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Abstract Today, data-intensive applications rely on geographically distributed sys-
tems to leverage data collection, storing and processing. Data locality has been seen
as a prominent technique to improve application performance and reduce the impact
of network latency by scheduling jobs directly in the nodes hosting the data to be pro-
cessed. MapReduce and Dryad are examples of frameworks which exploit locality by
splitting jobs into multiple tasks that are dispatched to process portions of data locally.
However, as the ecosystem of big data analysis has shifted from single clusters to span
geo-distributed data centers, it is unavoidable that data may still be transferred through
the network in order reduce the schedule length. Nevertheless, there is a lack of mech-
anism to efficiently blend data locality and inter-data center data transfer requirement
in the existing scheduling techniques to address data-intensive processing across dis-
persed data centers. Therefore, the objective of this work is to propose and solve the
makespan optimization problem for data-intensive job scheduling on geo-distributed
data centers. To this end, we first formulate the task placement and the data access
as a linear programming and use the GLPK solver to solve it. We then present a low
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complexity heuristic scheduling algorithm called GeoDis which allows data local-
ity to cope with the data transfer requirement to achieve a greater performance on
the makespan. The experiments with various realistic traces and synthetic generated
workload show that GeoDis can reduce makespan of processing jobs by 44% as com-
pared to the state-of-the-art algorithms and remain within 91% closer to the optimal
solution by the LP solver.

Keywords Geo-distributed · Data center · Scheduling · Data locality · Batch jobs ·
Big data analysis

Mathematics Subject Classification 90C05 Linear programming · 90C27
Combinatorial optimization · 90C46 Optimality conditions, duality

1 Introduction

The recent years have witnessed the proliferation of data analytic application jobs due
to the growing demand for processing the increasing amount of data generated and
stored in data centers. In response, frameworks such asMapReduce [14], Hadoop [19],
Spark [49], Dryad [24], etc, have been developed and efficiently used in large clus-
ters for massive data processing. For example, MapReduce schedules jobs based on
data locality; which means that processing jobs are split into multiple tasks and dis-
patched to the node hosting the data to be processed in order to minimize the network
overhead [18]. Therefore, data locality aware scheduling improves the individual job
response time within a cluster and avoid unnecessary data movement which is con-
sidered as the primary reason for delays in completion time [38,54,55].

However, as data keep increasing in size and diversity, organizations start to utilize
geographically distributed data centers. In fact, Infrastructure as a Service (IaaS) cloud
providers likeAmazon [3],Microsoft [41],Google [17] andRackspace [45] continue to
buildmany data centers across different locations in order to support their organization
structures in amodular growthmanner. In addition, the rise of newmulti-cloud systems
as a solution to vendor locking and security has made geo-distributed data centers a
prominent platform to deploy applications. Existing data grid systems from the grid
scientific communities [53] are also using geo-distributed data centers to support data-
intensive applications. Although data locality on clusters have been intensively studied
in the past, it has not been applied to geo-distributed data centers until recently [22,
23]. The recent advent of big data has contributed to reaching a data deluge were
information generated and collected is overwhelmingly exceeding the capacity of
institutions to manage and make use of it within a single data center [29,43,55].
However, it has been shown in a previous study [22] that enforcing locality can degrade
the application performance on geo-distributed data centers. In addition, data may be
collected and stored in a few number of data centers following different cost and
availability constraints, but required to be processed in other locations. Therefore, it
is unavoidable that some data must be remotely transferred from one data center to
another during the data processing time.Amajor challenge in data-driven processing is
to reduce the impact of data transferwhich increases the computation time.Otherworks
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have attempted to use Hadoop MapReduce across geo-distributed data centers. Yet,
applying this paradigm directly on heterogeneous interconnected data centers results
in huge performance degradation [9]. Consequently, while geo-distributed systems,
can be viewed as an opportunity to solve large-scale problems, they require different
approaches to resource management for the various applications.

