interface presented in Section 8.1 must correctly insert
and find symbols. Depending on the number of names that must be accommo-
dated and other performance considerations, a variety of implementations is pos-
sible. Section 8.3.1 examines some common approaches for organizing symbols in
a symbol table. Section 8.3.2 considers how to represent the symbol names them-
selves. Based on this discussion, Section 8.3.3 proposes an efficient symbol table
implementation.

8.3.1 Entering and Finding Names

We begin by considering various approaches for organizing the symbols in the
symbol table. For each approach, we examine the time needed to

¢ insert symbols,
e retrieve symbols, and
e maintain scopes.

These actions are not typically performed with equal frequency. Each scope can
declare a name at most once, but names can be referenced multiple times. It is
therefore reasonable to expect that RETRIEVESYMBOL is called more frequently than
the other methods in our symbol table interface. Thus, we pay particular attention
to the cost of retrieving symbols.

8 Chapter 8. Symbol Tables

Unordered List

This is the simplest possible storage mechanism. The only data structure required
is an array, with insertions occurring at the next available location. For added
flexibility, a linked list avoids the limitations imposed by a fixed-size array. In this
representation, ENTERSYMBOL inserts a name at the head of the unordered list. The
scope name (or depth) is recorded with the name. This allows ENTERSYMBOL to
detect if the same name is entered twice in the same scope—a situation disallowed
by most programming languages. RETRIEVESYMBOL searches for a name from the
head of the list toward its tail, so that the closest, active declaration of the name is
encountered first.

All names for a given scope appear adjacently in the unordered list. Thus,
INCRNESTLEVEL can annotate the list with a marker to show where the new scope
begins. DECRNESTLEVEL can then delete the currently active symbols at the head
of the list.

Although insertion is fast, retrieval of a name from the outermost scope can
require scanning the entire unordered list. This approach is therefore impractically
slow except for the smallest of symbol tables.

Ordered List

If a list of # distinct names is maintained alphabetically, binary search can find any
name in O(log#) time. In the unordered list, declarations from the same scope
appear in sequence—an unlikely situation for the ordered list. How should we or-
ganize the ordered list to accommodate declarations of a name in multiple scopes?
Exercise 4 investigates the potential performance of storing all names in a single,
ordered list. Because RETRIEVESYMBOL accesses the currently active declaration for
a name, a better data structure is an ordered list of stacks. Each stack represents
one currently active name; the stacks are ordered by their representative names.

RETRIEVESYMBOL locates the appropriate stack using binary search. The cur-
rently active declaration appears on top of the located stack. DECRNESTLEVEL
must pop those stacks containing declarations for the abandoned scope. To fa-
cilitate this, each symbol can be recorded along with its scope name or depth, as
established by INCRNESTLEVEL. DECRNESTLEVEL can then examine each stack in
the list and pop those stacks whose top symbol is declared in the abandoned scope.
When a stack becomes empty, it can be removed from the ordered list. Figure 8.3
shows such a symbol table for the example in Figure 8.1, at the point where method
£ is invoked.

A more efficient approach avoids touching each stack when a scope is aban-
doned. The idea is to maintain a separate linking of symbol table entries that are
declared at the same scope level. Section 8.3.3 presents this organization in greater
detail.

The details of maintaining a symbol table using ordered lists is left as Exer-
cise 5. Although ordered lists offer fast retrieval, insertion into an ordered list

8.3. Basic Implementation Techniques 9

0]void func(float,float,float) |

0 [void func(int) |

y

K ES L
|x |_>|2|float|_>|1| int|
—

N

2 |f|oat |

Figure 8.3: An ordered list of symbol stacks.

is relatively expensive. Thus, ordered lists are advantageous when the space of
symbols is known in advance—such is the case for reserved keywords.

Binary Search Trees

Binary search trees are designed to combine the efficiency of a linked data structure
for insertion with the efficiency of binary search for retrieval. Given random inputs,
it is expected that a name can be inserted or found in O(log#) time, where 7 is the
number of names in the tree. Unfortunately, average-case performance does not
necessarily hold for symbol tables—programmers do not choose identifier names
at random! Thus, a tree of # names could have depth 7, causing name lookup to
take O(#n) time.

An advantage of binary search trees is their simple, widely known implemen-
tation. This simplicity and the common perception of reasonable average-case
performance make binary search trees a popular technique for implementing sym-
bol tables. As with the list structures, each name (node) in the binary search tree is
actually a stack of currently active scopes that declare the name.

Balanced Trees

The worst-case scenario for a binary search tree can be avoided if a search tree
can be maintained in balanced form. The time spent balancing the tree can be
amortized over all operations so that a symbol can be inserted or found in O(log 1)
time, where 7 is the number of names in the tree. Examples of such trees include
red-black trees [?] and splay trees [?]. Exercises 10 and 11 further explore symbol
table implementations based on balanced-tree structures.

Hash Tables

Hash tables are the most common mechanism for managing symbol tables, owing
to their excellent performance. Given a sufficiently large table, a good hash func-
tion, and appropriate collision-handling techniques, insertion or retrieval can be

10 Chapter 8. Symbol Tables

performed in constant time, regardless of the number of entries in the table. The
implementation discussed in Section 8.3.3 uses a hash table, with collisions han-
dled by chaining. Hash tables are widely implemented. Some languages (including
Java) contain hash table implementations in their core library. The implementation
details for hash tables are covered well in most books on elementary data structures
and algorithms [?].

8.3.2 The Name Space

At some point, a symbol table entry must represent the name of its symbol. Each
name is essentially a string of characters. However, by taking the following prop-
erties into consideration, an efficient implementation of the name space can be
obtained.

¢ The name of a symbol does not change during compilation. Thus, the strings
associated with symbol table names are immutable—once allocated, they do
not change.

¢ Although scopes come and go, the symbol names persist throughout com-
pilation. Scope creation and deletion affects the set of currently available
symbols, obtainable through RETRIEVESYMBOL. However, a scope's symbols
are not completely forgotten when the scope is abandoned. Space must be
reserved for the symbols at runtime, and the symbols may require initial-
ization. Thus, the symbols' strings occupy storage that persists throughout
compilation.

o There can be great variance in the length of identifier names. Short names—
perhaps only a single character—are typically used for iteration variables and
temporaries. Global names in a large software system tend to be descriptive
and much longer in length. For example, the X windowing system contains
names such as VisibilityPartiallyObscured.

o Unless an ordered list is maintained, comparisons of symbol names involve
only equality and inequality.

The above points argue in favor of one logical name space, as shown in Figure 8.4,
in which names are inserted but never deleted.

In Figure 8.4, each string referenced by a pair of fields. One field specifies the
string's origin in the string buffer, and the other field specifies the string's length.
If the names are managed so that the buffer contains at most one occurrence of
any name, then the equality of two strings can be tested by comparing the strings'
references. If they differ in origin or length, the strings cannot be the same. The
Java String class contains the method intern that maps any string to a unique
reference for the string.

The strings in Figure 8.4 do not share any common characters. Exercise 16
considers a stringspace that stores shared substrings more compactly. In some
languages, the suffix of a name can suffice to locate the name. For example, a

8.3. Basic Implementation Techniques 11

Figure 8.4: Name space for symbols putter, input, and i.

Name Type Var |Level |Hash

Figure 8.5: A symbol table entry.

reference of String in a Java program defaults to java.lang.String. Exercise 6
considers the organization of name spaces to accommodate such access.

8.3.3 An Efficient Symbol Table Implementation

We have examined issues of symbol management and representation. Based on the
discussion up to this point, we next present an efficient symbol table implemen-
tation. Figure 8.5 shows the layout of a symbol table entry, each containing the
following fields.

Name is a reference to the symbol name space, organized as described in Sec-
tion 8.3.2. The name is required to locate the symbol in a chain of symbols
with the same hash-table location.

Type is a reference to the type information associated with the symbol's declara-
tion. Such information is processed as described in Chapter Chapter:global:nine.

Hash threads symbols whose names hash to the same value. In practice, such sym-
bols are doubly linked to facilitate symbol deletion.

Var is a reference to the next outer declaration of this same name. When the scope
containing this declaration is abandoned, the referenced declaration becomes
the currently active declaration for the name. Thus, this field essentially rep-
resents a stack of scope declarations for its symbol name.

12 Chapter 8. Symbol Tables

Level threads symbols declared in the same scope. This field facilitates symbol
deletion when a scope is abandoned.

There are two index structures for the symbol table: a hash table and a scope
display. The hash table allows efficient lookup and entry of names, as described in
Section 8.3.1. The scope display maintains a list of symbols that are declared at
the same level. In particular, the ith entry of the scope display references a list of
symbols currently active at scope depth i. Such symbols are linked by their Level
field. Moreover, each active symbol's Var field is essentially a stack of declarations
for the associated variable.

Figure 8.6 shows the pseudocode for this symbol table implementation. Fig-
ure 8.7 shows the table that results from applying this implementation to the ex-
ample in Figure 8.1, at the point where method £ is invoked. Figure 8.7 assumes
the following unlikely situation with respect to the hash function.

¢ £ and g hash to the same location.

e w and z hash to the same location.

o All symbols are clustered in the same part of the table.
The code in Figure 8.6 relies on the following methods.

DELETE(sym) removes the symbol table entry sym from the collision chain found
at HashTable.GET(sym.name). The symbol is not destroyed—it is simply
removed from the collision chain. In particular, its Var and Level fields remains
intact.

ADD(sym) adds the symbol entry sym to the collision chain at HashTable.GET(sym.name).
Prior to the call to ADD, there is no entry in the table for sym.

When DECRNESTLEVEL is invoked to abandon the currently active scope, each
symbol in the scope is visited by the loop at Step 3. Each such symbol is removed
from the hash table at Step 4. If an outer scope definition exists for the symbol,
the definition is inserted into the hash table at Step 5. Thus, the Var field serves
to maintain a stack of active scope declarations for each symbol. The Level field
allows DECRNESTLEVEL to operate in time proportional to the number of symbols
affected by abandoning the current scope. Amortized over all symbols, this adds a
constant overhead to the management of each declared symbol.

RETRIEVESYMBOL examines a collision chain to find the desired symbol. The
loop at Step 6 accesses all symbols that hash to the same table location—the chain
that should contain the desired name. Step 7 follows the entries' Hash fields until
the chain is exhausted or the symbol is located. A properly managed hash table
should have very short collision chains. Thus, we expect that only a few iterations
of the loop at Step 6 should be necessary to locate a symbol or to detect that the
symbol has not been properly declared.

ENTERSYMBOL first locates the currently active definition for name, should any
exist in the table. Step 9 checks that no declaration already exists in the current

8.4. Advanced Features 13

scope. A new symbol table entry is generated at Step 10. The symbol is added to
those in the current scope by linking it into the scope display. The remaining code
inserts the new symbol into the table. If an active scope contains a definition of the
symbol name, that name is removed from the table and referenced by the Var field
of the new symbol.

Recalling the discussion of Section 8.2.2, an alternative approach segregates
symbols by scope. A stack of symbol tables results—one per scope—as shown in
Figure 8.8. The code to manage such a structure is left as Exercise 19.

8.4 Advanced Features

We next examine how to extend the simple symbol table framework to accom-
modate advanced features of modern programming languages. Extensions to our
simple framework fall generally in the following categories:

e Name augmentation (overloading)
e Name hiding and promotion
e Modification of search rules

In each case, it is appropriate to rethink the symbol table design to arrive at an
efficient, correct implementation of the desired features. In the following sections,
we discuss the essential issues associated with each feature. However, we leave the
details of the implementation as exercises.

8.4.1 Records and Typenames

Languages such as C and Pascal allow aggregate data structures using the struct
and record type constructors. Because such structures can be nested, access to
a field may involve navigating through many containers before the field can be
reached. In Pascal, Ada, and C, such fields are accessed by completely specifying the
containers and the field. Thus, the reference a.b.c.d accesses field b of record a,
field ¢ of record b, and finally field d of record c. COBOL and PL/I allow intermediate
containers to be omitted—if the reference can be unambiguously resolved. In such
languages, a.b.c.d might be abbreviated as a.d or c¢.d. This idea has not met
with general acceptance, partly because programs that use such abbreviations are
difficult to read. It is also possible that a.d is a mistake, but the compiler silently
inteprets the reference by filling in missing containers.

Records can be nested arbitrarily deep. Thus, records are typically imple-
mented using a tree. Each record is represented as a node; its children represent
the record's subfield. Alternatively, a record can be represented by a symbol table
whose entries are the record's subfields. Exercise 14 considers the implementation
of records in symbol tables.

C offers the typedet construct, which establishes a name as an alias for a type.
As with record types, it is convenient to establish an entry in the symbol table for

14

procedure INCRNESTLEVEL()
Depth < Depth + 1
ScopeDisplay[Depth] + L
end
procedure DECRNESTLEVEL()
foreach sym € ScopeDisplay[Depth] do
prevsym < sym.var
call DELETE(sym)
if prevsym # L
then call ADD(prevsym)
Depth < Depth — 1
end
function RETRIEVESYMBOL(name) : Symbol
sym « HashTable.GET(name)
while sym # L do
if sym.name = name
then return (sym)
sym ¢ sym.Hash
return (1)
end
procedure ENTERSYMBOL (name, type)
oldsym <+ RETRIEVESYMBOL(name)
if oldsym #+ | and oldsym.depth — Depth
then call ERROR(“Duplicate declaration of name”)
newsym < CREATENEWSYMBOL(name, type)
% Add to scope display
newsym.lLevel < ScopeDisplay|Depth)
ScopeDisplay|Depth] + newsym

% Add to hash table
if oldsym = L

then call ADD(newsym)

else

call DELETE(oldsym)
call ADD(newsym)
newsym.var < oldsym
end

Chapter 8. Symbol Tables

10
*/

*/

Figure 8.6: Symbol table management.

8.4. Advanced Features 15

Hash Scope
Table K | Display
] vV [L H void v [tITH
f void func gl g .
> (float,float, float) func(int) « 0
> vV [L H] vV [L H
z float » W int 1
2
y
> vV [L H
X float
y
] vV [L H |
X int

Figure 8.7: Detailed layout of the symbol table for Figure 8.1. The V, L, and H fields
abbreviate the Var, Level, and Hash fields, respectively.

H void func
z float w X int w f | et foatfoan

) void
X float w int 9 | func(int)
Current Scope Outer Scope Outermost Scope

Figure 8.8: A stack of symbol tables, one per scope.

the typedet. In fact, most C compilers use scanners that must distinguish between
ordinary names and typenames. This is typically accomplished through a “back
door” call to the symbol table to lookup each identifier. If the symbol table shows
that the name as an active typename, then the scanner returns a typename token.
Otherwise, an ordinary identifier token is returned.

8.4.2 Overloading and Type Hierarchies

The notion of an identifier has thus far been restricted to a string containing the
identifier's name. Situations can arise where the name alone is insufficient to locate
a desired symbol. Object-oriented languages such as C++ and Java allow method
overloading. A method can be defined multiple times, provided that each definition
has a unique type signature. The type signature of a method includes the number

16 Chapter 8. Symbol Tables

and types of its parameters and its return type. With overloading, a program can
contain the methods print (int) as well as print (String).

When the type signatures are included, the compiler comes to view a method
definition not only in terms of its name but also in terms of the its type signa-
ture. The symbol table must be capable of entering and retrieving the appropriate
symbol for a method. In one approach to method overloading, the type signature
of a method is encoded along with its name. For example, the method println
that accepts an integer and returns nothing is encoded as println(I)V. It then
becomes necessary to include a method's type signature each time such symbols
are retrieved from the symbol table. Alternatively, the symbol table could simply
record a method along with a list of of its overloaded definitions. In the AST,
method invocations point to the entire list of method definitions. Subsequently,
semantic processing scans the list to make certain that a valid definition of the
method occurs for each invocation.

Some languages, such as C++ and Ada, allow operator symbols to be over-
loaded. For example, the meaning of + could change if its arguments are matrices
instead of scalars. A program could provide a method that overloads + and per-
forms matrix addition on matrix arguments. The symbol table for such languages
must be capable of determining the definition of an operator symbol in every scope.

Ada allows literals to be overloaded. For example, the symbol Diamonds could
participate simultaneously in two different enumeration types: as a playing card
and as a commodity.

Pascal and FORTRAN employ a small degree of overloading in that the same sym-
bol can represent the invocation of a method as well as the value of the method's
result. For such languages, the symbol table contains two entries. One represents
the method while the other represents a name for the value returned by the method.
It is clear in context whether the name means the value returned by the method or
the method itself. As demonstrated in Figure 8.1, semantic processing makes an
explicit connection between a name and its symbol.

C also has overloading to a certain degree. A program can use the same name
as a local variable, a struct name, and a label. Although it is unwise to write
such confusing programs, C allows this because it is clear in each context which
definition of a name is intended (see Exercise 13).

Languages such as Java and C++ offer type extension through subclassing. The
symbol table could contain a method resize(Shape), while the program invokes
the method resize(Rectangle). If Rectangle is a subclass of Shape, then the
invocation should resolve to the method resize (Shape). However, if the program
contains a resize method for both Rectangle and Shape types, then resolution
should choose the method whose formal parameters most closely match the types
of the supplied parameters.

In modern, object-oriented languages, a method call's resolution is determined
not only by its type signature, but also by its situation in the type hierarchy. For
example, consider a Java class A and its subclass B. Suppose classes A and B both
define the method sqrt(int). Given an instance b of class B, an invocation of
((4) b).sqrt() causes B's sqrt to execute, even though the instance is apparently

8.4. Advanced Features 17

converted to an object of type A. This is because the runtime type identification
of the instance determines which class's sqrt is executed. At compile-time it is
generally undecidable which version of sqrt will execute at runtime. However,
the compiler can check that a valid definition of sqrt is present for this example.
The instance of type B is regarded as an instance of class A after the cast. The
compiler can check that class & provides a suitable definition of sqrt. If so, then
all of A's subclasses provide a default definition by inheritance, and perhaps a more
specialized definition by overiding the method. In fact, Java provides no mechanism
for directly invoking A's definition of sqrt on an object whose runtime type is B.
In contrast, C++ allows a nonvirtual call to A's definition of sqrt. In fact, such is
the default for a B object once it is cast to type A. Chapter Chapter:global:thirteen
considers these issues in greater detail.

8.4.3 Implicit Declarations

In some languages, the appearance of a name in a certain context serves to declare
the name as well. As a common example, consider the use of labels in C. A label
is introduced as an identifier followed by a colon. Unlike Pascal, the program need
not declare the use of such labels in advance. In FORTRAN, the type of an identifier
for which no declaration is offered can be inferred from the identifier's first letter.
In Ada, a for loop index is implicitly declared to be of the same type as the range
specifier. Moreover, a new scope is opened for the loop so that the loop index
cannot clash with an existing variable (see Exercise 12).

Implicit declarations are almost always introduced in a programming language
for convenience—the convenience of those who use rather than implement the
language. Taking this point further, implicit declarations may ease the task of
writing programs at the expense of those who must later read them. In any event,
the compiler is responsible for supporting such features.

8.4.4 Export and Import Directives

Export rules allow a programmer to specify that some local scope names are to
become visible outside that scope. This selective visibility is in contrast to the usual
block-structured scope rule, which causes local scope names to be invisible outside
the scope. Export rules are typically associated with modularization features such
such as Ada packages, C++ classes, C compilation units, and Java classes. These lan-
guage features help a programmer organize a program's files by their functionality.
In Java, the public attribute causes the associated field or method to be known
outside its class. To prevent name clashes, each class can situate itself in a package
hierarchy through the package directive. Thus, the String class provided in the
Java core library is actually part of the java.lang package. In contrast, all methods
in C are known outside of their compilation units, unless the static attribute is
bestowed. The static methods are available only within their compilation units.
With an export rule, each compilation unit advertises its offerings. In a large
software system, the space of available global names can become polluted and

18 Chapter 8. Symbol Tables

disorganized. To manage this, compilation units are typically required to specify
which names they wish to import. In C and C++, the use of a header file includes
declarations of methods and structures that can be used by the compilation unit.
In Java, the import directive specifies the classes and packages that a compilation
unit might access. Ada's use directive serves essentially the same purpose.

To process the export and import directives, the compiler typically examines
the import directives to obtain a list of potentially external references. These
references are then examined by the compiler to determine their validity, to the
extent that is possible at compile time. In Java, the import directives serve to
initialize the symbol table so that references to abbreviated classes (String for
java.lang.String) can be resolved.

8.4.5 Altered Search Rules

Pascal's with statement is a good example of a feature that alters the way in which
symbols are found in the symbol table. If a Pascal program contains the phrase with
R do S, then the statements in § first try to resolve references within the record R.
If no valid reference is found in record R, then the symbol table is searched as
usual. Inside the with block, fields that would otherwise be invisible are made
visible. This feature prevents the programmer from frequently restating R inside
S. Moreover, the compiler can usually generate faster code, since it is likely that
record R is mentioned frequently in S.

Forward references also affect a symbol table's search rules. Consider a set of
recursive data structures or methods. In the program, the set of definitions must be
presented in some linear order. It is inevitable that a portion of the program will
reference a definition that has not yet been processed. Forward references suspend
the compiler's skepticism concerning undeclared symbols. A forward reference is
essentially a promise that a complete definition will eventually be provided.

Some languages require that forward references be announced. In C, it is con-
sidered good style to declare an undefined function so that its types are known at
forward references. In fact, some compilers require such declarations. On the other
hand, a C structure may contain a field that is a pointer to itself. For example, each
element in a linked list contains a pointer to another element. It is customary to
process such forward references in two passes. The first pass makes note of types
that should be checked in the second pass.

Summary

Although the interface for a symbol table is quite simple, the details underlying
a symbol table's implementation play a significant role in the performance of the
symbol table. Most modern programming languages are statically scoped. The
symbol table organization presented in this chapter efficiently represents scope-
declared symbols in a block-structured language. Each language places its own
requirements on how symbols can be declared and used. Most languages include

8.4. Advanced Features 19

rules for symbol promotion to a global scope. Issues such as inheritance, over-
loading, and aggregate data types should be considered when designing a symbol
table.

20 Chapter 8. Symbol Tables

Exercises

1. Consider a program in which the variable x is declared as a method's param-
eter and as one of the method's local variables. A programming language
includes parameter hiding if the local variable's declaration can mask the
parameter's declaration. Otherwise, the situation described in this exercise
results in a multiply defined symbol. With regard to the symbol table inter-
face presented in Section 8.1.2, explain the implicit scope-changing actions
that must be taken if the language calls for

(a) parameter hiding
(b) no parameter hiding.
2. Code-generation sequences often require the materialization of temporary
storage. For example, a complex arithmetic expression may require tempo-
raries to hold intermediate values. Hopefully, machine registers can accom-

modate such short-lived values. However, compilers must sometimes plan to
spill values out of registers into temporary storage.

(a) Where are symbol table actions needed to allocate storage for tempo-
raries?

(b) How can implicit scoping serve to limit the effective lifetime of tempo-
raries?

3. Consider the following C program.

int func() {

int x, y;
x = 10;
{
int x;
x = 20;
y =%
¥

return(x * y);

The identifier x is declared in the method's outer scope. Another declaration
occurs within the nested scope that assigns y. For C, the nested declaration of
x could be regarded as a declaration of some other name, provided that the
inner scope's reference to x is appropriately renamed. Design an AST pass
that

e Renames and moves nested variable declarations to the method's outer-
most scope

8.4. Advanced Features 21

o Appropriately renames symbol references to preserve the meaning of the
program

4. Recalling the discussion of Section 8.3.1, suppose that all active names are
contained in a single, ordered list. An identifier would appear k times in the
list if there are currently k active scopes that declare the identifier.

(a) How would you implement the methods defined in Section 8.1.2 so
that that RETRIEVESYMBOL finds the appropriate declaration of a given
identifier?

(b) Explain why the lookup time does or does not remain O(log(n)) for a
list of 7 entries.

5. Design and implement a symbol table using the ordered list data structure
suggested in Section 8.3.1. Discuss the time required to perform each of the
methods defined in Section 8.1.2.

6. Some languages contain names whose suffix is sufficient to locate the name.
In Java, the classes in the package java.langare available, so that the java.lang.Integer
class can be referenced simply as Integer. This feature is also available for
any explicitly imported classes. Similarly, Pascal's with statement allows field
names to be abbreviated in the applicable blocks.

Design a name space that supports the efficient retrieval of such abbreviated
names, under the following conditions. Be sure to document any changes
you wish to make to the symbol table interface given in Section 8.1.2.

7. Section 8.4.1 states that some languages allow a series of field references to be
abbreviated, providing the abbreviation can uniquely locate the desired field.
Certainly, the last field of such a reference must appear in the abbreviation.
Moreover, the first field is necessary to distinguish the reference from other
instances of the same type. We therefore assume that the first and last fields
must appear in an abbreviation.

As an example, the reference a.b.c.d could be abbreviated a.d if records a
and b do not contain their own d field.

Design an algorithm to allow such abbreviations, taking into consideration
that the first and last fields of the reference cannot be omitted. Integrate your
solution into RETRIEVESYMBOL in Section 8.3.3.

8. Consider a language whose field references are the reverse of those found in C
and Pascal. A Creference toa.b.c.d would be specified asd.c.b.a. Describe
the modifications you would make to your symbol table to accommodate
such languages.

9. Program a symbol table manager using the interface described in Section 8.1.2
and the implementation described in Section 8.3.3.

22

10.

11.

12.

13.

14.

Chapter 8. Symbol Tables

Program a symbol table manager using the interface described in Section 8.1.2.
Maintain the symbol table using red-black trees [?].

Program a symbol table manager using the interface described in Section 8.1.2.
Maintain the symbol table using splay trees [?].

Describe how you would use the symbol table interface given in Section 8.1.2
to localize the declaration and effects of a loop iteration variable. As an
example, consider the variable i in the Java-like statement

for (int i=1; i<10; ++i) {...}.

In this exercise, we seek the following.

o The declaration of i could not possibly conflict with any other declara-
tion.

e The effects on this i are confined to the body of the loop. That is,
the scope of i includes the expressions of the for statement as well as
its body, represented above as {...}. The value of the loop's iteration
variable is undefined when the loop exits.

As mentioned in Section 8.4.2, C allows the same identifier to appear as a
struct name, a label, and an ordinary variable name. Thus, the following is
a valid C program:

main() {
struct xxx {
int a,b;
e

int xxx;

In C, the structure name never appears without the terminal struct preceding
it. The label can only be used as the target of a goto statement.

Explain how to use the symbol table interface given in Section 8.1.2 to allow
all three varieties of xxx to coexist in the same scope.

Using the symbol table interface given in Section 8.1.2, describe how to im-
plement records (structs in C) under each of the following assumptions.
(a) All records and fields are entered in a single symbol table.

(b) A record is represented by its own symbol table, whose contents are the
record's subfields.

8.4. Advanced Features 23

15.

16.

17.

18.

19.

Describe how to implement typenames (typedef in C) in a standard symbol
table. Consider the following program fragment:

typedef
struct {
int x,y;
} *Pair;

Pair *(pairs[23]);

The typedet establishes Pair as a typename, defined as a pointer to a record
of two integers. The declaration for pairs uses the typename, but adds one
more level of indirection to an array of 23 Pairs. Your design for typedef
must be accommodate further type construction using typedefs.

Each string in Figure 8.4 occupies its own space in the string buffer. Suppose
the strings were added in the following order: i, input, and putter. If
the strings could share common characters, then these three strings can be
represented using only 8 character slots.

Design a symbol table string-space manager that allows strings to overlap,
retaining the representation of each string as an offset and length pair, as
described in Section 8.3.2.

The two data structures most commonly used to implement symbol tables in
production compilers are binary search and hash tables. What are the ad-
vantages and disadvantages of using these data structures for symbol tables?

Describe two alternative approaches to handling multiple scopes in a sym-
bol table, and list the actions required to open and close a scope for each
alternative. Trace the sequence of actions that would be performed for each
alternative during compilation of the program in Figure 8.1.

Figure 8.6 provides code to create a single symbol table for all scopes. Re-
calling the discussion of Section 8.2.2, an alternative approach segregates
symbols by scope, as shown in Figure 8.8. Modify the code of Figure 8.6
to manage a stack of symbol tables, one for each active scope. Retain the
symbol table interface as defined in Section 8.1.2.

9

Semantic Analysis:
Smple Declarations
and Expressions

There are three major sections to this chapter. The first section presents some basic
concepts related to processing declarations, including the ideas that a symbol table is
used to represent information about names and that recursive traversal of an abstract syn-
tax tree can be used to interpret declarations and use the information they provide to
check types. The second section describes the tree-traversal “semantic” actions neces-
sary to process a simple declarations of variables and types as found in commonly used
programming languages. The third section includes similar semantic action descriptions
for type checking abstract syntax trees corresponding to simple assignment statements.
We continue to use semantic action descriptions in the next three chapters as a mecha-
nism to discuss the compilation of more complex language features. While this presenta-
tion is based on the features of particular languages, the techniques introduced are
general enough for use in compiling awide variety of languages.

9.1 Declaration Processing Fundamentals
9.1.1 Attributesin the Symbol Table

In Chapter 8, symbol tables were presented as a means of associating names with
some attribute information. We did not specify what kind of information wasincluded in
the attributes associated with a name or how it was represented. These topics are consid-
ered in this section.

Chapter 9 Semantic Analysis. Simple Declarations and Expressions

The attributes of a name generally include anything the compiler knows about it.
Because a compiler's main source of information about names is declarations, attributes
can be thought of as internal representations of declarations. Compilers do generate
some attribute information internally, typically from the context in which the declaration
of aname appears or, when use is an implicit declaration, from a use of the name. Names
are used in many different ways in a modern programming language, including as vari-
ables, constants, types, classes, and procedures. Every name, therefore, will not have the
same set of attributes associated with it. Rather, it will have a set of attributes corre-
sponding to its usage and thus to its declaration.

Attributes differing by the kind of name represented are easily implemented in either
object-oriented or conventional programming languages. In alanguage like Java, we can
declare an Attributes class to serve as the generalized type and then create subclasses of
Attributes to represent the details of each specialized version needed. In Pascal and Ada,
we can accomplish the same thing using variant records; in C, unions provide the neces-
sary capability.

Figure 9.1 illustrates the style we will use to diagram data structures needed by a
compiler to represent attributes and other associated information. In these diagrams, type
names are shown in italics (e.g., VariableAttributes), while instance variable names and
values are shown in the regular form of our program font (e.g., VariableName). Thisfig-
ure illustrates the information needed to represent the attributes of names used for vari-
ables and types. It includes two different subclasses of Attributes necessary for
describing what the compiler knows about these two different kinds of names.

VariableAttributes

Variabletype => A Type Reference
Variableaddr => An Address

TypeAttributes

Thistype => A Type Reference

Figure9.1 Attribute Descriptor Objects

Arbitrarily complex structures, determined by the complexity of the information to
be stored, may be used for attributes. Even the simple examples used here include refer-
ences to other structures that are used to represent type information.

Aswe outline the semantic actions for other language features, we will define asim-
ilar attribute structures for each.

9.1 Declaration Processing Fundamentals 3

9.1.2 Type Descriptor Structures

Among the attributes of almost any name is a type, which is represented by a type refer-
ence. A type reference is a reference to a TypeDescriptor object. Representing types
presents a compiler writer with much the same problem as representing attributes: There
are many different types whose descriptions require different information. Asillustrated
by the structures in Figure 9.2 by several subtypes of TypeDescriptor, we handle this
requirement just as we did for the Attributes structuresin the previous figure, with refer-
ences to other type descriptor structures or additional information (such as the symbol
table used to define the fields of arecord), as necessary.

IntegerTypeDescriptor

Size => a positive number
VariableAddr => an addre9s

ArrayTypeDescriptor

Size => a positive number
ElementType => a type reference
Bounds => a range descriptor

RecordTypeDescriptor

Size => a positive number
Fields => a symbol table

Figure9.2 Type Descriptor Objects

The kinds of representation shown in this figure are crucial in handling the features
of virtually all modern programming languages, which alow types to be constructed
using powerful composition rules. Using this technique rather than some kind of fixed
tabular representation also makes the compiler much more flexible in what it can allow a
programmer to declare. For example, using this approach, there is no reason to have an
upper bound on the number of dimensions allowed for an array or the number of fields
allowed in arecord or class. Such limitations in early languages like FORTRAN stem

Chapter 9 Semantic Analysis. Simple Declarations and Expressions

purely from implementation considerations. We generally favor techniques that enable a
compiler to avoid rejecting a legal program because of the size of the program or some
part of it. Dynamic linked structures like the type descriptor structure are the basis of
such techniques, aswill be seen in this chapter and Chapter 14.

9.1.3 Type Checking Using an Abstract Syntax Tree

Given that we have a program represented by an abstract syntax tree, we can implement
declaration processing and type checking (the semantic analysis task of our compiler) by
a recursive walk through the tree. The attraction of this approach it that such a tree tra-
versal can be specified quite easily through simple description of the actions to be per-
formed when each kind of tree node is encountered. When each tree node is represented
as an object, the necessary action can be expressed as a commonly-named method
defined for all alternative subtypes of the node type. We will use the name Semantics
for this method that performs the semantic analysis task.

If the implementation language does not support objects, this recursive traversal can
be performed by a single routine called Semantics. Its body is most likely organized as
alarge case or switch statement with an alternative for each kind of node in an abstract
syntax tree.

In the rest of this chapter and the three following chapters, we will describe the
actions to be performed for each kind of tree node used to represent individual language
features. Our actions can be interpreted as method bodies or switch/case alternatives,
depending on the implementation most familiar to the reader.

Once execution of the tree traversal defined by Semantics is completed, the analy-
sis phase of the compiler is complete. A second traversal can then be performed to syn-
thesize intermediate code or target code. (A tree optimization pass could be done prior to
code generation, particularly in the case where target code is to be generated.) We will
define this second traversal similarly via methods called CodeGen. It has a structure
much like that of the Semantics pass and we will similarly defineit by defining the indi-
vidual actions for the nodes corresponding to each language features.

Assume that a program is represented by an abstract syntax tree rooted in a
Program_Node that includes as components references to two subtrees: one for alist of
declarations and another for alist of statement., The common structure of the Seman-
tics and CodeGen actions for this Program_Node are seen in Figure 9.3. Each simply
invokes an equivalent operation on each of its subtrees.

PROGRAM_NODE.SEMANTICS()
1. Declarations.Semantics()
2. Statements.Semantics()

PROGRAM_NODE.CODEGEN()

1. Declarations.CodeGen()
2. Statements.CodeGen()

Figure9.3 Traversing Program Trees

9.2 Semantic Processing for Simple Declarations 5

The Semantics and CodeGen actions for the lists of declarations and statements
would likewise invoke the Semantics and CodeGen actions for each of the declara-
tions and statements in the lists. Our primary focusin the rest of this chapter and the fol-
lowing chapters will be the actions needed to implement individual declarations and
statements, as well as their components, particularly expressions.

9.2 Semantic Processing for Simple Declar ations

We begin by examining the techniques necessary to handle declarations of variables and
scalar types. Structured types will be considered in Chapter 13.

9.2.1 SimpleVariable Declarations

Our study of declaration processing begins with simple variable declarations, those that
include only variable names and types. (We will later consider the possibility of attach-
ing various attributes to variables and providing an initial value.) Regardless of the exact
syntactic form used in a particular language, the meaning of such declarations is quite
straightforward: the identifiers given as variable names are to be entered into the symbol
table for the current scope as variables. The type that is part of the declaration must be a
component of the attributes information associated with each of the variables in the sym-
bol table.

The abstract syntax tree built to represent a single variable declaration with the type
defined by a type name is shown in Figure 9.4. (We will consider more genera type
specifications later.) Regardless of language syntax details, like whether the type comes
before or after the variable name, this abstract syntax tree could be used to represent such
declarations. If the declaration syntax includes alist of identifiersinstead of only asingle
one, we can simply build alist of VarDecl_Nodes.

VarDecl _Node

VarName | VarType

e T

Identifier_Node Identifier_Node
AttributesRef AttributesRef
Name Name

Figure9.4 AST for aVariable Declaration

Chapter 9 Semantic Analysis. Simple Declarations and Expressions

The Semantics action for variable declarations illustrates use of specialized seman-
tic routines to process parts of the abstract syntax tree. As seen in this simple case, an
Identifier_Node can be used in multiple contexts in a syntax tree. So, to define some
context-specific processing to be done on it (rather than “default” actions), we specify
invocation of a specialized actions like TypeSemantics. TypeSemantics attempts to
interpret the Identifier_Node as describing atype. In fact, we will use TypeSemantics
to access the type specified by any arbitrary subtree used where we expect atype specifi-
cation.

The Semantics action on aVarDecl_Node, shown in Chapter 9.5, implements the
meaning that we have aready described for a variable declaration. Namely, it enters a
into the current symbol table and associates an Attributes descriptor with it, indicating
that the name is a variable and recording its type.

VARDECL_NODE.SEMANTICS()

1. Enter VarName.Name in the current symbol table

2. ifitisalready there

3. then Produce an error message indicating a duplicate dec-
laration

4, else Associate aVariableAttributes descriptor with the I1d
indicating:

- itstypethat provided by invoking
VarType.TypeSemantics ()

Figure9.5 VARDECL_NODE.SEMANTICS

The two routines in Chapter 9.6 process the type name. The first, TypeSemantics,
isinvoked in step 4 of VarDecl_Node.Semantics to interpret the type name provided
as part of the variable declaration. The second is just the basic semantic action that
accesses the attribute information associated with any name in the symbol table.

9.2.2 Type Definitions, Declarations, and References

In the previous section, we saw how type name references were processed, since they
were used in the semantic processing for variable declarations. We now consider how
type declarations are processed to create the structures accessed by type references. A
type declaration in any programming language includes a name and a description of the
corresponding type. The abstract syntax tree shown in Figure 9.4 can be used to repre-
sent such a declaration regardless of its source-level syntax. The Semantics action to
declare atype (Figure 9.8) is similar for that used for declaring a variable: the type iden-
tifier must be entered into the current symbol table and an Attributes descriptor associ-
ated with it. In this case the Attributes descriptor must indicate that the identifier names
atype and must contain a reference to a TypeDescriptor for the type it names.

9.2 Semantic Processing for Simple Declarations 7

IDENTIFIER_NODE.TYPE.SEMANTICS()

1. this _node.Semantics ()

2. if AttributesRef indicates that Nameis a type name

3. then returnthe value of AttributesRef. ThisType()

4 else Produce an error message indicating that Name can-
not be interpreted as atype

5. returnErrorType

IDENTIFIER_NODE.SEMANTICS()
1. Look Name up inthe symbol table
2. ifitisfound there

3. then Set AttributesRef to the Attributes descriptor associ-
ated with Name

4, else Produce an error message indicating that Name has
not been declared

5. Set AttributesRef to null

Figure9.6 IDENTIFIER_NODE.TYPE.SEMANTICS

TypeDecl_Node

TypeName TypeSpec

a

Identifier_Node Type
AttributesRef Subtree
Name

Figure9.7 AST for aType Declaration

Figure 9.7 and the psuedocode in Figure 9.8 leave unanswered the obvious question
of what kind of subtree is pointed to by TypeSpec. This part of the abstract syntax tree
defines the type represented by TypeName. Since type names are given to various types
defined by a programmer, TypeSpec can point to a subtree that represents any form of
type constructor allowed by the language being compiled. In Section 9.2.4, we will see
how a simple type definition is processed. In Chapter 14, we will see how to compile to
very commonly used type constructors: definitions of record and array types.

Chapter 9 Semantic Analysis. Simple Declarations and Expressions

TyPEDECL_NODE.SEMANTICS(DeclType))
1. Enter the TypeName.Namein the current symbol table
2. ifitisaready there

3. then Produce an error message indicating a duplicate dec-
laration
4. else Associate a TypeAttributes descriptor with the

Name indicating:
- thetypereferenced isthat provided by invok-
ing TypeSpec.TypeSemantics ()

Figure9.8 TyPEDECL_NODE.SEMANTICS

By using TypeSemantics (rather than Semantics) to process the subtree refer-
enced by TypeSpec, we require that the semantic processing for a type definition result
in the construction of aTypeDescriptor. Aswe have just seen, the Semantics action for
TypeDecl_Node then associates a reference to that TypeDescriptor with a type name.
Notice, however, that things work just aswell if atype definition rather than a type name
isused in a variable declaration. In the previous section, we assumed that the type for a
variable declaration was given by a type name. However, since we processed that name
by caling TypeSemantics, it is actually irrelevant to the variable declaration psue-
docode whether the type is described by a type name or by a type definition. In either
case, processing the type subtree with TypeSemantics will result in a reference to a
TypeDescriptor being returned. The only difference isthat in one case (a name), the ref-
erenceis obtained from the symbol table, while in the other (atype definition), the refer-
ence is to a descriptor created by the call to TypeSemantics.

Handling Type Declaration and Type Reference Errors. In the psuedocode for the
TypeSemantics action for an identifier, we introduce the idea of a static semantic check.
That is, we define a situation in which an error can be recognized in a program that is
syntactically correct. The error in this case is a simple one: a name used as a type name
does not actually name a type. In such a situation, we want our compiler to generate an
error message. ldeally, we want to generate only one error message per error, even if the
illegal type name is used many times. (Many compilers fall far short of thisideal!). The
simplest way to accomplish this goal isto immediately stop the compilation, though itis
also at least approachable for a compiler that tries to detect as many errors as possible in
asource program.

Whenever TypeSemantics finds that a type error, it returns a reference to a special
TypeDescriptor that we refer to as ErrorType. That particular value is a signal to the
code that called TypeSemantics that an error has been detected and that an error mes-
sage has already been generated. In this calling context, an explicit check may be made
for ErrorType or it may be treated like any other TypeDescriptor. In the specific
instance of the variable declaration psuedocode, the possibility of an ErrorType return
can be ignored. It works perfectly well to declare variables with ErrorType astheir type.
In fact, doing so prevents later, unnecessary error messages. That is, if avariable is left

9.2 Semantic Processing for Simple Declarations 9

undeclared because of atype error in its declaration, each time it is used, the compiler
will generate an undeclared variable error message. It is clearly better to declare the vari-
able with ErrorType as its type in order to avoid these perhaps confusing messages. In
later sections, we will see other uses of ErrorType to avoid the generation of extraneous
error messages.

Type Compatibility. One question remains to be answered: Just what does it mean for
types to be the same or for a constraint (as used in Ada) to be compatible with a type?
Ada, Pascal, and Modula-2 have a strict definition of type equivalence that says that
every type definition defines a new, distinct type that isincompatible with all other types.
This definition means that the declarations

A, B : ARRAY (1..10) OF Integer;

C, D : ARRAY (1..10) OF Integer;

are equivalent to
type Typel is ARRAY (1..10) OF Integer;
A, B : Typel;
type Type2 is ARRAY (1..10) OF Integer;
C, D : Type2;

A and B are of the sametype and C and D are of the same type, but the two types are
defined by distinct type definitions and thus are incompatible. As a result, assignment of
the value of C to A would be illegal. This rule is easily enforced by a compiler. Since
every type definition generates a distinct type descriptor, the test for type equivalence
requires only a comparison of pointers.

Other languages, most notably C, C++ and Java, use different rules to define type
equivalence, though Java does use name equivalence for classes. The most common
alternative is to use structural type equivalence. As the name suggests, two types are
equivalent under this rule if they have the same definitional structure. Thus Typel and
Type2 from the previous example would be considered equivalent. At first glance, this
rule seems like a much more useful choice because it is apparently more convenient for
programmers using the language. However, counterbalancing this convenienceis the fact
the structural type equivalence rule makesit impossible for a programmer to get full ben-
efit from the concept of type checking. That is, even if a programmer wants the compiler
to distinguish between Typel and Type2 because they represent different conceptsin the
program despite their identical implementations, the compiler is unableto do so.

Structural equivalence is much harder to implement, too. Rather than being deter-
mined by a single pointer comparison, a parallel traversal of two type descriptor struc-
tures is required. The code to do such a traversal requires special cases for each of the
type descriptor alternatives. Alternatively, as atype definition is processed by the seman-
tic checking pass through the tree, the type being defined can be compared against previ-
ously defined types so that equivalent types are represented by the same data structure,
even though they are defined separately. This technique allows the type equivalence test
to be implemented by a pointer comparison, but it requires an indexing mechanism that
makes it possible to tell during declaration processing whether each newly defined type
is equivalent to any previously defined type.

10

Chapter 9 Semantic Analysis. Simple Declarations and Expressions

Further, the recursion possible with pointer types poses subtle difficulties to the
implementation of a structural type equivalence test. Consider the problem of writing a
routine that can determine whether the following two Ada types are structurally equiva-
lent, given the following example. (Access types in Ada roughly correspond to pointers
in other languages.)

type A is access B;
type B is access A;

Even though such a definition is meaningless semantically, it is syntactically legal.
Thus a compiler for a language with structural type equivalence rules must be able to
make the appropriate determination — that 2 and B are equivalent. If parallel traversals
are used to implement the equivalence test, the traversal routines must “remember”
which type descriptors they have visited during the comparison process in order to avoid
an infinite loop. Suffice it to say that comparing pointers to type descriptorsis much sim-
pler!

9.2.3 Variable Declarations Revisited

The variable declaration can be more complex than the simple form shown in Sec-
tion 9.2.1. Many languages allow various modifiers, such as constant or static, to be
part of a variable declaration. Visibility modes like public, private and protected may
also be part of adeclaration, particularly in object-oriented languages. Finally, an initial
value might be specified. The abstract syntax tree node for a variable declaration obvi-
ously must be more complex than the one in Section 9.4 to encompass all of these possi-
bilities. Thus we need a structure like the one we see in Figure 9.9.

VarDecl_Node

VarName | VarType Modifiers Initialization
| \ \

Identifier_Node

Modifiers
Subtree

Expression
Subtree

Type
AttributesRef Subtree

Name

Figure9.9 AST for a Complete Variable Declaration

Both the modifiers and initialization parts are optional; in the case that neither are
present, we are left with the same information as in the smple version of this node seen

9.2 Semantic Processing for Simple Declarations 11

inSection 9.2.1. When present, the expression subtree referenced by Initialization may
be a literal constant whose value can be computed at compile time or its value may be
determined by an expression that cannot be evaluated until run-time. If it has a compile-
time value and constant is one of the Modifiers, the “variable” being declared is actu-
ally aconstant that may not even require run-time space allocation. Those that do require
space at run-time act much like variables, though the Attributes descriptor of such acon-
stant must include an indication that it may not be modified. We will leave the structure
of the Modifiers subtree unspecified, vary according to the specification of the particular
language being compiled. For a language that allows only a single modifier (constant,
perhaps), there need be no subtree since a single boolean component in the
VarDecl_Node will suffice. At the other extreme, Java allows several modifiers to be
present along with a name being declared, necessitating use of alist or some other struc-
ture with sufficient flexibility to handle all of the possible combinations of modifiers.

The Semantics action for this extended VarDecl_Node (in Figure 9.10) handles
the specified type and the list of variable or constant names much as they were handled
for the simpler VarDecl_Node in Section 9.2.1.

9.24 Enumeration Types

An enumeration type is defined by alist of distinct identifiers denoting its values; each
identifier is a constant of the enumeration type. Enumeration constants are ordered by
their position in the type definition and are represented internally by integer values. Typ-
ically, the value used to represent the first identifier is zero, and the value for each subse-
guent identifier is one more than that for its predecessor in the list (though some
languages do allow a programmer to specify the values used to represent enumeration lit-
eras).

The abstract syntax tree representation for an enumeration type definition is shown
in Figure 9.11. The TypeSemantics action for processing an EnumType_Node, like
those for processing records and arrays, will build a TypeDescriptor that describes the
enumeration type. In addition, each of the identifiers used to define the enumeration type
is entered into the current symbol table. Its attributes will include the fact that it is an
enumeration constant, the value used to represent it, and a reference to the TypeDescrip-
tor for the enumeration type itself. The type will be represented by a list of the
Attributes records for its constants. The required specializations of Attributes and Type-
Descriptor are illustrated in Figure 9.12 and the psuedocode for the enumeration type
semantics actionisin Figure 9.13.

Figure 9.14 shows the TypeDescriptor that would be constructed to represent the
enumeration type defined by

(red, yellow, blue, green)
The Size of the enumeration type is set during the CodeGen pass through the tree
to the size of an integer (or perhaps just a byte), which is al that is needed to store an
enumeration value.