In this paper, we propose a locality-and-network aware scheduler for optimizing
the performance of a data analytic frameworks on geo-distributed systems. The input
of our scheduling algorithm is a set of jobs submitted into the computing framework.
The data requested by the tasks is replicated on multiple data centers, and the location
is known to the scheduler. The objective of our scheduling algorithm is to decidewhere
to place these tasks and which replica to access for each task, such that the makespan
of job executions is minimized where the makespan of a data analytic job is governed
by the completion of the last task on any data center. It is a challenging problem, and
the system performance can be significantly affected the scheduling decision for the
following reasons.

1. Minimizing makespan on heterogeneous system is known to be a NP-complete
problem even when data is not replicated, and task placement is given [16,23].

2. With multiple replicas and different inter-data centers network bandwidth, the
transfer time can increase significantly if the data access location is not properly
selected.

3. Restricting tasks running on their data location can eliminate data transfer time,
but could also suffer from imbalanced workload. Thus, the tradeoff between data
locality and data transfer present a dilemma for finding the optimal solution.

In this paper, we made the following contributions.

– To our knowledge, we are the first to consider both data locality (with replication)
and data migration together for optimizing data analytic workload executions on
geo-distributed data centers.

– We formulated our scheduling problem into a LP optimization problem, and obtain
the optimal solution using LP solver as a comparison baseline to our proposed
heuristic algorithm.

– We proposed an online heuristic algorithm, GeoDis, which has linear algorithm
complexity, and achieves close to optimal results.

– We extensively evaluated our approach using a number of real workload traces
and various placement models to understand the performance impact and justify
our design decisions.

– We finally demonstrate the robustness of our solution on heterogeneous environ-
ment settings with different processing capability in each data center and various
network bandwidth settings to show the applicability of GeoDis for a production-
level cloud platform.

The remainder of this paper is organized as follows: Sect. 2 reviews the related
work in the literature. Section 3 describes our geo-distributed system model. We for-
mulate our job scheduling problem and propose scheduling algorithms in Sects. 4 and
5, respectively. The experimental results are presented in Sect. 6, and the paper is
concluded in Sect. 7.
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2 Related work

In this section, we present a brief review of scheduling techniques on geo-distributed
data centers. The related work can be viewed from three perspectives.

2.1 Scheduling on geo-distributed systems

Early examples of branches of studies similar to geo-distributed datacenters include
data grid [6,28,32,48]. Data grids provide a dispersed distributed storage resources
for large and complex computational problems. Data grids focus on efficient man-
agement including mechanism for controlled sharing and processing large amounts
of distributed data. Similar to geo-distributed scheduling, the grid scheduler decides
where to run the job based on the requirements and the system availability. An effective
schedule in data grids consists of placing the job such as to minimize data movement
which is time consuming. Data replication became quickly the main focus in data
grid [15]. For example Zarina et al. [57] proposed three replication techniques to
minimize the file transfer among sites. However, it is impractical to replicate all data
in every location. Other techniques combining tasks scheduling and replica place-
ment were proposed by Anikode and Tang in [6]. It considers both remote and local
access to data. They proved theoretically that the performance of applications can
significantly improve when considering the different data hosted by different sites.
However, they assume data can be replicated at the schedule time. In practice, data
collection and replication are often for availability and safe guarding purpose and
therefore are often fixed before hand [28,36]. Despite the similarities between data
grids and geo-distributed data centers, the latter includesmore complex tradeoffs mak-
ing existing solutions in data grids inefficient when they are applied to the new and
challenging big data environments.

One of the closest studies to our work was recently conducted by Hung et al. [23].
They proposed a system where tasks are dispatched to the data centers hosting the
data. However, they did not consider data replication neither datamigration. In order to
improve the scheduling performance Abad et al. [1] proposed an adaptive replication
model. Similar to [6], they do not consider fixed data location. Tudoran et al. [52]
proposed a uniform data management system for scientific workflows. Their system
works across geographically dispersed data centers and consists of a set of pluggable
services which provides flexibilities to monitor the infrastructure, data compression
and geo-replication. The goal is to present the tradeoff between the monetary cost
and the time and to optimize the data migration strategy according to the objective
function.