Chapter 9 Semantic Analysis. Simple Declarations and Expressions

VARDECL_NODE.SEMANTICS()
1. Loca Variables: DeclType, InitType
2. Set DeclType To VarType. TypeSemantics()
3. if Initidlizationis not anull pointer
4, then Set Inittype to Initialization.ExprSemantics ()
5 if not Assignable (InitType, Decl Type)
6 then Generate an appropriate error message
7 Set Decl Type to ErrorType
else < Initialization Is Null
8. Check that Constant is not among the modifiers
9. Enter VarName.Name in the current symbol table
10. ifitisaready there

11. then Produce an error message indicating a duplicate dec-
laration

12. dsif Constant is among the modifiers

13. then Associate a ConstAttributes descriptor with it indi-
cating:

14. - Itstypeis Decl Type

- Itsvalue is defined by Initialization (a pointer
to an expression tree)

15. else «ltisavariable
16. Associate a VariableAttributes descriptor with it
indicating:
17. - Itstypeis Decl Type
18. - it modifiers are those specified by Modifiers
19. « Any initialization will be handled by the code gen-
eration pass

Figure9.10 VARDECL_NODE.SEMANTICS (VERSION 2)

9.3 Semantic Processing for Simple Names and
Expressions. An Introduction to Type Checking

The semantic processing reguirements for names and expressions can be easily under-
stood in the context of an assignment statement. Asillustrated in the AST representations
shown in Figure 9.15, an assignment is defined by a name that specifies the target of the
assignment and an expression that must be evaluated in order to provide the value to be
assigned to the target. The name may be either asimple identifier or a qualified identifier,
the latter in the case of areference to a component of a data structure or object.

In this chapter, we will only consider the case where the target is a simple identifier,
which can be represented by the same Identifier_Node that has been used n several
other contexts in this chapter. The simplest form of an expression is aso just a name (as
seen inthe assignment statement A = B;) or aliteral constant (asinA = 5;). Thesec-
tion that follows will present the Semantics actions necessary to handle these simple

9.3 Semantic Processing for Simple Names and Expressions: An Introduction to Type Checking 13

EnumType_Node

EnumType_Ref

|~ ConstantNames

/

IdList_Node
ds —————T—» Identifier_Node ——»| Identifier_Node —p» .

Figure9.11 AST for an Enumeration Type Definition

EnumTypeDescriptor

Size => a positive number
Constants => a list of symbol nodes

EnumAttributes

MyValue => an integer

EnumType => a type reference

Figure9.12 Type and Attribute Descriptor Objects for Enumerations

kinds of expressions and assignments. Section 9.3.2 will deal with expressionsinvolving
unary and binary operators and in Chapter 14 the techniques needed to compile simple
record and array references will be presented.

9.3.1 Handling Simple Identifiers and Literal Constants

The syntax trees for these assignments are the simple ones seen in Figure 9.9. The
Semantics actions needed to handle these assignment statements are equally simple.
However, thoughtful examination of thetreefor A = B leadsto the observation that the
two identifiers are being used in rather different ways. The A stands for the address of 2,
the location that receives the assigned value. The B stands for the value at the address
associated with B. We say that the A is providing an L-value (an address) because thisthe

Chapter 9 Semantic Analysis. Simple Declarations and Expressions

SymbolList

Symbols —|

ENUMTYPE_NODE.TYPESEMANTICS())

Create An Enumtypedescriptor For The New Enumeration

Constants Pointing To An Empty List Of Symbols

Set Enumtype_ref To Point To This Enumtypedescriptor

Each Of The Identifiers In The Constantnames List
do Enter The Identifier In The Current Symbol Table
Associate An Enumattributes Descriptor With It

Its Type Is The Typedescriptor Pointed To
By Enumtype_ref
ItsValue Is Nextvalue

1. [Local Variable: Nextvalue, Enumtype ref]
2.
Type With:
3.
4.
5. Set Nextvalue To O
6. for
7.
8.
Indicating:
9.
10.
11 Increment Nextvalue

12. return Enumtype ref

Figure9.13 ENUMTYPE_NODE.TYPESEMANTICS

EnumTypeDescriptor

Size => a positive number

Constants => \

Symbol

Symbol

Red —

Yellow

v

Y

—P Blue

Symbol

v

Symbol

Green

|

EnumAttributes

EnumAttributes

EnumAttributes

EnumAttributes

1

2

3

$

— 5

Figure9.14 Representation of an Enumeration Type

9.3 Semantic Processing for Simple Names and Expressions: An Introduction to Type Checking

Assignment_Node

AssignmentType

TargetName

ValueExpr

y

\

Assignment_Node

AssignmentType

TargetName

ValueExpr

Yy

Identifier_Node

Identifier_Node

Identifier_Node

AttributesRef

AttributesRef

AttributesRef

Name (A)

Name (B)

Name (A)

\

15

IntLiteral_Node

Value (5)

Figure9.15 AST Representation of an Assignment Statement

meaning of an identifier on the left-hand-side of an assignment statement. Similarly, we
say that B denotes an R-value (a value or the contents of an address) because that is how
we interpret an identifier on the right-hand-side of an assignment. From these concepts,
we can infer that when we consider more general assignment statements, the Target-
Name subtree must supply an L-value, while the ValueExpr subtree must supply an R-
value.

Since we would like to be able to treat all occurrences of Identifier_Node in an
expression tree consistently, we will say that they always provide an L-value. When an
identifier is used in a context where an R-value is required, the necessary conversion
must be implicitly performed. This requirement actually has no implication on type
checking in most languages, but will require that appropriate code be generated based on
the context in which anameis used.

The major task of the Assignment_Node Semantics action, seen in Figure 9.20,
involves obtaining the types of the components of the assignment statement and check-
ing whether they are compatible according to the rules of the language. First, the target
name isinterpreted using a specialized version of Semantics called LvalueSemantics.
It insures that the target designates an assignable entity, that is, one that produces an L-
value. Named constants and constant parameters look just like variables and can be used
interchangeably when an R-valueis required, but they are not acceptable target names. A
semantic attribute AssignmentType is used to record the type to be assigned after this
determination has been made so that the type is easily available to the CodeGen actions
that will be invoked during the next pass.

A second specialized version of Semantics, caled ExprSemantics, is used to
evaluate the type of an expression AST subtree. Figure 9.17 includes two versions of
ExprSemantics (and more will be seen shortly, for processing binary and unary expres-
sions). The onefor Identifier_Node makes use of the general Identifier_Node.Seman-

16

Chapter 9 Semantic Analysis. Simple Declarations and Expressions

ASSIGNMENT_NODE.SEMANTICS()
[Local variables: LeftType, RightType]
Set LeftType to TargetName.L valueSemantics ()
Set RightType to ValueExpr.ExprSemantics ()
if RightTypeis assignable to LeftType
then Set AssignmentType to LeftType
else Generate an appropriate error message
Set AssignmentType to ErrorType

Nogs~wWDNE

IDENTIFIER_NODE.LVALUESEMANTICS ()

Call this_node.Semantics ()

2. if AttributesRef indicates that Name denotes a L-value

3. then return the type associated with Name

4 else Produce an error message indicating that Name can-
not be interpreted as a variable

5. return ErrorType

=

Figure9.16

tics action defined earlier in this chapter (in Section 9.2). It simply looks up Name in the
symbol table and sets the semantic attribute AttributesRef to references Name’s
attributes. Note that both LvalueSemantics and ExprSemantics are much like Type-
Semantics, which was defined along with Identifier_Node.Semantics in Section
9.2.2. They differ only in the properties they require of the name they are examining. The
ExprSemantics action for an integer literal node is quite simple. No checking is neces-
sary, since alitera is known to be an R-value and its type is immediately available from
theliteral node itself.

IDENTIFIER_NODE.EXPRSEMANTICS ()

1. Cadll this_node.Semantics ()

2. if AttributesRef indicates that Name denotes an R-value (or an
L-value which can be used to provide one)

3. then return the type associated with Name

4, else Produce an error message indicating that Name can-
not be interpreted as a variable

5. return ErrorType

INTLITERAL_NODE.EXPRSEMANTICS()
1. return IntegerType

Figure9.17 EXPRSEMANTICS for Identifiersand Literals

9.3 Semantic Processing for Simple Names and Expressions: An Introduction to Type Checking 17

We will see the type checking alternatives for more complex names, such as record
field and array element references, in a later chapter. They will be invoked by the same
calls from the Semantics actions for an Assignment_Node and they will return types
just asin the simple cases we have just seen. Thus the processing done for an assignment
can completely ignore the complexity of the subtree that specifies the target of the
assignment, just as it need not consider the complexity of the computation that specifies
the value to be assigned.

9.3.2 Processing Expressions

In the previous section, we saw two examples of the general concept of an expression,
namely, a simple identifier and aliteral constant. More complex expressions in any pro-
gramming language are constructed using unary and binary operators. The abstract syn-
tax tree representations for expressions follow naturally from their common syntactic
structure, as illustrated in Figure 9.18. The nodes referenced by LeftExpr, RightExpr
and SubExpr in the figure can be additional expression nodes or they can be from
among the group that specifies operands (that is, literals, identifiers, etc.). Asdiscussed in
the previous section, the semantic processing and code generation actions for al of these
nodes will behave in a consistent fashion, which will enable the actions for expression
processing to be independent of concerns about the details of the expression’s operands.

BinaryExpr_Node UnaryExpr_Node
NodeType NodeType
Operator => a token Operator => a token
LeftExpr RightExpr SubEXxpr
|

Y N '

Figure9.18 AST Representations for Expressions

The type checking aspects of handling expression nodes depend primarily on the
types of the operands. Thus, both of the ExprSemantics actions below first invoke
ExprSemantics on the operands of the expression. The next step is to find whether the
operator of the expression is meaningful given the types of the operands. We illustrate
this test as being done by the routines BinaryResultType and UnaryResultType in the
psuedocodein Figure 9.19. These routines must answer this question based on the defini-
tion of the language being compiled. If the specified operation is meaningful, the type of
the result of the operation is returned; otherwise, the result of the call must be Error-
Type. To consider afew examples: adding integers is defined in just about all program-
ming languages, with the result being an integer. Addition of an integer and a real will

18

Chapter 9 Semantic Analysis. Simple Declarations and Expressions

produce areal in most languages, but in alanguage like Ada that does not allow implicit
type conversions, such an expression is erroneous. Finally, comparison of two arithmetic
values typically yields a boolean result.

BINARYEXPR_NODE.EXPRSEMANTICS ()

1. [Local variables: LeftType, RightType]

2. Set LeftTypeto LeftExpr.ExprSemantics ()

3. Set RightType to RightExpr.ExprSemantics ()

4. Set NodeType to BinaryResultType (Operator, LeftType,
RightType)

5. return NodeType

UNARYEXPR_NODE.EXPRSEMANTICS ()

1. [Locdl variable: SubType]

2. Set SubType to SubExpr.ExprSemantics ()

3. Set NodeType to UnaryResultType (Operator, SubType)
4. return NodeType

Figure9.19 EXPRSEMANTICS for Binary and Unary Expressions

9.4 Keyldea Summary

Section 9.1 presented three key ideas: a symbol table is used to associate names with a
variety of information, generaly referred to as attributes; types are a common, distin-
guished kind of attribute; and types and other attributes are represented by records (struc-
tures) with variants (unions) designed as needed to store the appropriate descriptive
information. Section 9.1 also introduced the mechanism of recursive traversal by which
Semantics and CodeGen passes over an abstract syntax tree can be used to type check
and generate intermediate or target code for a program.

Section 9.2 described the Semantics actions for handling the abstract syntax tree
nodes found in simple declarations during the declaration processing and type checking
pass done by the Semantics traversal. The concept of using specialized semantics
actions, such as TypeSemantics and ExprSemantics was introduced in this section as
was the notion of using an ErrorType to deal with type errorsin away so asto minimize
the number of resulting error messages.

Finally, Section 9.3 introduced type checking using abstract syntax trees for smple
assignments as an example framework. The concept of interpreting names as L-values or
R-values was described, along with itsimplications for AST processing.

10

Semantic Analysis:
Control Structures
and Subroutines

10.1 Semantic Analysis for Control Structures

Control structures are an essential component of all programming languages.
With control structures a programmer can combine individual statements and
expressions to form an unlimited number of specialized program constructs.

Some languages constructs, like the if, switch and case statement, provide for
conditional execution of selected statements. Others, like while, do and for loops,
provide for iteration (or repetition) of the body of a looping construct. Still other
statements, like the break, continue, throw, return and goto statements force pro-
gram execution to depart from normal sequential execution of statements.

The exact form of control structures differs in various programming lan-
guages. For example, in C, C++ and Java, if statements don’t use a then key-
word; in Pascal, ML Ada, and many other languages, then is required.

Minor syntactic differences are unimportant when semantic analysis is per-
formed by a compiler. We can ignore syntactic differences by analyzing an abstract
syntax tree. Recall that an abstract syntax tree (AST) represents the essential struc-
ture of a construct while hiding minor variations in source level representation.
Using an AST, we can discuss the semantic analysis of fundamental constructs like
conditional and looping statements without any concern about exactly how they
are represented at the source level.

Chapter 10 Semantic Analysis: Control Structures and Subroutines

An important issue in analyzing Java control structures is reachability. Java
requires that unreachable statements be detected during semantic analysis, with
suitable error messages generated. For example, in the statement sequence

.; return; a=a+l;
the assignment statement must be marked as unreachable during semantic analy-
sis.

Reachability analysis is conservative. In general, determining whether a given
statement can be reached is very difficult. In fact it is impossible! Theoretical com-
puter scientists have proven that it is undecidable whether a given statement is
ever executed, even when we know in advance all the data a program will access
(reachability is a variant of the famous halting problem first discussed in [Turing
1936]).

Because our analyses will be conservative, we will not detect all occurrences of
unreachable statements. However, the statements we recognize as unreachable will
definitely be erroneous, so our analysis will certainly be useful. In fact, even in lan-
guages like C and C++, which don’t require reachability analysis, we can still pro-
duce useful warnings about unreachable statements that may well be erroneous.

To detect unreachable statements during semantic analysis, we’ll add two
boolean-valued fields to the ASTs that represent statements and statement lists.
The first, isReachable, marks whether a statement or statement list is considered
reachable. We’ll issue an error message for any non-null statement or statement
list for which isReachable is false.

The second field, terminatesNormally, marks whether a given statement or
statement list is expected to terminate normally. A statement that terminates nor-
mally will continue execution “normally” with the next statement that follows.
Some statements (like a break, continue or return) may force execution to proceed
to a statement other than the normal successor statement. These statements are
marked with terminatesNormally = false. Similarly, a loop may never terminate its
iteration (e.g., for (; ;) {a=a+1;}). Loops that don’t terminate (using a conser-
vative analysis) also have their terminatesNormally flag set to false.

The isReachable and terminatesNormally fields are set according to the fol-
lowing rules:

¢ If isReachable is true for a statement list, then it is also true for the first state-
ment in the list.

¢ If terminatesNormally is false for the last statement in a statement list, then it
is also false for the whole statement list.

¢ The statement list that comprises the body of a method, constructor, or static
initializer is always considered reachable (its isReachable value is true).

® A local variable declaration or an expression statement (assignment, method
call, heap allocation, variable increment or decrement) always has terminates-
Normally set to true (even if the statement has isReachable set to false). (This
is done so that all the statements following an unreachable statement don’t
generate error messages).

10.1 Semantic Analysis for Control Structures 3

¢ A null statement or statement list never generates an error message if its
isReachable field is false. Rather, the isReachable value is propagated to the
statement’s (or statement list’s) successor.

¢ If a statement has a predecessor (it is not the first statement in a list), then its
isReachable value is equal to its predecessor’s terminatesNormally value.
That is, a statement is reachable if and only if its predecessor terminates nor-
mally.

As an example, consider the following method body
void example () {
int a; a++; return; ; a=10; a=20; }

The method body is considered reachable, and thus so is the declaration of a. This
declaration and the increment of a complete normally, but the return does not (see
Section 10.1.4). The null statement following the return is unreachable, and prop-
agates this fact to the assignment of 10, which receives an error message. This
assignment terminates normally, so its successor is considered reachable.

In the succeeding sections we will study the semantic analysis of the control
structures of Java. Included in this analysis will be whether the statement in ques-
tion terminates normally. Thus we will set the terminatesNormally value for each
kind of control statement, and from this successor statements will set their
isReachable field.

Interestingly, although we expect most statements and statement lists to termi-
nate normally, in functions (methods that return a non-void value) we require the
method body to terminate abnormally. Because a function must return a value, it
cannot return by “falling though” to the end of the function. It must execute a
return of some value or throw an exception. These both terminate abnormally, so
the method body must also terminate abnormally. After the body of a function is
analyzed, the terminatesNormally value of the statement list comprising the body
is checked; if it is not false, an error message (“Function body must exist with a
return or throw statement”) is generated.

In analyzing expressions and statements, we must be aware of the fact that the
constructs may throw an exception rather than terminate normally. Java requires
that all checked exceptions be accounted for. That is, if a checked exception is
thrown (see Section 10.1.6), then it must either be caught an a catch block or
listed in a method’s throw list.

To enforce this rule, we’ll accumulate the checked exceptions that can be gen-
erated by a given construct. Each AST node that contains an expression or state-
ment will have a throwsSet field. This field will reference a linked list of throwltem
nodes. Each throwltem has fields type (the exception type that is thrown), and
next, a link to the next throwltem. This list, maintained as a set (so that duplicate
exceptions are removed), will be propagated as ASTs are analyzed. It will be used
when catch blocks and methods and constructors are analyzed.

Chapter 10 Semantic Analysis: Control Structures and Subroutines

10.1.1 If Statements

The AST corresponding to an if statement is shown in Figure 10.1. An IfNode
has three subtrees, corresponding to the condition controlling the if, the then state-
ments and the else statements. The semantic rules for an if statement are simple—
the condition must be a valid boolean-valued expression and the then and else
statements must be semantically valid. An if statement terminates normally if
either its then part or its else part terminates normally. Since null statements termi-
nate trivially, an if-then statement (with a null else part) always terminates nor-
mally.

The Semantics method for an if is shown in Figure 10.2.

IfNode
condition | thenPart elsePart
Exp Stmts Stmts

Figure 10.1 Abstract Syntax Tree for an if statement

Since condition must be an expression, we first call ExprSemantics to deter-
mine the expression’s type. We expect a boolean type. It may happen that the con-
dition itself contains a semantic error (e.g., an undeclared identifier or an invalid
expression). In this case, ExprSemantics returns the special type errorType, which
indicates that further analysis of condition is unnecessary (since we’ve already
marked the condition as erroneous). Any type other than boolean or errorType
causes an “Illegal conditional expression” error message to be produced.

Besides the condition subtree, the thenPart and elsePart ASTs must be
checked. This is done in lines 4 to 8 of the algorithm. The if statement is marked
as completing normally if either the then or else part completes normally. The set
of exceptions that an if statement can throw is the set union of throws potentially
generated in the condition expression and the then and else statements. Recall that
if an if statement has no else part, the elsePart AST is a NullNode, which is trivi-
ally correct.

As an example, consider the following statement

if (b) a=1; else a=2;
We first check the condition expression, b, which must produce a boolean value.
Then the then and else parts are checked; these must be valid statements. Since
assignment statements always complete normally, so does the if statement.

The modularity of our AST formulation is apparent here. The checks applied
to control expression b are the same used for all expressions. Similarly, the checks
applied to the then and else statements are those applied to all statements. Note

10.1 Semantic Analysis for Control Structures 5

IfNode.Semantics()
ConditionType « condition.ExprSemantics()
if ConditionType = boolean and ConditionType = errorType

then GenerateErrorMessage(“lllegal conditional expression”)
thenPart.isReachable « elsePart.isReachable « true
thenPart.Semantics()
elsePart.Semantics()
terminatesNormally «

thenPart.terminatesNormally or elsePart.terminatesNormally

NOoOOA~wLNE

©

Figure 10.2 Semantic Checks for an If Statement

too that nested if statements case no difficulties—the same checks are applied each
time an IfNode is encountered.

10.1.2 While, Do and Repeat Loops

The AST corresponding to a while statement is shown in Figure 10.3. A while-
Node has two subtrees, corresponding to the condition controlling the loop and
the loop body. The semantic rules for a while statement are simple. The condition
must be a valid boolean-valued expression and the loop body must be semantically
valid.

Reachability analysis must consider the special case that the control expres-
sion is a constant. If the control expression is false, then the statement list compris-
ing the loop body is marked as unreachable. If the control expression is true, the
while loop is marked as abnormally terminating (because of an infinite loop). It
may be that the loop body contains a reachable break statement. If this is the case,
semantic processing of the break will reset the loop’s terminatesNormally field to
true. If the control expression is non-constant, the loop is marked as terminating
normally. The exceptions potentially thrown are those generated by the loop con-
trol condition and the loop body.

The method EvaluateConstExpr traverses an expression AST that is semanti-
cally valid to determine whether it represents a constant-valued expression. If the
AST is a constant expression, EvaluateConstEXpr returns its value; otherwise it
returns null. The Semantics method for a while loop is shown in Figure 10.4.

As an example, consider

while (i >= 0) {
ali--1 = 0; }
The control expression, 1 >= 0, is first checked to see if it is a valid boolean-valued
expression. Since this expression is non-constant, the loop body is assumed reach-
able and the loop is marked as terminating normally. Then the loop body is
checked for possible semantic errors.

throwsSet « union(condition.throwsSet, thenPart.throwsSet, elsePart.throwsSet)

Chapter 10 Semantic Analysis: Control Structures and Subroutines

whileNode
condition | |oopBody

Exp Stmts

Figure 10.3 Abstract Syntax Tree for a While Statement

WhileNode.Semantics()
ConditionType « condition.ExprSemantics()
terminatesNormally « true
loopBody.isReachable « true
if ConditionType =boolean
then ConditionValue « condition.EvaluateConstExpr()
if ConditionValue = true
then terminatesNormally « false
elsif ConditionValue = false
then loopBody.isReachable « false
10. elsif ConditionType = errorType
11. then GenerateErrorMessage(“lllegal conditional expression”)
12. loopBody.Semantics()
13. throwsSet « union(condition.throwsSet, loopBody.throwsSet)

Figure 10.4 Semantic Checks a for While Statement

wWoNoO~wWNE

Do While and Repeat Loops. Java, C and C++ contain a variant of the while loop—
the do while loop. A do while loop is just a while loop that evaluates and tests its
termination condition after executing the loop body rather than before. The
semantic rules for a do while are almost identical to those of a while. Since the
loop body always executes at least once, the special case of a false control expres-
sion can be ignored. For non-constant loop control expressions, a do while loop
terminates normally if the loop body does. Assuming the same AST structure as a
while loop, the semantic processing appropriate for a do while loop is shown in
Figure 10.5.

A number of languages, including Pascal and Modula 3, contain a repeat until
loop. This is essentially a do while loop except for the fact that the loop is termi-
nated when the control condition becomes false rather than true. The semantic
rules of a repeat until loop are almost identical to those of the do while loop. The
only change is that the special case of a non-terminating loop occurs when the
control expression is false rather than true.

10.1 Semantic Analysis for Control Structures 7

DoWhileNode.Semantics()
loopBody.isReachable « true
loopBody.Semantics()
ConditionType « condition.ExprSemantics()
if ConditionType =boolean
then ConditionValue « condition.EvaluateConstExpr()
if ConditionValue = true
then terminatesNormally « false
else terminatesNormally « loopBody.terminatesNormally
elsif ConditionType = errorType
then GenerateErrorMessage(“lllegal conditional expression”)
throwsSet « union(condition.throwsSet, loopBody.throwsSet)

Figure 10.5 Semantic Checks a for Do While Statement

10.1.3 For Loops

For loops are normally used to step an index variable through a range of val-
ues. However, for loops in C, C++ and Java, are really a generalization of while
loops. Consider the AST for a for loop, as shown in Figure 10.6.

As was the case the while loops, the for loop’s AST contains subtrees corre-
sponding to the loop’s termination condition (condition) and its body (loopBody).
In addition it contains ASTs corresponding to the loop’s initialization (initializer)
and its end-of-loop increment (increment).

There are a few differences that must be properly handled. Unlike the while
loop, the for loop’s termination condition is optional. (This allows “do forever”
loops of the form for (;;) {...}). In C++ and Java, an index local to the for
loop may be declared, so a new symbol table name scope must be opened, and
then closed, during semantic analysis.

©WOo~NOUA~®NPE

B
= o

forNode
initializer | condition increment| loopBody

StmtExpr A A A

Figure 10.6 Abstract Syntax Tree for a For Loop

Reachability analysis is similar to that performed for while loops. The loop
initializer is a declaration or statement expression; the loop increment is a state-
ment expression; the termination condition is an expression. All of these are
marked as terminating normally.

Chapter 10 Semantic Analysis: Control Structures and Subroutines

A null termination condition, or a constant expression equal to true, represent
a non-terminating loop. The for loop is marked as not terminating normally
(though a break within the loop body may change this when it is analyzed). A ter-
mination condition that is a constant expression equal to false causes the loop
body to be marked as unreachable. If the control expression is non-null and non-
constant, the loop is marked as terminating normally.

The Semantics method for a for loop is shown in Figure 10.7.

A new name scope is opened in case a loop index is declared in the initializer
AST. The initializer is checked, allowing local index declarations to be processed.
The increment is checked next. If condition is not a NullNode, it is type-checked,
with a boolean (or errorType) required. The special cases of a null condition and a
constant-valued condition are considered, with normal termination and reachabil-
ity of the loop body updated appropriately. The loopBody AST is then checked.
Finally, the name scope associated with for loop is closed and the loop’s throwsSet
is computed.

forNode.Semantics()
1. OpenNewScope()

2. initializer.Semantics()
3. increment.Semantics()
4. terminatesNormally « true
5. loopBody.isReachable « true
6. if condition = NullNode
7. then ConditionType « condition.ExprSemantics()
8. if ConditionType =boolean
9. then ConditionValue « condition.EvaluateConstExpr()
10. if ConditionValue = true
11. then terminatesNormally « false
12. elsif ConditionValue = false
13. then loopBody.isReachable « false
14. elsif ConditionType = errorType
15. then GenerateErrorMessage(“lllegal termination expression”)
16. else terminatesNormally « false
17. loopBody.Semantics()
18. Close Scope()
19. throwsSet « union(initializer.throwsSet, condition.throwsSet,

increment.throwsSet, loopBody.throwsSet)
Figure 10.7 Semantic Checks a for For Loop
As an example, consider the following for loop
for (int i=0; 1 < 10; i++)
alil = 0;
First a new name scope is created for the loop. When the declaration of i in

the initializer AST is processed, it is placed in this new scope (since all new declara-
tions are placed in the innermost open scope). Thus the references to i in the con-

10.1 Semantic Analysis for Control Structures 9

dition, increment and loopBody ASTs properly reference the newly declared loop
index i. Since the loop termination condition is boolean-valued and con-constant,
the loop is marked as terminating normally, and the loop body is considered
reachable. At the end of semantic checking, the scope containing i is closed, guar-
anteeing that not subsequent references to the loop index will be allowed.

A number of languages, including Fortran, Pascal, Ada, Modula 2, and Mod-
ula 3, contain a more restrictive form of for loop. Typically, a variable is identified
as the “loop index.” Initial and final index values are defined, and sometimes an
increment value is specified. For example, in Pascal a for loop is of the form

for id := intialval to finalval do

loopBody

The loop index, id, must already be declared and must be a scalar type (inte-
ger or enumeration). The initialval and finalVal expressions must be
semantically valid and have the same type as the loop index. Finally, the loop
index may not be changed within the 1oopBody. This can be enforced by marking
id’ declaration as “constant” or “read only” while 1oopBody is being analyzed.

10.1.4 Break, Continue, Return and Goto Statements

Java contains no goto statement. It does, however, include break and continue
statements which are restricted forms of a goto, as well as a return statement.
We’ll consider the continue statement first.

Continue Statements. Like the continue statement found in C and C++, Java’s
continue statement attempts to “continue with” the next iteration of a while, do
or for loop. That is, it transfers control to the bottom of a loop where the loop
index is iterated (in a for loop) and the termination condition is evaluated and
tested.

A continue may only appear within a loop; this must be verified during seman-
tic analysis. Unlike C and C++ a loop label may be specified in a continue state-
ment. An unlabeled continue references the innermost for, while or do loop in
which it is contained. A labeled continue references the enclosing loop that has the
corresponding label. Again, semantic analysis must verify that an enclosing loop
with the proper label exists.

Any statement in Java may be labeled. As shown in Figure 10.8 we’ll assume
an AST node labeledStmt that contains a string-valued field stmtLabel. If the
statement is labeled, stmtLabel contains the label in string form. If the statement is
unlabeled, stmtLabel is null. labeledStmt also contains a field stmt that is the AST
node representing the labeled statement.

In Java, C and C++ (and most other programming languages) labels are
placed in a different name space than other identifiers. This just means that an
identifier used as a label may also be used for other purposes (a variable name, a
type name, a method name, etc.) without confusion. This is because labels are

10

Chapter 10 Semantic Analysis: Control Structures and Subroutines

labeledStmt
stmtLabel stmt

Figure 10.8 Abstract Syntax Tree for a Labeled Statement

used in very limited contexts (in continues, breaks and perhaps gotos). Labels
can’t be assigned to variables, returned by functions, read from files, etc.

We’ll represent labels that are currently visible using a labelList variable. This
variable is set to null when we begin the analysis of a method or constructor body,
or a static initializer.

A labelListNode contains four fields: label, a string that contains the name of
the label, kind (one of iterative, switch or other) that indicates the kind of state-
ment that is labeled, AST, a link to the AST of the labeled statement and next,
which is a link to the next labelListNode on the list.

Looking at a labelList, we can determine the statements that enclose a break
or continue, as well as all the labels currently visible to the break or continue.

The semantic analysis necessary for a labeledStmt is shown in Figure 10.9.
The labelList is extended by adding an entry for the current labeledStmt node,
using its label (which may be null), and its kind (determined by a call to an auxil-
iary method, getKind(stmt)). The stmt AST is analyzed using the extended label-
List. After analysis, labelList is returned to its original state, by removing its first
element.

labeledStmtSemantics()

labellList < labelListNode(stmtLabel, getKind(stmt), stmt, labelList)
stmt.isReachable « labeledStmt.isReachable

stmt.Semantics()

terminatesNormally « stmt.terminatesNormally

throwsSet « stmt.throwsSet

labelList < labelList.next

ouhs®WNE

Figure 10.9 Semantic Analysis for Labeled Statements

A continue statement without a label references the innermost iterative state-
ment (while, do or for) within which it is nested. This is easily checked by looking
for a node on the labelList with kind = iterative (ignoring the value of the label
field).

A continue statement that references a label L (stored in AST field stmtLabel)
must be enclosed by an iterative statement whole label is L. If more than one con-

10.1 Semantic Analysis for Control Structures 11

taining statement is labeled with L, the nearest (innermost) is used. The details of
this analysis are shown in Figure 10.10.

ContinueNode.Semantics()

1. terminatesNormally < false
2. throwsSet « null
3. currentPos « labelList
4, if stmtLabel = null
5. then while currentPos = null
6. do if currentPos.kind = iterative
7. then return
8. currentPos = currentPos.next
9. GenerateErrorMessage(“Continue not inside iterative statement”)
10. else while currentPos = null
11. do if currentPos.label = stmtLabel and
currentPos.kind = iterative
12. then return
13. currentPos = currentPos.next
14. GenerateErrorMessage(“Continue label doesn’t match an

iterative statement”)

Figure 10.10 Semantic Analysis for Continue Statements

As an example, consider the following code fragment
Ll: while (p != null) {
if (p.val < 0)
continue
else ... }
The labelList in use when the continue is analyzed is shown in Figure 10.11.
Since the list contains a node with kind = iterative, the continue is correct.

labelList

v

label = |kind = | ogT label = | kind = | AST label = | kind = |AST
null | other null | other | > L1 iterative |

A A

Figure 10.11 Example of a Labellist in a Continue Statement

\ 4

In C and C++ semantic analysis is even simpler. Continues don’t use labels so
the innermost iterative statement is always selected. This mean we need only lines
1 to 9 of Figure 10.10.

12

Chapter 10 Semantic Analysis: Control Structures and Subroutines

Break Statements. In Java an unlabeled break statement has the same meaning as
the break statement found in C and C++. The innermost while, do, for or switch
statement is exited, and execution continues with the statement immediately fol-
lowing the exited statement. Thus a reachable break forces the statement it refer-
ences to terminate normally.

A labeled break exits the enclosing statement with a matching label (not nec-
essarily a while, do, for or switch statement), and continues execution with that
statement’s successor (again, if reachable, it forces normal termination of the
labeled statement). For both labeled and unlabeled breaks, semantic analysis must
verify that a suitable target statement for the break exists.

We’ll again use the labelList introduced in the last section. For unlabeled
breaks, we’ll need to find a node with kind = iterative or switch. For labeled
breaks, we’ll need to find a node with a matching label (its kind doesn’t matter). In
either case, the terminatesNormally field of the referenced statement will be set to
true if the break is marked as reachable.

This analysis is detailed in Figure 10.12.

BreakNode.Semantics()

1. terminatesNormally « false
2. throwsSet « null
3. currentPos « labelList
4, if stmtLabel = null
5. then while currentPos = null
6. do if currentPos.kind = iterative
or currentPos.kind = switch
7. then if isReachable
8. then currentPos.AST.terminatesNormally « true
9. return
10. currentPos = currentPos.next
11. GenerateErrorMessage(“Break not inside iterative or
switch statement”)
12. else while currentPos = null
13. do if currentPos.label = stmtLabel
14. then if isReachable
15. then currentPos.AST.terminatesNormally « true
16. return
17. currentPos = currentPos.next
18. GenerateErrorMessage(“Continue label doesn’t match any

statement label”)

Figure 10.12 Semantic Analysis for Break Statements

As an example, consider the following code fragment
Ll: for (i=0; 1 < 100; i++)
for (§=0; j < 100; Jj++)

10.1 Semantic Analysis for Control Structures 13

if (alil [J] == 0)
break L1;
else
The labellList in use when the break is analyzed is shown in Figure 10.13.
Since the list contains a node with label = L1, the break is correct. The for loop
labeled with L1 is marked as terminating normally.

labelList

label = | kind = | AST label = [kind = label = [kind = | AST

null | other | >| null | other > null literative /
Z

AST
|

/\

label = [kind = [AST
L1 iterative /

Figure 10.13 Example of a LabelList in a Break Statement

Return Statements. An AST rooted by a returnNode, as shown in Figure 10.14,
represents a return statement. The field returnVal is null if no value is returned;
otherwise it is an AST representing an expression to be evaluated and returned.

returnNode

returnVal

Figure 10.14 Abstract Syntax Tree for a Return Statement

14

Chapter 10 Semantic Analysis: Control Structures and Subroutines

The semantic rules governing a return statement depend on where the state-
ment appears. A return statement without an expression value may only appear in
a void method (a subroutine) or in a constructor. A return statement with a return
value may only appear in a method whose type may be assigned the return type
(this excludes void methods and constructors). A return (of either form) may not
appear in a static constructor.

A method declared to return a value (a function) must exit via a return of a
value or by throwing an exception. This requirement can be enforced by verifying
that the statement list that comprises a function’s body has its terminatesNormally
value set to false.

To determine the validity of a return we will check the kind of construct
(method, constructor or static initializer) within which it appears. But AST links
all point downward; hence looking “upward” is difficult. To assist our analysis,
we’ll assume three global pointers, currentMethod, currentConstructor and cur-
rentStaticlnitializer, set during semantic analysis.

If we are checking an AST node contained within the body of a method, cur-
rentMethod will tell us which one. If we are analyzing an AST node not within a
method, then currentMethod is null. The same is true for currentConstructor and
currentStaticlnitializer. We can determine which kind of construct we are in (and
details of its declaration) by using the pointer that is non-null.

The details of semantic analysis for return statements appears in Figure 10.15.
For methods we assume currentMethod.returnType is the type returned by the
method (possibly equal to void). The auxiliary method is assignable(T1,T2) tests
whether type T2 is assignable to type T1 (using the assignability rules of the lan-
guages being compiled).

return.Semantics()

1. terminatesNormally < false

2. if currentStaticlnitializer = null

3. then GenerateErrorMessage(“A return may not appear within a

static initializer”)

4. elsif returnVal = null

5 then returnVal.ExprSemantics()

6. throwsSet « returnVal.throwsSet

7 if currentMethod = null

8 then GenerateErrorMessage(“A value may not be returned
from a constructor”)

9. elsif not assignable(currentMethod.returnType,returnValue.type)
10. then GenerateErrorMessage(“lllegal return type”)
11. else if currentMethod = null and currentMethod.returnType = void
12. then GenerateErrorMessage(“A value must be returned”)
13. throwsSet « null

Figure 10.15 Semantic Analysis for Return Statements

C++ has semantic rules very similar to those of Java. A value may only be
returned from a non-void function, and the value returned must be assignable to

10.1 Semantic Analysis for Control Structures 15

the function’s return type. In C a return without a value is allowed in a non-void
function (with undefined behavior).

Goto Statements. Java contains no goto statement, but many other languages,
including C and C++, do. C, C++ and most other languages that allow gotos
restrict them to be intraprocedural. That is, a label and all gotos that reference it
must be in the same procedure or function.

As noted earlier, identifiers used as labels are usually considered distinct from
identifiers used for other purposes. Thus in C and C++, the statement

a: a+l;
is legal. Labels may be kept in a separate symbol table, distinct from the main
symbol table used to store ordinary declarations.

Labels need not be defined before they are used; “forward gotos” are allowed.
Semantic checking must guarantee that all labels used in gotos are in fact defined
somewhere in the current procedure.

Because of potential forward references, it is a good idea to check labels and
gotos in two steps. First, the AST that represents the entire body of a subprogram
is traversed, gathering all label declarations into a declaredLabels table stored as
part of the current subprogram’ symbol table information. Duplicate labels are
detected as declaredLabels is built.

During normal semantic processing of the body of a subprogram (after
declaredLabels has been built), an AST for a goto can access declaredLabels
(through the current subprogram’s symbol table). Checking for valid label refer-
ences (whether forward or not) is easy.

A few languages, like Pascal, allow non-local gotos. A non-local goto trans-
fers control to a label in a scope that contains the current procedure. Non-local
gotos can be checked by maintaining a stack (or list) of declaredLabels tables, one
for each nested procedure. A goto is valid if its target appears in any of the
declaredLabels tables.

Finally, some programming languages forbid gotos into a conditional or itera-
tive statement from outside. That is, even if the scope of a label is an entire sub-
program, a goto into a loop or from a then part to an else part is forbidden. Such
restrictions can be enforced by marking each label in declaredLabels as either
“active” or “inactive.” Gotos are allowed only to active labels, and a a label
within a conditional or iterative statement is active only while the AST that con-
tains the label is being processed. Thus a label L within a while loop becomes
active when the loop body’s AST is checked, and is inactive when statements out-
side the loop body are checked.

10.1.5 Switch and Case Statements

Java, C and C++ contain a switch statement that allows the selection of one of a
number of statements based on the value of a control expression. Pascal, Ada and

Chapter 10 Semantic Analysis: Control Structures and Subroutines

Modula 3 contain a case statement that is equivalent. We shall focus on translating
switch statements, but our discussion applies equally to case statements.

switchNode
control | cases

caseNode
labelList stmts more

/

labelListNode
caselLabel | caseExp |isDefault [more

k labelList

Figure 10.16 Abstract Syntax Tree for a Switch Statement

cases

The AST for a switch statement, rooted at a switchNode is shown in Figure
10.16 (fields not needed for semantic analysis are omitted for clarity). In the AST
control represents an integer-valued expression; cases is a caseNode, representing
the cases in the switch. Each caseNode has three fields. labelList is a labelList-
Node that represents one or more case labels. stmts is an AST node representing
the statements following a case constant in the switch. more is either null or
another caseListNode, representing the remaining cases in the switch.

A labelListNode contains an integer field caselLabel, an AST caseExp, a
boolean field isDefault (representing the default case label) and more, a field that is
either null or another labelListNode, representing the remainder of the list. The
caseExp AST represents a constant expression that labels a case within the switch;
when it is evaluated, caselLabel will hold its value.

A number of steps are needed to check the semantic correctness of a switch
statement. The control expression and all the statements in the case body must be
checked. The control expression must be an integer type (32 bits or less in size).
Each case label must be a constant expression assignable to the control expression.
No two case labels may have the same value. At most one default label may
appear within the switch body.

A switch statement can terminate normally in a number of ways. An empty
switch body (uncommon, but legal) trivially terminates normally. If the last switch
group (case labels followed by a statement list) terminates normally, so does the

10.1 Semantic Analysis for Control Structures 17

switch (since execution “falls through” to the succeeding statement. If any of the
statements within a switch body contain a reachable break statement, then the
entire switch can terminate normally.

We’ll need a number of utility routines in our semantic analysis. To process
case labels, we will build a linked list of node objects. Each node will contain a
value field (an integer) and a next field (a reference to a node).

The routine buildLabels (Figure 10.17) will traverse a labelListNode (includ-
ing its successors), checking the validity of case labels and building a list of node
objects representing the case labels that are encountered. The related routine build-
LabelList (Figure 10.17) will traverse a caseNode (including its successors). It
checks the validity of statements within each caseNode and builds a list of node
objects representing the case labels that are found within the caseNode.

buildLabels(labelList)

1. if labelList = null
2. then return null
3. elsif isDefault
4, then return buildLabels(more)
5. else caseExp.ExprSemantics()
6. if caseExp.type = errorType
7. then return buildLabels(more)
8. elsif not assignable(CurrentSwitchType, CaseExp.type)
9. then GenerateErrorMessage(“Invalid Case Label Type”)
10. return buildLabels(more)
11. else caselabel « caseExp.EvaluateConstExpr()
12. if caselLabel = null
13. then GenerateErrorMessage(“Case Label Must be
a Constant Expression”)
14. return buildLabels(more)
15. else return node(caseLabel, buildLabels(more))

buildLabelList (cases)

1. stmts.isReachable « true

2. stmts.Semantics()

3. if more =null

4 then terminatesNormally « stmts.terminatesNormally
5. throwsSet « stmts.throwsSet

6 return buildLabels(labelList)

7 else restOfLabels « buildLabelList(more)

8 terminatesNormally < more.terminatesNormally
9. throwsSet « union(stmts.throwsSet, more.throwsSet)
10. return append(buildLabels(labelList), restOfLabels)

Figure 10.17 Utility Semantic Routines for Switch Statements (Part 1)

18

Chapter 10 Semantic Analysis: Control Structures and Subroutines

The routine checkForDuplicates (Figure 10.18) takes a sorted list of node
objects, representing all the labels in the switch statement, and checks for dupli-
cates by comparing adjacent values. Routines countDefaults and countDefaultLa-
bels (Figure 10.18) count the total number of default cases that appear within a
switchNode.

checkForDuplicates(node)
1. if node z null and node.next = null

2. then if node.value = node.next.value

3. then GenerateErrorMessage(“Duplicate case label:”,
node.value)

4, checkForDuplicates(node.next)

countDefaults(cases)

1. if cases =null

2. then return O

3. else return countDefaultLabels(labelList) + countDefaults(more)

countDefaultLabels(labelList)
1. if labelList = null

2 then return O

3 if isDefault

4, then return 1 + countDefaultLabels(more)
5 else return countDefaultLabels(more)

Figure 10.18 Utility Semantic Routines for Switch Statements (Part 2)

We can now complete the definition of semantic processing for switch state-
ments, as shown in Figure 10.19. We first mark the whole switch as not terminat-
ing normally. This will be updated to true if cases is null, or if a reachable break is
encountered while checking the switch body or if the stmts AST of the last case-
Node in the AST is marked as terminating normally. The switch’s control expres-
sion is checked. It must be a legal expression and assignable to type int. A list of
all the case label values is built by traversing the cases AST. As the label list is
built, case statements and case labels are checked. After the label list is buil, it is
sorted. Duplicates are found by comparing adjacent values in the sorted list.
Finally, the number of default cases is checked by traversing the cases AST again.

As an example, consider the following switch statement

switch(p) f{

case

case

case

case 7:isPrime = true; break;

case

O B g U1 W N

case

10.1 Semantic Analysis for Control Structures 19

switchNode.Semantics()
terminatesNormally « false
control.Semantics()
if control.type = errorType and not assignable(int, control.type)
then GenerateErrorMessage(“lllegal Type for Control Expression”)
CurrentSwitchType « control.type
if cases = null
then terminatesNormally « true
throwsSet « control.throwsSet
else labelList « buildLabelList(cases)
terminatesNormally « terminatesNormally
or cases.terminatesNormally
11. throwsSet « union(control.throwsSet, cases.throwsSet)
12. labelList « sort(labelList)
13. checkForDuplicates(labelList)
14. if countDefaults(cases) > 1
15. then GenerateErrorMessage(“More than One Default
Case Label”)

Figure 10.19 Semantic Analysis for Switch Statements

wWo~NoU~wWNEF

=
©

case 8:
case 9:isPrime = false; break;
default:isPrime = checkIfPrime (p) ;

}

Assume that p is declared as an integer variable. We check p and find it a valid
control expression. The label list is built by examining each caseNode and label-
ListNode in the AST. In doing so, we verify that each case label is a valid constant
expression that is assignable to p. The case statements are checked and found
valid. Since the last statement in the switch (the default) terminates normally, so
does the entire switch statement. The value of labelList is {2,3,5,7,4,6,8,9}. After
sorting we have {2,3,4,5,6,7,8,9}. No adjacent elements in the sorted list are equal.
Finally, we count the number of default labels; a count of 1 is valid.

The semantic rules for switch statements in C and C++ are almost identical to
those of Java.

Other languages include a case statement that is similar in structure to the
switch statement. Pascal allows enumerations as well as integers in case state-
ments. It has no default label and considers the semantics of an unmatched case
value to be undefined. Some Pascal compilers check for complete case coverage by
comparing the sorted label list against of range of values possible in the control
expression (Pascal includes subrange types that limit the range of possible values
a variable may hold).

Ada goes farther than Pascal in requiring that all possible control values must
be covered within a case statement (though it does allow a default case). Again,
comparing sorted case labels against possible control expression values is required.

20

Chapter 10 Semantic Analysis: Control Structures and Subroutines

Ada also generalizes a case label to a range of case values (e.g., in Java notation,
case 1..10, which denotes 10 distinct case values). Semantic checks that look
for duplicate case values and check for complete coverage of possible control val-
ues must be generalized to handle ranges rather than singleton values.

10.1.6 Exception Handling

Java, like most other modern programming languages, provides an exception han-
dling mechanism. During execution, an exception may be thrown, either explicitly
(via a throw statement) or implicitly (due to an execution error). Thrown excep-
tions may be caught by an exception handler.

Exceptions form a clean and general mechanism for identifying and handling
unexpected or erroneous situations. They are clearer and more efficient than using
error flags or gotos. Though we will focus on Java’s exception handling mecha-
nism, most recent language designs, including C++, Ada and ML, include an
exception handling mechanism similar to that of Java.

Java exceptions are typed. An exception throws an object that is an instance
of class Throwable or one of is subclasses. The object thrown may contain fields
that characterize the precise nature of the problem the exception represents, or the
class may be empty (with its type signifying all necessary information).

Java exceptions are classified as either checked or unchecked. A checked
exception thrown in a statement must be caught in an enclosing try statement or
listed in the throws list of the enclosing method or constructor. Thus it must be
handled or listed as a possible result of executing a method or constructor.

An unchecked exception (defined as an object assignable to either class Run-
timeException or class Error) may be handled in a try statement, but need
not be. If uncaught, unchecked exceptions will terminate execution. Unchecked
exceptions represent errors that may appear almost anywhere (like accessing a null
reference or using an illegal array index). These exceptions usually force termina-
tion, so explicit handlers may clutter a program without adding any benefit (termi-
nation is the default for uncaught exceptions).

We’ll first consider the semantic checking needed for a try statement, whose
AST is shown in Figure 10.20.

To begin we will check the optional finally clause (referenced by final). The
correctness of statements within it is independent of the contents of the try block
and the catch clauses.