2.2 Data-intensive scheduling

MapReduce [14], Hadoop [19], Spark [49] and Dryad [24] are common platforms for
large-scale data-intensive processing on clusters. However, the current implementation
of these models still requires addition efforts in adapting them to fit multiple dispersed
data centers [56]. For example, Cardosa et al. [9] have demonstrate that Hadoop
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MapReduce performs very poorly on geo-distributed data centers interconnected with
heterogeneous network. Recently, there has been a humbling amount ofwork on adapt-
ing MapReduce to fit geo-distributed data center environment [10,11,20,30,34,35].
It clearly means that applying a MapReduce architecture directly to a geo-distributed
data-intensivemodel will be counterproductive [37].MapReduce implementations are
originally designed for homogeneous environments. Previous works have demonstrate
that heterogeneity even at a single data center level can cause significant performance
deterioration in job execution, despite existing optimizations on task scheduling and
load balancing. In the context of geo-distributed data centers, it is even worst because
in addition to the heterogeneity in each data center ( because each data center changes
and upgrades its servers and network facilities and creates more heterogeneous envi-
ronment), the network interconnection between geographically distributed data centers
suffers also from the same heterogeneous bandwidth latencies. Some attempts to opti-
mizing MapReduce for heterogeneous environment can be found in the literature. For
example, Cheng et al. [13] uses meta-heuristic to optimize the tasks placement by
finding the best configuration in the heterogenous cluster. Li et al. [35] propose to
improve MapReduce cluster deployment in geo-distributed data-center. However, the
simulation of geo-distributed HDFS based on their model still suffers from network
heterogeneity latencies. Li et al. [33] studied big data processing on geo-distributed
data center using MapReduce by predicting the job completion time. Their model
include the input data movement over the inter-data center network however they
assume the intermediate data size and shuffle time are known in advance. In prac-
tice, when a node fails, Hadoop will find an available worker to reschedule the job;
both the size of the intermediate data and their location can change and will require
the optimization algorithm to rerun. Although, there is a large amount of research
efforts to improve MapReduce for geo-distributed data centers, it does seem to be
a trivial endeavor. Delays of data transfer between the nodes in geo-distributed due
tu heterogeneity in the data centers architecture cause performance degradation in
MapReduce [40,44].

2.3 Makespan minimization scheduling

There are also previous works on improving the makespan (i.e., completion time) that
may be thought as alternative solutions for scheduling on a geo-distributed system. A
representative class of themhave been used in our example scenario [46]. The objective
of these scheduling techniques is to minimize the overall completion time or schedule
length of the parallel program. Kwok and Ahmad [31] proposed a dynamic scheduling
technique for assigning tasks to different processors so as to minimize the makespan.
Another class of algorithms [47] dynamically selects tasks during the scheduling tasks.
However like most multicore scheduling algorithms, these techniques only consider
compute intense problems and therefore are oblivious to data locality.

To some extent, there are few efforts on adapting the use of existing and fixed
data replicas to the geo-distributed environment which is common in today’s big
data processing environment. Conventionally, the state-of-the-art schedulers on geo-
distributed system focus on locality only and dealingwith datamigration as secondary.
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This is because data transfer time has been a bottleneck for distributed systems in
general. However, the recent improvement of network infrastructures and topologies,
the routing systems and data distribution have improved the data transfer time [42]. In
contrast to existing work, we focus on finding the tasks placement that take advantage
of the replica and data transfer to minimize the makespan while providing a online
scheduler with lower complexity.