Next, the catch clauses must be checked. Each catch clause is represented by a
catchNode, as shown in Figure 10.21.

Catch clauses require careful checking. Each clause introduces a new identi-
fier, the parameter of the clause. This identifier must be declared as an exception
(of class Throwable or a subclass of it). The parameter is local to the body of the
catch clause, and must not hide an already visible local variable or parameter.

10.1 Semantic Analysis for Control Structures 21

tryNode
tryBody catches final

Figure 10.20 Abstract Syntax Tree for a Try Statement

catchNode
catchldDecl|catchBody| more

idDecINode
ident | type Stmts catchNode

Figure 10.21 Abstract Syntax Tree for a Catch Block

Moreover, within the catch body, the catch parameter may not be hidden by a
local declaration.

We compute the exceptions that are caught by the catch clauses (local-
Catches) and verify (using method isSubsumedBY, defined in Figure 10.22) that
no catch clause is “hidden” by earlier catches. This is a reachability issue—some
exception type must be able to reach, and activate, each of the catch clauses.

Finally, the body of the try block is checked. Statements within the try body
must know what exceptions will be caught by the try statement. We will create a
data structure called catchlList that is a list of throwltem nodes. Each throwltem on
the list represents one exception type named in a catch block of some enclosing try
statement.

Before we begin the semantic analysis of the current tryNode, the catchList
contains nodes for all the exceptions caught by try statements that enclose the cur-
rent try statement (initially this list is null).

We compute the exceptions handled by the current catch clauses, building a
list called localCatches. We extend the current catchList by prepending local-
Catches. The extended list is used when the try statements are checked, guaran-
teeing that the definitions of local exception handlers are made visible within the
try body.

22

Chapter 10 Semantic Analysis: Control Structures and Subroutines

After the try body is analyzed, we compute the throwsSet for the tryNode.
This is the set of exceptions that “escape” from the try statement. It is the set of
exceptions thrown in the finally clause, or any catch clause, plus exceptions gener-
ated in the try body, but not caught in an of the catch clauses. The method filter-
OutThrows, defined in Figure 10.22, details this process.

The complete semantic processing for a tryNode is detailed in Figure 10.23.

isSubsumedBY(catchList, exceptionType)
1. while catchList = null
2 do if assignable(catchList.type, exceptionType)
3. then return true
4 else currentList «— currentList.next
5. return false

filterOutThrows(throwsList, exceptionType)
1. if throwsList = null
2 then return null
3. elsif assignable(exceptionType, throwsList.type)
4 then return filterOutThrows(throwsList.next, exceptionType)
5 else return throwltem(throwsList.type,
filterOutThrows(throwsList.next, exceptionType))

Figure 10.22 Utility Routines for Catch Clauses.

The AST for a throw statement is shown in Figure 10.24. The type of value
thrown in a throw statement must, of course, be an exception (a type assignable to
Throwable). If the exception thrown is checked, then semantic analysis must also
verify that an enclosing try block can catch the exception or that the method or
constructor that contains the throw has included the exception in its throws list.

The set of exceptions generated by the throws statement (its throwsSet) is the
exception computed by the thrownVal AST plus any exceptions that might be
thrown by the expression that computes the exception value.

In processing statements we built a throwsSet that represents all exception
types that may be thrown by a statement. We will assume that when the header of
a method or constructor is semantically analyzed, we create a declaredThrowsList
(composed of throwltem nodes) that represents all the exception types (if any)
mentioned in the throws list of the method or constructor. (A static initializer will
always have a null declaredThrowsList). Comparing the throwsSet and
declaredThrowsList, we can readily check whether all checked exceptions are
properly handled.

Semantic analysis of a throw statement is detailed in Figure 10.25.

As an example, consider the following Java code fragment

class ExitComputation extends Exception{};
try { ...

el
NP O

13.
14.

15.
16.
17.

18.
19.
20.

21.

22.
23.
24,
25.
26.
27.

28.
29.
30.
31.
32.
33.

35.
36.
37.

Oo~NorwNnE

10.1 Semantic Analysis for Control Structures 23

tryNode.Semantics()

terminatesNormally « false
tryBody.isReachable « final.isReachable « true
final.Semantics()
currentCatch « catches
localCatches « throwsInCatches « null
while currentCatch = null
do if not assignable(Throwable, currentCatch.catchldDecl.type)
then GenerateErrorMessage(“lllegal type for catch identifier”)
currentCatch.catchldDecl.type « errorType
elsif isSubsumedBy(localCatches, currentCatch.catchldDecl.type)
then GenerateErrorMessage(“Catch is Hidden by Earlier Catches”)
else localCatches « append(localCatches,
catchNode(currentCatch.catchldDecl.type,null)
currentDecl « Lookup(currentCatch.catchldDecl.ident)
if currentDecl = null and
(currentDecl.kind = Variable or currentDecl.kind = Parameter)
then GenerateErrorMessage(“Attempt to redeclare local identifier”)
OpenNewScope()
DeclareLocalVariable(currentCatch.catchldDecl.ident,
currentCatch.catchldDecl.type, CantBeHidden)
catchBody.isReachable « true
currentCatch.catchBody.Semantics()
terminatesNormally « terminatesNormally or
currentCatch.catchBody.terminatesNormally
throwsInCatch «
union(throwslnCatch, currentCatch.catchBody.throwsSet)
CloseScope()
currentCatch « currentCatch.more
prevCatchList « catchList
catchList « append(localCatches, catchList)
tryBody.Semantics()
terminatesNormally « (terminatesNormally or tryBody.terminatesNormally)
and final.terminatesNormally
catchList « prevCatchList
throwsInTry « tryBody.throwsSet
currentCatch « catches
while currentCatch = null
do newSet « filterOutThrows(throwsInTry, currentCatch.catchldDecl.type)
if newSet = throwsInTry
then GenerateErrorMessage(“No Throws Reach this Catch”)
else throwsInTry « newSet
currentCatch « currentCatch.more
throwsSet « union(throwsInTry, throwsInCatch, final.throwsSet)

Figure 10.23 Semantic Analysis for Throw Statements

24

Chapter 10 Semantic Analysis: Control Structures and Subroutines

throwNode

thrownVal

Figure 10.24 Abstract Syntax Tree for a Throw Statement

throwNode.Semantics()

1. terminatesNormally « false

2. throwsSet « null

3. thrownType « thrownVal.ExprSemantics()

4. if thrownType = errorType

5. then if not assignable(Throwable, thrownType)

6. then GenerateErrorMessage(“lllegal type for throw”)

7. else if assignable(RuntimeException, thrownType) or

assignable(Error, thrownType)
8. then return
9. throwsSet « union(thrownVal.throwsSet,
throwltem(thrownType, null))

10. throwTargets < append(catchList, declaredThrowsList)
11. while throwTargets = null
12. do if assignable(throwTargets.type, thrownType)
13. then return
14. else thrownType « thrownType.next
15. GenerateErrorMessage(“Type thrown not found in

enclosing catch or declared throws list”)
Figure 10.25 Semantic Analysis for Throw Statements
if (cond)
throw new ExitComputation() ;
if (v < 0.0)
throw new ArithmeticException() ;
else a = Math.sqgrt(v);

}

catch (e ExitComputation) {return 0;}

A new checked exception, ExitComputation, is declared. In the try state-

ment, we first check the catch clause. Assuming e is not already defined as a vari-
able or parameter, no errors are found. The current catchList is extended with an

10.2 Semantic Analysis of Calls 25

entry for type ExitComputation. The try body is then checked. Focusing on
throw statements, we first process a throw of an ExitComputation object. This
is a valid subclass of Throwable and ExitComputation is on the catchList, so
no errors are detected. Next the throw of an ArithmeticException is
checked. It too is a valid exception type. It is an unchecked exception (a subclass
of Runt imeException), so the throw is valid independent of any try statements
that enclose it.

The exception mechanism of C++ is very similar to that of Java, using an
almost identical throw/catch mechanism. The techniques developed in this section
are directly applicable.

Other languages, like Ada, feature a single exception type that is “raised”
rather than thrown. Exceptions are handled in a “when” clause that can be
appended to any begin-end block. Again, semantic processing is very similar to the
mechanisms developed here.

10.2 Semantic Analysis of Calls

In this section we investigate the semantic analysis of method calls in Java. The
techniques we present are also be applicable to constructor and interface calls, as
well as calls to subprograms in C, C++ and other languages.

The AST for a callNode is shown in Figure 10.26. The field method is an iden-
tifier that specifies the name of the method to be called. The field qualifier is an
optional expression that specifies the object or class within which method is to be
found. Finally, args is an optional expression list that represents the actual param-
eters to the call.

callNode
qualifier method args
Exp ident Exps

Figure 10.26 Abstract Syntax Tree for a Method Call

The first step in analyzing a call is to determine which method definition to
use. This determination is by no means trivial in Java because of inheritance and
overloading.

Recall that classes form an inheritance hierarchy, and all classes are derived,
directly or indirectly, from Object. An object may have access to methods defined

26 Chapter 10 Semantic Analysis: Control Structures and Subroutines

in its own class, its parent class, its grandparent class, and so on, all the way up to
Object. In processing a call all potential locales of definition must be checked.

Because of overloading, it is valid to define more than one method with the
same name. A call must select the “right” definition, which informally is the near-
est accessible method definition in the inheritance hierarchy whose parameters
match the actual parameters provided in the call.

Let us begin by gathering all the method definitions that might be applicable
to the current call. This lookup process is guided by the kind of method qualifier
(if any) that is provided and the access mode of individual methods:

¢ If no qualifier is provided, we examine the class (call it C) that contains the
call being analyzed. All methods defined within C are accessible. In addition,
as explained in section xxx.yyy, methods defined in C’s superclasses (its parent
class, grandparent class, etc.) may be inherited depending on their access qual-
ifiers:

[Methods marked public or protected are always included.

[method with default access (not marked public, private or protected) is
included if the class within which it is defined is in the same package as C.

[Private methods are never included (since they can’t be inherited)

o If the qualifier is the reserved word super, then a call of M in class C must ref-
erence a method inherited from a superclass (as defined above). Use of super
in class Object is illegal, because Object has no superclass.

o If the qualifier is a type name T (which must be a class name), then T must be
in the package currently being compiled, or it must be a class marked public.
A call of M must reference a static method (instance methods are disallowed
because the object reference symbol this is undefined). The static methods
that may be referenced are:

Al public methods defined in T or a superclass of T.

[Methods defined in T or a superclass with default access if the defining
class occurs within the current package.

[Methods defined in T or a superclass of T marked protected if they are
defined in the current package or if the call being analyzed occurs within a
subclass of T.

o If the qualifier is an expression that computes an object of type T, then T must
be in the package currently being compiled, or it must be a class marked pub-
lic. A call of M may reference:

[AIl public methods defined in T or a superclass of T.

[Methods defined in T or a superclass with default access if the class con-
taining the method definition occurs within the current package.

10.2 Semantic Analysis of Calls 27

[Methods defined in T or a superclass of T marked protected if they are
defined in the current package or if T is a subclass of C, the class that con-
tains the call being analyzed.

These rules for selecting possible method definitions are codified in Figure 10.27.
We assume that methodDefs(ID) returns all the methods named ID in a given
class. Similarly, publicMethods(ID) returns all the public methods named ID, etc.
The reference currentClass accesses the class currently being compiled; current-
Package references the package being currently compiled.

callNode.getMethods ()

1. if qualifier = null
2. then methodSet « currentClass.methodDefs(method)
3. else methodSet « null
4. if qualifier = null or qualifier = superNode
5. then nextClass « currentClass.parent
6. else nextClass « qualifier.type
7. while nextClass = null
8. do if qualifier = null and qualifier = superNode and
nextClass.package # currentPackage and not nextClass.isPublic
9. then nextClass « nextClass.parent
10. continue
11. methodSet « union(methodSet, nextClass.publicMethods(method))
12. if nextClass.package = currentPackage
13. then methodSet « union(methodSet,
nextClass.defaultAccessMethods(method))
14. if qualifier = null or qualifier = superNode
or nextClass.package = currentPackage
or (qualifer.kind = type and isAncestor(qualifier.type, currentClass)
or (qualifer.kind = value and isAncestor(currentClass, qualifier.type)
15. then methodSet « union(methodSet,
nextClass.protectedMethods(method))
16. nextClass « nextClass.parent

17. return methodSet
Figure 10.27 Compute Set of Method Definitions that Match the Current Call

Once we have determined the set of definitions that are possible, we must filter
them by comparing these definitions with the number and type of expressions that
form the call’s actual parameters. Assume that an expression list is represented by
an exprsNode AST (Figure 10.28) and is analyzed using the Semantics method
defined in Figure 10.29.

We will assume that each method definition included in the set of accessible
methods is represented as a methodDefltem, which contains the fields returnType,
argTypes, and classDefIn. returnType is the type returned by the method; class-
Defin is the class the method is defined in; argTypes is a linked list of typeltem
nodes, one for each declared parameter. Each typeltem contains a type field (the

28

Chapter 10 Semantic Analysis: Control Structures and Subroutines

exprsNode
expr more
Exp Xprs

Figure 10.28 Abstract Syntax Tree for an Expression List

exprsNode.Semantics()

1. expr.ExprSemantics()

2. more.Semantics()

3. throwsSet « union(expr.throwsSet, more.throwsSet)

Figure 10.29 Semantic Checks for an Expression List
type of the parameter) and next, (a reference to the next typeltem on the list). We

can build a typeltem list for the actual parameters of the call using the getArg-
Types method defined in Figure 10.30.

getArgTypes(exprList)

1. if exprList=null

2. then return null

3. else return typeltem(exprList.expr.type, getArgTypes(exprList.more))

Figure 10.30 Build a Type List for an Expression List.

Once we have a type list for the actual parameters of a call, we can compare it
with the declared parameter type list of each method returned by findDefs. But
what exactly defines a match between formal and actual parameters? First, both
argument lists must have the same length—this is easy to check. Next, each actual
parameter must be “bindable” to its corresponding formal parameter.

Bindable means that it is legal to use an actual parameter whenever the corre-
sponding formal parameter is referenced. In Java, bindable is almost the same as
assignable. The only difference is that an integer literal, used as an actual parame-
ter, may not be bound to a formal of type byte, short or char. (This require-
ment was added to make it easier to select among overloaded definitions). We will
use the predicate bindable(T1,T2) to determine if an actual of type T2 may be
bound to a formal of type T1.

Now checking the feasibility of using a particular method definition in a call is
straightforward—we check that the number of parameters is correct and that each
parameter is bindable. This is detailed in Figure 10.31, which defines the method
applicable(formalParms,actualParms). If applicable returns true, a particular
method definition can be used; otherwise, it is immediately rejected as not applica-
ble to the call being processed.

10.2 Semantic Analysis of Calls 29

applicable(formalParms, actualParms)
if formalParms = null and actualParms = null
then return true
elsif formalParms = null or actualParms = null
then return false
elsif bindable(formalParms.type, actualParms.type)
then return applicable(formalParms.next, actualParms.next)
else return false

NouosdwnPk

Figure 10.31 Test if Actual Parameters are Bindable to Corresponding Actual Parameters.

When analyzing a method call we will first select the set of method definitions
the call might reference. Next we analyze the actual parameters of the call, and
build an actual parameters list. This list is compared with the formal parameters
list of each method under consideration, filtering out those that are not applicable
(because of an incorrect argument count or an argument type mismatch).

At this stage we count the number of method definitions still under consider-
ation. If it is zero, we have an invalid call—no accessible method can be called
without error. If the count is one, we have a correct call.

If two or more method definitions are still under consideration, we need to
choose the most appropriate definition. Two issues are involved here. First, if a
method is redefined in a subclass, we want to use the redefinition. For example,
method M() is defined in both classes C and D:

class C { void M() { ... } }

class D extends C { void M() { ... } }

If we call M() in an instance of class D, we want to use the definition of M in D,
even though C’s definition is visible and type-correct.

It may also happen that one definition of a method M takes an object of class A
as a parameter, whereas another definition of M takes a subclass of A as a parame-
ter. An example of this is

class A { void M(A parm) { ... } }

class B extends A { void M(B parm) { ...

Now consider a call M (b) in class B, where b is of type B. Both definitions of
M are possible, since an object of class B may always be used where a parameter of
its parent class (A) is expected.

In this case we prefer to use the definition of M (B parm) in class B because it
is a “closer match” to the call M (b) this is being analyzed.

We formalize the notion of one method definition being a “closer match” than
another by defining one method definition D to be more specific than another defi-
nition E if D’s class is bindable to E’s class and each of D’s parameters is bindable
to the corresponding parameter of E. This definition captures the notion that we
prefer a method definition is a subclass to an otherwise identical definition in a
parent class (a subclass may be assigned to a parent class, but not vice-versa). Sim-
ilarly, we prefer arguments that involve a subclass over an argument that involves
a parent class (as was the case in the example of M (A parm) and M (B parms)
used above).

30 Chapter 10 Semantic Analysis: Control Structures and Subroutines

A method moreSpecific(Defl,Def2) that tests whether method definition Def2
is more specific than method definition Defl is presented in Figure 10.32.

moreSpecific(Defl, Def2)

1. if bindable(Defl.classDefln, Def2.classDeflIn)
2 then argl « Defl.argTypes
3 arg2 « Def2.argTypes
4, while argl = null
5. do if bindable(argll.type, arg2.type)
6 then argl < argl.next
7 arg2 « arg2.next
8 else return false
9. return true

10. else return false

Figure 10.32 Test if One Method Definition is More Specific than Another Definition.

Whenever we have more than one accessible method definition that matches a
particular argument list in a call, we will filter out less specific definitions. If, after
filtering, only one definition remains (called the maximally specific definition), we
know it is the correct definition to use. Otherwise, the choice of definition is
ambiguous and we must issue an error message.

The process of filtering out less specific method definitions is detailed in Figure
10.33, which defines the method filterDefs(MethodDefSet).

filterDefs(MethodDefSet)

1. changes « true

2. while changes

3 do changes « false

4, for defl e MethodDefSet

5. do for def2 e MethodDefSet

6 do if defl = def2 and moreSpecific(defl,def2)

7 then MethodDefSet « MethodDefSet - {defl}
8 changes « true

9 return MethodDefSet

Figure 10.33 Remove Less Specific Method Definitions.

After we have reduced the set of possible method definitions down to a single
definition, semantic analysis is almost complete. We must check for the following
special cases of method calls:

¢ If an unqualified method call appears in a static context (the body of a static
method, a static initializer, or an initialization expression for a static variable),
then the method called must be static. (This is because the object reference
symbol this is undefined in static contexts).

® Method calls qualified by a class name (className.method) must be to a
static method.

10.2 Semantic Analysis of Calls 31

¢ A call to a method that return void may not appear in an expression context
(where a value is expected).
The complete process of checking a method call, as developed above, is defined in
Figure 10.34.

callNode.Semantics ()
1. qualifier.ExprSemantics()

2. methodSet « getMethods()
3. args.Semantics()
4. actualArgsType « getArgTypes(args)
5. for defe methodSet
6. do if not applicable(def.argsType,actualArgsType)
7. then methodSet « methodSet - {def}
8. throwsSet « union(qualifier.throwsSet, args.throwsSet)
9. terminatesNormally « true
10. if size(methodSet) =0
11 then GenerateErrorMessage(“No Method matches this Call”)
12. return
13. elsif size(methodSet) > 1
14. then methodSet « filterDefs(methodSet)
15. if size(methodSet) > 1
16. then GenerateErrorMessage(“More than One Method matches this Call”)
17. elsif inStaticContext() and methodSet.member.accessMode # static
18. then GenerateErrorMessage(“Method Called Must Be Static”)
19. elsif inExpressionContext() and methodSet.member.returnType = Void
20. then GenerateErrorMessage(“Call Must Return a Value”)
21. else throwsSet « union(throwsSet, methodSet.member.declaredThrowsList)

Figure 10.34 Semantic Checks for a Method Call

As an example of how method calls are checked, consider the call of M (arg)
in following code fragment

class A { void M(A parm) {...)
void M() {...} }
class B extends A { void M(B parm) {...}
void test (B arg) {M(arg);}}

In method test, where M (arg) appears, three definitions of M are visible. All
are accessible. Two of the three (those that take one parameter) are applicable to
the call. The definition of M (B parm) in B is more specific than the definition of
M (A parm) in A, so it is selected as the target of the call.

In all rules used to select among overloaded definitions, it is important to
observe that the result type of a method is never used to decide if a definition is
applicable. Java does not allow two method definitions with the same name that
have identical parameters, but different result types to co-exist. Neither does C++.
For example, the following two definitions force a multiple definition error:

32

Chapter 10 Semantic Analysis: Control Structures and Subroutines

int add(int 1, int j) {...}

double add(int i, int j) {...}
This form of overloading is disallowed because it significantly complicates the pro-
cess of deciding which overloaded definition to choose. Not only must the number
and types of arguments be considered, but also the context within which result
types are used. For example in

int i = 1 - add(2,3);
a semantic analyzer would have to conclude that the definition of add that returns
a double is inappropriate because a double, subtracted from 1 would yield a dou-
ble, which cannot be used to initialize an integer variable.

A few languages, like Ada, do allow overloaded method definitions that differ

only in their result type. An analysis algorithm that can analyze this more general
form of overloading may be found in [Baker 1982].

Interface and Constructor Calls. In addition to methods, Java allows calls to inter-
faces and constructors. The techniques we have developed apply directly to these
constructs. An interface is an abstraction of a class, specifying a set of method def-
inition without their implementations. For purposes of semantic analysis, imple-
mentations are unimportant. When a call to an interface is made, the methods
declared in the interface (and perhaps its superinterfaces) are searched to find all
declarations that are applicable. Once the correct declaration is identified, we can
be sure that a corresponding implementation will be available at run-time.

Constructors are similar to methods in definition and structure. Constructors
are called in object creation expressions (use of new) and in other constructors;
they can never be called in expressions or statements. A constructor can be recog-
nized by the fact that it has no result type (not even void). Once a constructor call
is recognized as valid (by examining where it appears), the techniques developed
above to select the appropriate declaration for a given call can be used.

Subprogram Calls in Other Languages. The chief difference between calls in Java
and in languages like C and C++ is that subprograms need not appear within
classes. Rather, subprograms are defined at the global level (within a compilation
unit). Languages like Algol, Pascal and Modula 2 and 3 also allow subprograms to
be declared locally, just like local variables and constants. Some languages allow
overloading; other require a unique declaration for a given name.

Processing calls in these languages follows the same pattern as in Java. Using
scoping and visibility rules, possible declarations corresponding to a given call are
gathered. If overloading is disallowed, the nearest declaration is used. Other wise,
a set of possible declarations is gathered. The number and type of arguments in the
call is matched against the possible declarations. If a single suitable declaration
isn’t selected, a semantic error results.

11

Run-Time Storage
Organization

The evolution of programming language design has led to the creation of
increasingly sophisticated methods of run-time storage organization. Originally,
all data was global, with a lifetime than spanned the entire program. Correspond-
ingly, all storage allocation was static. A data object or instruction sequence was
placed at a fixed address for the entire execution of a program.

Algol 60 and succeeding languages introduced local variables accessible only
during the execution of a subprogram. This feature led to stack allocation. When a
procedure was called, space for its local variables (its frame) was pushed on a run-
time stack. Upon return, the space was popped. Only procedures actually execut-
ing were allocated space, and recursive procedures, which require multiple frames,
were handled cleanly and naturally.

Lisp and later languages, including C, C++ and Java, popularized dynamically

allocated data that could be created or freed at any time during execution.

Chapter 11 Run-Time Storage Organization

Dynamic data led to beap allocation, which allows space to be allocated and freed
at any time and in any order during program execution. With dynamic allocation,
the number and size of data objects need not be fixed in advance. Rather, each
program execution can “customize” its memory allocation.

All memory allocation techniques utilize the notion of a data area. A data area
is a block of storage known by the compiler to have uniform storage allocation
requirements. That is, all objects in a data area share the same data allocation pol-
icy. The global variables of a program can comprise a data area. Space for all vari-
ables is allocated when execution of a program begins, and variables remain
allocated until execution terminates. Similarly, a block of data allocated by a call
to new or malloc forms a single data area.

We’ll begin our study of memory allocation with static allocation in Section
11.1. In Section 11.2 we’ll investigate stack-based memory allocation. Finally, in

Section 11.3, we’ll consider heap storage.

11.1 Static Allocation

In the earliest programming languages, including all assembly languages, as well
as Cobol and Fortran, all storage allocation was static. Space for data objects was
allocated in a fixed location for the lifetime of a program. Use of static allocation
is feasible only when the number and size of all objects to be allocated is known at
compile-time. This allocation approach, of course, makes storage allocation
almost trivial, but it can also be quite wasteful of space. As a result, programmers

must sometimes overlay variables. Thus, in Fortran, the equivalence statement

11.1 Static Allocation 3

is commonly used to reduce storage needs by forcing two variables to share the
same memory locations. (The C/C++ union can do this too.) Overlaying can lead
to subtle programming errors, because assignment to one variable implicitly
changes the value of another. Overlaying also reduces program readability.

In more modern languages, static allocation is used both for global variables
that are fixed in size and accessible throughout program execution and for pro-
gram literals (that is, constants) that need to be fixed throughout execution. Static
allocation is used for static and extern variables in C/C++ and for static
fields in Java classes. Static allocation is also routinely used for program code,
since fixed run-time addresses are used in branch and call instructions. Also, since
flow of control within a program is very hard to predict, it difficult to know which
instructions will be needed next. Accordingly, if code is statically allocated, any
execution order can be accommodated. Java allows classes to be dynamically
loaded or compiled; but once program code is made executable, it is static.

Conceptually, we can bind static objects to absolute addresses. Thus if we gen-
erate an assembly language translation of a program, a global variable or program
statement can be given a symbolic label that denotes a fixed memory address. It is
often preferable to address a static data object as a pair (DataArea, Offset). Offset
is fixed at compile-time, but the address of DataArea can be deferred to link- or
run-time. In Fortran, for example, DataArea can be the start of one of many com-
mon blocks. In C, DataArea can be the start of a block of storage for the variables
local to a module (a “.c” file). In Java, DataArea can be the start of a block of

storage for the static fields of a class. Typically these addresses are bound when the

Chapter 11 Run-Time Storage Organization

program is linked. Address binding must be deferred until link-time or run-time
because subroutines and classes may be compiled independently, making it impos-
sible for the compiler to know about all the data areas in a program.
Alternatively, the address of DataArea can be loaded into a register (the global
pointer), which allows a static data item to be addressed as (Register, Offset). This
addressing form is available on almost every machine. The advantage of address-
ing a piece of static data with a global pointer is that we can load or store a global
value in one instruction. Since global addresses occupy 32 (or 64) bits, they nor-
mally “don’t fit” in a single instruction. Instead, lacking a global pointer, global
addresses must be formed in several steps, first loading the high-order bits, then

masking in the remain low-order bits.

11.2 Stack Allocation

Almost all modern programming languages allow recursive procedures, functions
or methods, which require dynamic allocation. Each recursive call requires the
allocation of a new copy of a routine’s local variables; thus the number of data
objects required during program execution is not known at compile-time. To
implement recursion, all the data space required for a routine (a procedure, func-
tion or method) is treated as a data area that, because of the special way it is han-
dled, is called a frame or activation record.

Local data, held within a frame, is accessible only while a subprogram is
active. In mainstream languages like C, C++ and Java, subprograms must return in

a stack-like manner; the most recently called subprogram will be the first to

11.2 Stack Allocation 5

return. This means a frame may be pushed onto a run-time stack when a routine is
called (activated). When the routine returns, the frame is popped from the stack,
freeing the routine’s local data. To see how stack allocation works, consider the
C subprogram shown in Figure 11.1.

p(int a) {
double b;
double c[10];
b = cla] * 2.51;

Figure 11.1 A Simple Subprogram

Procedure p requires space for the parameter a as well as the local variables b
and c. It also needs space for control information, such as the return address (a
procedure may be called from many different places). As the procedure is com-
piled, the space requirements of the procedure are recorded (in the procedure’s
symbol table). In particular, the offset of each data item relative to the beginning
of the frame is stored in the symbol table. The total amount of space needed, and
thus the size of the frame, is also recorded. The memory requirements for individ-
ual variables (and hence an entire frame) is machine-dependent. Different architec-
tures may assume different sizes for primitive values like integers or addresses.

In our example, assume p’s control information requires 8 bytes (this size is
usually the same for all routines). Assume parameter a requires 4 bytes, local vari-
able b requires 8 bytes, and local array c requires 80 bytes. Because many
machines require that word and doubleword data be aligned, it is common prac-

tice to pad a frame (if necessary) so that its size is a multiple of 4 or 8 bytes. This

Chapter 11 Run-Time Storage Organization

guarantees a useful invariant—atall times the top of the stack is properly aligned.

Figure 11.2 shows p’s frame.

- < Total size= 104

Padding
Space for ¢

< Offset = 20
Space for b

< Offset = 12
Space for a

< Offset = 8

Control Information
< Offset =0

Figure 11.2 Frame for Procedure P

Within p, each local data object is addressed by its offset relative to the start
of the frame. This offset is a fixed constant, determined at compile-time. Because
we normally store the start of the frame in a register, each piece of data can be
addressed as a (Register, Offset) pair, which is a standard addressing mode in
almost all computer architectures. For example, if register R points to the begin-
ning of p’s frame, variable b can be addressed as (R,12), with 12 actually being
added to the contents of R at run-time, as memory addresses are evaluated.

Normally, the literal 2. 51 of procedure p is not stored in p’s frame because
the values of local data that are stored in a frame disappear with it at the end of a
call. If 2. 51 were stored in the frame, its value would have to be initialized before
each call. It is easier and more efficient to allocate literals in a static area, often
called a literal pool or constant pool. Java uses a constant pool to store literals,

type, method and interface information as well as class and field names.

11.2 Stack Allocation 7

11.2.1 Accessing Frames at Run-Time

At any time during execution there can be many frames on the stack. This is
because when a procedure A calls a procedure B, a frame for B’s local variables is
pushed on the stack, covering A’s frame. A’s frame can’t be popped off because
A will resume execution after B returns. In the case of recursive routines there can
be hundreds or even thousands of frames on the stack. All frames but the topmost
represent suspended subroutines, waiting for a call to return.

The topmost frame is active, and it is important to be able to access it directly.
Since the frame is at the top of the stack, the stack top register could be used to
access it. The run-time stack may also be used to hold data other than frames, like
temporary or return values too large to fit within a register (arrays, structs, strings,
etc.)

It is therefore unwise to require that the currently active frame always be at
exactly the top of the stack. Instead a distinct register, often called the frame
pointer, is used to access the current frame. This allows local variables to be
accessed directly as offset + frame pointer, using the indexed addressing mode
found on all modern machines.

As an example, consider the following recursive function that computes facto-

rials.

Chapter 11 Run-Time Storage Organization

int fact (int n)

if

(n > 1)

return n * fact(n-1);

else return 1;

}

The run-time stack corresponding to the call fact (3) is shown in Figure

11.3 at the point where the call of fact (1) is about to return. In our example we

show a slot for the function’s

return value at the very beginning of the frame.

This means that upon return, the return value is conveniently placed on the stack,

just beyond the end of the caller’s frame. As an optimization, many compilers try

to return scalar values in specially designated registers. This helps to eliminate

unnecessary loads and stores. For function values too large to fit in a register (e.g.,

a struct), the stack is the natural choice.

Space forn =1

Return Value = 1

Space forn =2

Return Value

Space forn =3

Return Value

~—— Top of Stack

-§—— Frame Pointer

Figure 11.3 Run-time Stack for a Call of fact (3)

11.2 Stack Allocation 9

When a subroutine returns, its frame must be popped from the stack and the
frame pointer must be reset to point to the caller’s frame. In simple cases this can
be done by adjusting the frame pointer by the size of the current frame. Because
the stack may contain more than just frames (e.g., function return values or regis-
ters saved across calls), it is common practice to save the caller’s frame pointer as
part of the callee’s control information. Thus each frame points to the preceding
frame on the stack. This pointer is often called a dynamic link because it links a
frame to its dynamic (run-time) predecessor. The run-time stack corresponding to

a call of fact (3), with dynamic links included, is shown in Figure 11.4.

~— Top of Stack

Space forn =1

~g——— Frame Pointer

Return Value

Space forn = 3

Return Value

Figure 11.4 Run-time Stack for a Call of fact (3) with Dynamic Links

11.2.2 Handling Classes and Objects
C, C++ and Java do not allow procedures or methods to nest. That is, a procedure
may not be declared within another procedure. This simplifies run-time data

access—allvariables are either global or local to the currently executing procedure.

10

Chapter 11 Run-Time Storage Organization

Global variables are statically allocated. Local variables are part of a single frame,
accessed through the frame pointer.

Languages often need to support simultaneous access to variables in multiple
scopes. Java and C++, for example, allows classes to have member functions that
have direct access to all instance variables. Consider the following Java class.

class k {
int a;
int sum() {
int b;

return a+b;

Each object that is an instance of class k contains a member function sum.
Only one translation of sum is created; it is shared by all instances of k. When sum
executes it requires two pointers to access local and object-level data. Local data,
as usual, resides in a frame on the run-time stack. Data values for a particular
instance of k are accessed through an object pointer (called the this pointer in
Java and C++). When obj . sum () is called, it is given an extra implicit parameter
that a pointer to obj. This is illustrated in Figure 11.5. When a+b is computed, b,
a local variable, is accessed directly through the frame pointer. a, a member of
object ob7, is accessed indirectly through the object pointer that is stored in the
frame (as all parameters to a method are).

C++ and Java also allow inheritance via subclassing. That is, a new class can

extend an existing class, adding new fields and adding or redefining methods. A

11.2 Stack Allocation 11

Space for b ~—— Top of Stack

Space for a l@——1] Object Pointer

Control Information .
Object Obj ~§——— Frame Pointer

Rest of Stack

Figure 11.5 Accessing Local and Member Data in Java

subclass D, of class C, maybe be used in contexts expecting an object of class C
(e.g., in method calls). This is supported rather easily—objects of class D always
contain a class C object within them. That is, if C has a field F within it, so does D.
The fields D declares are merely appended at the end of the allocations for C. As a
result, access to fields of C within a class D object works perfectly. In Java, class
Object is often used as a placeholder when an object of unknown type is
expected. This works because all objects are subclasses of Object.

Of course, the converse cannot be allowed. A class C object may not be used

where a class D object is expected, since D’s fields aren’t present in C.

11.2.3 Handling Multiple Scopes

Many languages, including Ada, Pascal, Algol and Modula-3 allow procedure
declarations to nest. The latest releases of Java allow classes to nest (see Exercise
6). Procedure nesting can be very useful, allowing a subroutine to directly access
another routine’s locals and parameters. However, run-time data structures are

complicated because multiple frames, corresponding to nested procedure declara-

12

Chapter 11 Run-Time Storage Organization

tions, may need to be accessed. To see the problem, assume that routines can nest
in Java or C, and consider the following code fragment
int p(int a){
int g(int b){
if (b < 0)
a(-b);

else return a+b;

return gq(-10) ;
}

When g executes, it can access not only its own frame, but also that of p, in
which it is nested. If the depth of nesting is unlimited, so is the number of frames
that must be made accessible. In practice, the level of procedure nesting actually
seen is modest—usually no greater than two or three.

Two approaches are commonly used to support access to multiple frames.
One approach generalizes the idea of dynamic links introduced earlier. Along with
a dynamic link, we’ll also include a static link in the frame’s control informa-
tion area. The static link will point to the frame of the procedure that statically
encloses the current procedure. If a procedure is not nested within any other pro-
cedure, its static link is null. This approach is illustrated in Figure 11.6.

As usual, dynamic links always point to the next frame down in the stack.
Static links always point down, but they may skip past many frames. They always

point to the most recent frame of the routine that statically encloses the current

11.2 Stack Allocation 13

~— Top of Stack

Static Link — i
~@——— Frame Pointer
Space forb = -10
:—_D%arﬁcﬁnk_ i
[™ Static Link —]
Space for a
[Dynamic Link = yu11]
[Static Link =Nu1l |

Figure 11.6 An Example of Static Links

routine. Thus in our example, the static links of both of q’s frames point to p,
since it is p that encloses g’s definition. In evaluating the expression a+b that g
returns, b, being local to g, is accessed directly through the frame pointer. Variable
a is local to p, but also visible to g because g nests within p. a is accessed by
extracting q’s static link, then using that address (plus the appropriate offset) to
access a. (See Exercise 18.)

An alternative to using static links to access frames of enclosing routines is the
use of a display. A display generalizes our use of a frame pointer. Rather than
maintaining a single register, we maintain a set of registers which comprise the dis-
play. If procedure definitions nest 7 deep (this can be easily determined by examin-
ing a program’s AST), we will need n+1 display registers. Each procedure
definition is tagged with a nesting level. Procedures not nested within any other
routine are at level 0. Procedures nested within only one routine are at level 1, etc.

Frames for routines at level 0 are always accessed using display register DO. Those

14

Chapter 11 Run-Time Storage Organization

at level 1 are always accessed using register D1, etc. Thus whenever a procedure r
is executing, we have direct access to r’s frame plus the frames of all routines
that enclose r. Each of these routines must be at a different nesting level, and
hence will use a different display register. Consider Figure 11.7, which illustrates

our earlier example, now using display registers rather than static links.

~— Top of Stack

-§—— DisplayD1

Previous D1

Space for a

Previous DO

~——— Display DO
Figure 11.7 An Example of Display Registers

Since g is at nesting level 1, its frame is pointed to by D1. All of g’s local
variables, including b, are at a fixed offset relative to D1. Similarly, since p is at
nesting level 0, its frame and local variables are accessed via DO. Note that each
frame’s control information area contains a slot for the previous value of the
frame’s display register. This value is saved when a call begins and restored when
the call ends. The dynamic link is still needed, because the previous display values
doesn’t always point to the caller’s frame.

Not all compiler writers agree on whether static links or displays are better to

use. Displays allow direct access to all frames, and thus make access to all visible

11.2 Stack Allocation 15

variables very efficient. However, if nesting is deep, several valuable registers may
need to be reserved. Static links are very flexible, allowing unlimited nesting of
procedures. However, access to non-local procedure variables can be slowed by
the need to extract and follow static links.

Fortunately, the code generated using the two techniques can be improved.
Static links are just address-valued expressions computed to access variables
(much like address calculations involving pointer variables). A careful compiler
can notice that an expression is being needlessly recomputed, and reuse a previous
computation, often directly from a register. Similarly, a display can be allocated
statically in memory. If a particular display value is used frequently, a register allo-
cator will place the display value in a register to avoid repeated loads and stores

(just as it would for any other heavily used variable).

11.2.4 Block-Level Allocation

Java, C and C++, as well as most other programming languages, allow decla-
ration of local variables within blocks as well as within procedures. Often a block
will contain only one or two variables, along with statements that use them. Do
we allocate an entire frame for each such block?

We could, by considering a block with local variables to be an in-line proce-
dure without parameters, to be allocated its own frame. This would necessitate a
display or static links, even in Java or C, because blocks can nest. Further, execu-
tion of a block would become more costly, since frames need to be pushed and

popped, display registers or static links updated, and so forth.

16 Chapter 11 Run-Time Storage Organization

To avoid this overhead, it is possible to use frames only for true procedures,
even if blocks within a procedure have local declarations. This technique is called
procedure-level frame allocation, as contrasted with block-level frame allocation,
which allocates a frame for each block that has local declarations.

The central idea of procedure-level frame allocation is that the relative loca-
tion of variables in individual blocks within a procedure can be computed and
fixed at compile-time. This works because blocks are entered and exited in a
strictly textual order. Consider, the following procedure

void p(int a) {
int b;
if (a > 0)
{float c, 4;
// Body of block 1 }
else {int e[10];
// Body of block 2 }
}

Parameter a and local variable b are visible throughout the procedure. How-
ever the then and else parts of the if statement are mutually exclusive. Thus
variables in block 1 and block 2 can overlay each other. That is, ¢ and 4 are allo-
cated just beyond b as is the array e. Because variables in both blocks can’t ever
be accessed at the same time, this overlaying is safe. The layout of the frame is

illustrated in Figure 11.8.

11.2 Stack Allocation 17

Space for e [2]
through e [9]

Space ford and e [1]

Space for ¢ and e [0]

Space for b

Space for a

Control Information

Figure 11.8 An Example of a Procedure-Level Frame

Offsets for variables within a block are assigned just after the last variable in
the enclosing scope within the procedure. Thus both ¢ and e [] are placed after b
because both block 1 and block 2 are enclosed by the block comprising p’s body.
As blocks are compiled a “high water mark” is maintained that represents the
maximum offset used by any local variable. This high water mark determines the
size of the overall frame. Thus a[9] occupies the maximum offset within the
frame, so its location determines the size of p’s frame.

The process of assigning local variables procedure-level offsets is sometimes
done using scope flattening. That is, local declarations are mapped to equivalent
procedure-level declarations. This process is particularly effective if procedure-

level register allocation is part of the compilation process (see Section 15.3).

11.2.5 More About Frames

ClosuresIn C it is possible to create a pointer to a function. Since a function’s

frame is created only when it is called, a function pointer is implemented as the

18

Chapter 11 Run-Time Storage Organization

function’s entry point address. In C++, pointers to member functions of a class
are allowed. When the pointer is used, a particular instance of the class must be
provided by the user program. That is, two pointers are needed, one to the func-
tion itself and a second pointer to the class instance in which it resides. This sec-
ond pointer allows the member function to access correctly local data belonging to
the class.

Other languages, particularly functional languages like Lisp, Scheme, and ML,
are much more general in their treatment of functions. Functions are first-class
objects. They can be stored in variables and data structures, created during execu-
tion, and returned as function results.

Run-time creation and manipulation of functions can be extremely useful. For
example, it is sometimes the case that computation of £ (x) takes a significant
amount of time. Once f (x) is known, it is a common optimization, called
memoizing, to table the pair (x, £ (x)) so that subsequent calls to £ with argu-
ment x can use the known value of £ (x) rather than recompute it. In ML it is
possible to write a function memo that takes a function £ and an argument arg.
memo computes £ (arg) and also returns a “smarter” version of £ that has the
value of £ (arg) “built into” it. This smarter version of £ can be used instead of
f in all subsequent computations.

fun memo (fct,parm)= let val ans = fct(parm) in

(ans, fn x=> if x=parm then ans else fct(x))end;

11.2 Stack Allocation 19

When the version of fct returned by memo is called, it will access to the val-
ues of parm, fct and ans, which are used in its definition. After memo returns, its
frame must be preserved since that frame contains parm, fct and ans within it.

In general when a function is created or manipulated, we must maintain a pair
of pointers. One is to the machine instructions that implement the function, and
the other is to the frame (or frames) that represent the function’s execution envi-
ronment. This pair of pointers is called a closure. Note also that when functions
are first-class objects, a frame corresponding to a call may be accessed after the
call terminates. This means frames can’t always be allocated on the run-time
stack. Instead, they are allocated in the heap and garbage-collected, just like user-
created data. This appears to be inefficient, but Appel [1987] has shown that in

some circumstances heap allocation of frames can be faster than stack allocation.

Cactus StacksMany programming languages allow the concurrent execution of
more than one computation in the same program. Units of concurrent execution
are sometimes called tasks, or processes or threads. In some cases a new system-
level process is created (as in the case of fork in C). Because a great deal of oper-
ating system overhead is involved, such processes are called heavy-weight pro-
cesses. A less expensive alternative is to execute several threads of control in a
single system-level process. Because much less “state” is involved, computations
that execute concurrently in a single system process are called light-weight pro-

cesses.

20

Chapter 11 Run-Time Storage Organization

A good example of light-weight processes are threads in Java. As illustrated
below, a Java program may initiate several calls to member functions that will exe-
cute simultaneously.

public static void main (String args[]) {
new AudioThread ("Audio") .start () ;

new VideoThread ("Video") .start () ;

Here two instances of Thread subclasses are started, and each executes con-
currently with the other. One thread might implement the audio portion of an
application, while the other implements the video portion.

Since each thread can initiate its own sequence of calls (and possibly start
more threads), all the resulting frames can’t be pushed on a single run-time stack
(the exact order in which threads execute is unpredictable). Instead, each thread
gets its own stack segment in which frames it creates may be pushed. This stack
structure is sometimes called a cactus stack, since it is reminiscent of the saguaro
cactus, which sends out arms from the main trunk and from other arms. It is
important that the thread handler be designed so that segments are properly deal-
located when their thread is terminated. Since Java guarantees that all temporaries
and locals are contained with a method’s frame, stack management is limited to

proper allocation and deallocation of frames.

A Detailed Frame LayoutThe layout of a frame is usually standardized for a particu-

lar architecture. This is necessary to support calls to subroutines translated by dif-

11.2 Stack Allocation 21

ferent compilers. Since languages and compilers vary in the features they support,
the frame layout chosen as the standard must be very general and inclusive. As an
example, consider Figure 11.9, which illustrates the frame layout used by the

MIPS architecture.

Parameter 6 Memory Addresses

Parameter 5

Parameters 1-4

~@——— Frame Pointer
Register Save
Area

Local Variables
and
Control Information

Dynamic Area

~— Top of Stack
Figure 11.9 Layout for MIPS R3000

By convention, the first four parameters, if they are scalar, are passed in regis-
ters. Additional parameters, as well as non-scalar by-value parameters, are passed
through the stack. The slots for parameters 1-4 can be used to save parameter reg-
isters when a call is made from within a procedure. The register save area is used
at two different times. Registers are commonly partitioned in caller-saved registers
(which a caller is responsible for) and callee-saved registers (which a subprogram

is responsible for). When execution of a subroutine begins, callee-saved registers

22

Chapter 11 Run-Time Storage Organization

used by the subroutine are saved in the register save area. When a call is made
from within the subroutine, caller-saved registers that are in use are saved in the
register save area. At different call sites different registers may be in use. The regis-
ter save area must be big enough to handle all calls within a particular subroutine.
Often a fixed size register save area, big enough to accommodate all caller-saved
and callee-saved registers, is used. This may waste a bit of space, but only registers
actually in use are saved.

The local variables and control information area contains space for all local
variables. It also contains space for the return address register, and the value of the
caller’s frame pointer. The value of a static link or display register may be saved
here if they are needed. The stack top may be reset, upon return, by adding the size
of the parameter area to the frame pointer. (Note that on the MIPS, as well as on
many other computers, the stack grows downward, from high to low addresses).

The details of subroutine calls are explored more thoroughly in Section 13.2
(at the bytecode level) and Section 15.1 (at the machine code level).

Because the Java Virtual Machine is designed to run on a wide variety of
architectures, the exact details of its run-time frame layout are unspecified. A par-
ticular implementation (such as the JVM running on a MIPS processor), chooses a
particular layout, similar to that shown in Figure 11.9.

Some languages allow the size of a frame to be expanded during execution. In
C, for example, alloca allocates space on demand on the stack. Space is pushed
beyond the end of the frame. Upon return, this space is automatically freed when

the frame is popped.

11.3 Heap Management 23

Some languages allow the creation of dynamic arrays whose bounds are set at
run-time when a frame is pushed (e.g., int data [max (a,b)]). At the start of a
subprogram’s execution, array bounds are evaluated and necessary space is
pushed in the dynamic area of the frame.

C and C++ allow subroutines like printf and scanf to have a variable
number of arguments. The MIPS frame design supports such routines, since
parameter values are placed, in order, just above the frame pointer.

Non-scalar return values can be handled by treating the return value as the
“0-th parameter.” As an optimization, calls to functions that return a non-scalar
result sometimes pass an address as the 0-th parameter. This represents a place
where the return value can be stored prior to return. Otherwise, the return value is

left on the stack by the function.

11.3 Heap Management

The most flexible storage allocation mechanism is heap allocation. Any num-
ber of data objects can be allocated and freed at any time and in any order. A stor-
age pool, usually called a heap, is used. Heap allocation is enormously popular—it
is difficult to imagine a non-trivial Java or C program that does not use new or
malloc.

Heap allocation and deallocation is far more complicated than is the case for
static or stack allocation. Complex mechanisms may be needed to satisfy a request
for space. Indeed, in some cases, all of the heap (many megabytes) may need to be

examined. It takes great care to make heap management fast and efficient.

24

Chapter 11 Run-Time Storage Organization

11.3.1 Allocation Mechanisms

A request for heap space may be explicit or implicit. An explicit request
involves a call to a routine like new or malloc, with a request for a specific num-
ber of bytes. An explicit pointer or reference to the newly allocated space is
returned (or a null pointer if the request could not be honored).

Some languages allow the creation of data objects of unknown size. Assume
that in C++, as in Java, the + operator is overloaded to represent string catenation.
That is, the expression Strl + Str2 creates a new string representing the catena-
tion of strings Strl and Str2. There is no compile-time bound on the sizes of
Strl and Str2, so heap space must be allocated to hold the newly created string.

Whether allocation is explicit or implicit, a heap allocator is needed. This rou-
tine takes a size parameter and examines unused heap space to find free space that
satisfies the request. A heap block is returned. This block will be big enough to
satisfy the space request, but it may well be bigger. Allocated heap blocks are
almost always single- or double-word aligned to avoid alignment problems in
heap-allocated arrays or class instances. Heaps blocks contain a header field (usu-
ally a word) that contains the size of the block as well as auxiliary bookkeeping
information. (The size information is necessary to properly “recycle” the block if
it is later deallocated.) A minimum heap block size (commonly 16 bytes) is usually
imposed to simplify bookkeeping and guarantee alignment.

The complexity of heap allocation depends in large measure on how dealloca-

tion is done. Initially, the heap is one large block of unallocated memory. Memory

11.3 Heap Management 25

requests can be satisfied by simply modifying an “end of heap” pointer, very
much as a stack is pushed by modifying a stack pointer. Things get more involved
when previously allocated heap objects are deallocated and reused. Some dealloca-
tion techniques compact the heap, moving all “in use” objects to one end of the
heap. This means unused heap space is always contiguous, making allocation (via
a heap pointer) almost trivial.

Some heap deallocation algorithms have the useful property that their speed
depends not on the total number of heap objects allocated, but rather only on
those objects still in use. If most heap objects “die” soon after their allocation
(and this does seem to often be the case), deallocation of these objects is essentially
free.

Unfortunately, many deallocation techniques do not perform compaction.
Deallocated objects must be stored for future reuse. The most common approach
is to create a free space list. A free space list is a linked (or doubly-linked) list that
contains all the heap blocks known not to be in use. Initially it contains one
immense block representing the entire heap. As heap blocks are allocated, this
block shrinks. When heap blocks are returned, they are appended to the free space
list.

The most common way of maintaining the free space list is to append blocks
to the head of the list as they are deallocated. This simplifies deallocation a bit, but
makes coalescing of free space difficult.

It often happens that two blocks, physically adjacent in the heap, are eventu-

ally deallocated. If we can recognize that the two blocks are now both free and

26

Chapter 11 Run-Time Storage Organization

adjacent, they can be coalesced into one larger free block. One large block is pref-
erable to two smaller blocks, since the combined block can satisfy requests too
large for either of the individual blocks.

The boundary tags approach (Knuth 1973) allows us to identify and coalesce
adjacent free heap blocks. Each heap block, whether allocated or on the free space
list, contains a tag word on both of its ends. This tag word contains a flag indicat-
ing “free” or “in use” and the size of the block. When a block is freed, the
boundary tags of its neighbors are checked. If either or both neighbors are marked
as free, they are unlinked from the free space list and coalesced with the current
free block.

A free space list may also be kept in address order; that is, sorted in order of
increasing heap addresses. Boundary tags are no longer needed to identify adjacent
free blocks, though maintenance of the list in sorted order is now more expensive.

When a request for 7 bytes of heap space is received, the heap allocator must
search the free space list for a block of sufficient size. But how much of the free
space list is to be searched? (It may contain many thousands of blocks.) What if no
free block exactly matches the current request? There are many approaches that

might be used. We’ll consider briefly a few of the most widely used techniques.

Best FitThe free space list is searched, perhaps exhaustively, for the free block that
matches most closely the requested size. This minimizes wasted heap space,

though it may create tiny fragments too small to be used very often. If the free

11.3 Heap Management 27

space list is very long, a best fit search may be quite slow. Segregated free space

lists (see below) may be preferable.

First FitThe first free heap block of sufficient size is used. Unused space within the
block is split off and linked as a smaller free space block. This approach is fast, but
may “clutter” the beginning of the free space list with a number of blocks too

small to satisfy most requests.

Next FitThis is a variant of first fit in which succeeding searches of the free space
list begin at the position where the last search ended, rather than at the head of the
list. The idea is to “cycle through” the entire free space list rather than always
revisiting free blocks at the head of the list. This approach reduces fragmentation
(in which blocks are split into small, difficult to use pieces). However, it also
reduces locality (how densely packed active heap objects are). If we allocate heaps
objects that are widely distributed throughout the heap, we may increase cache

misses and page faults, significantly impacting performance.

Segregated Free Space ListsThere is no reason why we must have only one free space
list. An alternative is to have several, indexed by the size of the free blocks they
contain. Experiments have shown that programs frequently request only a few
“magic sizes.” If we divide the heap into segments, each holding only one size,
we can maintain individual free space lists for each segment. Because heap object

size is fixed, no headers are needed.

28

Chapter 11 Run-Time Storage Organization

A variant of this approach is to maintain lists of objects of special “strategic”
sizes (16, 32, 64, 128, etc.) When a request for size s is received, a block of the
smallest size < s is selected (with excess size unused within the allocated block).

Another variant is to maintain a number of free space lists, each containing a
range of sizes. When a request for size s is received, the free space list covering s’s

range is searched using a best fit strategy.

Fixed-Size SubheapsRather than linking free objects onto lists according to their
size, we can divide the heap into a number of subbeaps, each allocating objects of
a single fixed size. We can then use a bitmap to track an object’s allocation sta-
tus. That is, each object is mapped to a single bit in a large array. A 1 indicates the
object is in use; a 0 indicated it is free. We need no explicit headers or free-space
lists. Moreover, since all objects are of the same size, any object whose status bit is
0 may be allocated. We do have the problem though that subheaps may be used

unevenly, with one nearly exhausted while another is lightly-used.

11.3.2 Deallocation Mechanisms

Allocating heap space is fairly straightforward. Requests for space are satis-
fied by adjusting an end-of-heap pointer, or by searching a free space list. But how
do we deallocate heap memory no longer in use? Sometimes we may never need to
deallocate! If heaps objects are allocated infrequently or are very long-lived, deal-
location is unnecessary. We simply fill heap space with “in use” objects.

Unfortunately, many—perhaps most—programs cannot simply ignore deallo-

cation. Experience shows that many programs allocate huge numbers of short-

11.3 Heap Management 29

lived heap objects. If we “pollute” the heap with large numbers of dead objects
(that are no longer accessible), locality can be severely impacted, with active
objects spread throughout a large address range. Long-lived or continuously run-
ning programs can also be plagued by memory leaks, in which dead heap objects

slowly accumulate until a program’s memory needs exceed system limits.

User-controlled DeallocationDeallocation can be manual or automatic. Manual deal-
location involves explicit programmer-initiated calls to routines like free (p) or
delete (p). Pointer p identifies the heap object to be freed. The object’s size is
stored in its header. The object may be merged with adjacent unused heap objects
(if boundary tags or an address-ordered free space list is used). It is then added to
a free-space list for subsequent reallocation.

It is the programmer’s responsibility to free unneeded heap space by execut-
ing deallocation commands. The heap manager merely keeps track of freed space
and makes it available for later reuse. The really hard decision—when space
should be freed—is shifted to the programmer, possibly leading to catastrophic
dangling pointer errors. Consider the following C program fragment

g =p = malloc(1000) ;
free (p) ;
/* code containing a number of malloc’s */
ql100] = 1234;
After p is freed, g is a dangling pointer. That is, g points to heap space that is

no longer considered allocated. Calls to malloc may reassign the space pointed to

30

Chapter 11 Run-Time Storage Organization

by g. Assignment through q is illegal, but this error is almost never detected. Such
an assignment may change data that is now part of another heap object, leading to
very subtle errors. It may even change a header field or a free-space link, causing

the heap allocator itself to fail.

11.3.3 Automatic Garbage Collection

The alternative to manual deallocation of heap space is automatic dealloca-
tion, commonly called garbage collection. Compiler-generated code and support
subroutines track pointer usage. When a heap object is no longer pointed to (that
is, when it is garbage), the object is automatically deallocated (collected) and made
available for subsequent reuse.

Garbage collection techniques vary greatly in their speed, effectiveness and
complexity. We shall consider briefly some of the most important approaches. For

a more thorough discussion see [Wilson 96] or [JL 96].

Reference CountingOne of the oldest and simplest garbage collection techniques is
reference counting. A field is added to the header of each heap object. This field,
the object’s reference count, records how many references (pointers) to the heap
object exist. When an object’s reference count reaches zero, it is garbage and may
be added to the free-space list for future reuse.

The reference count field must be updated whenever a reference is created,
copied, or destroyed. When a procedure returns, the reference counts for all

objects pointed to by local variables must be decremented. Similarly, when a refer-

11.3 Heap Management 31

ence count reaches zero and an object is collected, all pointers in the collected
object must also be followed and corresponding reference counts decremented.

As shown in Figure 11.10, reference counting has particular difficulty with
circular structures. If pointer P is set to null, the object’s reference count is
reduced to 1. Now both objects have a non-zero count, but neither is accessible
through any external pointer. That is, the two objects are garbage, but won’t be

recognized as such.

- Global pointer P
Reference Count = 2

Figure 11.10 An Example of Cyclic Structures

If circular structures are rare, this deficiency won’t be much of a problem. If
they are common, then an auxiliary technique, like mark-sweep collection, will be
needed to collect garbage that reference counting misses.

An important aspect of reference counting is that it is incremental. That is,
whenever a pointer is manipulated, a small amount of work is done to support
garbage collection. This is both an advantage and a disadvantage. It is an advan-
tage in that the cost of garbage collection is smoothly distributed throughout a
computation. A program doesn’t need to stop when heap space grows short and

do a lengthy collection. This can be crucial when fast real-time response is

32

Chapter 11 Run-Time Storage Organization

required. (We don’t want the controls of an aircraft to suddenly “freeze” for a
second or two while a program collects garbage!)

The incremental nature of reference counting can also be a disadvantage when
garbage collection isn’t really needed. If we have a complex data structure in
which pointers are frequently updated, but in which few objects ever are dis-
carded, reference counting always adjusts counts that rarely, if ever, go to zero.

How big should a reference count field be? Interestingly, experience has
shown that it doesn’t need to be particularly large. Often only a few bits suffice.
The idea here is that if a count ever reaches the maximum representable count
(perhaps 7 or 15 or 31), we “lock” the count at that value. Objects with a locked
reference count won’t ever be detected as garbage by their counts, but they can
be collected using other techniques when circular structures are collected.

In summary, reference counting is a simple technique whose incremental
nature is sometimes useful. Because of its inability to handle circular structures
and its significant per-pointer operation cost, other garbage collection techniques,

as described below, are often more attractive alternatives.

Mark-Sweep CollectionRather than incrementally collecting garbage as pointers are
manipulated, we can take a batch approach. We do nothing until heap space is
nearly exhausted. Then we execute a marking phase which aims to identify all live

(non-garbage) heap objects.

11.3 Heap Management 33

Starting with global pointers and pointers in stack frames, we mark reachable
heap objects (perhaps setting a bit in the object’s header). Pointers in marked
heap objects are also followed, until all live heap objects are marked.

After the marking phase, we know that any object not marked is garbage that
may be freed. We then sweep through the heap, collecting all unmarked objects
and returning them to the free space list for later reuse. During the sweep phase we
also clear all marks from heap objects found to be still in use.

Mark-sweep garbage collection is illustrated in Figure 11.11. Objects 1 and 3
are marked because they are pointed to by global pointers. Object 5 is marked
because it is pointed to by object 3, which is marked. Shaded objects are not

marked and will be added to the free-space list.

Global pointer Global pointer

v y

Figure 11.11 Mark-Sweep Garbage Collection

Internal pointer

In any mark-sweep collector, it is vital that we mark all accessible heap
objects. If we miss a pointer, we may fail to mark a live heap object and later
incorrectly free it. Finding all pointers is not too difficult in languages like Lisp
and Scheme that have very uniform data structures, but it is a bit tricky in lan-
guages like Java, C and C++, that have pointers mixed with other types within

data structures, implicit pointers to temporaries, and so forth. Considerable infor-

34

Chapter 11 Run-Time Storage Organization

mation about data structures and frames must be available at run-time for this
purpose. In cases where we can’t be sure if a value is a pointer or not, we may
need to do conservative garbage collection (see below).

Mark-sweep garbage collection also has the problem that all heap objects
must be swept. This can be costly if most objects are dead. Other collection
schemes, like copying collectors, examine only live objects.

After the sweep phase, live heap objects are distributed throughout the heap
space. This can lead to poor locality. If live objects span many memory pages, pag-
ing overhead may be increased. Cache locality may be degraded too.

We can add a compaction phase to mark-sweep garbage collection. After live
objects are identified, they are placed together at one end of the heap. This
involves another tracing phase in which global, local and internal heap pointers
are found and adjusted to reflect the object’s new location. Pointers are adjusted
by the total size of all garbage objects between the start of the heap and the cur-
rent object. This is illustrated in Figure 11.12.

Global pointer Adjusted Global pointer

vy -

Figure 11.12 Mark-Sweep Garbage Collection with Compaction

djusted internal pointer

Compaction is attractive because all garbage objects are merged together into

one large block of free heap space. Fragments are no longer a problem. Moreover,

11.3 Heap Management 35

heap allocation is greatly simplified. An “end of heap” pointer is maintained.
Whenever a heap request is received, the end of heap pointer is adjusted, making
heap allocation no more complex than stack allocation.

However, because pointers must be adjusted, compaction may not be suitable
for languages like C and C++, in which it is difficult to unambiguously identify

pointers.

Copying CollectorsCompaction provides many valuable benefits. Heap allocation is
simple end efficient. There is no fragmentation problem, and because live objects
are adjacent, paging and cache behavior is improved. An entire family of garbage
collection techniques, called copying collectors have been designed to integrate
copying with recognition of live heap objects. These copying collectors are very
popular and are widely used, especially with functional languages like ML.

We’ll describe a simple copying collector that uses semispaces. We start with
the heap divided into two halves—the from and to spaces. Initially, we allocate
heap requests from the from space, using a simple “end of heap” pointer. When
the from space is exhausted, we stop and do garbage collection.

Actually, though we don’t collect garbage. What we do is collect live heap
objects—garbage is never touched. As was the case for mark-sweep collectors, we
trace through global and local pointers, finding live objects. As each object is
found, it is moved from its current position in the from space to the next available
position in the to space. The pointer is updated to reflect the object’s new loca-

tion. A “forwarding pointer” is left in the object’s old location in case there are

36

Chapter 11 Run-Time Storage Organization

multiple pointers to the same object (we want only one object with all original
pointers properly updated to the new location).

Global pointer Global pointer

\

Internal pointer

Figure 11.13 Copying Garbage Collection (a)

This is illustrated in Figure 11.13. The from space is completely filled. We
trace global and local pointers, moving live objects to the to space and updating
pointers. This is illustrated in Figure 11.14. (Dashed arrows are forwarding point-
ers). We have yet to handle pointers internal to copied heap objects. All copied
heap objects are traversed. Objects referenced are copied and internal pointers are
updated. Finally, the to and from spaces are interchanged, and heap allocation
resumes just beyond the last copied object. This is illustrated in Figure 11.15.

The biggest advantage of copying collectors is their speed. Only live objects
are copied; deallocation of dead objects is essentially free. In fact, garbage collec-
tion can be made, on average, as fast as you wish—simply make the heap bigger.
As the heap gets bigger, the time between collections increases, reducing the num-
ber of times a live object must be copied. In the limit, objects are never copied, so

garbage collection becomes free!

11.3 Heap Management 37

/
K

/

A A

Internal pointer

Global pointer Global pointer

Figure 11.14 Copying Garbage Collection (b)

Internal pointer

/A

A A

Global pointer Global pointer End of Heap pointer

Figure 11.15 Copying Garbage Collection (c)

Of course, we can’t increase the size of heap memory to infinity. In fact, we
don’t want to make the heap so large that paging is required, since swapping
pages to disk is dreadfully slow. If we can make the heap large enough that the
lifetime of most heap objects is less than the time between collections, then deallo-
cation of short-lived objects will appear to be free, though longer-lived objects will

still exact a cost.

38

Chapter 11 Run-Time Storage Organization

Aren’t copying collectors terribly wasteful of space? After all, at most only
half of the heap space is actually used. The reason for this apparent inefficiency is
that any garbage collector that does compaction must have an area to copy live
objects to. Since in the worst case all heap objects could be live, the target area
must be as large as the heap itself. To avoid copying objects more than once, copy-
ing collectors reserve a to space as big as the from space. This is essentially a
space-time trade-off, making such collectors very fast at the expense of possibly
wasted space.

If we have reason to believe that the time between garbage collections will be
greater than the average lifetime of most heaps objects, we can improve our use of
heap space. Assume that 50% or more of the heap will be garbage when the col-
lector is called. We can then divide the heap into 3 segments, which we’ll call A,
B and C. Initially, A and B will be used as the from space, utilizing 2/3 of the heap.
When we copy live objects, we’ll copy them into segment C, which will be big
enough if half or more of the heap objects are garbage. Then we treat C and A as
the from space, using B as the to space for the next collection. If we are unlucky
and more than 1/2 the heap contains live objects, we can still get by. Excess objects
are copied onto an auxiliary data space (perhaps the stack), then copied into A
after all live objects in A have been moved. This slows collection down, but only
rarely (if our estimate of 50% garbage per collection is sound). Of course, this idea
generalizes to more than 3 segments. Thus if 2/3 of the heap were garbage (on
average), we could use 3 of 4 segments as from space and the last segment as to

space.

11.3 Heap Management 39

Generational TechniquesThe great strength of copying collectors is that they do no
work for objects that are born and die between collections. However, not all heaps
objects are so short-lived. In fact, some heap objects are very long-lived. For exam-
ple, many programs create a dynamic data structure at their start, and utilize that
structure throughout the program. Copying collectors handle long-lived objects
poorly. They are repeatedly traced and moved between semispaces without any
real benefit.

Generational garbage collection techniques [Unger 1984] were developed to
better handle objects with varying lifetimes. The heap is divided into two or more
generations, each with its own to and from space. New objects are allocated in the
youngest generation, which is collected most frequently. If an object survives
across one or more collections of the youngest generation, it is “promoted” to
the next older generation, which is collected less often. Objects that survive one or
more collections of this generation are then moved to the next older generation.
This continues until very long-lived objects reach the oldest generation, which is
collected very infrequently (perhaps even never).

The advantage of this approach is that long-lived objects are “filtered out,”
greatly reducing the cost of repeatedly processing them. Of course, some long-
lived objects will die and these will be caught when their generation is eventually
collected.

An unfortunate complication of generational techniques is that although we
collect older generations infrequently, we must still trace their pointers in case they

reference an object in a newer generation. If we don’t do this, we may mistake a

40

Chapter 11 Run-Time Storage Organization

live object for a dead one. When an object is promoted to an older generation, we
can check to see if it contains a pointer into a younger generation. If it does, we
record its address so that we can trace and update its pointer. We must also detect
when an existing pointer inside an object is changed. Sometimes we can do this by
checking “dirty bits” on heap pages to see which have been updated. We then
trace all objects on a page that is dirty. Otherwise, whenever we assign to a pointer
that already has a value, we record the address of the pointer that is changed. This
information then allows us to only trace those objects in older generations that
might point to younger objects.

Experience shows that a carefully designed generational garbage collectors
can be very effective. They focus on objects most likely to become garbage, and
spend little overhead on long-lived objects. Generational garbage collectors are

widely used in practice.

Conservative Garbage CollectionThe garbage collection techniques we’ve studied all
require that we identify pointers to heap objects accurately. In strongly typed lan-
guages like Java or ML, this can be done. We can table the addresses of all global
pointers. We can include a code value in a frame (or use the return address stored
in a frame) to determine the routine a frame corresponds to. This allows us to then
determine what offsets in the frame contain pointers. When heap objects are allo-
cated, we can include a type code in the object’s header, again allowing us to

identify pointers internal to the object.

11.3 Heap Management 41

Languages like C and C++ are weakly typed, and this makes identification of
pointers much harder. Pointers may be type-cast into integers and then back into
pointers. Pointer arithmetic allows pointers into the middle of an object. Pointers
in frames and heap objects need not be initialized, and may contain random val-
ues. Pointers may overlay integers in unions, making the current type a dynamic
property.

As a result of these complications, C and C++ have the reputation of being
incompatible with garbage collection. Surprisingly, this belief is false. Using con-
servative garbage collection, C and C++ programs can be garbage collected.

The basic idea is simple—if we can’t be sure whether a value is a pointer or
not, we’ll be conservative and assume it is a pointer. If what we think is a pointer
isn’t, we may retain an object that’s really dead, but we’ll find all valid point-
ers, and never incorrectly collect a live object. We may mistake an integer (or a
floating value, or even a string) as an pointer, so compaction in any form can’t be
done. However, mark-sweep collection will work.

Garbage collectors that work with ordinary C programs have been developed
[BW 1988]. User programs need not be modified. They simply are linked to differ-
ent library routines, so that malloc and free properly support the garbage col-
lector. When new heap space is required, dead heap objects may be automatically
collected, rather than relying entirely on explicit free commands (though frees
are allowed; they sometimes simplify or speed heap reuse).

With garbage collection available, C programmers need not worry about

explicit heap management. This reduces programming effort and eliminates errors

42

Chapter 11 Run-Time Storage Organization

in which objects are prematurely freed, or perhaps never freed. In fact, experi-
ments have shown [Zorn 93] that conservative garbage collection is very competi-

tive in performance with application-specific manual heap management.

Exercises

1. Show the frame layout corresponding to the following C function:
int f£(int a, char *b){
char c;
double d[10];

float e;

Assume control information requires 3 words and that £’s return value is left
on the stack. Be sure to show the offset of each local variable in the frame and
be sure to provide for proper alignment (ints and £loats on word bound-

aries and doubles on doubleword boundaries).

2. Show the sequence of frames, with dynamic links, on the stack when r (3) is
executed assuming we start execution (as usual) with a call to main ().
r(flag)

printf ("Here !!!\n");

11.3 Heap Management 43

a(flag) {
p(flag+l) ;
}
p(int flag) {
switch(flag) {
case 1: g(flag);
case 2: g(flag);

case 3: r(flag);

3. Consider the following C-like program that allows subprograms to nest. Show
the sequence of frames, with static links, on the stack when r (16) is executed
assuming we start execution (as usual) with a call to main (). Explain how
the values of a, b and c are accessed in r’s print statement.

p(int a){
g(int b){
r(int c){

print (a+b+c) ;

r(b+3) ;

44 Chapter 11 Run-Time Storage Organization

s(int 4d) {

g(d+2) ;

s (a+1) ;
}
main () {
p(10);

}

4. Reconsider the C-like program shown in Exercise 3, this time assuming dis-
play registers are used to access frames (rather than static links). Explain how
the values of a, b and c are accessed in r’s print statement.

5. Consider the following C function. Show the content and structure of £’s
frame. Explain how the offsets of £’s local variables are determined.

int f£(int a, int b[]){
int i = 0, sum = 0;
while (i < 100){

int val = b[i]+a;
if (bl[il>bl[i+1]) {

int swap = bl[i];

11.3 Heap Management 45

return sum;
}

6. Although the first release of Java did not allow classes to nest, subsequent
releases did. This introduced problems of nested access to objects, similar to
those found when subprograms are allowed to nest. Consider the following
Java class definition.

class Test {
class Local {
int b;
int v () {return a+b;}
Local (int val) {b=val;}
}
int a = 456;
void m() {
Local temp = new Local (123);

int ¢ = temp.v();

46

Chapter 11 Run-Time Storage Organization

10.

Note that method v() of class Local has access to field a of class Test as
well as field b of class Local. However, when temp.v() is called it is given a
direct reference only to temp. Suggest a variant of static links that can be used

to implement nested classes so that access to all visible objects is provided.

. Assume we organize a heap using reference counts. What operations must be

done when a pointer to a heap object is assigned? What operations must be

done when a scope is opened and closed?

. Some languages, including C and C++, contain an operation that creates a

pointer to a data object. That is, p = &x takes the address of object x, whose

type is t, and assigns it to p, whose type is t *.

How is management of the run-time stack complicated if it is possible to cre-
ate pointers to arbitrary data objects in frames? What restrictions on the cre-
ation and copying of pointers to data objects suffice to guarantee the integrity

of the run-time stack?

. Consider a heap allocation strategy we shall term worst fit. Unlike best fit,

which allocates a heap request from the free space block that is closest to the
requested size, worst fit allocates a heap request from the largest available free
space block. What are the advantages and disadvantages of worst fit as com-
pared with the best fit, first fit, and next fit heap allocation strategies?

The performance of complex algorithms is often evaluated by simulating their
behavior. Create a program that simulates a random sequence of heap alloca-

tions and deallocations. Use it to compare the average number of iterations

11.

12.

13.

14.

11.3 Heap Management 47

that the best fit, first fit, and next fit heap allocation techniques require to find
and allocate space for a heap object.

In a strongly typed language like Java all variables and fields have a fixed type
known at compile-time. What run-time data structures are needed in Java to
implement the mark phase of a mark-sweep garbage collector in which all
accessible (“live”) heap objects are marked?

The second phase of a mark-sweep garbage collector is the sweep phase, in

which all unmarked heap objects are returned to the free-space list.

Detail the actions needed to step through the heap, examining each object and
identifying those that have been not been marked (and hence are garbage).

In a language like C or C++ (without unions), the marking phase of a mark-
sweep garbage collector is complicated by the fact that pointers to active heap
objects may reference data within an object rather than the object itself. For
example, the sole pointer to an array may be to an internal element, or the

sole pointer to a class object may be a pointer to one of the object’s fields.

How must your solution to Exercise 11 be modified if pointers to data within
an object are allowed?

One of the attractive aspects of conservative garbage collection is its simplic-
ity. We need not store detailed information on what global, local and heap
variables are pointers. Rather, any word that might be a heap pointer is

treated as if is a pointer.

48

Chapter 11 Run-Time Storage Organization

15.

16.

17.

What criteria would you use to decide if a given word in memory is possibly a
pointer? How would you adapt your answer to Exercise 13 to handle what
appear to be pointers to data within a heap object?

One of the most attractive aspects of copying garbage collectors is that collect-
ing garbage actually costs nothing since only live data objects are identified
and moved. Assuming that the total amount of heap space live at any point is
constant, show that the average cost of garbage collection (per heap object
allocated) can be made arbitrarily cheap by simply by increasing the memory
size allocated to the heap.

Copying garbage collection can be improved by identifying long-lived heap

objects and allocating them in an area of the heap that is not collected.

What compile-time analyses can be done to identify heap objects that will be
long-lived? At run-time, how can we efficiently estimate the “age” of a heap
object (so that long-lived heap objects can be specially treated)?

An unattractive aspect of both mark-sweep and copying garbage collects is
that they are batch-oriented. That is, they assume that periodically a computa-
tion can be stopped while garbage is identified and collected. In interactive or
real-time programs, pauses can be quite undesirable. An attractive alternative
is concurrent garbage collection in which a garbage collection process runs

concurrently with a program.

Consider both mark-sweep and copying garbage collectors. What phases of

each can be run concurrently while a program is executing (that is, while the

18.

11.3 Heap Management 49

program is changing pointers and allocating heap objects)? What changes to
garbage collection algorithms can facilitate concurrent garbage collection?

Assume we are compiling a language like Pascal or Ada that allows nested
procedures. Further, assume we are in procedure P, at nesting level m, and
wish to access variable v declared in Procedure Q, which is at nesting level n. If
v is at offset of in Q’s frame, and if static links are always stored at offset sl
in a frame, what expression must be evaluated to access v from procedure P

using static links?

12
Simple Code

Generation

In this chapter we will begin to explore the final phase of compilation—code
generation. At this point the compiler has already created an AST and type-
checked it, so we know we have a valid source program. Now the compiler will
generate machine-level instructions and data that correctly implement the seman-
tics of the AST.

Up to now, our compiler has been completely target-machine independent.
That is, nothing in the design of our scanner, parser and type-checker depends on
exactly which computer we will be using. Code generation, of course, does depend
on target-machine details. Here we’ll need to know the range of instructions and
addressing modes available, the format of data types, the range of operating sys-

tem services that are provided, etc. Using this knowledge, the code generator will

Chapter 12 Simple Code Generation

translate each AST into an executable form appropriate for a particular target

machine.

12.1 Assembly Language and Binary Formats

We’ll first need to choose the exact form that we’ll use for the code that we gen-
erate. One form, commonly used in student projects and experimental compilers,
is assembly language. We simply generate a text file containing assembler instruc-
tions and directives. This file is then assembled, linked and loaded to produce an
executable program.

Generating assembly language frees us from a lot of low-level machine-spe-
cific details. We need not worry about the exact bit patterns used to represent inte-
gers, floats and instructions. We can use symbolic labels, so we need not worry
about tracking the exact numeric values of addresses. Assembly language is easy to
read, simplifying the debugging of our code generator.

The disadvantage of generating assembly language is that an additional
assembly phase is needed to put our program into a form suitable for execution.
Assemblers can be rather slow and cumbersome. Hence, rather than generating
assembly language, many production quality compilers (like the Java, C and C++
compilers you use) generate code in a binary format that is very close to that
expected by the target machine.

To support independent compilation of program components, compilers usu-

2

ally produce a relocatable object file (a “.0” or “.class” file) that can be linked

with other object files and library routines to produce an executable program.

12.1 Assembly Language and Binary Formats 3

Each instruction or data value is translated into its binary format. For integers this
is typically the two’s complement representation. For floats, the IEEE floating
point standard is widely used. The format of instructions is highly machine-spe-
cific. Typically, the leftmost byte represents the operation, with remaining bytes
specifying registers, offsets, immediate values or addresses.

Each instruction or data value is placed at a fixed offset within a section.
When object files are linked together, all members of a section are assigned adja-
cent memory addresses in the order of their offsets. A section might represent the
translated body of a subroutine, or the global variables of a “.c” file.

When references to the address of an instruction or data value are found, they
are of the form “section plus offset.” Since we don’t yet know exactly where in
memory a section will be placed, these addresses are marked as relocatable. This
means that when the linker is run, these address will be automatically adjusted to
reflect the address assigned to each section.

An object file may reference labels defined in other object files (e.g., print£f).
These are external references. They are marked for relocation by the value of the
external label, when the linker determines the actual value of the label. Similarly,
labels of subroutines and exported global variables may be marked as external
definitions. Their values may be referenced by other object files.

While this object file mechanism may seem complicated (and in many ways it
is), it does allow us to build programs from separately compiled pieces, including
standard library routines. Not all the object files need be created by the same com-

piler; they need not even be programed in the same source language. The linker

Chapter 12 Simple Code Generation

will relocate addresses and resolve cross-file references. Some compilers, like those
for ML and Java, perform an inter-module dependency analysis on separately
compiled modules to check interface and type consistency.

In Java, execution begins with a single class file. Its fields are initialized and its
methods are loaded. In the interests of security, methods may be verified to guar-
antee that they do not violate type security or perform illegal operations. Other
classes that are accessed may be dynamically linked and loaded as they are refer-
enced, thereby building a program class by class.

In some cases all we want to do is translate and execute a program immedi-
ately. The generation and linkage of object files would be unnecessarily complex.
An alternative is to generate absolute machine code. This comprises machine-level
instructions and data with all addresses fully resolved. As instructions and data are
generated, they are given fixed and completely resolved addresses, typically within
a large block of memory preallocated by the compiler. If an address’s value isn’t
known yet (because it represents an instruction or data value not yet generated),
the address is backpatched. That is, the location where the address is needed is
stored, and the address is “patched in” once it becomes known. For example, if
we translate goto L before L’s address is known, we provisionally generate a
jump instruction to location 0 (jmp 0) with the understanding that address 0 will
be corrected later. When L is encountereed, its address becomes known (e.g.,
1000) and jmp 0 is updated to jmp 1000.

Library routines are loaded (in fully translated form) as necessary. After all

instructions and data are translated into binary form and loaded into memory,

12.2 Translating ASTs 5

execution begins. Files like stdin and stdout are opened, and control is passed

to the entry point address (usually the first instruction of main).

12.2 Translating ASTs

Intermediate representations of programs, like ASTs, are oriented toward the
source language being translated. They reflect the source constructs of a language,
like loops and arrays and procedures, without specifically stating how these con-
structs will be translated into executable form. The first step of code generation is
therefore translation, in which the meaning of a construct is reduced to a number
of simple, easily implemented steps. Thus a binary expression that applies an oper-

ator to left and right operands (e.g., a [1] +b []) might be translated by the rule:

Translate the left operand, then translate the right operand,

then translate the operator

After a construct is translated, it becomes necessary to choose the particu-
lar machine language instructions that will be used to implement the construct.
This is called instruction selection. Instruction selection is highly target-machine
dependent. The same construct, translated the same way, may be implemented
very differently on different computers. Even on the same machine, we often have
a choice of possible implementations. For example, to add one to a value, we
might load the literal one into a register and do a register to register add. Alterna-
tively, we might do an add immediate or increment instruction, avoiding an unnec-

essary load of the constant operand.

Chapter 12 Simple Code Generation

12.3 Code Generation for ASTs

Let us first consider the steps needed to design and implement a code generator for
an AST node. Consider the conditional expression, i1f expl then exp2 else
exp3. (Conditional expressions are represented in Java, C and C++ in the form
expl?exp?2:exp3).

We first consider the semantics of the expression—what does it mean? For
conditional expressions, we must evaluate the first expression. If its value is non-
zero, the second expression is evaluated and returned as the result of the condi-
tional expression. Otherwise, the third expression is evaluated and returned as the
value of the conditional expression.

Since our code generator will be translating an AST, the exact syntax of the
conditional expression is no longer visible. The code generator sees an AST like
the one shown in Figure 12.1. Rectangles represent single AST nodes; triangles
represent AST subtrees. The type of the node is listed first, followed by the fields it
contains.

The type checker has already been run, so we know the types are all correct.
Type rules of the source language may require conversion of some operands. In
such cases explicit conversion operators are inserted as needed (e.g., a<b?1:1.5
becomes a<b? ((float) 1) :1.5).

We first outline the translation we want. A portion of the translation will be

done at ConditionalExprNode; the remainder will be done by recursively visiting

12.3 Code Generation for ASTs 7

ConditionalExprNode
Expl | Exp2 | Exp3

Exp Exp

Figure 12.1 Abstract Syntax Tree for a Conditional Expression
its subtrees. Each node’s translation will mesh together to form the complete
translation.
In choosing a translation it is vital that we fully understand the semantics of
the construct. We can study a language reference manual, or consult with a lan-
guage designer, or examine the translations produced by some reference compiler.

The code we choose will operate as follows:

=

. Evaluate Exp1.

2. If Expliszerogoto5.
3. Evaluateans « Exp2.
4. Goto6.

5. Evaluate ans « Exp3.

6. Usethe value computed in ans as the result of the conditional expression.

We have not yet chosen the exact instructions we will generate—only the spe-
cific steps to be performed by the conditional expression. Note that alternative

translations may be possible, but we must be sure that any translation we choose

Chapter 12 Simple Code Generation

is correct. Thus evaluating both Exp2 and Exp3 would not only be inefficient, it
would be wrong. (Consider if a==0 then 1 else 1/a).

Next we choose the instructions we wish to generate. A given translation may
be implemented by various instruction sequences. We want the fastest and most
compact instruction sequence possible. Thus we won’t use three instructions
when two will do, and won’t use slower instructions (like a floating-point multi-
ply) when a faster instruction (like a floating-point add) might be used instead.

At this stage it is important that we be very familiar with the architecture of
the machine for which we are generating code. As we design and choose the code
we will use to implement a particular construct, it is a good idea actually to try the
instruction sequences that have been chosen to verify that they will work properly.
Once we’re sure that the code we’ve chosen is viable, we can include it in our
code generator.

In the examples in this chapter we’ll use the Java Virtual Machine (JVM)
instruction set [Lindholm and Yellin 1997]. This architecture is clean and easy to
use and yet is implemented on virtually all current architectures. We’ll also use
Jasmin [Meyer and Downing 1997], a symbolic assembler for the JVM.

In Chapter 15 we extend our discussion of code generation to include issues of
instruction selection, register allocation and code scheduling for mainstream archi-
tectures like the MIPS, Sparc and PowerPC. Thus the JVM instructions we gener-
ate in this chapter may be viewed as a convenient platform-independent
intermediate form that can be expaned, if necessary, into a particular target

machine form.

12.4 Declaration of Scalar Variables and Constants 9

Before we can translate a conditional expression, we must know how to trans-
late the variables, constants and expressions that may appear within it. Thus we
will first study how to translate declarations and uses of simple scalar variables
and constants. Then we’ll consider expressions, including conditional expres-
sions. Finally we’ll look at assignment operations. More complex data structures

and statements will be discussed in succeeding chapters.

12.4 Declaration of Scalar Variables and Constants

We will begin our discussion of translation with the declaration of simple scalar
variables. Variables may be global or local. Global variables are those declared
outside any subprogram or method as well as static variables and fields. Non-
static variables declared within a subprogram or method are considered local.
We’ll consider globals first.

A variable declaration consists of an identifier, its type, and an optional con-
stant-valued initialization, as shown in Figure 12.2.

An IdentifierNode will contain an Address field (set by the type-checker) that
references an AddressNode. This field records how the value the identifier repre-
sents is to be accessed. Identifiers may access the values they denote in many ways:
as global values (statically allocated), as local values (allocated within a stack
frame), as register values (held only in a register), as stack values (stored on the
run-time stack), as literal values, or as indirect values (a pointer to the actual
value). The AccessMode field in AddressNode records how an identifier (or any

other data object) is to be accessed at run-time.

10

Chapter 12 Simple Code Generation

VarDecINode
Ident Type InitValue

e v T

IdentifierNode TypeNode LiteralNode

Address |

AddressNode

AccessMode
Label
Offset

Figure 12.2 Abstract Syntax Tree for Variable Declarations

Within a program, all uses of a given identifier will share the same Identifier-
Node, so all information added to an AST node during declaration processing will
be visible when uses of the identifier are processed.

To generate code, we’ll use a variety of “code generation” subroutines, each
prefixed with “ Gen.” A code generation subroutine generates the machine level
instructions needed to implement a particular elementary operation (like loading a
value from memory or conditionally branching to a label). With care, almost all
machine-specific operations can be compartmentalized within these subroutines.

In our examples, we’ll assume that code generation subroutines are generat-
ing JVM instructions. However, it is a simple matter to recode these subroutines to
generate code for other computers, like the Sparc, or x86 or PowerPC. Our discus-

sion is in no sense limited to just Java and the JVM.

12.4 Declaration of Scalar Variables and Constants 11

We’ll also assume that our code generation subroutines generate assembly
language. Each subroutine will append one or more lines into an output file. When
code generation is complete, the file will contain a complete assembly language
program, ready for processing using Jasmin or some other assembler.

In translating variable declarations, we will use the code generation subrou-
tine GenGlobalDecl(Label, Type, InitialVal). Label is a unique label for the decla-
ration. It may be generated using the subroutine CreateUniqueLabel() that creates
a unique label each time it is called (e.g., Lab001, Lab002, etc.). Alternatively,
the label may be derived from the identifier’s name. Be careful however; many
assemblers treat certain names as reserved (for example, the names of op codes).
To avoid an unintentional clash, you may need to suffix identifier names with a
special symbol (such as $).

Type is used to determine the amount of memory to reserve. Thus an int will
reserve a word (4 bytes), a char a single byte or halfword, etc.

InitialVal is the literal value the global location will be initialized to. It is
obtained from the LiteralValue field of the LiteralNode. If no explicit initial value
is provided, InitialVal is null and a default initial value (or none at all) is used.

For example, if we are generating Jasmin JVM instructions, GenGlobal-
Decl(Label, Type, InitialVal) might generate

.field public static Label TypeCode = Init
In the JVM globals are implemented as static fields. TypeCode is a type code
derived from the value of Type. Init is the initial value specified by InitialVal.

Label is an assembly language label specified by Label.

12

Chapter 12 Simple Code Generation

Recall that variables local to a subprogram or method are considered to be
part of a stack frame that is pushed whenever the procedure is called (see section
11.2). This means we can’t generate individual labels for local variables—they
don’t have a fixed address. Rather, when a local declaration is processed during
code generation the variable is assigned a fixed offset within the frame. If neces-
sary, offsets are adjusted to guarantee that data is properly aligned. Thus a local
integer variable will always have an offset that is word aligned, even if it immedi-
ately follows a character variable.

The size of the frame is increased to make room for the newly declared vari-
able. After all declarations are processed, the final size of the frame is saved as part
of the routine’s type information (this size will be needed when the routine is
called). A local variable that is initialized is handled as an uninitialized declaration
followed by an assignment statement. That is, explicit run-time initialization
instructions are needed each time a procedure is called and its frame is pushed.
That is why C and C++ do not automatically initialize local variables.

In the JVM, local variables are easy to implement. All local variables, includ-
ing parameters, are given a variable index in the current frame. This index, in units
of words, is incremented by one for all types that require one word or less, and is
incremented by two for data that require a doubleword.

We’ll use the subroutine GenLocalDecl(Type) to process a local declaration.
This routine will return the offset (or variable index) assigned to the local variable

(based on its Type).

12.4 Declaration of Scalar Variables and Constants 13

Each AST node will contain a member function CodeGen () that generates
the code corresponding to it. This routine will generate assembly language instruc-
tions by calling code generation subroutines. The code generator for a VarDecl-
Node is shown in Figure 12.3. (Implmentation of assignments is discussed in
section Section 12.9).

VarDecINode.CodeGen()
1. if Ident.Address.AccessMode = Global
2 then Ident.Address.Label « CreateUniquelLabel()
3. GenGlobalDecl(ldent.Address.Label, Type, InitValue)
4 else ldent.Address.Offset « GenLocalDecl(Type)
if InitValue = null
then /* Generate code to store InitValue in Ident */

o

Figure 12.3 Code Generation for Variable Declarations
Note that either Label or Offset in AddressNode is set during code generation
for variable declarations. These fields are used when uses of the identifier are
translated.
As mentioned earlier, one of the problems in using global (32 or 64 bit)

(L)

addresses is that they often “don’t fit” within a single instruction. This means
that referencing a global variable by its label may generate several instructions
rather than one. To improve efficiency, many compilers access globals using an
offset relative to a global pointer that points to the global data area (see Section
11.1).

This approach is easy to accommodate. As globals are declared their Offset

field is set along with their Label field. The Offset can be used to load or store glo-

bals in one instruction. The Label field can be used to access global variables in

14

Chapter 12 Simple Code Generation

other compilation units or if the global data area is so large that not all variable

addresses can be represented as an offset relative to a single register.

12.4.1 Handling Constant Declarations and Literals

Constant declarations can be handled almost exactly the same as initialized
variables. That is, we allocate space for the constant and generate code to initialize
it. Since constants may not be changed (the type-checker enforces this), the loca-
tion allocated to the constant may be referenced whenever the constant’s value is
needed.

A few optimizations are commonly applied. For named constants whose value
fits within the range of immediate operands, we need not allocate a memory loca-
tion. Rather, we store the explicit numeric value of the constant and “fill itin” as
an immediate operand.

Locally declared constants may be treated like static variables and allocated a
global location. This eliminates the need to reinitialize the constant each time the
routine that contains it is called.

Small integer literals are accessed when possible as immediate operands.
Larger integer literals, as well as floating literals, are handled liked named con-
stants. They are allocated a global data location and the value of the literal is

fetched from its memory location. Globally allocated literal values may be

12.5 Translating Simple Expressions 15

accessed through the global pointer if their addresses are too large to fit in a single
instruction.

Some compilers keep a list of literals that have been placed in memory so that
all occurrences of the same literal share the same memory location. Other compil-
ers place literals in memory each time they are encountered, simplifying compila-

tion a bit at the expense of possibly wasting a few words of memory.

12.5 Translating Simple Expressions

We now consider the translation of simple expressions, involving operands
that are simple scalar variables, constants or literals. Our solution generalizes
nicely to expressions involving components of arrays or fields in classes or struc-
tures, or the results of function calls.

Many architectures require that an operand be loaded into a register before it
can be moved or manipulated. The JVM requires that an operand be placed on the
run-time stack before it is manipulated.

We will therefore expect that calling CodeGen in an AST that represents an
expression will have the effect of generating code to compute the value of that
expression into a register or onto the stack. This may involve simply loading a
variable from memory, or it may involve a complex computation implemented
using many instructions. In any event, we’ll expect to have an expression’s value

in a register or on the stack after it is translated.

12.5.1 Temporary Management

16

Chapter 12 Simple Code Generation

Values computed in one part of an expression must be communicated to other
parts of the expression. For example, in expl+exp2, expl must be computed
and then held while exp2 is computed. Partial or intermediate values computed
within an expression or statement are called temporary values (because they are
needed only temporarily). Temporaries are normally kept on the stack or in regis-
ters, though storage temporaries are sometimes used.

To allocate and free temporaries, we’ll create two code generation subrou-
tines, GetTemp(Type) and FreeTemp(Addressl, Adress2, ...). GetTemp, which
will return an AddressNode, will allocate a temporary location that can hold an
object of the specified type.

On a register-oriented machine, GetTemp will normally return an integer or
floating point register. It will choose the register from a pool of registers reserved
to hold operands (see Section 15.3.1).

On a stack-oriented machine like the JVM, GetTemp will do almost nothing.
This is because results are almost always computed directly onto the top of the
stack. Therefore GetTemp will simply indicate in the address it returns that the
stack is to be used.

For more complex objects like arrays or strings, GetTemp may allocate mem-
ory locations (in the current frame or heap) and return a pointer to the locations
allocated.

FreeTemp, called when temporary locations are no longer needed, frees the
locations at the specified addresses. Registers are returned to the pool of available

registers so that they may be reused in future calls to GetTemp.

12.5 Translating Simple Expressions 17

For stack-allocated temporaries a pop may need to be generated. For the
JVM, operations almost always pop operands after they are used, so FreeTemp
need not pop the stack. Temporaries allocated in memory may be released, and
their memory locations may be later reused as necessary.

Now we know how to allocate temporaries, but we still need a way of com-
municating temporary information between AST nodes. We will add a field called
Result to AST nodes. Result contains an AddressNode that describes the tempo-
rary that will contain the value the AST node will compute. If the AST computes
no value into a temporary, the value of Result is ignored.

Who sets the value of Result? There are two possibilities. A parent can set the
value, in effect directing a node to compute its value into the location its parent
has chosen. Alternatively, a node can set the value itself, informing its parent of
the temporary it has chosen to compute its value into.

In most cases the parent doesn’t care what temporary is used. It will set
Result to null to indicate that it will accept any temporary. However sometimes it
is useful to force a value into a particular temporary, particularly when registers
are used (this is called register targeting).

Reconsider our conditional expression example. If we let each node choose its
own result register, exp2 and exp3 won’t use the same register. And yet in this
case, that’s exactly what we want, since exp2 and exp3 are never both evalu-
ated. If the ConditionalExprNode sets Result, it can direct both subtrees to use the
same register. In the JVM, results almost always are placed on the stack, so target-

ing is automatic (and trivial).

18

Chapter 12 Simple Code Generation

12.5.2 Translating Simple Variables, Constants and Literals

We’ll now consider how to generate code for AST nodes corresponding to
variables, constants and literals. Variables and constants are both represented by
IdentifierNodes. Variables and constants may be local or global and of integer or
floating type. Non-scalar variables and constants, components of arrays, members
of classes, and parameters will be handled in later chapters.

To translate scalar variables and constants, we will use three code generation
subroutines:

GenlLoadGlobal(Result, Type, Label),
GenLoadLocal(Result, Type, Offset),
GenLoadLiteral(Result, Type, Value).

GenlLoadGlobal will generate a load of a global variable using the label and
type specified. If Result is non-null, it will place the variable in Result. Otherwise,
GenLoadGlobal will call GetTemp and return the temporary location it has
loaded.