3 Background and system model

Public cloud providers such as Amazon, Google and Microsoft have made available
a plethora of services supported by distant data centers. Infrastructure as a Service
(IaaS) cloud allows users to scale their resources in each of their geo-distributed data
centers to support their application demands. In each location, users can acquire virtual
machines (VMs) to form a virtual cluster for their needs. Since big data acquisition
and storage often exhibit different patterns in terms of volume and frequency, users
can decide the capacity in terms of number of processing power and storage in each
available data center. Finally, most public data centers rely on the internet service for
inter-data center traffic. Such environment is common nowadays and it is significant to
address and evaluate the impact of scheduling techniques on data driven application.

3.1 Scheduling in geo-distributed systems

In this paper, we consider data analytic jobs scheduling problem on geo-distributed
data centers. We consider a general system comprised of multiple inter connected and
dispersed data centers. A data center has available computing resources denoted as the
processing capacity. To be more specific, the capacity is the summation of the number
of nodes times the number of cores per node.

3.1.1 Data model

Data are produced and stored in different data centers. Moreover, it has become a
de-facto approach for cloud applications to replicate their data across data centers
to prevent data loss and guarantee service availability. However, the complexity, the
volume and the cost of storage made it impractical to replicate the data in all data
centers. Therefore, it is common for data to be partially replicated. We assume the
initial data placement is given as input of our problem.

3.1.2 Job model

Jobs discussed in this paper are composite units of data analytic applications submitted
as batches to process data across data centers. As opposed to interactive jobs, the batch
jobs often exhibit a specific characteristic which does not require user intervention.
Massive data processing jobs are one class of these applications. A job is associated
with an arrival time and a number of divisible sub-jobs/tasks based on the data it
processes.
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3.1.3 Task model

Applications based on data processing models often split jobs into many tasks. Each
task reads a portion of input data and processes it on an available computing resource.
Therefore, tasks are assumed to be independent. The execution time of a given task is
identical in each data center for the same type of resource. However, for a task to start,
the required data must first be transferred in the local storage of the data center running
it. Moreover, the job’s completion time is determined by its last task to complete in
any of the data centers.

3.1.4 Scheduling model

A job scheduler in geo-distributed data centers has two main responsibilities: First,
dispatch tasks onto the multiple data centers and second, coordinate the execution
of tasks from their respective data center locations. The dispatcher decides on which
data center location to run the tasks. The coordinator indicates the order of execution
of the tasks in each local data center. In a system where jobs are frequently submit-
ted, a scheduler should periodically perform these two operations. One solution is to
reschedule upon the arrival of a job. However, this option results in a high scheduling
overhead, especially when small jobs are frequently submitted. Another option is to
set a timewindow, (let’s say every 5min) where the arriving jobs are first put in a queue
and scheduled at once. This option also leads to a potential idle time since some data
centers might complete their workload before the time window. Finally, the sched-
uler can be triggered by any data center which completes it workload. In dispersed
data centers environment, the last solution can significantly reduce the communication
overhead between data centers.

3.2 System model

Figure 1 depicts our system model. The system consists of multiple data centers at
different geographical locations. All submitted jobs arrived first, in a centralized global
scheduler to be dispatched among the data centers for processing. The global scheduler
maintains a FIFO queue Q for all submitted jobs. Data intensive applications such
as processing data from E-commerce websites, social media and IoT sensors often
produce and store data locally in the closest data centers. However, these data may
be replicated on other data centers following different cost, availability and business
requirement. We follow the same model and assume that the initial data location is
given as well as the replicated data. We assume users submit jobs to process data
distributed across geo-distributed data centers. These jobs consist of divisible tasks
that can process a portion of the data. Tasks from the same job can run in any data
center. However, before a task can be executed, its required data is remotely copied
through the network to the local storage first. We refer to the time required to copy
the data as the inter data center transfer time. If the task is scheduled in a data center
hosting its required data, the inter data center transfer time equals zero. In this model,
we assume the tasks process a different amount of data, and the execution time is
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Fig. 1 System architecture of geo-distributed data center scheduling with data replication framework