Similarly, GenLoadLocal will generate a load of a local variable using the off-
set and type specified. If Result is non-null, it will place the variable in Result.
Otherwise, GenLoadLocal will call GetTemp and return the temporary location it

has loaded.

12.5 Translating Simple Expressions 19

GenlLoadLiteral will generate a load of a literal value using the type specified.
If Result is non-null, it will place the literal in Result. Otherwise, GenLoadLiteral
will call GetTemp and return the temporary location it has loaded.

If a constant represents a literal value (e.g., const float pi = 3.14159)
and Result is not set by a parent AST node, our code generator will set Result to
indicate a literal value. This allows operators that have literal operands to produce
better code, perhaps generating an immediate form instruction, or folding an
expression involving only literals into a literal result. The code generator for Iden-
tifierNodes is shown in Figure 12.4.

IdentifierNode.CodeGen()
if Address.AccessMode = Global

then Result «— GenLoadGlobal(Result, Type, Address.Label)
elsif Address.AccessMode = Local

then Result « GenLoadLocal(Result, Type, Address.Offset)
elsif Address.AccessMode = Literal

then if Result = null

then Result «— GenLoadLiteral(Result, Type, Address.Value)
else Result «— AddressNode(Literal, Address.Value)

ONoOrWNE

Figure 12.4 Code Generation for Simple Variables and Constants
AST nodes representing literals are handled in much the same manner as
IdentifierNodes. If Result is set by a parent node, GenLoadLiteral is used to load
the literal value into the request result location. Otherwise, the Result field is set
to represent the fact that it is a literal value (AccessMode = Literal). A load into a

register or onto the stack is delayed to allow optimizations in parent nodes.

20

Chapter 12 Simple Code Generation

12.6 Translating Predefined Operators

We now consider the translation of simple expressions—those involving the stan-
dard predefined operators and variable, constant or literal operands. In most cases
these operators are easy to translate. Most operators have a machine instruction
that directly implements them. Arithmetic operations usually require operands be
on the stack or in registers, which fits our translation scheme well. We translate
operands first and then apply the machine operation that corresponds to the oper-
ator being translated. The result is placed in a temporary (Result) just as expected.

A few complication can arise. Some machine instructions allow an immediate
operand. We’d like to exploit that possibility when appropriate (rather than
loading a constant operand unnecessarily onto the stack or into a register). If both
operands are literals, we’d like to be able to simply compute the result at com-
pile-time. (This is a common optimization called folding.) For example, a = 100-
1 should be compiled as if it were a = 99, with no run-time code generated to do
the subtraction.

Care must also be taken to free temporaries properly after they are used as
operands (lest we “lose” a register for the rest of the compilation).

We’ll use a code generation subroutine GenAdd(Result, Type, Left, Right).
GenAdd will generate code to add the operands described by Left and Right.
These may be temporaries holding an already-evaluated operand or literals. If lit-
erals are involved, GenAdd may be able to generate an immediate instruction or it

may be able to fold the operation into a literal result (generating no code at all).

12.6 Translating Predefined Operators 21

GenAdd will use Type to determine the kind of addition to do (integer or
floating, single or double length, etc.). It won’t have to worry about “mixed
mode” operations (e.g., an integer plus a float) as the type checker will have
already inserted type conversion nodes into the AST as necessary. If Result is non-
null, GenAdd will place the sum in Result. Otherwise, GenAdd will call GetTemp
and return the temporary location into which it has computed the sum.

Since addition is commutative (a+b = b+a) we can easily extend GenAdd to
handle cases in which it is beneficial to swap the left and right operands.

The code generator for PlusNodes is shown in Figure 12.5.
PlusNode.CodeGen()

1. LeftOperand.CodeGen()
2. RightOperand.CodeGen()
3. Result « GenAdd(Result, Type,

LeftOperand.Result, RightOperand.Result)
4. FreeTemp(LeftOperand.Result, RightOperand.Result)

Figure 12.5 Code Generation for + Operator
As an example, consider the expression A+B+3 where A is a global integer
variable with a label of L1 in class C and B is a local integer variable assigned a
local index (an offset within the frame) of 4. The JVM code that is generated is

illustrated in Figure 12.6.

JVM Code Comments Generated By
getstatic C/L1 I Push static integer field onto stack | GenLoadGlobal
iload 4 Push integer local 4 onto stack GenlLoadLocal
iadd Add top two stack locations GenAdd
iconst_3 Push integer literal 3 onto stack GenAdd

iadd Add top two stack locations GenAdd

Figure 12.6 JVM Code Generated for A+B+3

22

Chapter 12 Simple Code Generation

Other arithmetic and logical operators are handled in a similar manner. Figure
12.7 lists a variety of common integer, relational and logical operators and their
corresponding JVM op codes. Since unary + is the identity operator, it is imple-
mented by doing nothing (+b = b). Further, since !b = b==0, ! is implemented
using the JVM op code for comparison with zero. There are corresponding
instructions for long integer operands and single- and double-length floating oper-

ands.

Binary + - * / &
Operator

JVM Op iadd isub imul idiv iand ior
Code

Binary << >> %
Operator

JVM Op ixor ishl ishr irem
Code

Binary < > <= >=
Operator

JVM Op |if_icmplt |if_ icmplt | if_icmplt |if_icmplt | if icmplt | if_icmplt
Code

Unary Oper- + - ! ~
ator

JVM Op ineg ifeq ixor
Code

Figure 12.7 Common Operators and Corresponding JVM OP Codes

Relational operators, like == and >=, are a bit more clumsy to implement. The
JVM does not provide instructions that directly compare two operands to produce
a boolean result. Rather, two operands are compared, resulting in a conditional
branch to a given label. Similarly, many machines, including the Sparc, Motorola
MC680x0, Intel x86, IBM RS6000 and PowerPC, use condition codes. After a

comparison operation, the result is stored in one or more condition code bits held

12.6 Translating Predefined Operators 23

in the processor’s status word. This condition code must then be extracted or
tested using a conditional branch.
Consider the expression A < B where A and B are local integer variables with
frame offsets 2 and 3. On the JVM we might generate.
iload 2 ; Push local #2 (A) onto the stack
iload 3 ; Push local #3 (B) onto the stack

if icmplt L1 ; Goto L1 if A < B

iconst 0 ; Push 0 (false) onto the stack
goto L2 ; Skip around next instruction
Ll: iconst 1 ; Push 1 (true) onto the stack

L2:
This instruction sequence uses six instructions, whereas most other operations
require only three (push both operands, then apply an operator). Fortunately in
the common case in which a relational expression controls a conditional or loop-

ing statement, better code is possible.

12.6.1 Short-Circuit and Conditional Evaluation

We have not yet discussed the && and || operators used in C, C++ and Java.
That’s because they are special. Unlike most binary operators, which evaluate
both their operands and then perform their operation, these operators work in
“short circuit” mode. This is, if the left operand is sufficient to determine the
result of the operation, the right operand isn’t evaluated. In particular a&&b is

defined as if a then b else false. Similarly a| |b is defined as 1f a then

24

Chapter 12 Simple Code Generation

true else b. The conditional evaluation of the second operand isn’t just an
optimization—it’s essential for correctness. Thus in (a!=0)&&(b/a>100) we
would perform a division by zero if the right operand were evaluated when a==0.
Since we’ve defined && and || in terms of conditional expressions, let’s
complete our translation of conditional expressions, as shown in Figure 12.8.
GenlLabel(Label) generates a definition of Label in the generated program. Gen-
BranchlfZero(Operand, Label) generates a conditional branch to Label if Oper-
and is zero (false). GenGoTo(Label) generates a goto to Label.

ConditionalExprNode.CodeGen()

Result « Exp2.Result « Exp3.Result « GetTemp()
Expl.CodeGen()

FalseLabel « CreateUniqueLabel()
GenBranchlfZero(Expl.Result, FalseLabel)
FreeTemp(Expl.Result)

Exp2.CodeGen()

OutLabel « CreateUniqueLabel()
GenGoTo(OutLabel)
GenLabel(FalseLabel)

Exp3.CodeGen()

GenLabel(OutLabel)

Figure 12.8 Code Generation for Conditional Expressions

POOONOUAMWNE

[N

Our code generator follows the translation pattern we selected in Section
12.3. First exp1 is evaluated. We then generate a “branch if equal zero” instruc-
tion that tests the value of expl. If exp1l evaluates to zero, which represents false,
we branch to the FalseLabel.

Otherwise, we “fall through.” exp?2 is evaluated into a temporary. Then we

branch unconditionally to OutLabel, the exit point for this construct. Next False-

12.6 Translating Predefined Operators 25

Label is defined. At this point exp3 is evaluated, into the same location as exp?2.

Then OutLabel is defined, to mark the end of the conditional expression.

As an example, consider 1f B then A else 1. We generate the following

JVM instructions, assuming A has a frame index of 1 and B has a frame index of 2.

iload 2
ifeq L1
iload 1
goto L2

Ll: iconst 1

L2:

12.6.2 Jump Code Evaluation

I

Push
Goto
Push
Skip

Push

local #2 (B) onto the stack

Ll if B is 0 (false)

local #1 (A) onto the stack

around next instruction

1 onto the stack

The code we generated for 1£ B then A else 1 is simple and efficient. For a sim-

ilar expression, 1f (F==G) then A else 1 (where F and G are local variables of

type integer), we’d generate
iload 4
iload 5
if icmpeq L1
iconst 0
goto L2
Ll: iconst 1
L2: ifeqg L3

iload 1

Push
Push
Goto
Push
Skip
Push
Goto

Push

local #4 (F) onto the stack

local #5 (G) onto the stack

11 if F == G

0 (false) onto the stack

around next instruction

1 (true) onto the stack

I3 if F == G is 0 (false)

local #1 (A) onto the stack

26

Chapter 12 Simple Code Generation

goto L4 ; Skip around next instruction
L3: iconst 1 ; Push 1 onto the stack

L4:

This code is a bit clumsy. We generate a conditional branch to set the value of
F==G just so that we can conditionally branch on that value. Any architecture that
uses condition codes will have a similar problem.

A moment’s reflection shows that we rarely actually want the value of a rela-
tional or logical expression. Rather, we usually only want to do a conditional
branch based on the expression’s value, in the context of a conditional or looping
statement.

Jump code is an alternative representation of boolean values. Rather than
placing a boolean value directly in a register or on the stack, we generate a condi-
tional branch to either a true label or a false label. These labels are defined at the
places where we wish execution to proceed once the boolean expression’s value is
known.

Returning to our previous example, we can generate F==G in jump code form

as
iload 4 ; Push local #4 (F) onto the stack
iload 5 ; Push local #5 (G) onto the stack
if icmpne L1 ; Goto L1 if F != G

The label 1.1 is the “false label.” We branch to it if the expression F == G is

false; otherwise, we fall through, executing the code that follows if the expression

12.6 Translating Predefined Operators 27

is true. We can then generate the rest of the expression, defining L1 at the point

where the else expression is to be computed:

iload 1 ; Push local #1 (A) onto the stack
goto L2 ; Skip around next instruction
Ll: iconst 1 ; Push 1 onto the stack

L2:

This instruction sequence is significantly shorter (and faster) than our original
translation.

Jump code comes in two forms, JumplfTrue and JumplfFalse. In JumplfTrue
form, the code sequence does a conditional jump (branch) if the expression is true,
and “falls through” if the expression is false. Analogously, in JumplfFalse form,
the code sequence does a conditional jump (branch) if the expression is false, and
“falls through” if the expression is true. We have two forms because different
contexts prefer one or the other.

We will augment our definition of AddressNodes to include the AccessMode
values JumplfTrue and JumplfFalse. The Label field of the AddressNode will be
used to hold the label conditionally jumped to.

It is important to emphasize that even though jump code looks a bit unusual,
it is just an alternative representation of boolean values. We can convert a boolean
value (on the stack or in a register) to jump code by conditionally branching on its
value to a true or false label. Similarly, we convert from jump code to an explicit
boolean value, by defining the jump code’s true label at a load of 1 and the false

label at a load of 0. These conversion routines are defined in Figure 12.9.

28

Chapter 12 Simple Code Generation

ConvertToJumpCode (Operand, AccessMode, Label)
if AccessMode = JumplfFalse

2 then GenBranchlfZero(Operand, Label)

3. else GenBranchlfNonZero(Operand, Label)
4. return AddressNode(AccessMode, Label)

=

ConvertFromJumpCode (Target, AccessMode, Label)
1. if AccessMode = JumplfFalse
2 then FirstValue « 1
3 SecondValue « 0
4 else FirstValue « 0
5 SecondValue « 1
6. Target « GenlLoadLiteral(Target, Integer, FirstValue)
7. SkipLabel « CreateUniqueLabel()
8. GenGoTo(SkipLabel)
9. GenLabel(Label)
10. Target « GenLoadLiteral(Target, Integer, SecondValue)
11. GenlLabel(SkipLabel)
12. return Target

Figure 12.9 Routines to Convert To and From Jump Code

We can easily augment the code generators for IdentifierNodes and Literal-
Nodes to use ConvertToJumpCode if the Result field shows jump code is
required.

An advantage of the jump code form is that it meshes nicely with the && and
| | operators, which are already defined in terms of conditional branches. In par-
ticular if expl and exp2 are in jump code form, then we need generate no further
code to evaluate expl&a&exp2.

To evaluate &&, we first translate expl into JumplfFalse form, followed by
exp2. If expl is false, we jump out of the whole expression. If exp1l is true, we
fall through to exp2 and evaluate it. In this way, exp2 is evaluated only when

necessary (when expl is true).

12.6 Translating Predefined Operators 29

The code generator for && is shown in Figure 12.10. Note that both Jumplf-

False and JumplfTrue forms are handled, which allows a parent node to select the

form more suitable for a given context. A non-jump code result (in a register or on

the stack) can also be produced, using ConvertFromJumpCode.

ConditionalAndNode.CodeGen()
if Result.AccessMode = JumplfFalse

©CoNoOA~®WNE

then

Expl.Result « AddressNode(JumplfFalse,Result.Label)
Exp2.Result « AddressNode(JumplfFalse,Result.Label)
Expl.CodeGen()
Exp2.CodeGen()

elsif Result.AccessMode = JumplfTrue

then

else

Expl.Result « AddressNode(JumplfFalse, CreateUniquelLabel())
Exp2.Result « AddressNode(JumplfTrue,Result.Label)
Expl.CodeGen()

Exp2.CodeGen()

GenLabel(Expl.Result.Label)

Expl.Result « AddressNode(JumplfFalse, CreateUniquelLabel())

Exp2.Result « AddressNode(JumplfFalse,Expl.Result.Label)

Expl.CodeGen()

Exp2.CodeGen()

Result « ConvertFromJumpCode (Result, JumplfFalse,
Expl.Result.Label)

Figure 12.10 Code Generation for Conditional And

Similarly, once expl and exp2 are in jump code form, expl| |exp?2 is easy

to evaluate. We first translate expl into JumplfTrue form, followed by exp2. If

expl is true, we jump out of the whole expression. If expl is false, we fall

through to exp2 and evaluate it. In this way, exp2 is evaluated only when neces-

sary (when exp1 is false).

The code generator for | | is shown in Figure 12.11. Again, both JumplfFalse

and JumplfTrue forms are handled, allowing a parent node to select the form more

Chapter 12 Simple Code Generation

suitable for a given context. A non-jump code result (in a register or on the stack)
can also be produced.

ConditionalOrNode.CodeGen()
1. if Result.AccessMode = JumplfTrue

2 then Expl.Result « AddressNode(JumplfTrue,Result.Label)

3 Exp2.Result « AddressNode(JumplfTrue,Result.Label)

4, Expl.CodeGen()

5. Exp2.CodeGen()

6. elsif Result.AccessMode = JumplfFalse

7 then Expl.Result « AddressNode(JumplfTrue, CreateUniquelLabel())
8 Exp2.Result « AddressNode(JumplfFalse,Result.Label)

9 Expl.CodeGen()

10. Exp2.CodeGen()

11. GenLabel(Expl.Result.Label)

12. else

13. Expl.Result « AddressNode(JumplfTrue, CreateUniquelLabel())
14. Exp2.Result « AddressNode(JumplfTrue,Expl.Result.Label)
15. Expl.CodeGen()

16. Exp2.CodeGen()

17. Result « ConvertFromJumpCode (Result, JumplfTrue,

Expl.Result.Label)
Figure 12.11 Code Generation for Conditional Or

The ! operator is also very simple once a value is in jump code form. To eval-
uate !exp in JumplfTrue form, you simply translate exp in JumplfFalse form.
That is, jumping to location L when exp is false is equivalent to jumping to L
when !exp is true. Analogously, to evaluate ! exp in JumplfFalse form, you sim-
ply translate exp in JumplfTrue form.

As an example, let’s consider (A>0) | | (B<0 && C==10), where A,Band C
are all local integers, with indices of 1, 2 and 3 respectively. We’ll produce a
JumplfFalse translation, jumping to label F if the expression is false and falling

through if the expression is true.

12.6 Translating Predefined Operators 31

The code generators for relational operators can be easily modified to produce
both kinds of jump code—wecan either jump if the relation holds (JumplfTrue) or
jump if it doesn’t hold (JumplfFalse). We produce the following JVM code

sequence which is compact and efficient.

iload 1 ; Push local #1 (A) onto the stack
ifgt L1 ; Goto L1l if A > 0 1is true

iload 2 ; Push local #2 (B) onto the stack
ifge F ; Goto F 1f B < 0 is false

iload 3 ; Push local #3 (C) onto the stack
bipush 10 ; Push a byte immediate value (10)
if icmpne F ; Goto F if C != 10

Ll:

First A is tested. If it is greater than zero, the expression must be true, so we go
to the end of the expression (since we wish to branch if the expression is false).
Otherwise, we continue evaluating the expression.

We next test B. If it is greater than or equal to zero, B<0 is false, and so is the
whole expression. We therefore branch to label F as required. Otherwise, we
finally test C. If C is not equal to 10, the expression is false, so we branch to label
F. If C is equal to 10, the expression is true, and we fall through to the code that
follows.

As shown in Figure 12.12, conditional expression evaluation is simplified

when jump code is used. This is because we no longer need to issue a conditional

Chapter 12 Simple Code Generation

branch after the control expression is evaluated. Rather, a conditional branch is an
integral part of the jump code itself.
As an example, consider if (A&&B) then 1 else 2. Assuming A and B

are locals, with indices of 1 and 2, we generate

iload 1 ; Push local #1 (A) onto the stack
ifeq L1 ; Goto L1 if A is false
iload 2 ; Push local #2 (B) onto the stack
ifeq L1 ; Goto L1 if B is false
iconst 1 ; Push 1 onto the stack
goto L2 ; Skip around next instruction

Ll: iconst 2 ; Push 2 onto the stack

L2:

ConditionalExprNode.CodeGen()

Result « Exp2.Result « Exp3.Result « GetTemp()
FalseLabel « CreateUniqueLabel()

Expl.Result « AddressNode(JumplfFalse, FalseLabel)
Expl.CodeGen()

Exp2.CodeGen()

OutLabel « CreateUniqueLabel()
GenGoTo(OutLabel)

GenLabel(FalseLabel)

Exp3.CodeGen()

GenLabel(OutLabel)

Figure 12.12 Code Generation for Conditional Expressions Using Jump Code

CoOxNOOOrWDNE

=

12.7 Pointer and Reference Manipulations 33

12.7 Pointer and Reference Manipulations

In C and C++ the unary & and * operators create and dereference pointers. For

example,
P = &I; // P now points to I's memory location
J = *P; // Assign value P points to (I) to J

Java does not allow explicit pointer manipulation, so & and * are not available.

In most architectures, & and * are easy to implement. A notable exception is
the JVM, which forbids most kinds of pointer manipulation. This is done to
enhance program security; arbitrary pointer manipulation can lead to unexpected
and catastrophic errors.

Conventional computer architectures include some form of “load address”
instruction. That is, rather than loading a register with the byte or word at a par-
ticular address, the address itself is loaded. Load address instructions are ideal for
implementing the & (address of) operator. If V is a global variable with label L, &V
evaluates to the address L represents. The expression &V can be implemented as

LoadAddress Register, L.

If W is a local variable at offset F in the current frame, then &W represents F

plus the current value of the frame pointer. Thus &W can be implemented as
LoadAddress Register, F+FramePointer.

The dereference operator, unary *, takes a pointer and fetches the value at the

address the pointer contains. Thus *P is evaluated in two steps. First P is evalu-

ated, loading an address (P’s value) into a register or temporary. Then that

34

Chapter 12 Simple Code Generation

address is used to fetch a data value. The following instruction pair is commonly
generated to evaluate *P

Load Regl, P ; Put P’s value into Regl

Load Reg2, (Regl) ; Use Regl’s contents as an address

; to load Register 2

Pointer arithmetic is also allowed in C and C++. If P is a pointer, the expres-
sions P + i and P - 1 are allowed, where 1 is an integer value. In these cases, P is
treated as an unsigned integer. The value of i is multiplied by the sizeof (T)
where P’s type is *T. Then i*sizeof (T) is added to or subtracted from P. For
example, if P is of type *int (a pointer to int) and ints require 4 bytes, then the
expression P+1 generates

Load Regl, P ; Put P’s value into Regl

AddU Reg2, Regl,4 ; Unsigned add of 4 (sizeof(int)) to P

Since pointer arithmetic is limited to these two special cases, it is easiest imple-
mented by extending the code generation subroutines for addition and subtraction
to allow pointer types (as well as integer and floating types).

C++ and Java provide references which are a restricted form of pointer. In C++
a reference type (T&), once initialized, cannot be changed. In Java, a reference type
may be assigned to, but only with valid references (pointers) to heap-allocated
objects.

In terms of code generation, references are treated almost identically to
explicit pointers. The only difference is that no explicit dereference operators

appear in the AST. That is, if P is of type int* and R is of type int&, the two

12.8 Type Conversion 35

expressions (*P) +1 and R+1 do exactly the same thing. In fact, it is often a good
translation strategy to include an explicit “dereference” AST node in an AST that
contains references. These nodes, added during type checking, can then cue the
code generator that the value of a reference must be used as a pointer to fetch a
data value from memory.

Some programming languages, like Pascal and Modula, provide for “var” or
“reference” parameters. These parameters are implemented just as reference val-
ues are; they represent an address (of an actual parameter) which is used to indi-

rectly fetch a data value when a corresponding formal parameter is used.

12.8 Type Conversion
During translation of an expression, it may be necessary to convert the type of a
value. This may be forced by a type cast (e.g., (£loat) 10) or by the type rules of
the language (1 + 1.0). In any event, we’ll assume that during translation and
type checking, explicit type conversion AST nodes have been inserted where neces-
sary to signal type conversions. The ConvertNode AST node (see Figure 12.13)
signals that the Operand node (an expression) is to be converted to the type speci-
fied by the Type field after evaluation. Type-checking has verified that the type
conversion is legal.

Some type conversion require no extra code generation. For example, on the
JVM (and most other machines) bytes, half words and full words are all manipu-
lated as 32 bit integers on the stack or within registers. Thus the two expressions

'A'+1and (int) 'A'+1 generate the same code.

36

Chapter 12 Simple Code Generation

ConvertNode
Operand | Type
Exp TypeNode

Figure 12.13 Abstract Syntax Tree for Type Conversion

Conversions between single and double length operands and integer and float-
ing representations do require additional code. On the JVM special instructions
are provided; on other machines library subroutines may need to be called. Four
distinct internal representations must be handled—32 bit integer, 64 bit integer, 32
bit floating point and 64 bit floating point. Conversions between each of these
representations must be supported.

On the JVM 12 conversion instructions of the form x2y are provided, where
x and y can be 1 (for integer), 1 (for long integer), £ (for float) and d (for double).
Thus 12f takes an integer at the top of the stack and converts it to a floating point
value.

Three additional conversion instructions, i2s, i2b and i2c handle explicit

casts of integer values to short, byte and character forms.

12.9 Assignment Operators
In Java, C and C++ the assignment operator, =, may be used anywhere within an

expression; it may also be cascaded. Thus both a+ (b=c) and a=b=c are legal.

12.9 Assignment Operators 37

Java also provides an assignment statement. In contrast, C and C++ allow an
expression to be used wherever a statement is expected. At the statement level, an
assignment discards its right-hand side value after the left-hand side variable is
updated.

The AST for an assignment to a simple scalar variable is shown in Figure
12.14. Code generation is reasonably straightforward. We do need to be careful

about how we handle the variable that is the target of the assignment.

AsgNode
Target | Source | ISExpr

IdentifierNode A

Figure 12.14 Abstract Syntax Tree for Assignments

Normally, we recursively apply the code generator to all the children of an
AST node. Were we to do this the IdentifierNode, we’d compute its value and put
in on the stack or in a register. This isn’t what we want. For simple variables,
we’ll just extract the identifier’s label or frame offset directly from the Identifier-
Node. In more complex cases (e.g., when the left-hand side is a subscripted vari-
able or pointer expression), we need a special variant of our code generator that
evaluates the address denoted by an expression rather than the value denoted by
an expression. To see why this distinction is necessary, observe that a [i+3j] on
the left-hand side of an assignment represents the address of an array element; on

the right-hand side it represents the value of an array element. Whenever we trans-

38

Chapter 12 Simple Code Generation

late an expression or construct, we’ll need to be clear about whether we want to
generate code to compute an address or a value.

We’ll also need to be sure that the expression value to be assigned in on the
stack or in a register. Normally, translating an expression does just that. Recall
however, that as an optimization, we sometimes delay loading a literal value or
translate a boolean-valued expression in jump code form. We’ll need to be sure
we have a value to store before we generate code to update the left-hand side’s
value.

Since we are handling only simple variables, translating an assignment is sim-
ple. We just evaluate (as usual) the right-hand side of the expression and store its
value in the variable on the left-hand side. The value of the expression is the value
of the right-hand side. The ISExpr field (a boolean) marks whether the assignment
is used as an expression or a statement. If the assignment is used as an statement,
the right-hand side value, after assignment, may be discarded. If the assignment is
used as an expression, the right-hand side value will be preserved.

We will use two code generation subroutines:

GenStoreGlobal(Source, Type, Label, PreserveSource),
GenStoreLocal(Source, Type, Offset, PreserveSource).

GenStoreGlobal will generate a store of Source into a global variable using
the label and type specified. GenStoreLocal will generate a store of Source into a
local variable using the offset and type specified.

In both routines, Source is an AddressNode. It may represent a temporary or

literal. In the case of a literal, special case instructions may be generated (like a

12.9 Assignment Operators 39

“store zero” instruction). Otherwise, the literal is loaded into a temporary and
stored.

If PreserveSource is true, the contents of Source is preserved. That is, if
Source is in a register, that register is not released. If Source is on the stack, its
value is duplicated so that the value may be reused after the assignment (store
instructions automatically pop the stack in the JVM). If PreserveSource is false,
Source is not preserved; if it represents a register, that register is freed after the
assignment.

Translation of an assignment operator is detailed in Figure 12.15.
AsgNode.CodeGen()

1. Source.CodeGen()
2. if Source.Result.AccessMode € {JumplfTrue, JumplfFalse}
3. then Result « ConvertFromJumpCode (Result,
Source.Result.AccessMode, Source.Result.Label)
else Result « Source.Result
if Target.Address.AccessMode = Global

then GenStoreGlobal(Result, Type, Target.Address.Label, ISExpr)
else GenStoreLocal(Result, Type, Target.Address.Offset, ISExpr)

No oA

Figure 12.15 Code Generation for Assignments
As an example, consider A = B = C + 1 where A, B and C are local integers with
frame indices of 1, 2 and 3 respectively. First, C + 1 is evaluated. Since B = C + 1 is
used as an expression, the value of C + 1 is duplicated (and thereby preserved) so

that it can also be assigned to A. The JVM code we generate is

iload 3 ; Push local #3 (C) onto the stack
iconst 1 ; Push 1 onto the stack
iadd ; Compute C +1

dup ; Duplicate C + 1 for second store

40

Chapter 12 Simple Code Generation

istore 2 ; Store top of stack into local #2 (B)

istore 1 ; Store top of stack into local #1 (&)

In C and C++ we have a problem whenever an expression is used where a
statement is expected. The difficulty is that a value has been computed (into a reg-
ister or onto the stack), but that value will never be used. If we just ignore the
value a register will never be freed (and hence will be “lost” for the rest of the
program) or a stack value will never be popped.

To handle this problem, we’ll assume that whenever an expression is used as
a statement, a VOidExpr AST node will be placed above the expression. This will
signal that the expression’s value won’t be used, and the register or stack loca-
tion holding it can be released. The VoidExpr node can also be used for the left

”»

operand of the “ ,” (sequencing) operator, where the left operand is evaluated for
side-effects and then discarded.

Note that in some cases an expression used as a statement need not be evalu-
ated at all. In particular, if the expression has no side-effects, there is no point to
evaluating an expression whose value will be ignored. If we know that the expres-
sion does no assignments, performs no input/output and makes no calls (which
themselves may have side-effects), we can delete the AST as useless. This analysis

might be done as part of a pre-code generation simplification phase or as a data

flow analysis that detects whether or not a value is dead (see Chapter 16).

12.9.1 Compound Assignment Operators

12.9 Assignment Operators 41

Java, C and C++ contain a useful variant of the assignment operator—the com-
pound assignment operator. This operator uses its left operand twice—first to
obtain an operand value, then as the target of an assignment. Informally a op=b
is equivalent to a = a op b except that a must be evaluated only once. For simple
variables the left-hand side may be visited twice, first to compute a value and then
to obtain the address used in a store instruction. If evaluation of the left-hand
side’s address is non-trivial, we first evaluate the variable’s address. We then use
that address twice, as the source of an operand and as the target of the result.

The code generator for += is shown in Figure 12.16. Other compound assign-
ment operators are translated in a similar manner, using the operator/op code
mapping shown in Figure 12.7.

PlusAsgNode.CodeGen()
1. LeftOperand.CodeGen()
2. RightOperand.CodeGen()
3. Result « GenAdd(Result, Type,
LeftOperand.Result, RightOperand.Result)
FreeTemp(LeftOperand.Result, RightOperand.Result)
if LeftOperand.Address.AccessMode = Global

then GenStoreGlobal(Result, Type,

LeftOperand.Address.Label, ISExpr)

7. else GenStoreLocal(Result, Type,
LeftOperand.Address.Offset, ISExpr)

Figure 12.16 Code Generation for += Operator

o0k

As an example, consider A += B += C + 1 where A, B and C are local integers
with frame indices of 1, 2 and 3 respectively. The JVM code we generate is
iload 1 ; Push local #1 (A) onto the stack
iload 2 ; Push local #2 (B) onto the stack

iload 3 ; Push local #3 (C) onto the stack

42

Chapter 12 Simple Code Generation

iconst 1 ; Push 1 onto the stack
iadd ; Compute C+1

iadd ; Compute B+C+1

dup ; Duplicate B+C+1

istore 2 ; Store top of stack into local #2 (B)
iadd ; Compute A+B+C+1

istore 1 ; Store top of stack into local #1 (A&)

12.9.2 Increment and Decrement Operators

The increment (++) and decrement (- -) operators are widely used in Java, C and
C++. The prefix form ++a is identical to a += 1 and - -a is identical to a -= 1.
Thus these two operators may be translated using the techniques of the previous
section.

The postfix forms, a++ and a-- are a bit different in that after incrementing
or decrementing the variable, the original value of the variable is returned as the
value of the expression. This difference is easy to accommodate during translation.

If a++ is used as a statement (as it often is), a translation of a += 1 may be
used (this holds for a- - too).

Otherwise, when a is evaluated, its value is duplicated on the stack, or the reg-

ister holding its value is retained. The value of a is then incremented or decre-

12.9 Assignment Operators 43

mented and stored back into a. Finally, the original value of a, still on the stack or

in a register, is used as the value of the expression.

For example, consider a+ (b++), where a and b are integer locals with frame

indices of 1 and 2. The following JVM code would be generated

iload 1
iload 2
dup

iconst 1

iadd

istore 2

iadd

Push local #1 (A) onto the stack
Push local #2 (B) onto the stack
Duplicate B

Push 1 onto the stack

Compute B+1

Store B+l into local #2 (B)

Compute A+original value of B

As a final observation, note that the definition of the postfix ++ operator

makes C++’s name something of a misnomer. After improving C’s definition we

certainly don’t want to retain the original language!

Exercises

44

Chapter 12 Simple Code Generation

1. Most C and Java compilers provide an option to display the assembly instruc-
tions that are generated. Compile the following procedure on your favorite C
or Java compiler and get a listing of the code generated for it. Examine each
instruction and explain what step it plays in implementing the prodecure’s
body.

void proc() f{
int a=1,b=2,c=3,d=4;
a=D>b + c * d;
c=(a<b)?1:2;
a=b++ + ++C;
}

2. Show the code that would be generated for each of the following expressions.

Assume I and J are integer locals, K and L are integer globals, A and B are

floating point locals and C and D are floating point globals.

I+L+10
A-D-10
I+A+5

I+(1+2)

12.9 Assignment Operators 45

I+1+2

. The code generated for T+1+2 in Exercise 2 is probably not the same as that
generated for I+ (1+2). Why is this? What must be done so that both gener-
ate the same (shorter) instruction sequence?

. Some languages, including Java, require that all variables be initialized.
Explain how to extend the code generator for VarDecINodes (Figure 12.3) so
that both local and global variables are given a default initialization if no
explicit initial value is declared.

. Complete the code generator for VarDeclINodes (Figure 12.3) by inserting
calls to the proper code generation subroutines to store the value of InitValue
into a local variable.

. On register-oriented machines, GetTemp is expected to return a different reg-
ister each time it is called. This means that GetTemp may run out of registers

if too many registers are requested before FreeTemp is called.

What can be done (other than terminating compilation) if GetTemp is called
when no more free registers are available?
. It is clear that some expressions are more complex than others in terms of the

number of registers or stack locations they will require.

Explain how an AST representing an expression can be traversed to determine
the number of registers or stack locations its translation will require. Illustrate

your technique on the following expression

46

Chapter 12 Simple Code Generation

10.

11.

12.

((A+B) + (C+D))+ ((E+F) + (G+H))

. Explain how to extend the code generator for the ++ and - - operators to han-

dle pointers as well as numeric values.

. Assume we add a new operator, the swap operator, <->, to Java or C. Given

two variables, v1 and v2, the expression v1<->v2 assigns v2’s value to v1

and assigns v1’s original value to v2, and then returns v1’s new value.

Define a code generator that correctly implements the swap operator.
Show the jump code that would be generated for each of the following expres-
sions. Assume A, B and C are all integer locals, and that && and || are left-
associative.

(A<1l) &&(B>1) &&(C!=0)

(A<1) || (B>1) || (C1=0)

(A<1)&&(B>1) || (C1=0)

(A<1) || (B>1)&&(C!=0)
What is generated if the boolean literals true and false are translated into

JumplfTrue or JumplfFalse form?

What code is generated for the expressions (true?1:2) and
(false?1:2)? Can the generated code be improved?

If we translate the expression (double) (long) i (where i is an int) for
the JVM we will generate an i21 instruction (int to long) followed by an
12d (long to double) instruction. Can these two instructions be combined

into an 12d (int to double) instruction?

13.

14.

15.

12.9 Assignment Operators 47

Now consider (double) (float) i. We now will generate an i2f instruc-
tion (int to float) followed by an £2d (float to double) instruction.

Can these two instructions be combined into an i2d instruction?

In general what restrictions must be satisfied to allow two consecutive type
conversion instructions to be combined into a single type conversion instruc-
tion?

In C and C++ the expression expl, exp2 means evaluate expl, then exp2
and return the value of exp2. If exp1 has no side effects (assignments, I/O or
system calls) it need not be evaluated at all. How can we test expl’s AST,
prior to code generation, to see if we can suppress its evaluation?

On some machines selected registers are preassigned special values (like 0 or
1) for the life of a program. How can a code generator for such a machine
exploit these preloaded registers to improve code quality?

It is sometimes that case that a particular expression value is needed more
than once. An example of this is the statement a[i+1]=b[i+1]+c[i+1]

where 1+1 is used three times.

An expression that may be reused is called a redundant or common expres-
sion. An AST may be transformed so that an expression that is used more
than once has multiple parents (one parent for each context that requires the
same value). An AST node that has more than one parent isn’t really a tree

anymore. Rather, its a directed-acyclic graph (a dag).

48

Chapter 12 Simple Code Generation

How must code generators for expressions be changed when they are translat-

ing an AST node that has more than one parent?

13

Code Generation:
Control Structures
and Subroutines

13.1 Code Generation for Control Structures

Control structures, whether conditionals like if and switch statements, or while
and for loops, involve generation of conditional branch instructions. That is,
based on a boolean value or relation, statements may be executed or not. In trans-
lating these constructs we will utilize jump code just as we did for conditional
expressions. Depending on the nature of the construct, we will utilize either Jump-

IfTrue or JumplfFalse form.

13.1.1 If Statements
The AST corresponding to an if statement is shown in Figure 13.1. An IfNode
has three subtrees, corresponding to the condition controlling the if, the then state-

ments and the else statements. The code we will generate will be of the form

Chapter 13 Code Generation: Control Structures and Subroutines

1. If condition isfasegoto 4.

2. Execute statementsin thenPart.
3. Gotob.

4. Execute statementsin elsePart.

5. Statements following the if statement.

IfNode
condition | thenPart elsePart
Exp Stmts Stmts

Figure 13.1 Abstract Syntax Tree for an if statement

At run-time the code we generate first evaluates the boolean-valued condition.
If it is false, the code branches to a label at the head of the instructions generated
for the else part. If the condition is true, no branch is taken; we “fall through” to
the instructions generated for the then statements. After this code is executed, we
branch to the very end of the if statement (to avoid incorrectly executing the state-
ments of the else part).

The CodeGen function for an IfNode is shown in Figure 13.2.

As an example, consider the following statement

if (b) a=1; else a=2;
Assume a and b are local variables with indices of 1 and 2. We know b is a

boolean, limited to either 1 (true) or 0 (false). The code we generate is:

IfNode.CodeGen()

©CoNoOA~®WNE

13.1

Code Generation for Control Structures 3

ElseLabel « CreateUniqueLabel()

condition.Result < AddressNode(JumplfFalse, ElseLabel)
condition.CodeGen()
thenPart.CodeGen()
OutLabel « CreateUniqueLabel()
GenGoTo(OutLabel)

GenLabel(ElseLabel)
elsePart.CodeGen()

GenLabel(OutLabel)

Figure 13.2 Code Generation for If Statements Using Jump Code

iload
ifeq
iconst 1
istore
goto

Ll: iconst 2
istore

L2:

2

Ll

L2

Push local #2 (b) onto the stack
Goto L1 if b is 0 (false)

Push 1

Store stack top into local #1 (a)
Skip around else statements

Push 2

Store stack top into local #1 (a)

Improving If Then StatementsThe code we generate for IfNodes is correct even if the

elsePart is a nullNode. This means we correctly translate both “if then” and “if

then else” statements. However, the code for an if then statement is a bit clumsy,

as we generate a goto to the immediately following statement. Thus for

if (b) a=1;

we generate
iload

ifeqg

2

L1

7

7

Push local #2 (B) onto the stack

Goto Ll if B is 0 (false)

Chapter 13 Code Generation: Control Structures and Subroutines

iconst 1 ; Push 1
istore 1 ; Store stack top into local #1 (a)
goto L2 ; Skip around else statements

Ll:

L2:

We can improve code quality by checking whether the elsePart is a nullNode
before generating a goto to the end label, as shown in Figure 13.3.

IfNode.CodeGen()
ElseLabel « CreateUniqueLabel()
condition.Result «— AddressNode(JumplfFalse, ElseLabel)
condition.CodeGen()
thenPart.CodeGen()
if elsePart = null
then GenLabel(ElselLabel)
else OutLabel « CreateUniqueLabel()
GenGoTo(OutLabel)
GenLabel(ElseLabel)
elsePart.CodeGen()
GenLabel(OutLabel)

Figure 13.3 Improved Code Generation for If Statements

POOONOUAMWNE

[N

13.1.2 While, Do and Repeat Loops

The AST corresponding to a while statement is shown in Figure 13.4. A while-
Node has two subtrees, corresponding to the condition controlling the loop and

the loop body. A straightforward translation is
1. If condition isfalsegoto 4.
2. Execute statementsin loopBody.
3. Gotol.

4. Statements following the while loop.

13.1 Code Generation for Control Structures 5

whileNode
condition | |oopBody

Exp Stmts

Figure 13.4 Abstract Syntax Tree for a While Statement

This translation is correct, but it is not as efficient as we would like. We expect
a loop to iterate many times. Each time through the loop we will execute an
unconditional branch to the top of the loop to reevaluate the loop control expres-
sion, followed by a conditional branch that will probably fail (it succeeds only
after the last iteration). A more efficient alternative is to generate the conditional
expression and conditional branch after the loop body, with an initial goto around
the loop body (so that zero iterations of the loop are possible). That is, we gener-

ate code structured as

1. Goto3.
2. Execute statementsin loopBody.

3. If condition istruego to 2.
Now our translation executes only one branch per iteration rather than two.
While loops may contain a continue statement, which forces the loop’s ter-
mination condition to be evaluated and tested. As detailed in Section 13.1.4, we
assume that the function getContinueLabel() will return the label used to mark the

target of a continue.

Chapter 13 Code Generation: Control Structures and Subroutines

The code generator for while loops is shown in Figure 13.5.

WhileNode.CodeGen()

ONoOrWNE

ConditionLabel « getContinueLabel()
GenGoTo(ConditionLabel)

TopLabel « CreateUniqueLabel()
GenLabel(TopLabel)
loopBody.CodeGen()
GenLabel(ConditionLabel)

condition.Result «— AddressNode(JumplfTrue, TopLabel)
condition.CodeGen()

Figure 13.5 Code Generation for While Statements

As an example, consider the following while loop, where I is an integer local

with a variable index of 2 and L1 is chosen as the ConditionLabel

while (I >=

The JVM code generated is

goto
L2:
iload
iconst 1
isub
istore
Ll:
iload

ifge

0) { I--;}

Ll

L2

7

Skip around loop body

Push local #2 (I) onto the stack
Push 1
Compute I-1

Store I-1 into local #2 (I)

Push local #2 (I) onto the stack

Goto L2 1if I is >= 0

Do and Repeat LoopsJava, C and C++ contain a variant of the while loop—the do

while loop. A do while loop is just a while loop that evaluates and tests its termi-

13.1 Code Generation for Control Structures 7

nation condition after executing the loop body rather than before. In our transla-
tion for while loops we placed evaluation and testing of the termination condition
after the loop body—just where the do while loop wants it!

We need change very little of the code generator we used for while loops to
handle do while loops. In fact, all we need to do is to eliminate the initial goto we
used to jump around the loop body. With that change, the remaining code will
correctly translate do while loops. For example, the statement

do { I--;} while (I >= 0);
generates the following (label L1 is generated in case the loop body contains a

continue statement):

L2:
iload 2 ; Push local #2 (I) onto the stack
iconst 1 ; Push 1
isub ; Compute I-1
istore 2 ; Store I-1 into local #2 (I)

Ll:
iload 2 ; Push local #2 (I) onto the stack
ifge L2 ; Goto L2 if I is >= 0

Some languages, like Pascal and Modula 3, contain a repeat until loop. This is
essentially a do while loop except for the fact that the loop is terminated when the
control condition becomes false rather than true. Again, only minor changes are

needed to handle a repeat loop. As was the case for do loops, the initial branch

Chapter 13 Code Generation: Control Structures and Subroutines

around the loop body is removed. This is because repeat loops always test for ter-
mination at the end of an iteration rather than at the start of an iteration.

The only other change is that we wish to continue execution if the condition is
false, so we evaluate the termination condition in the JumplfFalse form of jump
code. This allows the repeat until loop to terminate (by falling through) when the

condition becomes true.

13.1.3 For Loops
For loops are translated much like while loops. As shown in Figure 13.6, the
AST for a for loop adds subtrees corresponding to loop initialization and incre-

ment.

forNode
initializer | condition increment| loopBody

Figure 13.6 Abstract Syntax Tree for a For Statement

13.1 Code Generation for Control Structures 9

For loops are expected to iterate many times. Therefore after executing the
loop initializer, we again skip past the loop body and increment code to reach the

termination condition, which is placed at the bottom of the loop:
1. Execute initializer code.
2. Goto5.
3. Execute statementsin loopBody.
4. Execute increment code.

5. If condition istrue go to 3.

Any or all of the expressions used to define loop initialization, loop increment
or loop terminations may be null. Null initialization or increment expressions are
no problem. They appear as nullNodes in the AST and generate nothing when
CodeGen is called. However, the termination condition is expected to produce a
conditional branch to the head of the loop. If it is null, we must generate an
unconditional branch back to the top of the loop body. (For loops without a ter-
mination condition can only be exited with a break or return statement within the
loop body.)

The code generator shown in Figure 13.7 is used to translate a forNode.

As an example, consider the following for loop (where i and j are locals with

variable indices of 1 and 2)

Chapter 13 Code Generation: Control Structures and Subroutines

ForNode.CodeGen()
initializer.CodeGen()

SkipLabel « CreateUniqueLabel()
GenGoTo(SkipLabel)

TopLabel « CreateUniqueLabel()
GenLabel(TopLabel)
loopBody.CodeGen()
ContinueLabel « getContinueLabel()
GenLabel(ContinueLabel)
increment.CodeGen()

10. GenlLabel(SkipLabel)

11. if condition = null

©CoNoOA~®WNE

12. then GenGoTo(TopLabel)
13. else condition.Result «— AddressNode(JumplfTrue, TopLabel)
14, condition.CodeGen()

Figure 13.7 Code Generation for For Loops

for (i=100;i!=0;i--) {
j o= 1i;
}
The JVM code we generate is
bipush 100; Push 100 onto the stack
istore 1 ; Store 100 into local #1 (i)
goto L1 ; skip around loop body and increment
L2:
iload 1 ; Push local #1 (i) onto the stack
istore 2 ; Store i into local #2 (3)
L3: ; Target label for continue statements
iload 1 ; Push local #1 (i) onto the stack
iconst 1 ; Push 1

isub ; Compute 1-1

13.1 Code Generation for Control Structures 11

istore 1 ; Store i-1 into local #1 (i)

Ll:
iload 1 ; Push local #1 (i) onto the stack
ifne L2 ; Goto L2 if 1 is != 0

The special case of
for (;;) {}
(which represents an infinite loop) is properly handled, generating
goto Ll
L1: L2: L3:
goto L2
Java and C++ allow a local declaration of a loop index as part of initializa-

tion, as illustrated by the following for loop

for (int i=100; i!=0; i--) {

Local declarations are automatically handled during code generation for the
initialization expression. A local variable is declared within the current procedure

with a scope limited to the body of the loop. Otherwise translation is identical.

13.1.4 Break, Continue, Return and Goto Statements

12

Chapter 13 Code Generation: Control Structures and Subroutines

Java contains no goto statement. It does, however, include break and continue
statements which are restricted forms of a goto, as well as a return statement.

We’ll consider the continue statement first.

Continue StatementsLike the continue statement found in C and C++, Java’s con-
tinue statement attempts to “continue with” the next iteration of a while, do or
for loop. That is, it transfers control to the bottom of a loop where the loop index
is iterated (in a for loop) and the termination condition is evaluated and tested.

A continue may only appear within a loop; this is enforced by the parser or
semantic analyzer. Unlike C and C++ a loop label may be specified in a continue
statement. An unlabeled continue references the innermost for, while or do loop in
which it is contained. A labeled continue references the enclosing loop that has the
corresponding label. Again, semantic analysis verifies that an enclosing loop with
the proper label exists.

Any statement in Java may be labeled. We’ll assume an AST node labeled-
Stmt that contains a string-valued field stmtLabel. If the statement is labeled, stmt-
Label contains the label in string form. If the statement is unlabeled, stmtLabel is
null. labeledStmt also contains a field stmt that is the AST node representing the
labeled statement.

labeledStmtCodeGen()
1. if stmte {whileNode, doNode, forNode }
2. then continueList « continueltem(stmtLabel, CreateUniqueLabel(),

length(finalList), continueList)
3. stmt.CodeGen()

Figure 13.8 Code Generation for Labeled Statements

13.1 Code Generation for Control Structures 13

The code generator of labeledStmt, defined in Figure 13.8, checks stmt to see
if it represents a looping statement (of any sort). If it does, the code generator cre-
ates a unique label to be used within the loop as the target of continues. It adds
this label, called asmLabel, along with the user-defined label (field stmtLabel),
onto a list called continueList. This list also includes an integer finalDepth that
represents the number of try statements with finally blocks this statement is nested
in (see Section 13.2.6) and a field next that links to the next element of the list.
continueList will be examined when a continue statement is translated.

As mentioned earlier, looping statements, when they are translated, call get-
ContinuelLabel () to get the label assigned for use by continue statements. This
label is simply the assembly-level label (generated by CreateUniqueLabel) at the
head of continuelList.

We’ll also use two new code generation subroutines. GenJumpSubr(Label)
will generate a subroutine call to Label. In JVM this is a jsr instruction. GenFinal-
Calls(N) will generate N subroutine calls (using GenJumpSubr) to the labels con-
tained in the first N elements of finalList. This list is created by try statements with
finally blocks to record the blocks that must be executed prior to executing a con-
tinue, break or return statement (see Section Section 13.2.6 for more details).

A continue statement that references no label will use the first element of con-
tinueList. If the continue is labeled, it will search the continueList for a matching
label. The field label in continueNode will contain the label parameter, if any, ref-
erenced in the continue. A code generator for continue statements is shown in Fig-

ure 13.9.

14

Chapter 13 Code Generation: Control Structures and Subroutines

ContinueNode.CodeGen()

1 if stmtLabel = null

2 then GenFinalCalls(length(finalList) - continueList.finalDepth)
3 GenGoTo(continueList.asmLabel)

4. else listPos « continueList

5. while listPos.stmtLabel # stmtLabel

6 do listPos « listPos.next

7 GenFinalCalls(length(finalList) - listPos.finalDepth)

8 GenGoTo(listPos.asmLabel)

Figure 13.9 Code Generation for Continue Statements
In most cases continue statements are very easy to translate. Try statements
with finally blocks are rarely used, so a continue generates a branch to the “loop
continuation test” of the innermost enclosing looping statement or the looping
statement with the selected label. In C and C++ things are simpler still—continues

don’t use labels so the innermost looping statement is always selected.

Break Statements In Java an unlabeled break statement has the same meaning as
the break statement found in C and C++. The innermost while, do, for or switch
statement is exited, and execution continues with the statement immediately fol-
lowing the exited statement.

A labeled break exits the enclosing statement with a matching label, and con-
tinues execution with that statement’s successor. For both labeled and unlabeled
breaks, semantic analysis has verified that a suitable target statement for the break
does in fact exist.

We’ll extend the code generator for the labeledStmt node to prepare for a
break when it sees a labeled statement or an unlabeled while, do, for or switch

statement. It will create an assembler label to be used as the target of break state-

13.1 Code Generation for Control Structures 15

ments within the statement it labels. It will add this label, along with the Java
label (if any) of the statement it represents to breakList, a list representing poten-
tial targets of break statements. It will also add a flag indicating whether the state-
ment it represents is a while, do, for or switch statement (and hence is a valid
target for an unlabeled break). Also included is an integer finalDepth that repre-
sents the number of try statements with finally blocks this statement is nested in
(see Section 13.2.6).

The code generator will also generate a label definition for the break target
after it has translated its labeled statement. The revised code generator for
labeledStmt is shown in Figure 13.10.

labeledStmtCodeGen()
1. if stmte {whileNode, doNode, forNode }
2. then continueList < continueltem(stmtLabel, CreateUniqueLabel(),
length(finalList), continueList)
3. unlabeledBreakTarget «
stmt e { whileNode, doNode, forNode, switchNode}
4. if unlabeledBreakTarget or stmtLabel = null
5. then breakLabel < CreateUniqueLabel()

6. breakList « breakltem(stmtLabel, breakLabel,
unlabeledBreakTarget, length(finalList), breakList)

7. stmt.CodeGen()
8. if unlabeledBreakTarget or stmtLabel = null
9. then GenLabel(breakLabel)

Figure 13.10 Revised Code Generator for Labeled Statements
A break statement, if unlabeled, will use the first object on breakList for
which unlabeledBreakTarget is true. If the break is labeled, it will search the
breakList for a matching label. Field label in breakNode will contain the label
parameter, if any, used with the break. The code generator for break statements is

shown in Figure 13.11.

16

Chapter 13 Code Generation: Control Structures and Subroutines

BreakNode.CodeGen()
listPos « breakList
if stmtLabel = null
then while not listPos.unlabeledBreakTarget
do listPos « listPos.next
GenFinalCalls(length(finalList) - listPos.finalDepth)
GenGoTo(listPos.breakLabel)
else while listPos.stmtLabel = stmtLabel
do listPos « listPos.next
GenFinalCalls(length(finalList) - listPos.finalDepth)
GenGoTo(listPos.breakLabel)

Figure 13.11 Code Generation for Break Statements

1
2
3
4
5.
6.
7
8
9.
10.

In practice break statements are very easy to translate. Try statements with
finally blocks are rarely used, so a break normally generates just a branch to the
successor of the statement selected by the break. In C and C++ things are simpler
still—breaks don’t use labels so the innermost switch or looping statement is
always selected.

As an example of how break and continue statements are translated, consider
the following while loop

while (bl) {
if (b2) continue;

if (b3) break;

}
The following JVM code is generated
goto L1 ; Skip around loop body
L2:
iload 2 ; Push local #2 (b2) onto the stack

ifeqg L3 ; Goto L3 if b2 is false (0)

13.1 Code Generation for Control Structures 17

goto L1l ; Goto L1 to continue the loop
L3:
iload 3 ; Push local #3 (b3) onto the stack
ifeq 14 ; Goto L4 if b3 is false (0)
goto L5 ; Goto L5 to break out of the loop
Ll: L4:
iload 1 ; Push local #1 (bl) onto the stack
ifne L2 ; Goto L2 if bl is true (1)
L5:

Label L1, the target of the continue statement, is created by the labeledStmt
node that contains the while loop. L1 marks the location where the loop termina-
tion condition is tested; it is defined when the while loop is translated. Label L5,
the target of the exit statement, is created and defined by the labeledStmt node
just beyond the end of the while loop. Label 1.2, the top of the while loop, is cre-
ated and defined when the loop is translated. Labels L3 and L4 are created and

defined by the if statements within the loop’s body .

Return StatementsA returnNode represents a return statement. The field returnVal
is null if no value is returned; otherwise it is an AST node representing an expres-
sion to be evaluated and returned. If a return is nested within one or more try
statements that have finally blocks, these blocks must be executed prior to doing

the return. The code generator for a returnNode is shown in Figure 13.12. The

18

Chapter 13 Code Generation: Control Structures and Subroutines

code generation subroutine GenReturn(Value) generates a return instruction
based on Value’s type (an ireturn, lreturn, freturn, dreturn, or
areturn). If Value is null, an ordinary return instruction is generated.

return.CodeGen()

if returnval = null

2. then returnVal.CodeGen()
3. GenFinalCalls(length(finalList))
4. GenReturn(returnVval)

=

Figure 13.12 Code Generator for Return Statements

Goto StatementsJava contains no goto statement, but many other languages,
including C and C++, do. Most languages that allow gotos restrict them to be
intraprocedural. That is, a label and all gotos that reference it must be in the same
procedure or function. Languages usually do not require that identifiers used as
statement labels be distinct from identifiers used for other purposes. Thus in C and
C++, the statement
a: a+l;

is legal. Labels are usually kept in a separate symbol table, distinct from the main
symbol table used to store ordinary declarations.

Labels need not be defined before they are used (so that “forward gotos” are
possible). Type checking guarantees that all labels used in gotos are in fact defined
somewhere in the current procedure. To translate a goto statement (e.g., in C or
C++), we simply assign an assembler label to each source-level label, the first time
that label is encountered. That assembler label is generated when its correspond-

ing source-level label is encountered during code generation. Each source-level

13.1 Code Generation for Control Structures 19

goto L is translated to an assembly language goto using the assembler label
assigned to L.

A few languages, like Pascal, allow non-local gotos. A non-local goto transfers
control to a label outside the current procedure, exiting the current procedure.
Non-local gotos generate far more than a single goto instruction due to the over-
head of returning from a procedure to its caller.

Since we have not yet studied procedure call and return mechanisms (see Sec-
tion 13.2.1), we will not detail the exact steps needed to perform a non-local goto.
However, a non-local goto can be viewed as a very limited form of exception han-
dling (see Section 13.2.6). That is, a non-local goto in effect throws an exception
that is caught and handled within the calling procedure that contains the target
label. Hence the mechanisms we develop for exception handling will be suitable

for non-local gotos too.

13.1.5 Switch and Case Statements

Java, C and C++ contain a switch statement that allows the selection of one of a
number of statements based on the value of a control expression. Pascal, Ada and
Modula 3 contain a case statement that is equivalent. We shall focus on translating
switch statements, but our discussion applies equally to case statements.

The AST for a switch statement, rooted at a switchNode is shown in Figure

13.13.

20

Chapter 13 Code Generation: Control Structures and Subroutines

switchNode

control | cases

'

In the AST control represents an integer-valued expression; cases is a case-
Node, representing the cases in the switch. Each caseNode has four fields. label-
List is a labelListNode that represents one or more case labels. stmts is an AST
node representing the statements following a case constant in the switch. asm-
Label is an assembler label that will be generated with the statements in stmts.

more is either null or another caseListNode, representing the remaining cases in

the switch.

A labelListNode contains an integer field caseLabel, a boolean field isDefault

(representing the default case label) and more, a field that is either null or another

Figure 13.13 Abstract Syntax Tree for a Switch Statement

labelListNode, representing the remainder of the list.

caseNode
IabeIList| stmts asmLabel | more
labelListNode
caselLabel| isDefault more cases
labelList

13.1 Code Generation for Control Structures 21

Translating a switch involves a number of steps. The control expression has to
be translated. Each of the statements in the switch body has to be translated, and
assembler labels have to be added at each point marked by a case constant.

Before labeled cases are translated, we’ll use the routines shown in Figure
13.14 to build casePairs, a list of case constants (field caselLabel) and associated
assembler labels (field asmLabel). That is, if we see case 123: on a statement in
the switch, we’ll generate an assembler label (say L.234). Then we’ll pair 123
and L234 together and add the pair to a list of other (caseLabel, asmLabel)
pairs. We’ll also assign an assembler label to the default case. If no default is
specified, we will create one at the very bottom of the switch body.

The utility routines all serve to “preprocess” a switch statement immediately
prior to code generation. containsDefault(labelList) examines a list of case labels
(a labelListNode) to determine if the special default marker is present. addDefault-
IfNecessary(caseNode) adds a default marker (at the very end of a list of case-
Nodes) if no user-defined default is present. genCaselLabels(caseNode) creates a
new assembly-level label for each case is a caseNode. getDefaultLabel(caseNode)
extracts the assembly-level label associated with the default case.

buildCasePairs(labelList, asmLabel) builds a casePairs list for one labelList-
Node given an assembly-level label to be used for all case labels in the node. build-
CasePairs(cases) takes a caseNode and build a casePairs list for all the cases
the node represents.

The reason we need these utility routines is that we wish to generate code that

efficiently selects the assembler label associated with any value computed by the

Chapter 13 Code Generation: Control Structures and Subroutines

containsDefault(labelList)

1. if labelList = null

2. then return false

3. else return labelList.isDefault or containsDefault(labelList.more)

addDefaultlfNecessary(cases)
if containsDefault(cases.labellList)
then return
elsif cases.more = null
then cases.more «
caseNode(labelListNode(0, true, null), null, null, null)
else addDefaultifNecessary(cases.more)

pPowbdE

o

genCaselabels(cases)

1. if cases = null

2. then cases.asmlLabel « CreateUniquelLabel()
3. genCaselabels(cases.more)

getDefaultLabel(cases)

1. if containsDefault(cases.labellList)

2. then return cases.asmLabel

3. else return getDefaultLabel(cases.more)

buildCasePairs(labelList, asmLabel)

1 if labelList = null

2. then return null

3. elsif labelList.isDefault

4 then return buildCasePairs(labelList.more, asmLabel)

5 else return casePairs(labelList.caselLabel, asmLabel,
buildCasePairs(labelList. more, asmLabel))

buildCasePairs(cases)

1. if cases =null

2. then return null

3. else return appendList(buildCasePairs(cases.labelList, asmLabel),
buildCasePairs(cases.more))

Figure 13.14 Utility Code Generation Routines for Switch Statements
control expression. For a switchNode, s, buildCasePairs(s.cases) will extract
each case constant that appears in the switch and pair it with the assembler label

the case constant refers to. We need to decide how to efficiently search this list at

13.1 Code Generation for Control Structures 23

run-time. Since the number and numeric values of case constants can vary greatly,
no single search approach is uniformly applicable. In fact, JVM bytecodes directly
support two search strategies.

Often the range of case constants that appear in a switch is dense. That is, a
large fraction of the values in the range from the smallest case constant to the
greatest case constant appear as actual case constants. For example, given

switch (i) {

case 1: a = 1; break;
case 3: a = 3; break;
case 5: a = 5; break;

}

The case constants used (1, 3, 5) are a reasonably large fraction of the values
in the range 1..5. When the range of case constants is dense, a jump table transla-
tion is appropriate. As part of the translation we build an array of assembler labels
(the jump table) indexed by the control expression. The table extends from the
smallest case constant used in the switch to the largest. That is, if case constant ¢
labels a statement whose assembly language label is Li, then table[c] = Li.
Positions in the table not explicitly named by a case label get the assembly label of
the default case. Control expression values outside the range of the table also
select the label of the default case.

As an example, reconsider the above switch. Assume the three cases are

assigned the assembly language labels L1, L2, and L3, and the default (a null

24

Chapter 13 Code Generation: Control Structures and Subroutines

statement at the very bottom on the switch) is given label L.4. Then the jump table,
indexed by values in the range 1..5, contains the labels (L1, L4, L2, L4, L3).

The JVM instruction tableswitch conveniently implements a jump table
translation of a switch. Its operands are default, low, high, and table.
Default is the label of the default case. Low is the lowest case constant repre-
sented in table. High is the highest case constant represented in table. Table
is a table of high-1low+1 labels, each representing the statement to be executed
for a particular value in the range low..high. Tableswitch pops an integer at
the top of the JVM stack, and uses it as an index into table (if the index is out of
range default is used). Control is transferred to the code at the selected label.

For the above example we would generate

tableswitch default=L4,low=1, high=5,
L1, L4, L2, L4, L3

Not all switch statements are suitable for a jump table translation. If the value
of high-1ow (and hence the size of the jump table) is too large, an unacceptably
large amount of space may be consumed by the tableswitch instruction.

An alternative is to search a list of case constant, assembler label pairs. If the
control expression’s value matches a particular case constant, the corresponding
label is selected and jumped to. If no match is found, a default label is used. If we
sort the list of case constant, assembler label pairs based on case constant values,
we need not do a linear search; a faster binary search may be employed.

The JVM instruction lookupswitch conveniently implements a search table

translation of a switch. Its operands are default, size, and table. default is

13.1 Code Generation for Control Structures 25

the label of the default case. Size is the number of pairs in table. Table is a
sorted list of case constant, assembler label pairs, one pair for each case constant
in the switch. 1ookupswitch pops an integer at the top of the JVM stack, and
searches for a match with the first value of each pair in table (if no match is
found default is used). Control is transferred to the code at the label paired with
the matching case constant.

For example, consider

switch (i) {

case -1000000: a = 1; break;
case O0: a = 3; break;
case 1000000: a = 5; break;

}

where the three cases are assigned the assembly language labels L1, L2, and L3,
and the default (a null statement at the very bottom on the switch) is given label
L4. We would generate
lookupswitch default=L4,size=3,

-1000000:L1,

0:L2,

1000000: L3

The decision as to whether to use a jump table or search table translation of a

switch statement is not always clear-cut. The most obvious factor is the size of the
jump table and the fraction of its entries filled with non-default labels. However,

other factors, including the programmer’s goals (size versus speed) and imple-

26

Chapter 13 Code Generation: Control Structures and Subroutines

mentation limitations may play a role. We’ll assume that a predicate generate-
JumpTable(switchNode) exists that decides whether to use a jump table for a
particular switch statement. The details of how generateJumpTable makes its
choice are left to individual implementors.

No matter which implementation we choose, a variety of utility routines will
be needed to create a jump table or search table from a casePairs list.

sortCasePairs(casePairsList) will sort a casePairs list into ascending order,
based on the value of caselLabel. getMinCaselLabel(casePairsList) will extract
the minimum case label from a sorted casePairs list. getMaxCaselLabel(case-
PairsList) will extract the maximum case label from a sorted casePairs list. gen-
Tableswitch(defaultLabel, low, high, table) generates a tableswitch instruction
given a default label, a low and high jump table index, and a jump table (encoded
as an array of assembly labels). Finally, genLookupswitch(defaultLabel,size, case-
PairsList) generates a 1lookupswitch instruction given a default label, a list size,
a list of casePairs.

We can now complete the translation of a switch statement, using the code
generators defined in Figure 13.15.

As an example of code generation for a complete switch statement consider

13.1 Code Generation for Control Structures

buildJumpTable(casePairsList, defaultLabel)

min « getMinCaselLabel(casePairsList)

max « getMaxCaselLabel(casePairsList)

table « string[max-min+1]

for i < min to max

do if casePairList.caseLabel =i
then table[i-min] « casePairsList.asmLabel
casePairsList < casePairsList.next

else table[i-min] « defaultLabel

NoghswdhE

8. return table

caseNode.CodeGen()

1. GenLabel(asmLabel)

2. stmts.CodeGen()

3. if more = null

4, then more.CodeGen

switchNode.CodeGen()
control.CodeGen()
addDefaultlifNecessary (cases)
genCaselabels (cases)
list « buildCasePairs(cases)
list « sortCasePairs(list)
min « getMinCaselLable(list)
max « getMaxCaselLable(list)
if generateJumpTable(cases)
then genTableswitch(getDefaultLabel(cases), min, max,
buildJumpTable(list, getDefaultLabel(cases)))
10. else genLookupwitch(getDefaultLabel(cases), length(list), list)
11. cases.CodeGen()

Figure 13.15 Code Generation Routines for Switch Statements

©CoNoGA~®WNE

Chapter 13 Code Generation: Control Structures and Subroutines

switch (i) {

case 1: a = 1; Dbreak;
case 3: a = 3; Dbreak;
case 5: a = 5; Dbreak;

default: a = 0;
}
Assuming that i and a are locals with variable indices of 3 and 4, the JVM
code that we generate is
iload 1 ; Push local #3 (i) onto the stack
tableswitch default=L4, low=1l, high=5,

L1, L4, L2, L4, L3

Ll: iconst 1 ; Push 1
istore 4 ; Store 1 into local #4 (a)
goto L5 ; Break

L2: iconst 3 ; Push 3
istore 4 ; Store 3 into local #4 (a)
goto L5 ; Break

L3: iconst 5 ; Push 5
istore 4 ; Store 5 into local #4 (a)
goto L5 ; Break

L4: iconst 0 ; Push O
istore 4 ; Store 0 into local #4 (a)

L5:

13.2 Code Generation for Subroutine Calls 29

Note that Java, like C and C++, requires the use of a break after each case
statement to avoid “falling into” remaining case statements. Languages like Pas-
cal, Ada and Modula 3 automatically force an exit from a case statement after it is
executed; no explicit break is needed. This design is a bit less error-prone, though
it does preclude the rare circumstance where execution of a whole list of case
statements really is wanted. During translation, the code generator for a case state-
ment automatically includes a goto after each case statement to a label at the end
of the case.

Ada also allows a case statement to be labeled with a range of values (e.g.,
1..10 can be used instead of ten distinct constants). This is a handy generaliza-
tion, but it does require a change in our translation approach. Instead of pairing
case constants with assembly labels, we pair case ranges with labels. A single case
constant, c, is treated as the trivial range c..c. Now when casePairs lists are

sorted and traversed, we consider each value in the range instead of a single value.

13.2 Code Generation for Subroutine Calls

Subroutines, whether they are procedures or functions, whether they are recursive
or non-recursive, whether they are members of classes or independently declared,
form the backbone of program organization. It is essential that we understand
how to effectively and efficiently translate subroutine bodies and calls to subrou-

tines.

13.2.1 Parameterless Calls

30

Chapter 13 Code Generation: Control Structures and Subroutines

Since calls in their full generality can be complicated, we’ll start with a particu-
larly simple kind of subroutine call—one without parameters. We’ll also start
with calls to static subroutines; that is, subroutines that are individually declared
or are members of a class rather than a class instance.

Given a call subr(), what needs to be done? To save space and allow recur-
sion, subroutines are normally translated in closed form. That is, the subroutine is
translated only once, and the same code is used for all calls to it. This means we
must branch to the start of the subroutine’s code whenever it is called. However,
we must also be able to get back to the point of call after the subroutine has exe-
cuted. Hence, we must capture a return address. This can be done by using a spe-
cial “subroutine call” instruction that branches to the start address of a
subroutine and saves the return address of the caller (normally this is the next
instruction after the subroutine call instruction).

As we learned in Section 11.2, calls normally push a frame onto the run-time
stack to accommodate locals variables and control information. Frames are typi-
cally accessed via a frame pointer that always points to the currently active frame.
Hence updating the stack pointer (to push a frame for the subroutine being called)
and the frame pointer (to access the newly pushed frame) are essential parts of a
subroutine call.

After a subroutine completes execution, the subroutine’s frame must be
popped from the stack and the caller’s stack top and frame pointer must be
restored. Then control is returned to the caller, normally to the instruction imme-

diately following the call instruction that began subroutine execution.

13.2 Code Generation for Subroutine Calls 31

If the subroutine called is a function, then a return value must also be pro-
vided. In Java (and many other languages) this is done by leaving the return value
on the top of the caller’s stack, where operands are normally pushed during exe-
cution. On register-oriented architectures, return values are often placed in spe-
cially designated registers.

In summary then, the following steps must be done to call a parameterless

subroutine.

1. Thecaller'sreturn address is established and control is passed to the sub-

routine.

2. A framefor the subroutine is pushed onto the stack and the frame pointer is

updated to access the new frame.
3. The caller’s stack top, frame pointer, and return address are saved in the
newly pushed frame.
4. The subroutine's body is executed.
5. The subroutine's frame is popped from the stack.
6. Thecaller’s stack top, frame pointer and return address are restored.
7. Control is passed to the caller’s return address (possibly with afunction
return value).
The run-time stack prior to step 1 (and after step 7) is illustrated in Figure
13.16(a). The caller’s frame is at the top of the stack, accessed by the frame
pointer. The run time stack during the subroutine’s execution (step 4) is shown in

Figure 13.16(b). A frame for the subroutine (the callee) has been pushed onto the

Chapter 13 Code Generation: Control Structures and Subroutines

-
Rest of Callee's Top of Stack
Frame

Caller's Frame

Pointer

_Rearn_A(Ere?s]

Top of Stack -
Caller's Frame Pointer
Caller's
Frame
Frame
-
. Frame Pointer) .
(a) Before Subroutine Call (b) During Subroutine Call

Figure 13.16 Run-time Stack during a Call
stack. It is now accessed through the frame pointer. The caller’s stack top, frame
pointer and return address are stored within the current frame. The values will be
used to reset the stack after the subroutine completes and its frame is popped.

On most computers each of the steps involved in a call takes an instruction or
two, making even a very simple subroutine call non-trivial. The JVM is designed
to make subroutine calls compact and efficient. The single instruction

invokestatic index
can be used to perform steps 1-3. index is an index into the JVM constant pool
that represents the static subroutine (class method) being called. Information on
the subroutine’s frame size and starting address is stored in the corresponding
method info entry and class loader entry. Frame creation and saving of necessary

stack information are all included as part of the instruction.

13.2 Code Generation for Subroutine Calls 33

A return instruction is used to return from a void subroutine. Steps 5-7 are
all included in the return instruction’s operation. For functions, a typed return
(areturn, dreturn, freturn, ireturn, lreturn) is used to perform steps 5-
7 along with pushing a return value onto the caller’s stack (after the subrou-

tine’s frame has be popped).

13.2.2 Parameters

In Java both objects and primitive values (integers, floats, etc.) may be passed as
parameters. Both kinds of values are passed through the stack.The actual bit pat-
tern of a primitive value is pushed, in one or two words. Objects are passed by
pushing a one-word reference (pointer) to the object.

To call a subroutine with n parameters, we evaluate and push each parameter
in turn, then call the subroutine (using an invokestatic instruction if the sub-
routine is a static member of a class).

During execution of the subroutine parameters are accessed as locals, starting
with index 0. Names of class members (fields and methods) are referenced through
references to the constant pool of the class. Hence a reference to #5 in JVM code
denotes the fifth entry in the constant pool.

As an example, given the class method

static int subr(int a, int b) {return a+b;}
and the call i = subr(1,10); we would generate
Method int subr (int, int)

iload 0 ; Push local 0, which is a

34 Chapter 13 Code Generation: Control Structures and Subroutines

iload 1 ; Push local 1, which is b
iadd ; Compute a+b onto stack
ireturn ; Return a+b to caller

; Now the call and assignment
iconst 1 ; Push 1 as first parm
bipush 10 ; Push 10 as second parm
invokestatic #4 ; Call Method subr
istore 1 ; Store subr(1l,10) in local #1 (i)
This approach to parameter passing works for any number of actual parame-
ters. It also readily supports nested calls such as £ (1, g(2)). As shown below, we
begin by pushing f’s first parameter, which is safely protected in the caller’s
stack. Then g’s parameter is passed and g is called. When g returns, its return
value has been pushed on the stack, exactly where £’s second parameter is
expected. £ can therefore be immediately called. The code is
iconst 1 ; Push f’'s first parm
iconst 2 ; Push g’s first parm
invokestatic #5 ; Call Method g
invokestatic #4 ; Call Method £
On register-based architectures nested calls are more difficult to implement.
Parameter registers already loaded for an enclosing call may need to be reloaded

with parameter values for an inner call (see Exercise 12).

13.2.3 Member and Virtual Functions

13.2 Code Generation for Subroutine Calls 35

Calling Instance MethodsWe have considered how static member functions are
called. Now let’s look at functions that are members of class instances. Since
there can be an unlimited number of instances of a class (i.e., objects), a member
of a class instance must have access to the particular object to which it belongs.

Conceptually, each object has its own copy of all the class’s methods. Since
methods can be very large in size, creating multiple copies of them is wasteful of
space. An alternative is to create only one copy of the code for any method. When
the method is invoked, it is passed, as an additional invisible parameter, a refer-
ence to the object in which the method is to operate.
As an example, consider the following simple class

class test {
int a;

int subr(int b) { return a+b;}

To implement the call tt.subr (2) (where tt is a reference to an object of class
test), we pass a reference to tt as an implicit parameter to subr, along with the
explicit parameter (2). We also use the instruction invokevirtual to call the
method.

invokevirtual is similar to invokestatic except for the fact that it
expects an implicit initial parameter that is a reference to the object within which
the method will execute. During execution this reference is local 0, with explicit
parameters indexed starting at 1. For method subr and the call to it we generate

Method int subr (int)

36

Chapter 13 Code Generation: Control Structures and Subroutines

aload 0 ; Load this pointer from local 0
getfield #1 ; Load Field this.a

iload 1 ; Load parameter b (local 1)
iadd ; Compute this.a + b

ireturn ; Return this.a + b

; Code for the call of tt.subr(2)
aload 5 ; Push reference to object tt
iconst 2 ; Push 2

invokevirtual #7 ; Call Method test.subr

Virtual FunctionsIn Java all subroutines are members of classes. Classes are spe-
cially designed to support subclassing. A new subclass may be derived from a
given class (unless it is final). A class derived from a parent class (a superclass)
inherits its parent’s fields and methods. The subclass may also define new fields
and methods and also redefine existing methods. When an existing method, m, is
redefined it is often important that all references to m use the new definition, even
if the calls appear in methods inherited from a parent. Consider
class C {
String myClass () {return "class C";}
String whoAmI () {return "I am " + myClass();}
}
class D extends C {

String myClass () {return "class D";}

13.2 Code Generation for Subroutine Calls 37

}

class virtualTest
void test() f{
C c obj = new D();
System.out.println(c_obj.whoAmI()) ;
P

When ¢ _obj .whoAmI () is called, the call to myClass is resolved to be the
definition of myClass in class D, even though ¢ obj is declared to be of class C
and a definition of myClass exists in class C (where whoAmI is defined). Methods
that are automatically replaced by new definitions in subclasses are called virtual
functions (or virtual methods).

How does a Java compiler ensure that the correct definition of a virtual func-
tion is selected? In Java all instance methods are automatically virtual. The
instruction invokevirtual uses the class of the object reference passed as argu-
ment zero to determine which method definition to use. That is, inside whoAmT ()
the call to myClass() generates

aload 0 ; Push this, a reference to dobj

invokevirtual #11 ; Call Method myClass () using this ptr

The call is resolved inside dobj, whose class is D. This guarantees that D’s
definition of myClass() is used.

In C++ member functions may be explicitly designated as virtual. Since C++
implementations don’t generate JVM code, an alternative implementation is

used. For classes that contain functions declared virtual, class instances contain a

38

Chapter 13 Code Generation: Control Structures and Subroutines

pointer to the appropriate virtual function to use. Thus in the above example
objects of class C would contain a pointer to C’s definition of myClass whereas
objects of class D contain a pointer to D’s definition. When dobj .whoamI() is
called, whoAmI is passed a pointer to dobj (the this pointer) which ensures that
whoamTI will use D’s definition of myClass.
Static class members are resolved statically. Given
class ccC {
static String myClass () {return "class CC";}
static String whoAmI () {return "I am " + myClass();}
}
class DD extends CC {
static String myClass () {return "class DD";}
}
class stat {
static void test() {
System.out.println (DD.whoAmI ()) ;
b
“I am class CC” is printed out. The reason for this is that calls to static mem-
bers use the invokestatic instruction which resolves methods using the class of
the object within which the call appears. Hence since the call to myClass is
within class C, ¢’s definition is used. This form of static resolution is exactly the

same as that found in C++ when non-virtual member functions are called.

13.2 Code Generation for Subroutine Calls 39

13.2.4 Optimizing Calls

Subroutines are extensively used in virtually all programming languages. Calls can
be costly, involving passing parameters, object pointers and return addresses, as
well as pushing and popping frames. Hence ways of optimizing calls are of great

interest. We shall explore a variety of important approaches.

Inlining CallsSubroutines are normally compiled as closed subroutines. That is, one
translation of the subroutine is generated, and all calls to it use the same code. An
alternative is to translate a call as an open subroutine. At the point of call the sub-
routine body is “opened up,” or expanded. This process is often called inlining as
the subroutine body is expanded “inline” at the point of call.

In Java, inlining is usually restricted to static or final methods (since these
can’t be redefined in subclasses). In C and C++ non-virtual functions may be
inlined.

Inlining is certainly not suitable for all calls, but in some circumstances it can
be a valuable translation scheme. For example, if a subroutine is called at only one
place, inlining the subroutine body makes sense. After all, the subroutine body has
to appear somewbhere, so why not at the only place it is used? Moreover, with
inlining the expense of passing parameters and pushing and popping a frame can
be avoided.

Another circumstance where inlining is widely used is when the body of a sub-
routine is very small, and the cost of doing a call is as much (or more) than execut-

ing the body itself.

40

Chapter 13 Code Generation: Control Structures and Subroutines

It is often the case that one or more parameters to a call are literals. With
inling these literals can be expanded within the subroutine body. This allows sim-
plification of the generated code, sometimes even reducing a call to a single con-
stant value.

On the other hand, inlining large subroutines that are called from many places
probably doesn’t make sense. Inlining a recursive subroutine can be disastrous,
leading to unlimited growth as nested calls are repeatedly expanded. Inlining that
significantly increases the overall size of a program may be undesirable, requiring
a larger working set in memory and fitting into the instruction cache less effec-
tively. For mobile programs that may be sent across slow communication chan-
nels, even a modest growth in program size, caused by inlining, can be
undesirable.

Whether a call is translated in the “normal” manner via a subroutine call to
a closed body or whether it is inlined, it is essential that the call have the same
semantics. That is, since inlining is an optimization it may not affect the results a
program computes.

To inline a subroutine call, we enclose the call within a new block. Local vari-
ables, corresponding to the subroutine’s formal parameters are declared. These
local variables are initialized to the actual parameters at the point of call, taking
care that the names of formal and actual parameter names don’t clash. Then the
AST for the subroutine body is translated at the point of call. For functions, a

local variable corresponding to the function’s return value is also created. A

13.2 Code Generation for Subroutine Calls 41

return involving an expression is translated as an assignment of the expression to
the return variable followed by a break from the subroutine body.
As an example, consider
static int min(int a, int b) {
if (a<=b) return a;
else return b;
}
and the call a = min (1, 3). This call is an excellent candidate for inlining as the
function’s body is very small and the actual parameters are literals. The first step

of the inlining is to (in effect) transform the call into

{ int parmA 1;

int parmB 3;
int result;
body : {

if (parmA <= parmB) {result = parmA; break body;}

else {result = parmB; break body;}

a=result;

Now as this generated code is translated, important simplifications are possi-
ble. Using constant propagation (see Chapter 16), a variable known to contain a
constant value can be replaced by that constant value. This yields

{ int parmA = 1;

42 Chapter 13 Code Generation: Control Structures and Subroutines

int parmB = 3;
int result;
body : {

if (1<=3) {result = 1; break body;}

else {result 3; break body;}

a=result;

Now 1<=3 can be simplified (folded) into true, and if (true) ... can

be simplified to its then part. This yields

{ int parmA

1;

int parmB 3;

int result;
body : {

{result = 1; break body;}

a=result;

Now a break at the very end of a statement list can be deleted as unneces-

sary, and result’s constant value can be propagated to its uses. W e now obtain

{ int parmA 1;

int parmB 3;

int result;

13.2 Code Generation for Subroutine Calls 43

body : {

{result = 1;}

Finally, any value that is never used within its scope is dead; its declaration
and definitions can be eliminated. This leads to the final form of our inlined call:

a=1;

Non-recursive and Leaf ProceduresMuch of the expense of calls lies in the need to
push and pop frames. Frames in general are needed because a subroutine may be
directly or indirectly recursive. If a subroutine is recursive, we need a frame to
hold distinct values of parameters and locals for each call.

But from experience we know many subroutines aren’t recursive, and for
non-recursive subroutines we can avoid pushing and popping a frame, thereby
making calls more efficient. Instead of using a frame to hold parameters and
locals, we can statically allocate space for them.

The Java JVM is designed around frames. It pushes and pops them as an inte-
gral part of call instructions. Moreover, locals may be loaded from a frame very
quickly and compactly. However, for most other computer architectures pushing
and popping a frame can involve a significant overhead. When a subroutine is

known to be non-recursive, all that is needed to do a call is to pass parameters (in

44

Chapter 13 Code Generation: Control Structures and Subroutines

registers when possible) and to do a “subroutine call” instruction that saves the
return address and transfers control to the start of the subroutine.

Sometimes a subroutine not only is non-recursive, but it also calls no subrou-
tines at all. Such subroutines are called leaf procedures. Again, leaf procedures
need no frames. Moreover, since they do no calls at all, neither parameter registers
nor the return address register need be protected. This makes calling leaf proce-
dures particularly inexpensive.

How do we determine whether a subroutine is non-recursive? One simple way
is to build a call graph by traversing the AST for a program. In a call graph, nodes
represent procedures, and arcs represent calls between procedures. That is, an arc
from node A to node B means a call of B appears in A. After the call graph is built,
we can analyze it. If a node A has a path to itself, then A is potentially recursive;
otherwise it is not.

Testing for leaf procedures is even easier. If the body of a method contains no
calls (that is, no invokestatic or invokevirtual instructions), then the
method is a leaf procedure

Knowing that a procedure is non-recursive or a leaf procedure is also useful in

deciding whether to inline calls of it.

Run-time Optimization of BytecodesSubroutine calls that use the invokestatic
and invokevirtual instructions involve special checks to verify that the meth-
ods called exist and are type-correct. The problem is that class definitions may be

dynamically loaded, and a call to a method C.M that was valid when the call was

13.2 Code Generation for Subroutine Calls 45

compiled may no longer be valid due to later changes to class C. When a reference
to C.M is made in an invokestatic or invokevirtual instruction, class C is
checked to verify that M still exists and still has the expected type. While this check
is needed the first time C.M is called, it is wasted effort on subsequent calls. The
JVM can recognize this, and during execution, valid invokestatic and
invokevirtual instructions may be replaced with the variants
invokestatic quick and invokevirtual quick. These instructions have
the same semantics as the original instructions, but skip the unnecessary validity
checks after their first execution. Other JVM instructions, like those that access

fields, also have quick variants to speed execution.

13.2.5 Higher Order Functions and Closures

Java does not allow subroutines to be manipulated like ordinary data (though a
Java superset, Pizza [Odersky and Wadler 1997] does). That is, a subroutine can-
not be an argument to a call and cannot be returned as the value of a function.
However, other programming languages, like ML [Milner et al 1997] and Haskell
[Jones et al 1998], are functional in nature. They encourage the view that func-
tions are just a form of data that can be freely created and manipulated. Functions
that take other functions as parameters or return parameters as results are called
higher-order.

Higher-order functions can be quite useful. For example, it is sometimes the
case that computation of f (x) takes a significant amount of time. Once £ (x) is

known, it is a common optimization, called memoizing, to table the pair

46

Chapter 13 Code Generation: Control Structures and Subroutines

(x, £ (x)) so that subsequent calls to £ with argument x can use the known value
of £ (x) rather than recompute it. In ML it is possible to write a function memo
that takes a function £ and an argument arg. The function memo computes
f (arg) and also returns a “smarter” version of £ that has the value of £ (arg)
“built into” it. This smarter version of £ can be used instead of £ in all subse-
quent computations.
fun memo (fct,parm)= let val ans = fct(parm) in
(ans, fn x=> if x=parm then ans else fct(x))end;

When the version of £ct returned by memo is called, it must have access to the
values of parm, fct and ans, which are used in its definition. After memo returns,
its frame must be preserved since that frame contains parm, fct and ans within
it.

In general in languages with higher-order functions, when a function is cre-
ated or manipulated, we must maintain a pair of pointers. One is to the machine
instructions that implement the function, and the other is to the frame (or frames)
that represent the function’s execution environment. This pair of pointers is
called a closure. When functions are higher-order, a frame corresponding to a call
may be accessed after the call terminates (this is the case in memo). Thus frames
can’t always be allocated on the run-time stack. Rather, they are allocated in the
heap and garbage-collected, just like user-created data. This appears to be ineffi-

cient, but it need not be if an efficient garbage collector is used (see Section 11.3).

13.2 Code Generation for Subroutine Calls 47

13.2.6 Exception Handling

Java, like most other modern programming languages, provides an exception han-
dling mechanism. During execution, an exception may be thrown, either explicitly
(via a throw statement) or implicitly (due to an execution error). Thrown excep-
tions may be caught by an exception handler. When an exception is thrown con-
trol transfers immediately to the catch clause that handles it. Code at the point
where the throw occurred is not resumed.

Exceptions form a clean and general mechanism for identifying and handling
unexpected or erroneous situations. They are cleaner and more efficient than using
error flags or gotos. Though we will focus on Java’s exception handling mecha-
nism, most recent language designs, including C++, Ada and ML, include an
exception handling mechanism similar to that of Java.

Java exceptions are typed. An exception throws an object that is an instance
of class Throwable or one of is subclasses. The object thrown may contain fields
that characterize the precise nature of the problem the exception represents, or the
class may be empty (with its type signifying all necessary information).

As an example consider the following Java code

class NullSort extends Throwable{};

int b[] = new int[n];
try {
if (b.length > 0)

// sort b

48 Chapter 13 Code Generation: Control Structures and Subroutines

else throw new NullSort(); }
catch (NullSort ns) {
System.out.println ("Attempt to sort empty array");
}

An integer array b is created and it is sorted within the try clause. The length
of b is tested and a NullSort exception is thrown if the array’s length is 0 (since
trying to sort an empty array may indicate an error situation.) In the example,
when a NullSort exception is caught, an error message is printed.

Exceptions are designed to be propagated dynamically. If a given exception
isn’t caught in the subroutine (method) where it is thrown, it is propagated back
to the caller. In particular, a return is effected (popping the subroutine’s frame)
and the exception is rethrown at the return point. This process is repeated until a
handler is found (possibly a default handler at the outermost program level).

In practice, we’d probably package the sort as a subroutine (method), allow-

ing it to throw and propagate a NullSort exception:

static int [] sort(int [] a) throws NullSort {
if (a.length > 0)
// sort a
else throw new NullSort () ;

return a;

13.2 Code Generation for Subroutine Calls 49

int b[] = new int[n];
try {sort(b);}
catch (NullSort ns) {

System.out.println (“*Attempt to sort empty array”);

Exception handling is straightforward in Java. The JVM maintains an excep-
tion table for each method. Each table entry contains four items: fromAdr, toAdr,
exceptionClass and handlerAdr. fromAdr is the first bytecode covered by this
entry; toAdr is the last bytecode covered. exceptionClass is the class of exception
handled. exceptionAdr is the address of the corresponding handler. If an exception
is thrown by an instruction in the range fromAdr..toAdr, the class of the thrown
exception is checked. If the thrown class matches exceptionClass (equals the class
or is a subclass of it), control passes to the exceptionAdr. If the class thrown
doesn’t match exceptionClass or the exception was thrown by an instruction
outside fromAdr..toAdr, the next item in the exception table is checked. If the
thrown exception isn’t handled by any entry in the exception table, the current
method is forced to return and the exception is thrown again at the return point of
the call.

Since all this checking is automatically handled as part of the execution of the
JVM, all we need to do is create exception table entries when try and catch blocks
are compiled. In particular, we generate labels to delimit the extent of a try block,
and pass these labels to catch blocks, which actually generate the exception table

entries.

50

Chapter 13 Code Generation: Control Structures and Subroutines

On architectures other than the JVM, exception processing is more difficult.
Code must be generated to determine which exception handler will process an
exception of a given class thrown from a particular address. If no handler is
defined, a return must be effected (popping the stack, restoring registers, etc.).
Then the exception is rethrown at the call’s return address.

We’ll begin with the translation of a tryNode, whose structure is shown in

Figure 13.17. A try statement may have a finally clause that is executed whenever

tryNode
tryBody catches final
Stmts catchNodes Stmts

Figure 13.17 Abstract Syntax Tree for a Try Statement

a try statement is exited. A finally clause complicates exception handling, so we’ll
defer it until the next section. For now, we’ll assume final is null. In fact, finally
clauses are rarely used, so we will be considering the most common form of excep-
tion handling in Java.

First, we will define a few utility and code generation subroutines. Gen-
Store(identNode) will generate code to store the value at the stack top into the
identifier represented by identNode. addToExceptionTable(fromLabel, toLabel,
exceptionClass, catchLabel) will add the four tuple (fromLabel, toLabel, excep-

tionClass, catchLabel) to current exception table.

13.2 Code Generation for Subroutine Calls 51

tryNode.CodeGen()
fromLabel « CreateUniqueLabel()
GenLabel(fromLabel)
tryBody.CodeGen()
exitLabel « CreateUniquelLabel()
GenGoTo(exitLabel)
toLabel « CreateUniqueLabel()
GenLabel(toLabel)
catches.CodeGen(fromLabel, toLabel, exitLabel)
GenLabel(exitLabel)

Figure 13.18 Code Generation Routine for Try Statements

©CoNoOA~®WNE

In translating a try statement, we will first generate assembly-level labels
immediately before and immediately after the code generated for tryBody, the
body of the try block. catches, a list of catchNodes is translated after the try
block. We generate a branch around the code for catch blocks as they are reached
only by the JVM’s exception handling mechanism. This translation is detailed in

Figure 13.18.

catchNode
catchldDecl|catchBody| more

Y

idDecINode
ident | type Stmts catchNode

Figure 13.19 Abstract Syntax Tree for a Catch Block

A catchNode is shown in Figure 13.19. To translate a catch block we first
define a label for the catch block. When the catch block is entered, the object
thrown is on the stack. We store it into the exception parameter ident. We trans-

late catchBody, and then add an entry to the end of the current method’s excep-

52

Chapter 13 Code Generation: Control Structures and Subroutines

tion table. Finally, more, the remaining catch blocks, are translated. This
translation is detailed in Figure 13.20.

catchNode.CodeGen(fromLabel, toLabel, exitLabel)

1. catchLabel « CreateUniqueLabel()

2. GenLabel(catchLabel)

3. catchldDecl.CodeGen()

4. GenStore(catchldDecl.ldent)

5. catchBody.CodeGen()

6. addToExceptionTable(fromLabel, toLabel-1, catchldDecl.Type,
catchLabel)

7. if more = null

8. then GenGoTo(exitLabel)

9. more.CodeGen(fromLabel, toLabel, exitLabel)

Figure 13.20 Code Generation Routine for Catch Blocks

Since exception table entries are added to the end of the table, our code gener-
ator correctly handles nested try blocks and multiple catch blocks.

As an example, consider the following Java program fragment. In the try
block, £ (a) is called; it may throw an exception. If no exception is thrown, b is
assigned the value of £ (a). If exception el is thrown, b is assigned 0. If e2 is
thrown, b is assigned 1. If any other exception is thrown, the exception to propa-
gated to the containing code. In the exception table, the expression L-1 denotes
one less than the address assigned to L.

class el extends Throwable{};
class e2 extends Throwable{};
try {b = £ (a);}

catch (el v1) {b 0;}

catch (e2 v2) {b = 1;}

The code we generate is

13.2 Code Generation for Subroutine Calls 53

Ll: iload 2 ; Push local #2 (a) onto stack

invokestatic #7 ; Call Method £

istore 1 ; Store f(a) into local #1 (b)
goto L2 ; Branch around catch blocks
L3: ; End of try block
L4: astore 3 ; Store thrown obj in local #3 (v1)
iconst 0 ; Push O
istore 1 ; Store 0 into b
goto L2 ; Branch around other catch block
L5: astore 4 ; Store thrown obj in local #4 (v2)
iconst 1 ; Push 1
istore 1 ; Store 1 into b

L2:

Exception table:

from to catch exception
Ll L3-1 L4 Class el
Ll IL3-1 L5 Class e2

Finally blocks and FinalizationWe exit a block of statements after the last statement

of the block is executed. This is normal termination. However, a block may be

54

Chapter 13 Code Generation: Control Structures and Subroutines

exited abnormally in a variety of ways, including executing a break or continue,
doing a return, or throwing an exception.

Prior to exiting a block, it may be necessary to execute finalization code. For
example in C++, destructors for locally allocated objects may need to be executed.
If reference counting is used to collect garbage, counts must be decremented for
objects referenced by local pointers.

In Java, finalization is performed by a finally block that may be appended to a
try block. The statements in a finally block must be executed no matter how the
try block is exited. This includes normal completion, abnormal completion
because of an exception (whether caught or not) and premature completion
because of a break, continue or return statement.

Since the finally block can be reached in many ways, it is not simply branched
to. Instead it is reached via a simplified subroutine call instruction, the jsr. This
instruction branches to the subroutine and saves the return address on the stack.
No frame is pushed. After the finally statements are executed, a ret instruction
returns to the call point (again no frame is popped).

A try block that exits normally will “call” the finally block just before the
entire statement is exited. A catch block that handles an exception thrown in the
try block will execute its body and then call the finally block. An exception not
handled in any catch block will have a default handler that calls the finally block
and then rethrows the exception for handling by the caller. A break, continue or

exit will call the finally block before it transfers control outside the try statement.