proportional to the amount of data processed by the tasks [51]. This assumption is
considered reasonable and can be estimated using profiling [21,25]; moreover, it has
been applied to previous work including [26,27]. A local task queue qi is maintained
by the data center i for the tasks allocated to that particular data center. The completion
of a job is governed by the completion of its latest task. A local scheduler in each data
center reports the progress of the local queue to the global scheduler for the assigned
tasks. We assume that a meta-data containing the data hosted by each data center and
that the network bandwidth between the data centers are available and accessible by
the global scheduler. Note that this model is relevant to common IaaS cloud providers’
systems. For example, AmazonWeb Service (AWS) [3] provides data centers in many
geographic regions where data centers are grouped by zone. Each zone provides users
with a local storage system and compute nodes accessible from any other location.
Moreover, the very similar system model is used by previous studies [23,50].

3.3 Motivational example

To illustrate the motivation of our work and demonstrate how complex the problem
is, we consider a simplified example of a system consisting of 3 data centers hosting
8 data ( f 1 ∼ f 8) dispersed among the data centers. We assume that each data center
only processes one task at a time and each resource can process 15 MB of data per
second. The bandwidths among data centers are presented on Table 1a. The initial data
location andwhere the replicas are placed are given in Table 1b. All the files containing
the data to be processed are assumed equal size of 15MB.We want to split a job into 8
tasks (T 1 ∼ T 8) to process the data. Note that a task T x will process one copy of the
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Table 1 Example settings DC1 DC2 DC3

(a) Network bandwidth (Mbs)

DC1 – 50 150

DC2 50 – 100

DC3 150 100 –

DC1 DC2 DC3

(b) Initial data location and replicas (in bold)

f 1, f 2 f 3

f 5, f 7, f 8 f 6 f 4

f1 f1

f6 f6

data f x . We present three common schedules in geo-distributed data centers: Fig. 2a
is a representative schedule for a class of schedulers which favor the tasks placement
on the initial data location. They are oblivious to the replicas [23]. The schedule length
in this case is 5 s. The second class of schedulers exploits the replica to minimize the
makespan as shown in Fig. 2b, the task T 1 can be placed in DC1, DC2 or DC3 since
both contain a copy of f 1. By scheduling the T 1 in DC3, the processed file is the
replica in DC3. The resulting schedule length is 4 s which represents (5−4)/5 = 20%
improvement. The last class of schedulers presented in Fig. 2c allows tasks to be placed
anywhere in the system. However, before the tasks can be executed, the required data
might first be transferred to the local storage. For instance, if the task T 8 uses the
initial location of f 8, the job will complete at time instant 4. However, if we allow
migration, T 8 can be scheduled either in DC2 or DC3. The bandwidth between DC1
and DC2 is 100 and 150 MB between DC1 and DC3. Therefore, T 8 is placed on the
fastest link. As a result, it will require 15

150 = 0.1 s to transfer f 8. The completion time
of the job is 3.1 s. Even with a very simplified example, allowing data to be transferred
can reduce the makespan up to (5 − 3.1)/5 = 38%. However, as we discussed later,
the decision on whether to use the replica or the initial data and where to place the
task and to transfer the data from should be carefully made in order to minimize the
makespan. In the following section, we first formulate the scheduling problem then
propose a solution for this type of problem which is common in big data analysis.

4 Problem definition

This sectionpresents the problemdefinition.We start by showing that the targetedprob-
lem can be formulated into a linear programming problem, and an optimal scheduling
solution can be found using LP solvers such as GLPK [39].

4.1 Problem input

Our scheduling problem has the following input arguments:
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Fig. 2 Example of different schedules on geo-distributed data centers. a Example of a schedule on first
copy of data. b Example of a schedule where tasks are forced to data locality. c Example of a schedule with
data transfer, T 1 uses the replica of f 1 and T 8 is transferred from DC1 to DC3

System environment: A geo-distributed system consisted of N data centers, denoted
by DC = {1, . . . , N }. The computation capacity of a data center i is denoted as Ci .
The network bandwidth between any two data centers i and i ′ is also given and denoted
by Bi,i ′ .