13.2 Code Generation for Subroutine Calls 55

tryNode.CodeGen()

1. fromLabel « CreateUniqueLabel()
2. GenLabel(fromLabel)
3. if final = null
4, then finalLabel « CreateUniquelLabel()
5. finalList « listNode(finalLabel, finalList)
6. tryBody.CodeGen()
7 if final = null
8. then GenJumpsSubr(finalLabel)
9. finalList « finalList.next
10. else finalLabel « null

11. exitLabel « CreateUniquelLabel()

12. GenGoTo(exitLabel)

13. tolLabel « CreateUniqueLabel()

14. GenlLabel(toLabel)

15. catches.CodeGen(fromLabel, toLabel, exitLabel, finalLabel)
16. if final # null

17. then defaultHandlerLabel «— CreateUniqueLabel()

18. GenLabel(defaultHandlerLabel)

19. exceptionLoc « GenLocalDecl(Throwable)

20. GenStoreLocalObject(exceptionLoc)

21. GenJumpSubir(finalLabel)

22. GenlLoadLocalObject(exceptionLoc)

23. GenThrow()

24, addToExceptionTable(fromLabel, defaultHandlerLabel-1,
Throwable, defaultHandlerLabel)

25. GenLabel(finalLabel)

26. returnLoc « GenLocalDecl(Address)

27. GenStoreLocalObject(returnLoc)

28. final.CodeGen()

29. GenRet(returnLoc)

30. GenLabel(exitLabel)
Figure 13.21 Code Generation Routine for Try Statements with Finally blocks

We will consider the complications finally blocks add to the translation of a
tryNode and a catchNode. First, we will define a few more utility and code gener-
ation subroutines. We’ll again use GenLocalDecl(Type), which declares a local

variable and returns its frame offset or variable index.

56

Chapter 13 Code Generation: Control Structures and Subroutines

catchNode.CodeGen(fromLabel, toLabel, exitLabel, finalLabel)
catchLabel « CreateUniqueLabel()
GenLabel(catchLabel)
catchldDecl.CodeGen()
GenStore(catchldDecl.ldent)
catchBody.CodeGen()
if finalLabel = null
then GenJumpSubr(finalLabel)
addToExceptionTable(fromLabel, toLabel-1, catchldDecl.Type,
catchLabel)
9. if more = null or finalLabel = null
10. then GenGoTo(exitLabel)
11. if more =null
12. then more.CodeGen(fromLabel, toLabel, exitLabel, finalLabel)

ONoOrWNE

Figure 13.22 Code Generation Routine for Catch Blocks with Finally Blocks

Recall that GenJumpSubr(Label) generates a subroutine jump to Label (a
jsr in the JVM). GenRet(locallndex) will generate a return using the return
address stored at locallndex in the current frame (in the JVM this is a ret instruc-
tion). GenThrow() will generate a throw of the object currently referenced by the
top of the stack (an athrow instruction in the JVM).

GenStoreLocalObject(locallndex) will store an object reference into the frame
at locallndex (in the JVM this is an astore instruction). GenLoadlLocalOb-
ject(locallndex) will load an object reference from the frame at locallndex (in the
JVM this is an aload instruction).

An extended code generator for a tryNode that can handle a finally block is
shown in Figure 13.21. A non-null final field requires several additional code gen-
eration steps. First, in lines 4 and 3, a label for the statements in the finally block is
created and added to finalList (so that break, continue and return statements can

find the finally statements that need to be executed).

13.2 Code Generation for Subroutine Calls 57

In line 8, a subroutine jump to the finally block is placed immediately after the
translated try statements (so that finally statements are executed after statements
in the try block). In line 9 the current finalLabel is removed from the finalList
(because the tryBody has been completely translated).
After all the catchNodes have been translated, several more steps are needed.
In lines 17 to 24 a default exception handler is created to catch all exceptions not
caught by user-defined catch blocks. The default handler stores the thrown excep-
tion, does a subroutine jump to the finally block, and then rethrows the exception
so that it can be handled by an enclosing handler.
In lines 25 to 29, the finally block is translated. Code to store a return address
in a local variable is generated, the statements within the finally block are trans-
lated, and a return is generated.
An extended code generator for a catchNode that can handle a finally block is
shown in Figure 13.22. A finalLabel parameter is added. In line 7 a subroutine call
to the finalLabel is added after the statements of each catchBody.
As an example, consider the translation of the following try block with an
associated finally block.
class el extends Throwable{};
try {a = f(a);}
catch (el v1) {a = 1;}
finally {b = a;}

The code we generate is

Ll: iload 2 ; Push a onto stack

58

Chapter 13 Code Generation: Control Structures and Subroutines

invokestatic #7
istore 2
jsr L2
goto L3
L4:
L5:
astore 3
iconst 1
istore 2
jsr L2
goto L3
; Propagate uncaught
L6:
astore 4
jsr L2
aload 4
athrow
L2: astore 5
iload 2
istore 1
ret 5

L3:

Exception table:

I

’

Call Method £

Store f(a) into local #2 (a)
Execute finally block

Branch past catch & finally block

End of try block

Store thrown obj in local #3 (v1)
Push 1

Store 1 into a

Execute finally block

Branch past finally block

exceptions

Store thrown obj into local #4
Execute finally block

Reload thrown obj from local #4
Propagate exception to caller
Store return adr into local #5
Load a

Store a into local #1 (b)

return using adr in local #5

13.2 Code Generation for Subroutine Calls 59

from to catch exception
Ll L4-1 L5 Class el
Ll Le-1 L6 Class Throwable

13.2.7 Support for Run-Time Debugging

Most modern programming languages are supported by a sophisticated sym-
bolic debugger. Using this tool, programmers are able to watch a program and its
variables during execution. It is essential, of course, that a debugger and compiler
effectively cooperate. The debugger must have access to a wide variety of informa-
tion about a program, including the symbolic names of variables, fields and sub-
routines, the run-time location and values of variables, and the source statements
corresponding to run-time instructions.

The Java JVM provides much of this information automatically, as part of its
design. Field, method, and class names are maintained, in symbolic form, in the
run-time class file, to support dynamic linking of classes. Attributes of the class file
include information about source files, line numbers, and local variables. For
other languages, like C and C++, this extra information is added to a standard
“.0” file, when debugging support is requested during compilation.

Most of the commands provided by a debugger are fairly easy to implement
given the necessary compiler support. Programs may be executed a line at a time

by extracting the run-time instructions corresponding to a single source line and

60

Chapter 13 Code Generation: Control Structures and Subroutines

executing them in isolation. Variables may be examined and updated by using
information provided by a compiler on the variable’s address or frame offset.

Other commands, like setting breakpoints, take a bit more care. A JVM
breakpoint instruction may be inserted at a particular line number or method
header. Program code is executed normally (to speed execution) until a break-
point is executed. Normal execution is then suspended and control is returned to
the debugger to allow user interaction. breakpoint instructions may also be
used to implement more sophisticated debugging commands like “watching” a
variable. Using compiler-generated information on where variables and fields are
updated, breakpoint instructions can be added wherever a particular variable
or field is changed, allowing its value to be displayed to a user whenever it is
updated.

Optimizations can significantly complicate the implementation of a debugger.
The problem is that an optimizer often changes how a computation is performed
to speed or simplify it. This means what is actually computed at run-time may not
corresponding exactly to what a source program seems to specify. For example,

consider the statements

a=>b + c;
d=a+ 1;
a = 0;

We might generate
iload 1 ; Push b onto stack

iload 2 ; Push ¢ onto stack

13.2 Code Generation for Subroutine Calls 61

iadd ; Compute a = b + ¢
iconst 1 ; Push 1

iadd ; Compute a + 1
istore 3 ; Store d

iconst 0 ; Push O

istore 0 ; Store a

a is computed in the first assignment statement, used in the second and reas-
signed in the third. Rather than store a’s value and then immediately reload it,
the generated code uses the value of a computed in the first assignment without
storing it. Instead, the second, final value of a is stored.

The problem is that if we are debugging this code and ask to see a’s value
immediately after the second statement is executed, we’ll not see the effect of the
first assignment (which was optimized away). Special care is needed to guarantee
that the “expected” value is seen at each point, even if that value is eliminated as
unnecessary!

For a more thorough discussion of the problems involved in debugging opti-

mized code see [Adl-Tabatabai and Gross 1996].

Exercises

62 Chapter 13 Code Generation: Control Structures and Subroutines

1. Since many programs contain a sequence of if-then statements, some lan-
guages (like Ada) have extended if statements to include an elsif clause:
if exprl
stmtl
elsif expr2
stmt2
elsif expr3

stmt3

else stmtn

Each of the expressions is evaluated in turn. As soon as a true expression is
reached, the corresponding statements are executed and the if-elsif statement

is exited. If no expression evaluates to true, the else statement is executed.

Suggest an AST structure suitable for representing an if-elsif statement. Define
a code generator for this AST structure. (You may generate JVM code or code
for any other computer architecture).
2. Assume that we create a new kind of conditional statement, the signtest. Its
structure is
signtest expression
neg: statements
zero: statements

pos: statements

13.2 Code Generation for Subroutine Calls 63

end

The integer-valued expression is evaluated. If it is negative, the statements
following neg are executed. If it is zero, the statements following zero are

executed. If it is positive, the statements following pos are executed.

Suggest an AST structure suitable for representing a signtest statement. Define
a code generator for this AST structure. (You may generate JVM code or code
for any other computer architecture).

. Assume we add a new kind of looping statement, the exit-when loop. This

loop is of the form

loop
statementsl
exit when expression
statements2

end

First statementsl are executed. Then expression is evaluated. If it is
true, the loop is exited. Otherwise, statements2 followed by state-
mentsl are executed. Then expression is reevaluated, and the loop is con-
ditionally exited. This process repeats until expression eventually becomes

true (or else the loop iterates forever).

Suggest an AST structure suitable for representing an exit-when loop. Define a
code generator for this AST structure. (You may generate JVM code or code

for any other computer architecture).

64 Chapter 13 Code Generation: Control Structures and Subroutines

4. In most cases switch statements generate a jump table. However, when the
range of case labels is very sparse, a jump table may be too large. A search
table, if sorted, can be searched using a logarithmic time binary search rather

than a less efficient linear search

If the number of case labels to be checked is small (less than 8 or so), the
binary search can be expanded into a series of nested if statements. For exam-
ple, given

switch (i) {

case -1000000: a = 1; break;
case O0: a = 3; break;
case 1000000: a = 5; break;

We can generate

if (1 <= 0)
if (1 == -1000000)
a = 1;
else a = 3;
else a = 5;

Explain why this “expanded” binary search can be more efficient than doing

a binary search of a list of case label, assembly label pairs.

How would you change the code generator for switch statements to handle

this new translation scheme?

13.2 Code Generation for Subroutine Calls 65

5. Some languages, like Ada, allow switch statements to have cases labeled with
a range of values. For example, with ranges, we might have the following in
Java or C.

switch (3)
case 1..10,20,30..35 : option = 1; break;
case 11,13,15,21..29 : option = 2; break;

case 14,16,36..50 : option = 3; break;

How would you change the code generator of Figure 13.15 to allow case label
ranges?

6. Switch and case statements normally require that the control expression be of
type integer. Assume we wish to generalize a switch statement to allow control
expressions and case labels that are floating point values. For example, we
might have

switch(sgrt(i))

case 1.4142135: val = 2; break;
case 1.7320508: val = 3; break;
case 2: val = 4; break;
default: val = -1;

Would you recommend a jump table translation, or a search table translation,

or is some new approach required? How would you handle the fact that float-

66

Chapter 13 Code Generation: Control Structures and Subroutines

ing point equality comparisons are “fuzzy” due to roundoff errors. (That is,
sometimes what should be an identity relation, like sqrt (f) *sqrt (f) ==

£ is false.)

. In Section 13.2.1 we listed seven steps needed to execute a parameterless call.

Assume you are generating code for a register-oriented machine like the Mips
or Sparc or x86 (your choice). Show the instructions that would be needed to

implement each of these seven steps.

Now look at the code generated for a parameterless call by a C or C++ com-
piler on the machine you selected. Can you identify each of the seven steps

needed to perform the call?

. Consider the following C function and call

char select (int i, char *charArray)
return charArray[i];

c = select (3, "AbCdEEG") ;

Look at the code generated for this function and call on your favorite C or
C++ compiler. Explain how the generated code passes the integer and charac-

ter array parameters and how the return value is passed back to the caller.

. Many register-oriented computer architectures partition the register file(s)

into two classes, caller-save and callee-save. Caller-save registers in use at a
call site must be explicitly saved prior to the call and restored after the call
(since they may be freely used by the subroutine that is to be called). Callee-

save registers that will be used within a subroutine must be saved by the sub-

10.

11.

12.

13.2 Code Generation for Subroutine Calls 67

routine (prior to executing the subroutine’s body) and restored by the sub-
routine (prior to returning to the caller). By allocating caller-save and callee-

save registers carefully, fewer registers may need to be saved across a call.

Extend the seven steps of Section 13.2.1 to provide for saving and restoring of
both caller-save and callee-save registers.

Assume we know that a subroutine is a leaf procedure (i.e., that is contains no
calls within its body). If we wish to allocate local variables of the subroutine
to registers, is it better to use caller-save or callee-save registers? Why?

A number of register-oriented architectures require that parameters be placed
in particular registers prior to a call. Thus the first parameter may need to be
loaded into register parml, the second parameter into register parm2, etc.
Obviously, we can simply evaluate parameter expressions and move their val-
ues into the required register just prior to beginning a call. An alternative
approach involves register targeting. That is, prior to evaluating a parameter
expression, the desired target register is set and code generators for expres-

sions strive to evaluate the expression value directly into the specified register.

Explain how the Result mechanism of Chapter 12 can be used to effectively
implement targeting of parameter values into designated parameter registers.

As we noted in Section 13.2.2, nested calls are easy to translate for the JVM.
Parameter values are simply pushed onto the stack, and used when all

required parameters are evaluated and pushed.

68 Chapter 13 Code Generation: Control Structures and Subroutines

13.

However, matters become more complex when parameter registers are used.
Consider the following call

a =p(1,2,p(3,4,5));

Note that parameter registers loaded for one call may need to be saved (and
later reloaded) if an “inner call” is encountered while evaluating a parameter

expression.

What extra steps must be added to the translation of a function call if the call
appears within an expression that is used as a parameter value?

We have learned that some machines (like the JVM) pass parameters on the
run-time stack. Others pass parameters in registers. Still another approach (a
very old one) involves placing parameter values in the program text, immedi-
ately after the subroutine call instruction. For example £ (1,b) might be
translated into

call £

value of b

instructions following call of £

Now the “return address” passed to the subroutine actually points to the
first parameter value, and the actual return point is the return address value +

n, where n parameters are passed.

What are the advantages and disadvantages of this style of parameter passing

as contrasted with the stack and register-oriented approaches?

14.

15.

16.

13.2 Code Generation for Subroutine Calls 69

Assume we have an AST representing a call and that we wish to “inline” the
call. How can this AST be rewritten, prior to code generation, so that it repre-
sents the body of the subroutine, with actual parameter values properly bound
to formal parameters?

The Java JVM is unusual in that it provides explicit instructions for throwing
and catching exceptions. On most other architectures, these mechanisms must

be “synthesized” using conventional instructions.

To throw an exception object O, we must do two things. First, we must decide
whether the throw statement appears within a try statement prepared to catch
0. Ifitis, O is passed to the innermost catch block declared to handle O (or one

of O’s superclasses).

If no try block that catches O encloses the throw, the exception is propagated—

a return is effected and O is rethrown at the return point.

Suggest run-time data structures and appropriate code to efficiently imple-
ment a throw statement. Note that ordinary calls should not be unduly slowed
just to prepare for a throw that may never occur. That is, most (or all) of the
cost of a throw should be paid only after the throw is executed.

When a run-time error occurs, some programs print an error message (with a
line number), followed by a call trace which lists the sequence of pending sub-
routine calls at the time the error occurred. For example, we might have:

Zero divide error in line 12 in procedure

"WhosOnFirst"

70 Chapter 13 Code Generation: Control Structures and Subroutines

Called from line 34 in procedure "WhatsOnSecond"
Called from line 56 in procedure "IDontKnowsOnThird"

Called from line 78 in procedure "BudAndLou"

Explain what would have to be done to include a call trace (with line num-
bers) in the code generated by a compiler. Since run-time errors are rare, the
solution you adopt should impose little, if any, cost on ordinary calls. All the

expense should be borne after the run-time error occurs.

14

Processing Data
Structure
Declarations and
References

14.1 Type Declarations

As we learned in Chapters 8, 9 and 10, type declarations provide much of the
information that drives semantic processing and type checking. These declarations
also provide information vital for the translation phase of compilation.

Every data object must be allocated space in memory at run-time. Hence it is
necessary to determine the space requirements for each kind of data object,
whether predefined or user-defined.

We will assume that the symbol table entry associated with each type or class
name has a field (an attribute) called size. For predefined types size is determined
by the specification of the programming language. For example, in Java an int is
assigned a size of 4 bytes (one word), a double is assigned a size of 8 bytes (a
double word), etc. Some predefined types, like strings, have their size determined
by the content of the string. Hence in C or C++ the string "cat" will require 4
bytes (including the string terminator). In Java, where strings are implemented as
String objects, "cat" will require at least 3 bytes, and probably more (to store
the length field as well as type and allocation information for the object).

Chapter 14 Processing Data Structure Declarations and References

As discussed below, classes, structures and arrays have a size determined by
the number and types of their components. In all cases, allocation of a value of
type T means allocation of a block of memory whose size is T.size.

An architecture also imposes certain “natural sizes” to data values that are
computed. These sizes are related to the size of registers or stack values. Thus the
value of A+1 will normally be computed as a 32 bit value even if A is declared to
be a byte or short. When a value computed in a natural size is stored, trunca-
tion may occur.

14.2 Static and Dynamic Allocation

Identifiers can have either global or local scope. A global identifier is visible
throughout the entire text of a program. The object it denotes must be allocated
throughout the entire execution of a program (since it may be accessed at any
time).

In contrast, a local identifier is visible only within a restricted portion of a pro-
gram, typically a subprogram, block, structure or class. The object a local identi-
fier denotes need only be allocated when its identifier is visible.

We normally distinguish two modes of allocation for run-time variables (and
constants)—static and dynamic allocation. A local variable that exists only during
the execution of a subprogram or method can be dynamically allocated when a
call is made. Upon return, the variable ceases to exist and its space can be deallo-
cated.

In contrast, a globally visible object exists for the entire execution of a pro-
gram; it is allocated space statically by the compiler prior to execution.

In C and C++ global variables are declared outside the body of any subpro-
gram. In Java, global variables occur as static members of classes. Static local vari-
ables in C and C++ are also given static allocation—only one memory allocation is
made for the whole execution of the program.

C, C++ and Java also provide for dynamic allocation of values on a run-time
heap. Class objects, structures and arrays may be allocated in the heap, but all
such values must be accessed in a program through a local or global variable (or
constant).

What happens at run-time when a declaration of local or global is executed?
First and foremost, a memory location must be allocated. The address of this loca-
tion will be used whenever the variable is accessed.

The details of how a memory location is allocated is machine-dependent, but
the general approach is fairly standard. Let’s consider globals first. In C and C++
(and many other related languages like Pascal, Ada and Fortran), a block of run-
time memory is created to hold all globals (variables, constants, addresses, etc.).
This block is extended as global declarations are processed by the compiler, using
the size attribute of the variable being declared. For example, a compiler might
create a label globals, addressing an initially empty block of memory. As global
declarations are processed, they are given addresses relative to globals. Thus the
declarations

14.2 Static and Dynamic Allocation 3

int aj;

char b[10];

float c;
would cause a to be assigned an address at globals+0 and b to assigned an
address at globals+4. We might expect ¢ to receive an address equivalent to
globals+14, but on many machines alignment of data must be considered. A
float is usually one word long, and word-length values often must be placed at
memory address that are a multiple of 4. Hence ¢ may well be placed at an
address of globals+16, with 2 bytes lost to guarantee proper alignment.

In Java, global variables appear as static members of a program’s classes.
These members are allocated space within a class when it is loaded. No explicit
addresses are used (for portability and security reasons). Rather, a static member is
read using a getstatic bytecode and written using a putstatic bytecode. For
example, the globals a, b and ¢, used above, might be declared as

class C {

static int a;
static int b[] = new int[10];
static float f;

}

The assignment C.a = 10; would generate

bipush 10

putstatic C/a I
The notation C/a resolves to a reference to field a of class C. The symbol T is a
typecode indicating that field a is an int. The JVM loader and interpreter trans-
late this reference into the memory location assigned to field a in C’s class file.

Similarly, the value of C. £ (a £loat with a typecode of F) is pushed onto the
top of the run-time stack using

getstatic C/f F

Locals are dynamically created when a function, procedure or method is called.
They reside within the frame created as part of the call (see Section 11.2). Locals
are assigned an offset within a frame and are addressed using that offset. Hence if
local variable i is assigned an offset of 12, it may be addressed as
frame_pointer+12. On most machines the frame is accessed using a dedicated
frame register or using the stack top. Hence if $fp denotes the frame register, i
can be accessed as $£p+12. This expression corresponds to the indexed address-
ing mode found on most architectures. Hence a local may be read or written using
a single load or store instruction.
On the JVM, locals are assigned indices within a method’s frame. Thus local i
might be assigned index 7. This allows locals to be accessed using this index into
the current frame. For example i (assuming it is an integer) can be loaded onto the
run-time stack using

iload 7
Similarly, the current stack-top can be stored into i using

istore 7
Corresponding load and store instructions exist for all the primitive type of Java
(fload to load a float, astore to store an object reference, etc.).

Chapter 14 Processing Data Structure Declarations and References

14.2.1 Initialization of Variables

Variables may be initialized as part of their declaration. Indeed, Java mandates a
default initialization if no user-specified initialization is provided.

Initialization of globals can be done when a program or method is loaded into
memory. That is, when the memory block assigned to global variables is created, a
bit pattern corresponding to the appropriate initial values is loaded into the mem-
ory locations. This is an easy thing to do—memory locations used to hold pro-
gram code are already initialized to the bit patterns corresponding to the
program’s machine-level instructions. For more complex initializations that
involve variables or expressions, assignment statements are generated at the very
beginning of the main program.

Initialization of locals is done primarily through assignment statements gener-
ated at the top of the subprogram’s body. Thus the declaration

int limit = 100;
would generate a store of 100 into the location assigned to 1imit prior to execu-
tion of the subprogram’s body. More complex initializations are handled in the
same way, evaluating the initial value and then storing it into the appropriate loca-
tion within the frame.

14.2.2 Constant Declarations

We have two choices in translating declarations of constant (final) values. We can
treat a constant declaration just like a variable declaration initialized to the value
of the constant. After initialization, the location may be read, but is never written
(semantic checking enforces the rule that constants may not be redefined after dec-
laration).

For constants whose value is determined at run-time, we have little choice but
to translate the constant just as we would a variable. For example given

const int limit = findMax (dataArray) ;
we must evaluate the call to £indMax and store its result in a memory location
assigned to 1imit. Whenever 1imit is read, the value stored in the memory loca-
tion is used.

Most constants are declared to be manifest constants whose value is evident at
compile-time. For these declarations we can treat the constant as a synonym for its
defining value. This means we can generate code that directly accesses the defining
value, bypassing any references to memory. Thus given the Java declaration

final int dozen = 12;
we can substitute 12 for references to dozen. Note however that for more com-
plex constant values it may still be useful to assign a memory location initialized to
the defining value. Given

final double pi = 3.1415926535897932384626433832795028841971;
there is little merit in accessing the value of pi in literal form; it is easier to allo-
cate a double word and initialize it once to the appropriate value. Note too that
local manifest constants can be allocated globally. This is a useful thing to do since

14.3 Classes and Structures 5

the overhead of creating and initializing a location need be paid only once, at the
very start of execution.

14.3 Classes and Structures

One of the most important data structures in modern programming language is
the class (or structure or record). In Java, all data and program declarations
appear within classes. In C and C++, structures and classes are widely used.

What must be done to allocate and use a class object or structure? Basically,
classes and structures are just containers that hold a collection of fields. Even
classes, which may contain method declarations, really contain only fields. The
bodies of methods, though logically defined within a class, actually appear as part
of the translated executable code of a program.

When we process a class or structure declaration, we allocate space for each of
the fields that is declared. Each field is given an offset within the class or structure,
and the overall size necessary to contain all the fields is determined. This process is
very similar to the assignment of offsets for locals that we discussed above.

Let us return to our earlier example of variables a, b and ¢, now encapsulated
within a C-style structure:

struct {

int a;
char b[10];
float f;

} s
As each field declaration is processed, it is assigned an offset, starting at 0. Offsets
are adjusted upward, if necessary, to meet alignment rules. The overall size of all
fields assigned so far is recorded. In this example we have

Field Size Offset
a 4 0
b 10 4
c 4 16

The size of S is just ¢’s offset plus its size. S also has an alignment requirement
that corresponds to a’s alignment requirement. That is, when objects of type S are
allocated (globally, locally or in the heap), they must be word-aligned because field
a requires it.

In Java, field offsets and alignment are handled by the JVM and class file
structure. Within a class file for C, each of its fields is named, along with its type.
An overall size requirement is computed from these field specifications.

To access a field within a structure or class, we need to compute the address of
the field. The formula is simple

address(A.b) = address(A)+Offset(b).

Chapter 14 Processing Data Structure Declarations and References

That is, the address of each field in a class object or structure is just the start-
ing address of the object plus the field’s offset within the object. With static alloca-
tion no explicit addition is needed at run-time. If the object has a static address
Adr, and b’s offset has value £, then Adr+£, which is a valid address expression,
can be used to access A . b.

In Java, the computation of a field address is incorporated into the getfield
and putfield bytecodes. An object reference is first pushed onto the stack (this
is the object’s address). The instruction

getfield C/f F
determines the offset of field £ (a £1oat with a typecode of F) in class C, and then
adds this offset to the object address on the stack. The data value at the resulting
address is then pushed onto the stack. Similarly,

putfield C/f F
fetches the object address and data value at the top of the stack. It adds £’s offset
in class C, adds it to the object address, and stores the data value (a £1loat) at the
field address just computed.

For local class objects or structures, allocated in a frame, we use the same for-
mula. The address of the object or struct is represented as frame_pointer+Object-
Offset. The field offset is added to this: frame_pointer+ObjectOffset+FieldOffset.
Since the object and field offsets are both constants, they can be added together to
form the usual address form for locals, frame_pointer+Offset. As usual, this
address reduces to a simple indexed address within an instruction.

In Java, class objects that are locals are accessed via object references that are
stored within a frame. Such references are loaded and stored using the aload and
astore bytecodes. Fields are accessed using getfield and putfield.

Heap-allocated class objects or structures are accessed through a pointer or
object reference. In Java all objects must be heap-allocated. In C, C++ and related
languages, class objects and structures may be dynamically created using malloc
or new. In these cases, access is much the same as in Java—a pointer to the object
is loaded into a register, and a field in the object is accessed as register+offset
(again the familiar indexed addressing mode).

14.3.1 Variant Records and Unions

A number of varieties of classes and structures are found in programming lan-
guages. We’ll discuss two of the most important of these—variant records and
unions.

Variant records were introduced in Pascal. They are also found in other pro-
gramming languages, including Ada. A variant record is a record (that is, a struc-
ture) with a special field called a tag. The tag, an enumeration or integer value,
chooses among a number of mutually exclusive groups of fields called variants.
That is, a variant record contains a set of fixed fields plus additional fields that
may be allocated depending on the value of the tag. Consider the following exam-
ple, using Pascal’s variant record notation.

shape = record

14.3 Classes and Structures 7

area : real;
case kind : shapeKind of
square : (side : real);
circle : (radius : real)
end;

This definition creates a variant record named shape. The field area is
always present (since all shapes have an area). Two kinds of shapes are possible—
squares and circles. If kind is set to square, field side is allocated. If kind is
set to circle, field radius is allocated. Otherwise, no additional fields are allo-
cated.

Since fields in different variants are mutually exclusive, we don’t allocate
space for them as we do for ordinary fields. Rather, the variants overlay each
other. In our example, side and radius share the same location in the shape
record, since only one is “active” in any record.

When we allocate offsets for fields in a variant record, we start the first field of
each variant at the same offset, just past the space allocated for the tag. For shape
we would have

Field Size Offset
area 4 0
kind 1 4
side 4 8

radius 4 8

The size assigned to shape (with proper alignment) is 12 bytes—enough
space for area, kind and either side or radius.

As with ordinary structures and records, we address fields be adding their off-
set to the record’s starting address. Fields within a variant are accessible only if the
tag is properly set. This can be checked by first comparing the tag field with its
expected value before allowing access to a variant field. Thus if we wished to
access field radius, we would first check that kind contained the bit pattern
assigned to circle. (Since this check can slow execution, it is often disabled, just
as array bound checking is often disabled.)

Java contains no variant records, but achieves the same capabilities by using
subclasses. A class representing all the fields except the tag and variants is first cre-
ated. Then a number of subclasses are created, one for each desired variant. No
explicit tag is needed—the name assigned to each subclass acts like a tag. For
example, for shapes we would define.

class Shape {

float area;
}

class Square extends Shape ({
float side;
}

Chapter 14 Processing Data Structure Declarations and References

class Circle extends Shape {
float radius;
}

Ordinary JVM bytecodes for fields (getfield and putfield) provide
access and security. Before a field is accessed, its legality (existence and type) are
checked. Hence it is impossible to access a field in the “wrong” subclass. If neces-
sary, we can check which subclass (that is, which kind of shape) we have using the
instanceof operator.

Pascal also allows variant records without tags; these are equivalent to the
union types found in C and C++. In these constructs fields overlay each other, with
each field having an offset of 0. As one might expect, such constructs are quite
error-prone, since it is often unclear which field is the one to use. In the interests of
security Java does not provide a union type.

14.4 Arrays
14.4.1 Static One-Dimensional Arrays

One of the most fundamental data structures in programming languages is the
array. The simplest kind of array is one that has a single index and static (con-
stant) bounds. An example (in C or C++) is

int a[100];

Essentially an array is allocated as a block of N identical data objects, where N
is determined by the declared size of the array. Hence in the above example 100
consecutive integers are allocated.

An array, like all other data structures, has a size and an alignment require-
ment. An array’s size is easily computed as

size(array) = NumberOfElements * size(Element).

If the bounds of an array are included within it (as is the case for Java), the
array’s size must be increased accordingly.

An array’s alignment restriction is that of its components. Thus an integer
array must be word-aligned if integers must be word-aligned.

Sometimes padding is used to guarantee alignment of all elements. For exam-
ple, given the C declaration

struct s {int a; char b;} ar[100];
each element (a struct) is padded to a size of 8 bytes. This is necessary to guarantee
that ar [1] . a is always word-aligned.

When arrays are assigned, size information is used to determine how many
bytes to copy. A series of load store instructions can be used, or a copy loop,
depending on the size of the array.

In C, C++ and Java, all arrays are zero-based (the first element of an array is
always at position 0). This rule leads to a very simple formula for the address of an
array element:

address(A[i]) = address(A) + i * size(Element)

14.4 Arrays 9

For example, using the declaration of ar as an array of struct s given above,

address(ar[5]) = address(ar) + 5*size(s) = address(ar) + 5*8 = address(ar)+40.
Computing the address of a field within an array of structures is easy too. Recall
that

address(struct.field) = address(struct) + offset(field).
Thus address(struct[i].field) =

address(struct[i]) + offset(field) = address(struct) + i * size(struct) + offset(field).
For example, address(ar[5].b) =

address(ar[5]) + offset(b) = address(ar)+40+4 = address(ar)+44.

In Java, arrays are allocated as objects; all the elements of the array are allo-
cated within the object. Exactly how the objects are allocated is unspecified by
Java’s definition, but a sequential contiguous allocation, just like C and C++, is the
most natural and efficient implementation.

Java hides explicit addresses within the JVM. Hence to index an array it is not
necessary to compute the address of a particular element. Instead, special array
indexing instructions are provided. First, an array object is created and assigned to
a field or local variable. For example,

int ar[] = new int[100];

In Java, an array assignment just copies a reference to an array object; no
array values are duplicated. To create a copy of an array, the clone method is
used. Thus arl = ar2.clone () gives arl a newly created array object, initially
identical to ar2.

To load an array element (onto the stack top), we first push a reference to the
array object and the value of the index. Then an “array load” instruction is exe-
cuted. There is actually a family of array load instructions, depending on the type
of the array element being loaded: iaload (integer array element), faload
(floating array element), daload (double array element), etc. The first letter of the
opcode denotes the element type, and the suffix “aload” denotes an array load.

For example, to load the value of ar [5], assuming ar is a local array given a
frame index of 3, we would generate

aload 3 ; Load reference to array ar
iconst 5 ; Push 5 onto stack
iaload ; Push value of ar[5] onto the stack

Storing into an array element in Java is similar. We first push three values: a
reference to an array object, the array index, and the value to be stored. The array
store instruction is of the form Xastore, where X is one of i, 1, f, d, a, b, c, or
s (depending on the type to be stored). Hence to implement ar [4] = 0 we would

generate
load 3 ; Load reference to array ar
iconst_4 ; Push 4 onto stack
iconst 0 ; Push 0 onto stack
iastore ; Store 0 into ar[4]

Array Bounds Checking. An array reference is legal only if the index used is in
bounds. References outside the bounds of an array are undefined and dangerous,

10

Chapter 14 Processing Data Structure Declarations and References

as data unrelated to the array may be read or written. Java, with its attention to
security, checks that an array index is in range when an array load or array store
instruction is executed. An illegal index forces an ArrayIndexOutOfBounds-
Exception. Since the size of an array object is stored within the object, checking
the validity of an index is easy, though it does slow access to arrays.

In C and C++ indices out of bounds are also illegal. Most compilers do not
implement bounds checking, and hence program errors involving access beyond
array bounds are common.

Why is bounds checking so often ignored? Certainly speed is an issue. Check-
ing an index involves two checks (lower and upper bounds) and each check
involves several instructions (to load a bound, compare it with the index, and con-
ditionally branch to an error routine). Using unsigned arithmetic, bounds checking
can be reduced to a single comparison (since a negative index, considered
unsigned, looks like a very large value). Using the techniques of Chapter 16,
redundant bounds checks can often be optimized away. Still, array indexing is a
very common operation, and bounds checking adds a real cost (though buggy pro-
grams are costly too!).

A less obvious impediment to bounds checking in C and C++ is the fact that
array names are often treated as equivalent to a pointer to the array’s first element.
That is, an int [] and a *int are often considered the same. When an array
pointer is used to index an array, we don’t know what the upper bound of the
array is. Moreover, many C and C++ programs intentionally violate array bounds
rules, initializing a pointer one position before the start of an array or allowing a
pointer to progress one position past the end of an array.

We can support array bounds checking by including a “size” parameter with
every array passed as a parameter and every pointer that steps through an array.
This size value serves as an upper bound, indicating the extent to access allowed.
Nevertheless, it is clear that bounds checking is a difficult issue in languages where
difference between pointers and array addresses is blurred.

Array parameters often require information beyond a pointer to the array’s
data values. This includes information on the array’s size (to implement assign-
ment) and information on the array’s bounds (to allow subscript checking). An
array descriptor (sometimes called a dope vector), containing this information, can
be passed for array parameters instead of just a data pointer.

Non-zero Lower Bounds. In C, C++ and Java, arrays always have a lower bound of
zero. This simplifies array indexing. Still, a single fixed lower bound can lead to
clumsy code sequences. Consider an array indexed by years. Having learned not to
represent years as just two digits, we’d prefer to use a full four digit year as an
index. Assuming we really want to use years of the twentieth and twenty-first cen-
turies, an array starting at 0 is very clumsy. So is explicitly subtracting 1900 from
each index before using it.

Other languages, like Pascal and Ada, have already solved this problem. An
array of the form A [low. .high] may be declared, where all indices in the range

14.4 Arrays 11

low, ..., high are allowed. With this array form, we can easily declare an array
index by four digit years: data [1900..2010].

With a non-zero lower bound, our formula for the size of an array must be

generalized a bit:
size(array) = (UpperBound - LowerBound + 1) * size(Element).

How much does this generalization complicate array indexing? Actually, sur-
prisingly little. If we take the Java approach, we just include the lower bound as
part of the array object we allocate. If we compute an element address in the code
we generate, the address formula introduced above needs to be changed a little:

address(A[i]) = address(A) + (i - low) * size(Element)

We subtract the array’s lower bound (low) before we multiply by the element
size. Now it is clear why a lower bound of zero simplifies indexing—a subtraction
of zero from the array index can be skipped. But the above formula can be rear-
ranged to:

address(A[i]) = address(A) + (i * size(Element)) - (low * size(Element)) =

address(A) - (low * size(Element)) + (i * size(Element))
We now note that low and size(Element) are normally compile-time constants, so
the expression (low * size(Element)) can be reduced to a single value, bias. So now
we have

address(A[i]) = address(A) - bias + (i * size(Element))

The address of an array is normally a static address (a global) or an offset relative
to a frame pointer (a local). In either case, the bias value can be folded into the
array’s address, forming a new address or frame offset reduced by the value of
bias.

For example, if we declare an array int data[1900..2010], and assign
data an address of 10000, we get a bias value of 1900*size(int) = 7600. In com-
puting the address of data[i] we compute 2400+i*4. This is exactly the same
form that we used for zero-based arrays.

Even if we allocate arrays in the heap (using new or malloc), we can use the
same approach. Rather than storing a pointer to the array’s first element, we store
a pointer to its zero-th element (which is what subtracting bias from the array
address gives us). We do need to be careful when we assign such arrays though; we
must copy data from the first valid position in the array. Still, indexing is far more
common than copying, so this approach is still a good one.

Dynamic and Flex Arrays. Some languages, including Algol 60, Ada and Java sup-
port dynamic arrays whose bounds and size are determined at run-time. When the
scope of a dynamic array is entered, its bounds and size are evaluated and fixed.
Space for the array is then allocated. The bounds of a dynamic array may include
parameters, variables and expressions. For example, in C extended to allow
dynamic arrays, procedure P we might include the declaration

int examScore [numOfStudents ()] ;

Because the size of a dynamic array isn’t known at compile-time, we can’t
allocate space for it globally or in a frame. Instead, we must allocate space either
on the stack (just past the current frame) or in the heap (Java does this). A pointer

12

Chapter 14 Processing Data Structure Declarations and References

to the location of the array is stored in the scope in which the array is declared.
The size of the array (and perhaps its bounds) are also stored. Using our above
example, we would allocate space for examScores as shown in Figure 14.1.
Within P’s frame we allocate space for a pointer to examScore’s values as well as
it size.

Array Values for
examsScore

Size of examScore

Pointer to examScore > Frame for P

Run-time Stack

Figure 14.1 Allocation of a Dynamic Array

Accessing a dynamic array requires an extra step. First the location of the
array is loaded from a global address or from an offset within a frame. Then, as
usual, an offset within the array is computed and added to the array’s starting
location.

A variant of the dynamic array is the flex array, which can expand its bounds
during execution. (The Java Vector class implements a flex array.) When a flex
array is created, it is given a default size. If during execution an index beyond the
array’s current size is used, the array is expanded to make the index legal. Since
the ultimate size of a flex array isn’t known when the array is initially allocated,
we store the flex array in the heap, and point to it. Whenever a flex array is
indexed, the array’s current size is checked. If it is too small, another larger array
is allocated, values from the old allocation are copied to the new allocation, and
the array’s pointer is reset to point to the new allocation.

When a dynamic or flex array is passed as a parameter, it is necessary to pass
an array descriptor that includes a pointer to the array’s data values as well as
information on the array’s bounds and size. This information is needed to support
indexing and assignment.

14.4 Arrays 13

14.4.2 Multidimensional Arrays

In most programming languages multidimensional arrays may be treated as arrays
of arrays. In Java, for example, the declaration

int matrix[] [] = new int[5] [10];
first assigns to matrix an array object containing five references to integer arrays.
Then, in sequence, five integer arrays (each of size ten) are created, and assigned to
the array matrix references (Figure 14.2).

Array of int arrays
o [1]2]3] 4

Array of 10 ints Array of 10 ints

Figure 14.2 A Multidimensional Array in Java

Other languages, like C and C++, allocate one block of memory, sufficient to
contain all the elements of the array. The array is arranged in row-major form,
with values in each row contiguous and individual rows placed sequentially (Fig-
ure 14.3). In row-major form, multidimensional arrays really are arrays of arrays,
since in an array reference like A[1] [§], the first index (i) selects the i-th row,
and the second index (j) chooses an element within the selected row.

Afo] [o]|Al0] [1] |...|Aa[21 01| A1l [(2]] ... |Aa[9] (8]]|A[9] [9]

Figure 14.3 ArrayA[10] [10] Allocated in Row-Major Order

An alternative to row-major allocation is column-major allocation, which is
used in Fortran and related languages. In column-major order values in individual
columns are contiguous, and columns are placed adjacent to each other (Figure
14.4). Again, the whole array is allocated as a single block of memory.

Afo] [0]|Al1II[0] |...|Aa[0o) [1)|Aar1][2]] ... |;Aa[81 191 |Aa[9] (9]

Figure 14.4 ArrayA[10] [10] Allocated in Column-Major Order

14

Chapter 14 Processing Data Structure Declarations and References

How are elements of multidimensional arrays accessed? For arrays allocated
in row-major order (the most common allocation choice), we can exploit the fact
that multidimensional arrays can be treated as arrays of arrays. In particular, to
compute the address of A[1] [§], we first compute the address of A[i], treating
A as a one dimensional array of values that happen to be arrays. Once we have the
address of A[1], we then compute the address of X [§], where X is the starting
address of A[i].

Let’s look at the actual computations needed. Assume array A is declared to be
an n by m array (e.g., it is declared as T A [n] [m], where T is the type of the
array’s elements).

We now know that

address(A[i][j]) = address(X[j]) where X = address(A[i]).
address(A[i]) = address(A) + i * size(T) * m.

Now
address(X[j]) = address(X) + j * size(T).

Putting these together,
address(A[i][j]) = address(A) + i * size(T) * m + j * size(T) =
address(A) + (i * m +j) * size(T).

Computation of the address of elements in a column-major array is a bit more
involved, but we can make a useful observation. First, recall that transposing an
array involves interchanging its rows and columns. That is, the first column of the
array becomes the first row of the transposed array, the second column becomes
the second row and so on (see Figure 14.5).

1 6

3 4 5
2|7 8§ | 9 | 10
3 8 Transposed Array
4 9
51 10

Original Array
Figure 14.5 An Example of Array Transposition

Now observe that a column-major ordering of elements in an array corre-
sponds to a row-major ordering in the transposition of that array. Allocate an n by
m array, A, in column-major order and consider any element A[i] [§]. Now
transpose A into AT, an m by n array, and allocate it in row-major order. Element
AT [§] [i] will always be the same as A[1] []].

14.5 Implementing Other Types 15

What this means is that we have a clever way of computing the address of
A[i] [§] in a column-major array. We simply compute the address of AT [§] [1i],
where AT is treated as a row-major array with the same address as A, but with
interchanged row and column sizes (A [n] [m] becomes AT [m]n]).

As an example, refer to Figure 14.5. The array on the left represents a 5 by 2
array of integers; in column-major order, the array’s elements appear in the order
1 to 10. Similarly, the array on the right represents a 2 by 5 array of integers; in
row-major order, the array’s elements appear in the order 1 to 10. It is easy to see
that a value in position [1][]] in the left array always corresponds to the value at
[§]i] in the right (transposed) array.

In Java, indexing multidimensional arrays is almost exactly the same as index-
ing one dimensional arrays. The same JVM bytecodes are used. The only differ-
ence is that now more than one index value must be pushed. For example, if A is a
two dimensional integer array (at frame offset 3), to obtain the value of A[1] [2]
we would generate

aload 3 ; Load reference to array A

iconst 1 ; Push 1 onto stack

iconst 2 ; Push 2 onto stack

iaload ; Push value of A[1l] [2] onto the stack

The JVM automatically checks that the right number of index values are
pushed, and that each is in range.

14.5 Implementing Other Types

In this section we’ll consider implementation issues for a number of other types
that appear in programming languages.

Enumerations. A number of programming languages, including C, C++, Pascal
and Ada, allow users to define a new data type by enumerating its values. For
example, in C we might have

enum color { red, blue, green } myColor;

An enumeration declaration involves both semantics and code generation. A
new type is declared (e.g. color). Constants of the new type are also declared
(red, blue and green). Finally, a variable of the new type (myColor) is
declared.

To implement an enumeration type we first have to make values of the enu-
meration available at run-time. We assign internal encoding to the enumeration’s
constant values. Typically these are integer values, assigned in order, starting at
zero or one. Thus we might treat red as the value 1, blue as the value 2 and
green as the value 3. (Leaving zero unassigned makes it easy to distinguish unini-
tialized variables, which often are set to all zeroes). In C and C++, value assign-
ment starts at zero.

C and C++ allow users to set the internal representation for selected enumera-
tion values; compiler selected values must not interfere with those chosen by a
programmer. We can allocate initialized memory locations corresponding to each

16

Chapter 14 Processing Data Structure Declarations and References

enumeration value, or we can store the encoding in the symbol table and fill them
directly into instructions as immediate operands.

Once all the enumeration values are declared, the size required for the enu-
meration is chosen. This is usually the smallest “natural” memory unit that can
accommodate all the possible enumeration values. Thus we might choose to allo-
cate a byte for variables of type color. We could actually use as few as two bits,
but the cost of additional instructions to insert or extract just two bits from mem-
ory makes byte-level allocation more reasonable.

A variable declared to be an enumeration is implemented just like other scalar
variables. Memory is allocated using the size computed for the enumeration type.
Values are manipulated using the encoding chosen for the enumeration values.

Thus variable myColor is implemented as if it were declared to be of type
byte (or char). The assignment myColor = blue is implemented by storing 2
(the encoding of blue) into the byte location assigned to myColor.

Subranges. Pascal and Ada include a useful variant of enumerated and integer
types—the subrange. A selected range of values from an existing type may be cho-
sen to form a new type. For example

type date = 1..31;

A subrange declaration allows a more precise definition of the range of values
a type will include. It also allows smaller memory allocations if only a limited
range of values is possible.

To implement subranges, we first decide on the memory size required. This is
normally the smallest “natural” unit of allocation sufficient to store all the possi-
ble values. Thus a byte would be appropriate for variables of type date. For sub-
ranges involving large values, larger memory sizes may be needed, even if the
range of values is limited. Given the declaration

type year =1900..2010;
we might well allocate a half word, even though only 111 distinct values are possi-
ble. Doing this makes loading and storing values simpler, even if data sizes are
larger than absolutely necessary.

In manipulating subrange values, we may want to enforce the subrange’s
declared bounds. Thus whenever a value of type year is stored, we can generate
checks to verify that the value is in the range 1900 to 2010. Note that these checks
are very similar to those used to enforce array bounds.

Ada allows the bounds of a subrange to be expressions involving parameters
and variables. When range bounds aren’t known in advance, a maximum size
memory allocation is made (full or double word). A run-time descriptor is created
and initialized to the range bounds, once they are evaluated. This descriptor is
used to implement run-time range checking.

Files. Most programming languages provide one or more file types. File types are
potentially complex to implement since they must interact with the computer’s
operating system. For the most part, a compiler must allocate a “file descriptor”

14.5 Implementing Other Types 17

for each active file. The format of the file descriptor is system-specific; it is deter-
mined by the rules and conventions of the operating system in use.

The compiler must fill in selected fields from the file’s declaration (name of the
file, its access mode, the size of data elements, etc.). Calls to system routines to
open and close files may be needed when the scope containing a file is entered or
exited. Otherwise, all the standard file manipulation operations—read, write, test
for end-of-file, etc., simply translate to calls to corresponding system utilities.

In Java, where all files are simply instances of predefined classes, file manipu-
lation is no different than access to any other data object.

Pointers and Objects. We discussed the implementation of pointers and object ref-
erences in Section 12.7. In Java, all data except scalars are implemented as objects
and accessed through object references (pointers). Other languages routinely use a
similar approach for complex data objects. Hence, as we learned above, dynamic
and flex arrays are allocated on the stack or heap, and accessed (invisibly) through
pointers. Similarly, strings are often implemented by allocating the text of the
string in the heap, and keeping a pointer to the current text value in the heap.

In Java, all objects are referenced through pointers, so the difference between
a pointer and the object it references is obscured. In languages like C and C++ that
have both explicit and implicit pointers, the difference between pointer and object
can be crucial.

A good example of this is the difference between array and structure assign-
ment in C and C++. The assignment structl = struct2 is implemented as a
memory copy; all the fields within struct2 are copied into structl. However,
the assignment arrayl = array2 means something very different. array?2 rep-
resents the address of array?2, and assigning it to array1 (a constant address) is
illegal.

Whenever we blur the difference between a pointer and the object it refer-
ences, similar ambiguities arise. Does ptrl = ptr2 mean copy a pointer or copy
the object pointed to? In implementing languages it is important to be clear on
exactly when evaluation yields a pointer and when it yields an object.

Exercises

18

Chapter 14 Processing Data Structure Declarations and References

. Local variables are normally allocated within a frame, providing for auto-

matic allocation and deallocation when a frame is pushed and popped. Under
what circumstance must a local variable be dynamically allocated?

Are there any advantages to allocating a local variable statically (i.e., giving it
a single fixed address)? Under what circumstances is static allocation for a
local permissible?

. Consider the following C/C++ structure declarations

struct {int a; float b; int c[10];} s;
struct {int a; float b; } t[10];

Choose your favorite computer architecture. Show the code that would be
generated for s.c[5] assuming s is statically allocated at address 1000.
What code would be generated for t [3] .b if t is allocated within a frame at
offset 200?

. Consider the following Java class declaration

class Cl {int a; float b; int c[]; C1 dll;};

Assume that v is a local reference to €1, with an index of 4 within its frame.
Show the JVM code that would be generated for v.a, v.c[5], v.d[2] .b
and v.d[2] .c[4].

. Explain how the following three declaration would be translated in C, assum-

ing that they are globally declared (outside all subprogram bodies).
const int ten = 10;

const float pi = 3.14159;
const int limit = get limit();

How would the above three declaration be translated if they are locals decla-
rations (within a subprogram body)?

. Assume that in C we have the declaration int a[5] [10] [20], where a is

allocated at address 1000. What is the address of a [1] [§] [k] assuming a is
allocated in row-major order? What is the address of a[1] [§] [k] assuming
a is allocated in column-major order?

. Most programming languages (including Pascal, Ada, C, and C++) allocate

global aggregates (records, arrays, structs and classes) statically, while local
aggregates are allocated within a frame. Java, on the other hand, allocates all
aggregates in the heap. Access to them is via object references allocated stati-
cally or within a frame.

Is it less efficient to access an aggregate in Java because of its mandatory heap
allocation? Are there any advantages to forcing all aggregates to be uniformly
allocated in the heap?

. In Java, subscript validity checking is mandatory. Explain what changes

would be needed in C or C++ (your choice) to implement subscript validity
checking. Be sure to address the fact that pointers are routinely used to access
array elements. Thus you should be able to checks array accesses that are done

10.

14.5 Implementing Other Types 19

through pointers, including pointers that have been incremented or decre-
mented.
Assume we add a new option to C++ array that are heap-allocated, the flex
option. A flex array is automatically expanded in size if an index beyond the
array’s current upper limit is accessed. Thus we might see

ar = new flex int[10]; ar[20] = 10;

The assignment to position 20 in ar forces an expansion of ar’s heap alloca-
tion. Explain what changes would be needed in array accessing to implement
flex arrays. What should happen if an array position beyond an array’s cur-
rent upper limit is read rather than written?

. Fortran library subprograms are often called from other programming lan-

guages. Fortran assumes that multi-dimensional arrays are stored in column-
major order; most other languages assume row-major order. What must be
done if a C program (which uses row-major order) passes a multi-dimensional
array to a Fortran subprogram. What if a Java method, which stores multi-
dimensional arrays as arrays of array object references, passes such an array
to a Fortran subprogram?

Recall that offsets within a record or struct must sometimes be adjusted
upward due to alignment restrictions. Thus in the following two C structs, S1
requires 6 bytes whereas S2 requires only 4 bytes.

struct { struct {
char «cl; char «cl;
short s; char c¢2;
char c2; short s;
} s1; } s2;

Assume we have a list of the fields in a record or struct. Each is characterized
by its size and alignment restriction 22. (A field with an alignment restriction
22 must be assigned an offset that is a multiple of 22).

Give an algorithm that determines an ordering of fields that minimizes the
overall size of a record or struct while maintaining all alignment restrictions.
How does the execution time of your algorithm (as measured in number of
execution steps) grow as the number of fields increases?

16

Program Optimization

This book has so far discussed the analysis and synthesis required to translate a
programming language into interpretable or executable code. The analysis has
been concerned with policing the programmer: making sure that the source pro-
gram conforms to the definition of the programming language in which the pro-
gram is written. After the compiler has verified that the source program conforms,
synthesis takes over to translate the program. The target of this translation is typi-
cally an interpreatable or executable instruction set. Thus, code generation consists
of translating a portion of a program into a sequence of instructions that mean the
same thing.

As is true of most languages, there are many ways to say the same thing. In
Chapter Chapter:global:fifteen, instruction selection is presented as a mechanism
for choosing an efficient sequence of instructions for the target machine. In this
chapter, we examine more aggressive techniques for improving a program's perfor-
mance. Section 16.1 introduces program optimization—its role in a compiler, its
organization, and its potential for improving program performance. Section 16.2
presents data flow analysis—a technique for determining useful properties of a
program at compile-time. Section 16.3 considers some advanced analysis and op-
timizations.

2 Chapter 16. Program Optimization

16.1 Introduction

When compilers were first pioneered, they were considered successful if programs
written in a high-level language attained performance that rivaled hand-coded ef-
forts. By today's standards, the programming languages of those days may seem
primitive. However, the technology that achieved the requisite performance is very
impressive—such techniques are successfully applied to modern programming lan-
guages. The scale of today's software projects would be impossible without the
advent of advanced programming paradigms and languages. As a result, the goal
of hand-coded performance has yielded to the goal of obtaining a reasonable frac-
tion of a target machine's potential speed.

Meanwhile, the trend in reduced instruction set computer (RISC) architecture
points toward comparatively low-level instruction sets. Such architectures feature
shorter instruction times with correspondingly faster clock rates. Other develop-
ments include liguid architectures, whose operations, registers, and data paths can
be reconfigured. Special-purpose instructions have also been introduced, such as
the MMX instructions for Intel machines. These instructions facilitate graphics and
numerical computations. Architectural innovations cannot succeed unless com-
pilers can make effective use of both RISC and the more specialized instructions.
Thus, collaboration between computer architects, language designers, and com-
piler writers continues to be strong.

The programming language community has defined the semantic gap as a
(subjective) measure of the distance between a compiler's source and target lan-
guages. As this gap continues to widen, the compiler community is challenged to
build efficient bridges. These challenges come from many sources—examples in-
clude object-orientation, mobile code, active network components, and distributed
object systems. Compilers must produce excellent code quickly, quietly, and—of
course—correctly.

16.1.1 Why Optimize?
Although its given name is a misnomer, it is certainly the goal of program opti-
mization to improve a program's performance. Truly optimal performance cannot
be achieved automatically, as the task subsumes problems that are known to be
undecidable [?]. The four main areas in which program optimizers strive for im-
provement are as follows:

¢ High-level language features.

o Targeting of machine-specific features.

o The compiler itself.

o A better algorithm.

16.1. Introduction 3

A+« BxC
function x(Y,Z) : Matrix
if Y.cols # Z.rows 1
then /% Throw an exception /
else
for i = 1 to Y.rows do
forj = 1to Z.cols do
Result[i,j] + 0
for k =1 to Y.cols do
Result[i,f] < Result[i,j|+ Y[i, k] x Z[k,]]
return (Result)
end
procedure =(To, From)

if To.cols # From.cols or To.rows # From.rows 2
then /x Throw an exception %/
else

for i = 1 to To.rows do
forj = 1 to To.cols do
Toli,j] + Fromli,j)
end

Figure 16.1: Matrix multiplication using overloaded operators.

Each of these is considered next in some detail, using the example shown in Fig-
ure 16.1. In this program, variables A, B, and C are of type Matrix. For simplicity,
we assume all matrices are of size N x N. The x and = operators are overloaded
to perform matrix multiplication and assignment, respectively, using the function
and procedure provided in Figure 16.1.

High-Level Language Features

High-level languages contain features that offer flexibility and generality at the cost
of some runtime efficiency. Optimizing compilers attempt to recover performance
for such features in the following ways.

e Perhaps it can be shown that the feature is not used by some portion of a
program.

In the example of Figure 16.1, suppose that the Matrix type is subtyped into
SymMatrix—with definitions of the Matrix methods optimized for symmetric
matrices. If A and B are actually of type SymMatrix, then languages that offer
virtual function dispatch are obligated to call the most specialized method for
an actual type. However, if compiler can show that x and = are not redefined
in any subclass of Matrix, then the result of a virtual function dispatch on

4 Chapter 16. Program Optimization

fori=1to N do 3
forj=1to Ndo
Result[i,j] + 0
for k = 1to N do
Result[i,j] < Result[i,j] + B[i, k] x C[k,]] 4
fori=1to N do 5
forj=1to Ndo
Ali,j] « Result[i,]]

Figure 16.2: Inlining the overloaded operators.

these methods can be predicted for any object whose compile-time type is at
least Matrix.

Based on such analysis, method inlining expands the method definitions in
Figure 16.1 at their call sites, substituting the appropriate parameter values.
Shown in Figure 16.2, the resulting program avoids the overhead of function
calls. Moreover, the code is now specially tailored for its arguments, whose
row and column sizes are N. Program optimization can then eliminate the
tests at Steps 1 and 2.

e Perhaps it can be shown that a language-mandated operation is not necessary.
For example, Java insists on subscript checks for array references and type-
checks for narrowing casts. Such checks are unnecessary if an optimizing
compiler can determine the outcome of the result at compile-time. When
code is generated for Figure 16.2, induction variable analysis can show that
i, j, and k all stay within the declared range of matrices A, B, and C. Thus,
subscript tests can be eliminated for those arrays.

Even if the outcome is uncertain at compile-time, a test can be eliminated if
its outcome is already computed. Suppose the compiler is required to check
the subscript expressions for the Result matrix at Step 4 in Figure 16.2. Most
likely, the code generator would insert a test for each reference of Resulti, j].
An optimization pass could determine that the second test is redundant.

Modern software-construction practices dictate that large software systems should
be comprised of small, easily written, readily reusable components. As a result, the
size of a compiler's compilation unit—the text directly presented in one run of the
compiler—has has been steadily dwindling. Optimizing compilers therefore con-
sider the problem of whole-program optimization (WPQO), which requires analyz-
ing the interaction of a program's compilation units. Method inlining—successful
in our example—is one example of the benefits of WPO. Even if a method cannot
be inlined, WPO can generate a version of the invoked method that is customized
to its calling context. In other words, the trend toward reusable code can result in
systems that are general but not as efficient as they could be. Optimizing compilers
step in to regain some of the lost performance.

16.1. Introduction S

fori=1to N do
forj=1to Ndo

Ali,j] + 0
for k =1to N do 6
Ali,f] < Ali, j] + B[i, k] x Clk,] 7

Figure 16.3: Fusing the loop nests.

Target-Specific Optimization

Portability ranks high among the goals of today's programming languages. Ide-
ally, once a program is written in a high-level language, it should be movable
without modification to any computing system that supports the language. Archi-
tected interpretive languages such as Java virtual machine (JVM) support portabil-
ity nicely—any computer that sports a JVM interpreter can run any Java program.
But the question remains—how fast? Although most modern computers are based
on RISC principles, the details of their instruction sets vary widely. Moreover,
various models for a given architecture can also differ greatly with regard to their
storage hierarchies, their instruction timings, and their degree of concurrency.

Continuing with our example, the program shown in Figure 16.2 is an im-
provement over the version shown in Figure 16.1, but it is possible to obtain better
performance. Consider the behavior of the matrix Result. The values of Result are
computed in the loop nest at Step 3—one element at a time. Each of these elements
is then copied from Result to A by the loop nest at Step 5. Poor performance can
be expected on any non-uniform memory access (NUMA) system that cannot ac-
commodate Result at its fastest storage level. Better performance can be obtained if
the data is stored directly in A. Optimizing compilers that feature loop fusion can
identify that the outer two loop nests at Steps 3 and 5 are structurally equivalent.
Dependence analysis can show that each element of Result is computed indepen-
dently. The loops can then be fused to obtain the program shown in Figure 16.3,
in which the Result matrix is eliminated.

Artifacts of program translation

In the process of translating a program from a source to target language, a com-
piler pass can introduce spurious computations. As discussed in Chapter Chap-
ter:global:fifteen, compilers try to keep frequently accessed variables in fast regis-
ters. Thus, it is likely that the iteration variables in Figure 16.3 are kept in registers.
Figure 16.4 shows the results of straightforward code generation for the loops in
Figure 16.3.

e The loops contain instructions at Steps 10, 11, and 12 that save the iteration
variable register in the named variable. However, this particular program
does not require a value for the iteration variables when the loops are fin-
ished. Thus, such saves are unnecessary. In Chapter Chapter:global:fifteen,

6 Chapter 16. Program Optimization

T — 1
while 7; < N do
7j «~—1
while 7; < N do
74— * (Addr(A) + (((ri—1) x N+ (r;—1))) x 4)
*(r2) <0
Tp < 1
while r, < N do
74+ * (Addr(A) + (((ri—1) x N+ (r;—1))) x 4) 8
g — * (Addr(B) + (((ri— 1) x N+ (rp, —1))) x 4)
rc — * (Addr(C) + (((re — 1) x N+ (r;—1))) x 4)
Ysum € TA
Tprod <~ B X TC
Ysum < Vsum + Yprod

ra e * (Addr(A) + (i— 1) x N+ (j—1))) x 4) 9
*(ra)ersum
rp—rpt+ 1
k1 10
rj 1+ 1
j 7 1
ri+—ri+1
17 12

Figure 16.4: Low-level code sequence.

register allocation can avoid such saves if the iteration variable can be allo-
cated a register without spilling.

o Because code generation is mechanically invoked for each program element,
it is easy to generate redundant computations. For example, Steps 8 and 9
compute the address of A7, j]. Only one such computation is necessary.

Conceivably, the code generator could be written to account for these conditions
as it generates code. Superficially, this may seem desirable, but modern compiler
design practices dictate otherwise.

¢ Such concerns can greatly complicate the task of writing the code generator.
Issues such as instruction selection and register allocation are the primary
concerns of the code generator. Generally, it is wiser to craft a compiler by
combining simple, single-purpose transformations that are easily understood,
programmed, and maintained. Each such transformation is often called a
pass of the compiler.

o There are typically many portions of a compiler that can generate superfluous
code. It is more efficient to write one compiler pass that is dedicated to the

16.1. Introduction 7

removal of unnecessary computations than to duplicate that functionality
throughout the compiler.

In this chapter, we study two program optimizations that remove unnecessary code:
dead-code elimination and unreachable code elimination. Even the most basic
compiler typically includes these passes, if only to clean up after itself.

Continuing with our example, consider code generation for Figure 16.3. Let us
assume that each array element occupies 4 bytes, and that subscripts are specified
in the range of 1..N. The code for indexing the array element A[i, ;] becomes

Addr(A)+ ((i— 1) x N+(j—1))) x4

which takes

4 integer “+” and “-”
2 integer “x”

6 integer operations

Since Step 7 has 4 such array references, each execution of this statement takes

16 integer “4+” and “—”
8§ integer “x”
3 loads
1 floating “+”
1 floating “x”
1 store

30 instructions

Moreover, the loop contains 2 floating-point instructions and 24 fixed-point in-
structions. On superscalar architectures that support concurrent fixed- and floating-
point instructions, this loop can pose a severe bottleneck for the fixed-point unit.

The computation can be greatly improved by optimizations that are described
in this chapter.

¢ Loop-invariant detection can deterine that the (address) expression Al]
does not change at Step 7.

¢ Reduction in strength can replace the address computations for the matrices
with simple increments of an index variable. The iteration variables them-
selves can disappear, with loop termination based on the subscript addresses.

The result of applying these optimizations on the innermost loop is shown in
Figure 16.5. The inner loop now contains 2 floating-point and 2 fixed-point
operations—a balance that greatly improves the loop's performance on modern
processors.

8 Chapter 16. Program Optimization

FourN +— 4 x N
fori=1to N do
forj = 1to Ndo
a + &(A[i,])
b + &(B[i, 1])
c+ &(C[1,7])
while b < &(B[i, 1]) + FourN do
*a 4 *a+xb x *c
b+—b+4
¢ < ¢+ FourN

Figure 16.5: Optimized matrix multiply.

Program Restructuring

Some optimizing compilers attempt to improve a program by prescribing better
algorithms and data structures.

e Some programming languages contain constructs for which diverse imple-
mentations are possible. For example, Pascal and SETL offer the set type-
constructor. An optimizing compiler could choose a particular implementa-
tion for a set, based on the the predicted construction and use of the set.

¢ If the example in Figure 16.3 can be recognized as matrix-multiply, then
an optimizing compiler could replace the code with a better algorithm for
matrix-multiply. Except in the most idiomatic of circumstances, it is difficult
for a compiler to recognize an algorithm at work.

16.1.2 Organization

In this section, we briefly examine the organization of an optimizing compiler—
how it represents and processes programs.

Use of an intermediate language

The task of creating an optimizing compiler can be substantial, especially given the
extent of automation available for a compiler's other parts. Ideally, the design, cost,
and benefits of an optimizing compiler can be shared by multiple source languages
and target architectures. An intermediate language (IL) such as JVM can serve as
a focal point for the optimizer, as shown in Figure 16.6. The optimizer operates
on the IL until the point of code generation, when target code is finally generated.
Attaining this level of machine-independent optimization is difficult, as each target
machine and source language can possess features that demand special treatment.
Nonetheless, most compiler designs resemble the structure shown in Figure 16.6.
The techniques we present in this chapter are sufficiently general to accommo-
date any program representation, given that the following information is available.

16.1. Introduction 9

IBM SUN .
RY/6000 | SPARC CRAY

Figure 16.6: Program optimization for multiple sources and targets.

o The operations of interest must be known and explicitly represented. For
example, if the program contains a code sequence that computes a + b, the
compiler might also be called upon to perform this computation.

o The effects of the program's operations must be known or approximated.
For example, the optimizer may require knowing the set of global variables
that can be affected by a given method. If this set is not known, it can be
approximated by the set of all global variables.

o The potential ordering of operations may be of interest. Within a given
method, its operations can usually be regarded as the nodes of a control
flow graph, whose edges show the potential flow from one operation to the
next. Any path taken by a program at runtime is a path of this control flow
graph. Of course, the graph may contain paths that are rarely taken, but
these are necessary to understand the program's potential behavior. More-
over, the graph can contain paths that can never be taken—consider a predi-
cate whose outcome is always false.

As discussed in Section 16.2, each optimization pass has its own view of the impor-
tant aspects of the program's operations. We stress here that the potential run-time
behavior of a program is approximated at compile-time, both in terms of the oper-
ations' effects and order.

A series of small passes

As discussed in Section 16.1.1, it is expedient to organize an optimizing compiler
as a series of passes. Each pass should have a narrowly defined goal, so that its
scope is easily understood. This facilitates development of each pass as well as
the integration of the separate passes into an optimizing compiler. For example, it
should be possible to run the dead-code elimination pass at any point to remove
useless code. Certainly this pass would be run prior to code generation. However,
the effectiveness of an individual pass as well as the overall speed of the optimizing
compiler can be improved by sweeping away unnecessary code.

10 Chapter 16. Program Optimization

To facilitate development and interoperability, it is useful for each pass to ac-
cept and produce programs in the IL of the compiler. Thus, the program transfor-
mations shown in Figures 16.1, 16.2, 16.3, and 16.5 could be carried out on the
compiler's intermediate form. In research compilers, a source language (such as
C) can serve as a nice IL, because a C compiler can take the optimized IL form to
native code when the optimizing compiler is finished. Alternatively JVM can serve
as an IL for high-level program optimization, although JVM is certainly biased
toward a Java view of what programs can do.

Unfortunately, the passes of a compiler can interact in subtle ways. For exam-
ple, code motion can rearrange a program's computations to make better use of a
given architecture. However, as the distance between a variable's definition and its
uses grows, so does the pressure on the register allocator. Thus, it is often the case
that a compiler's optimizations are at odds with each other. Ideally, the passes of
an optimizing compiler should be fairly independent, so that they can be reordered
and retried as situations require.

16.2. Data Flow Analysis 11

Start

u+S
repeat
if r
then
v+ 9
if p
then u «+ 6
else w« 5
X—v+w
else y+—v+w
u+"7
repeat
if g
then
2+<v+w 13
until 7
v+ 2
until s

Figure 16.7: A program and its control flow graph.

16.2 Data Flow Analysis

As discussed in Section 16.1, an optimizing compiler is typically organized as a
series of passes. Each pass may require approximate information about the pro-
gram's run-time behavior. Data flow frameworks offer a structure for such analysis.
We begin in Section 16.2.1 by describing several data flow problems—their spec-
ification and their use in program optimization. In Section 16.2.2, we formalize
the notion of a data flow framework. Section 16.2.3 describes how to evaluate a
data flow framework. In this section, we use the program shown in Figure 16.7(a)
as an example. The same program is represented in Figure 16.7(b) by its control
flow graph—the instructions are contained in the nodes, and the edges indicate
potential branching within the program.

16.2.1 Introduction and Examples

In Section 16.2.2, we offer a more formal presentation of data flow frameworks.
Here, we discuss data flow problems informally, examining a few popular op-
timization problems and reasoning about their data flow formulation. In each
problem, we are interested in the following.

o What is the effect of a code sequence on the solution to the problem?

12 Chapter 16. Program Optimization

e When branching in a program converges, how do we summarize the solution
so that we need not keep track of branch-specific behavior?

e What are the best and worst possible solutions?

Local answers to the above questions are combined by data flow analysis to arrive
at a global solution.

Available Expressions

Figure 16.7 contains several computations of the expression v + w. If we can
show that the particular value of v + w computed at Step 13 is already available,
then there is no need to recompute the expression at Step 13. More specifically,
an expression expr is available at edge e of a flow graph if the past behavior of
the program necessarily includes a computation of the value of expr at edge e.
The available expressions data flow problem analyzes programs to determine such
information.

To solve the available expressions problem, a compiler must examine a pro-
gram to determine that expression expr is available at edge e, regardless of how the
program arrives at edge e. Returning to our example, v + w is available at Step 13
if every path arriving at Step 13 computes v + w without a subsequent change to v
or w.

In this problem, an instruction affects the solution if it computes v + w or if it
changes the value of v or w, as follows.

o The Start node of the program is assumed to contain an implicit computation
of v + w. For programs that initialize their variables, v + w is certainly
available after node Start. Otherwise, although v + w is uninitialized, the
compiler is free to assume the expression has any value it chooses.

¢ A node of the flow graph that computes v + w makes v + w available.
o A node of the flow graph that assigns v or w makes v + w not available.
¢ All other nodes have no effect on the availability of v + w.

In Figure 16.7(b), the shaded nodes make v + w unavailable. The nodes with dark
circles make v + w available. From the definition of this problem, we summarize
two solutions by assuming the worst case. At the input to node A, the path from
Start contains an implicit computation of v + w; on the loop edge, v + w is not
available. At the input to node A, we must therefore assume that v + w is not
available.

Based on the above reasoning, information can be pushed through the graph
to reach the solution shown on each edge of Figure 16.8. In particular, v + w is
avaiable on the edge entering the node that represents Step 13 in Figure 16.7(a).
Thus, the program can be optimized by eliminating the recomputation of v + w.
Similarly, the address computation for A[,j] need not be performed at Step 9 in
Figure 16.4—the expression is available from the computation at Step 8.

16.2. Data Flow Analysis 13

Start Avail

Not Avail

Not Avail

Avail

. vai
:Sto;p Not Avai : j

Figure 16.8: Global solution for availability of the expression v + w.

In this example, we explored the availability of a single expression v + w.
Better optimization could obviously result from determining that an expression is
available. In an optimizing compiler, one of the following situations usually holds.

o The compiler identifies an expression such as v+w as important, in the sense
that eliminating its computation can significantly improve the program's per-
formance. In this situation, the optimizing compiler may selectively evaluate
the availability of a single expression.

o The compiler may compute availability of all expressions, without regard to
the importance of the results. In this situation, it is common to formulate a
set of expressions and compute the availability of its members. Section 16.2.2
and Exercise 8 considers this in greater detail.

Live Variables

We next examine an optimization problem related to register allocation. As dis-
cussed in Chapter Chapter:global:fifteen, k registers suffice for a program whose

14 Chapter 16. Program Optimization

Start

St @D

Figure 16.9: Example flow graph for liveness. The function £ potentially assigns v but
does not read its value.

interference graph is k-colorable. In this graph, each node represents one of the
program's variables. An edge is placed between two nodes if their associated vari-
ables are simultaneously live. A variable v is live at control flow graph edge e if
the future behavior of the program can reference the value of v that is present at
edge e. In other words, the value of a live variable is potentially of future use in
the program. Thus, register allocation relies on live variable analysis to build the
interference graph.

In the available-expressions problem, information was pushed forward through
the control flow graph. In the live-variables problem, the potential behavior of a
program is pushed backward through the control flow graph. In the control flow
graph shown in Figure 16.9, consider the liveness of variable v. The dark-circled
nodes contain uses of v—they represent future behavior that makes v live. On the
other hand, the shaded nodes destroy the current value of v. Such nodes represent
future behavior that makes v not live. At the Stop node, we may assume v is dead
since the program is over. If the value of v were to survive an execution, then its

16.2. Data Flow Analysis 15

Not Live|

Not Live
Not Live

Figure 16.10: Solution for liveness of v.

value should be printed by the program.

Figure 16.9 shows a node with a call instruction. How does this node affect
the liveness of v? In this example, we assume that the function £ potentially assigns
v but does not use its value. Thus, the invoked function does not make v live.
However, since we cannot be certain that £ assigns v, the invoked function does not
make v dead. This particular node has no effect on the solution to live variables.

Based on the definition of this problem, common points of control flow cause
v to be live if any future behavior causes v to be live. The solution for liveness of
v is shown in Figure 16.10—the control flow edges are reversed to show how the
computation is performed. It is clearly to an optimizing compiler's advantage to
show that a variable is not live. Any resources associated with a dead variable can
be reclaimed by the compiler, including the variable's register or local JVM slot.

An optimizing compiler may seek liveness information for one variable or for
a set of variables. Exercise 9 considers the computation for a set.

16 Chapter 16. Program Optimization

Solnl Saln2

Soln3

|
1

Figure 16.11: A meet lattice.

16.2.2 Formal Specification

We have introduced the notion of a data flow framework informally, relying on ex-
amples drawn from optimizing compilers. In this section, we formalize the notion
of a data flow framework. As we examine these details, it will be helpful to refer
to the problems discussed in Section 16.2.1.

A data flow framework has the following components.

¢ A flow graph. This directed graph's nodes typically represent some aspect of
a program's behavior. For example, a node may represent a nonbranching
sequence of instructions, or an entire procedure. The graph's edges represent
a relation over the nodes. For example, the edges may indicate potential
transfer of control by branching or by procedure call. We assume the graph's
edges are oriented in the “direction” of the data flow problem.

o A meet lattice. This is a mathematical structure that describes the solution
space of the data flow problem and designates how to combine multiple so-
lutions in a safe (conservative) way. It is convenient to present such lattices
as Hasse diagrams: to find the meet of two elements, you put one finger on
each element, and travel down the page until your fingers first meet. For ex-
ample, the lattice in Figure 16.11 indicates that when Soln1 and Soln2 must
be combined, then their solutions are to be approximated by Soln3.

¢ A set of transfer functions. These model the behavior of a node with respect
to the optimization problem under study. Figure 16.12 depicts a generic
transfer function. A transfer function's input is the solution that holds
on entry to the node, so that the function's output specifies how the node
behaves given the input solution.

We next examine each of these components in detail.

Data Flow Graph

The data flow graph is constructed for an optimization problem, so that evaluation
of this graph produces a solution to the problem.

o Transfer functions are associated with each node;

16.2. Data Flow Analysis 17

Soln IN

|

Soln OUT

Figure 16.12: A node's transfer function.

o Information converging at a node is combined as directed by the meet lattice;
o Information is propagated through the data flow graph to obtain a solution.

For the problems considered here, a flow graph's nodes represent some component
of a program's behavior and its edges represent potential transfer of control be-
tween nodes. In posing an optimization problem as a data flow framework, the
resulting framework is said to be

o forward, if the solution at a node can depend only on the program's past
behavior. Evaluating such problems involves propagating information for-
ward through the flow graph. Thus, the control flow graph in Figure 16.7(b)
served as the data flow graph for availability analysis of v+ w in the program
of Figure 16.7.

o backward, if the solution at a node can depend only on the program's future
behavior. The live variables problem introduced in Section 16.2.1 is such a
problem. For live variables, a suitable data flow graph is the reverse control
flow graph, as shown in Figure 16.10.

o bidirectional, if both past and future behavior is relevant.

In this chapter, we discuss only forward or backward problems; moreover, we as-
sume that edges in the data flow graph are oriented in the direction of the data flow
problem. With this assumption, information always propagates in the direction of
the data flow graph's edges. It is convenient to augment data flow graphs with a
Start and Stop node, and an edge from Start to Stop, as shown in Figure 16.7(b).

In compilers where space is at a premium, nodes of a control flow graph typ-
ically correspond to the maximal straight-line sequences—the basic blocks—of a
program. While this design conserves space, program analysis and optimization
must then occur at two levels: within and between the basic blocks. These two
levels are called local and global data flow analysis, respectively. An extra level of

18 Chapter 16. Program Optimization

analysis complicates and increases the expense of writing, maintaining, and docu-
menting an optimizing compiler. We therefore formulate data flow graphs whose
nodes model the effects of perhaps a single JVM or MIPS instruction. In a produc-
tion compiler, the choice of node composition may dictate otherwise.

Meet Lattice

As with all lattices, the meet lattice represents a partial order imposed on a set.
Formally, the meet lattice is defined by the tuple

(Aa Ta J—a ja /\)
which has the following components.

o A solution space A. In a data flow framework, the relevant set is the space
of all possible solutions to the data flow problem. Exercise 9 considers the
live-variables problem, posed over a set of # variables. Since each variable
is either live or not live, the set of possible solutions contains 2" elements.
Fortunately, we need not enumerate or represent all elements in this large
set. In fact, some data flow problems have an infinite solution space.

e The meet operator A. The partial order present in the lattice directs how
to combine (summarize) multiple solutions to a data flow problem. In Fig-
ure 16.8, the first node of the outer loop receives two edges—v+w is available
on one edge and not available on the other. The meet operation (A) serves to
summarize the two solutions. Mathematically, A is associative, so multiple
solutions are easily summarized by applying A pairwise in any order.

o Distinguished elements T and L. Lattices associated with data flow frame-
works always include the following distinguished elements of A.

— T intuitively represents the solution that allows the most optimization.

— L intuitively represents the solution that prevents or inhibits optimiza-
tion.

e The comparison operator <. The meet lattice includes a reflexive partial
order, denoted by <. Given two solutions a and b—both from set A—it must
be true that thata < b ora £ b. If a < b, then solution a is no better
than solution b. Further, if a < b, then solution a is strictly worse than b—
optimization based on solution g will not be as good as with solution b. If
a £ b, then solutions a and b are incomparable.

For example, consider the problem of live variables, computed for the set of
variables { v,w }. As discussed in Section 16.2.1, the storage associated with
variables found not to be live can be reused. Thus, optimization is improved
when fewer variables are found to be live. Thus, the set { v, w } is worse than
the set { v } or the set { w }. However, the solution { v } cannot be compared
with the set {w }. In both cases, one variable is live, and data flow analysis
cannot prefer one to the other for live variables.

16.2. Data Flow Analysis

Property

aNha=a

19

Explanation

The combination of two identical solutions is
trivial.

a<b<— anb=a

If a is worse than b, then combining g and b must
yield a; if a = b, then the combination is simply a,

as above.
anb < a o
b o< b The combination of a and b can be no better than
ant = aorb.
AT =a Since T is the best solution, combining with T
changes nothing.
aAl =1 Since T is the worst solution, any combination that

includes L will be L.

Figure 16.13: Meet lattice properties.

At this point, it is important to develop an intuitive understanding of the lattice—
especially its distinguished elements T and L. For each analysis problem, there is
some solution that admits the greatest amount of optimization. This solution is al-
ways T in the lattice. Recalling available expressions, the best solution would make
every expression available—all recomputations could then be eliminated. Corre-
spondingly, L represents the solution that admits the least amount of optimization.
For available expressions, L implies that #o expressions can be eliminated.

Mathematically, the meet lattice has the properties shown in Figure 16.13.

Transfer Functions

Finally, our data flow framework needs a mechanism to describe the effects of a
fragment of program code—specifically, the code represented by a path through the
flow graph. Consider a single node of the data flow graph. A solution is present on
entry to the node, and the transfer function is responsible for converting this input
solution to a value that holds after the node executes. Mathematically, the node's
behavior can be modeled as a function whose domain and range are the meet lattice
A. This function must be total—defined on every possible input. Moreover, we
shall require the function to behave monotonically—the function cannot produce a
better result when presented with a worse input. Consider the available expressions
problem, posed for the expressions v+w and a+b. Figure 16.14 contains fragments
of a program and explains the transfer function that models their effects.

20 Chapter 16. Program Optimization

Fragment Transfer Function Explanation

Regardless of which expressions
were available on entry to this

flin) = inU{ “vew” nod.e, expression “v+w” becomes
available after the node. That sta-
tus of expression g + b is not af-
fected by this node.

Regardless of which expressions
were available on entry to this
node, expression “v+w” is not
available after the node, because
flin) = in — { “V+W” } the assignment to v potentially
changes the value of “v+w”, and
the node includes no recomputa-
tion of this expression. The status
of expression a+ b is not affected.

printf("hello") This node affects no expression;
f(in) = in thus, the solution on exit from the
node is identical to the solution

on entry.
Figure 16.14: Data flow transfer functions.

Because a transfer functions are mathematical, they can model not only the
effects of a single node but also the effects along a path through a program. If a
node with transfer function f is followed by a node with transfer function g, then
the cumulative effect of both nodes on input a is captured by g(f(a)). In other
words, program behavior—brief or lengthy—is captured by a transfer function. A
transfer function can be applied to any lattice value a to obtain the compile-time
estimation of the program fragment's behavior given the conditions represented by
a.

16.2.3 Evaluation WARNING this subsection is incomplete

Having discussed how to pose an optimization problem in a data flow framework,
we next turn to evaluating such frameworks. As shown in Figure 16.12, each node
of the data flow graph asserts a transfer function. Once we know the input value
to a transfer function, its output value is easily computed. When multiple solutions
converge at a node, the meet lattice serves to summarizes the solutions, as shown
in Figure 16.11. Thus, we can compute the input to a node as the meet of all the
outputs that feed the node.

16.2. Data Flow Analysis 21

Figure 16.15: Iterative evaluation of a data flow framework.

Figure 16.16: |s v + w available throughout this loop?

An algorithm for evaluating a data flow framework is shown in Figure 16.15.
Two issues: initialization — is it OK to do it to top? and termination — how do
we know that the loop terminates?

Initialization

The problem is that the solution at a given node depends on the solution at other
nodes, as dictated by the edges of the data flow graph. In fact, the solution at a
node can depend directly or indirectly on itself. Figure 16.7 contains a loop that is
shown in Figure 16.16. The solution in Figure 16.8 shows that v + w is available
everywhere inside the loop. But how is this determined? The nodes in Figure 16.16
have the following transfer functions.

fA(inA) = inA
fB(inB) = T
fc(inc) = inc

Let inj,op denote the input to the loop—the input to node A from outside the loop.
The inputs to A and C are computed as follows.

inc = [p(ing) Afa(ina)
= T Afaling
= falina)

ing = fcling) Ninoop

inc N\ inloop
= fA(ZnA) A inloop

22 Chapter 16. Program Optimization

In other words, the input to node A depends on the output of node A! This seems a
contradiction, unless we reason that the first time we evaluate A's transfer function,
we can assume some prior result. Computationally, we have the following choices
concerning the prior result.

falina) =
falina) =

It seems safe to assume that v + w is not available previously—that is, fa(ina) =
1. Based on this assumption, v + w is not available anywhere except in node
B. It is more daring to assume that v + w is available—fa(ina) = T. Based on
this assumption, we obtain the result shown in Figure 16.8, with v + w available
everywhere in the inner loop.

L
T

Termination

In a monotone data flow framework, each transfer function f obeys the rule
a=b=f(a) 2f(b)

for all pairs of lattice values @ and b. Note that if the lattice does not relate a and
b, the rule is trivially satisfied.

16.2.4 Application of Data Flow Frameworks

We have thus far studied the formulation and evaluation fo data flow frameworks.
We examine next a series of optimization problems and discuss their solution as
data flow problems.

Available Expressions

Section 16.2.1 contained an informal description of the available expressions prob-
lem for the expression v + w. Suppose a compiler is interested in computing the
availability of a set of expressions, where the elements of the set are chosen by ex-
amining the expressions of a program. For example, a program with the quadratic
formula
b? — 4ac

2a

contains the variables a, b, and c. Each variable is itself a simple expression. How-
ever, each variable is trivially available by loading its value. The more ambitious
expressions in this formula include —b, b?, ac, 4ac, b> — 4ac. We might prefer
to show that b?> — 4ac is available, because this expression is costly to compute.
However, the availability of any of these expressions can improve the program's
performance.

—b+

16.2. Data Flow Analysis 23

We can generalize the available expressions problem to accommodate a set of
expressions, as follows.

e This is a forward problem. The data flow graph is simply the control flow
graph.

o If S is the set of interesting expressions, then the solution space A for this
problem is 25—the power set of S. In other words, a given expression is or is
not present in any particular solution.

¢ The most favorable solution is S—every expression is available. Thus, T = §
and 1 = 0.

o The transfer function at node Y can be formulated as
fy(in) = (in — Killy) U Geny
where

— Killy is the set of expressions containing a variable that is (potentially)
modified by node Y.

— Geny is the set of expressions computed by node Y.

If the flow graph's nodes are sufficiently small—say, a few instructions—
then it is possible to limit each node's effects to obtain Killy N Geny = § at
each node Y. In other words, none of these small nodes both generates an
expression and kills it. Exercise 6 explores this issue in greater detail.

e The meet operation is accomplished by set intersection, based on the follow-
ing reasoning.

— An expression is available only if all paths reaching a node compute the
expression.

— Formally, we require that T Aa = a. If T is the set of all expressions,
then meet must be set intersection.

As discussed in Exercise 7, some simplfications can be made when computing avail-
able expressions for a single expression. Available expressions is one of the so-
called bit-vectoring data flow problems. Other such problems are described in
Exercises 9, 10, and 11.

Constant Propagation

In this optimization, a compiler attempts to determine expressions whose value
is constant over all executions of a program. Most programmers do not inten-
tionally introduce constant expressions. Instead, such expressions arise as artifacts
of program translation, as discussed in Section 16.1. Interprocedurally, constants
develop when a general method is invoked with arguments that are constant.

24

Chapter 16. Program Optimization

Figure 16.17: A program for constant propagation.

T

U

e e) ..._2 _1 0 1 2 e OO

\%

1

Figure 16.18: Lattice for constant propagation---one expression only.

16.2. Data Flow Analysis 25

Consider the program whose control flow graph is shown in Figure 16.17.
Some nodes assign constant values to variables. In other nodes, these constant
values may combine to create other constant values. We can describe constant
propagation as a data flow problem as follows.

o Without loss of generality, we pose constant propagation over a program's
variables. If the program contains an expression or subexpression of interest,
this can be assigned to a temporary variable. Constant propagation can then
try to discover a constant value for the temporary.

o For a single variable, we formulate the three-tiered lattice shown in Fig-
ure 16.18.

— T means that the variable is considered a constant of some (as yet)
undetermined value.

— 1 means that the expression is not constant.

— Otherwise, the expression has a constant value found in the middle
layer.

¢ As shown in Figure 16.19, each edge in the data flow graph carries a solution
for each variable of interest.

e The meet operator is applied using the lattice shown in Figure 16.18. The
lattice is applied separately for each variable of interest.

¢ The transfer function at node Y interprets the node by substituting the node's
incoming solution for each variable used in the node's expression. Suppose
node v is computed using the variables in set U. The solution for variable v
after node Y is computed as follows.

— If any variable in U has value L, then v has value L.
— Otherwise, if any variable in U has value T, then v has value T.

— Otherwise, all variables in U have constant value. The expression is
evaluated and the constant value is assigned to v.

Figure 16.19®'hows the solution for constant propagation on the program of Fig-
ure 16.17.

This program demonstrates some interesting properties of constant propaga-
tion. Although x is uninitialized prior to executing the node that assigns its value,
constant propagation is free to assume it has the value 3 throughout the program.
This occurs because an uninitialized variable has the solution T. When summa-
rized by the meet operator, T A 3 = 3. Although the uninitialized variable may
indicate a programming error, the optimizer can assume an uninitialized variable
has any value it likes without fear of contradiction. If the programming language
at hand has semantics that insist on initialization of all variables—say to 0—then
this must be represented by an assignment to these variables at the Start node.

tProduction note: s

26 Chapter 16. Program Optimization

[7,5,2,3]

[2,5,2,3] [2,5,2,3]

[7,5,2,3]

[?,2,2,3]

[7,5,3,3]

[7,5,3,3]

[7,1,7,3]

[72,2,2,3]

[7,2,2,3]

Figure 16.19: Constant propagation. Each edge is labeled by a tuple that shows the
solution for [u, w, x, y].

Another observation is that constant propagation failed to determine that u
has the value 8 at the dark-circled node in Figure 16.19. Prior to this node, both w
and x have constant values. Although their sum is the same, the individual values
for these variables differ. Thus, when a meet is taken at the dark-circled node, w
and x both appear to be L. For efficiency, data flow analysis computes its solution
based on edges and not paths into a node. For some data flow problems, this
approach provides the best solution possible—such is the case for the bit-vectoring
data flow problems discussed in Exercises 12 and 18. Unfortunately, the example
in Figures 16.17 and 16.19 shows that constant propagation does not compute the
best solution.

16.3. Advanced Optimizations

16.3 Advanced Optimizations
16.3.1 SSA Form

Definition

Construction

16.3.2 SSA-based Transformations
Constant Propagation

Value Numbering

Code Motion

16.3.3 Loop Transformations

Should we even go here?

27

28 Chapter 16. Program Optimization

Summary

hello

16.3. Advanced Optimizations 29
Exercises
1. Recall the transformation experienced by the inner loops as the program in

Figure 16.1 was optimized into the program shown in Figure 16.5. Apply
these same transformations to the outer loops of Figure 16.5.

In Section 16.1.2, JVM is proposed as an intermediate form. Compare and
contrast your rendering of the program shown in Figure 16.5 in the following
intermediate forms.

(a) The C programming language

(b) JVM

(¢) The MIPS instruction set

. Compile—automatically or by-hand—the program shown in Figure 16.5 to

generate the intermediate forms of Exercise 2. Compare the sizes of the rep-
resentations.

Consider each of the following properties of a proposed intermediate lan-
guage (IL). Explain how each property is or is not found in each IL of Exer-
cise 2.

(a) The IL should be a bona fide language—it should have a precise syntac-
tic and semantic specification. It should not exist simply as an aggrega-
tion of data structures.

(b) The size of programs expressed in the IL should be as compact as pos-
sible.

(c) The IL should have an expanded, human-readable form.

(d) The IL should be sufficiently general to represent the important aspects
of a wide variety of source languages.

(e) The IL should be easily and cleanly extensible.

(f) The IL should be sufficiently general to support generation of efficient
code for multiple target architectures.

. Using a common programming language, construct a program whose control

flow graph is the one shown in Figure 16.9.

Section 16.2.4 describes how to apply data flow frameworks. The section
includes the following formulation for transfer functions in the data flow
problem of available expressions.

fy(in) = (in — Killy) U Geny
where

o Killy is the set of expressions containing a variable that is (potentially)
modified by node Y.

30

Chapter 16. Program Optimization

¢ Geny is the set of expressions computed by node Y.

Suppose a flow graph node represents the following code.
V2
u—v+tw
Ve x

For the expression v+ w, the node kills the expression, generates it, and then
kills it again. The cumulative effect is to kill the expression, but this requires
analyzing the order in which the operations occur inside the node. Describe
how to formulate a data flow graph with smaller nodes so that the order of
operations within the nodes need not be examined.

. Section 16.2.4 presents the formal definition of a data flow framework to

determine the availability of expressions in the set S. Describe the sim-
plifications that result when computing available expressions for a single
expression—when |S| = 1.

What is the lattice?

What are T and L?

What are the transfer functions?

a
b

(a)
(b)
(c)
(d)

d) How is meet performed?

. The bit-vectoring data flow problems earn their name from a common rep-

resentation for finite sets—the bit vector. In this representation, a slot is
reserved for each element in the set. If e € S, then e's slot is true in the bit
vector that represents set S.

Describe how bit vectors can be applied to the available expressions problem
for a set of n expressions. In particular, describe how a bit vector is affected

by
(a) the transfer function at a node
(b) application of the meet operator

(c) assignmentto T or L

. Explain how liveness of a set of # variables can be computed as a data flow

problem.

(a) Define the formal framework, using the notation in Section 16.2.2. The
transfer function at node Y is defined by the following formula (from
Section 16.2.4).

fy(in) = (in — Killy) U Geny

Explain how Killy and Geny are determined for live variables at node
Y.

16.3.

10.

11.
12.

13.

Advanced Optimizations 31

(b) Now consider the use of bit vectors to solve live variables. The transfer
function can be implemented as described in Exercise 8. How is the
meet operation performed? What are T and 1?

Liveness shows that a variable is potentially of future use in a program. The
very busy expressions problem if an expression's value is certainly of future
use.

(a) Is this a forward or backward problem?
(b) What is the best solution?

(c) Describe the effects of a node on an expression.

(d) How are solutions summarized at common control flow points?
(e)

e) How would you determine liveness for a set of expressions?
Reaching defs

Four of the data flow problems presented in Section 16.2 and in Exercises 10
and 11 are:

o Available expressions

e Live variables

e Very busy expressions

o Reaching definitions
These problems are known as the bit-vectoring data flow problems. Summa-

rize these problems by entering each into its proper position in the followoing
table.

Forward Backward

Any
All

The columns refer to whether information is pushed forward or backward
to achieve a solution to the problem. The rows refer to whether information
should hold on all paths or any path.

A data flow framework is monotone if the following formula holds for every
transfer function f and lattice values @ and b.

x2y=[(x) 2f(y)

In other words, a transfer function cannot produce a better answer given
a worse input. Prove that the following formula must hold for monotone

frameworks.
flanb) < f(a) Af(b).

32

14

15.

16.
17.

18.

19.

20.

21.

Chapter 16. Program Optimization

. A data flow framework is rapid if defines rapid..then prove that available
expressions is rapid.

Generalize the proof from Exercise 14 to prove or disprove that all four bit-
vectoring data flow problems in Exercise 12 are rapid.

Prove or disprove that constant propagation is a rapid data flow problem.

A data flow problem is distributive if the following formula holds for every
transfer function f and lattice values a and b.

flanb) =f(a) Nf(D).

Prove or disprove that available expressions (Exercise 8) is a distributive data
flow problem.

Generalize the proof from Exercise 17 to prove or disprove that all four bit-
vectoring data flow problems in Exercise 12 are distributive.

Prove or disprove that constant propagation is a distributive data flow prob-
lem.

Consider generalizing the problem of constant propagation to that of range
analysis. For each variable, we wish to associate a minimum and maximum
value, such that the actual value of the variable (at that site in the program) at
runtime is guaranteed to fall between the two values. For example, consider
the following program.
xS
y <3
if p
then
Zex+y 14
else
ZTx—y 15
w2z
After their assignment, variable x has range 5...5 and variable y has range

3...3. The effect of Step 14 gives z the range 8 ...8. The effect of Step 15
gives z the range 2 ... 2. The assignment for w therefore gets the range 2 ... 8.

(a) Sketch the data flow lattice for a single variable. Be specific about the
values for T and L.

(b) Is this a forwards or backwards propagation problem?

(c) If the variable v could have range 71 or r,, describe how to compute the
meet of these two ranges.

As defined in Exercise 20, prove or disprove that range analysis is a rapid
data flow problem.

16.3. Advanced Optimizations 33

22. As defined in Exercise 20, prove or disprove that range analysis is a distribute
data flow problem.

23. The number of bits problem

(a) Prove or disprove that this data flow problem is distribute.

(b) Prove or disprove that this data flow problem is rapid.