Job description: J = {1, . . . , M} denotes the set of jobs currently waiting to be
scheduled by the global scheduler. A job is further divided into a set of K independent
data processing tasks, so that the tasks of job j is denoted by Tj = {t j1 , . . . , t jK }, where
t jk is the kth task from job j . The computation workload of each tasks is assumed to

be known prior to scheduling, and denoted as w
j
k for task t jk .

Data description: A set of data stored in the system denoted by D = {d j
k ,∀t jk }, where

d j
k is the data required to be processed by the task t jk . For a data, d

j
k , its size is s

j
k , and

its replicated location is denoted by Li
j,k , which is set to 1 if data d j

k is replicated at
data center i , otherwise it is set to 0. Hence for instance, in a system with 3 replica per

123



GEODIS: towards the optimization of data locality-aware... 31

Table 2 Summary of the symbols used in this paper

Type Variable Description

Input DC = {1, . . . , N } A geo-distributed system which consists
of N data centers

J = {1, . . . , M} The system has M jobs waiting to be
scheduled

T = {t jk | j ∈ J, k = 1 ∼ K } Each job is consisted of K tasks, where

t jk refers the kth task of job j

D = {d j
k | j ∈ J, k = 1 ∼ K } A set of data stored in the system, where

d j
k is the data required by task t jk

w
j
k Computation time of task t jk

s jk Size of data d j
k

Ci Computation capacity of data center i

Bi,i ′ Network bandwidth between data center
i and data center i ′. Bi,i ′ = ∞ if
i = i ′.

L = {Lij,k |∀i = 1 ∼ N ,

j = 1 ∼ M, k = 1 ∼ K }
A data placement where the value is set

to 1 if data d j
k is replicated at data

center i ; otherwise it is set to 0

Output S = {Sij,k,x |∀i, x ∈ DC, t jk ∈ T } A scheduling decision, where the value

of Sij,k,x is set to 1 if task t jk is
scheduled to data center i , and access
its data from data center x

Derived variable Ei Total execution time on data center i

TS The makespan of a schedule decision S

data, the assignment of data replication will be restricted by
∑

i L
i
j,k = 3,∀d j

k ∈ D
(Table 2).

4.2 LP formulation

Given the above problem inputs, a schedule is described as S = {Sij,k,x |∀i, x ∈
DC, t jk ∈ T }, where the value of Sij,k,x is set to 1 if task t jk is scheduled to data center

i , and its data is accessed from data center x ; otherwise, Sij,k,x is set to 0. In other

words, for each task t jk ∈ T , a schedule must decide where to execute the task (i.e.
DCi ), and where to access the data required by the task (i.e. DCx ). For the ease of
discussion, in the rest of this paper we call the first decision as the task placement
decision, and the second decision as the data access decision.

Our objective is to find the optimal schedule that achieves the minimummakespan.
In this work, we define the makespan of a schedule as the latest job completion time
of all the data centers resulting from the scheduling decision. Therefore, if Ei denoted
the total execution time on data center i resulting from a schedule S, the makespan of S
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is denoted as TS , and TS = max∀i∈DC |Ei |. Therefore, our problem can be formulated
into a linear programming form as below:

min TS

s.t Ei = ∑

i,x∈DC,t jk ∈T
Sij,k,x ×

[
w

j
k

Ci
+ s jk

Bi,x

]

≤ TS,∀i ∈ DC (1)

∑

i,x∈DC
Sij,k,x = 1,∀t jk ∈ T (2)

∑

i,x∈DC,t jk ∈T

(
Sij,k,x ×

(
1 − Lx

j,k

))
= 0 (3)

Sij,k,x ∈ {0, 1} (4)

In our problem setting, the total execution time of a data center is the aggregated
execution time of all the tasks scheduled on the data center. The execution time of a task
can be further divided into the task computation time and data transfer time (i.e., if data

is accessed from a remote data center). Therefore, in the first equation,
w

j
k

Ci
represents

the computation time of executing task t jk on data center i , and
s jk
Bi,x

represents the data
transfer time from the data location x to task execution location i . The execution time
of a task is multiplied by Sij,k,x , so that the value remains if and only if the scheduling

assignment does occur (i.e., Sij,k,x = 1). The inequality constraint Eq. (1) ensure the
completion time of any data center is bounded by the makespan, TS .

Constraints in the second and third equations Eqs. (2) and (3 ) are added to further
ensure the feasibility of our scheduling decision. Equation (2) ensures exactly one
task placement decision and data access decision were made for each task t jk . In other
words, a task cannot be placed in multiple data centers, and its required data cannot be
access from multiple locations as well. Equation (3) ensures the data access decision
must refer to a data center that actually has the required data by the task. For example,
in

∑
(Sij,k,x × (1 − Lx

j,k)) = 0, let’s assume a task t jk is schedule to data center i . If

the required data d j
k is located in data center x , then Lx j,k = 1 and (1 − Lx

j,k)) will
be 0. In contrast, if the data is not hosted by x , (1 − Lx

j,k)) will be 1; in such case we

should force Sij,k,x to be equal to 0. That is why the sum of the decision variable Sij,k,x
times (1 − Lx

j,k) “1 minus the value of the data access decision” should be forced to
be 0 for all data centers and all tasks in the system.

If we want to enforce data locality in our scheduling problem by avoiding any
remote data access, we can simply add the following constraint into our formulation
to restrict the scheduling decision.

Sij,k,x = 0, ∀i �= x (5)
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5 Data locality-aware scheduling

In this section, we derive the optimal solution for our scheduling problem on geo-
distributed data centers and show the computational complexity of the optimal solution
before we present a heuristic that guarantee near-optimal performance with lower
complexity. In addition, we discussed the SWAG [23] algorithm which is used for
comparison.

5.1 Schedule optimization with the LP solver

In this paper, it is assumed that the data are generated or collected and often replicated
across data centers. The total execution time of a task depends on two decisions: the
task placement and the data access.

As presented in Eqs. (1)–(5), we can formulate and solve the tasks placement
and data access as a linear programming. The optimal solution got from the linear
formulation is for a schedule instant (e.i: For a given set of jobs, the data location
and the bandwidth between the data centers). This solution also implies that all data
centers are initially available and no job is waiting in their respective local queues.
In practice, the queues might not be initially empty. In addition, we target a system
which admits users jobs submitted regularly at a certain rates. Therefore, we need an
online scheduling mechanism. At arrival, jobs are first placed in a waiting queue. Then
when a data center in a system is in idle state, it requests jobs from the arriving job
queue. This is a trigger for the global scheduler to solve the problem Eqs. (1)–(4)/(5).
All the jobs in the waiting queue are then given as input to the LP solver. We use the
GLPK solver [39]. Then, the local queues qi of each data center is updated with the
new makespan resulting form the current schedule instant. Note that the constrains
Eqs. (1)–(4) are used when we allow migration while Eqs. (1)–(5) are used when we
want to enforce data locality.

Suppose that we have already scheduled jobs from a fist schedule instant and the
global queue of data centers contains Q = {q1, q2, . . . , qN }. In the second schedule
instant, we can reformulate the constrain Eq. (1) of the linear programming as follow:

Ei =
∑

i,x∈DC,t jk ∈T
Sij,k,x ×

[
w

j
k

Ci
+ s jk

Bi,x

]

≤ (TS − qi) (6)

Here, (TS − qi) is the schedule length on the data center i . If we minimize TS under
constraint Eq. (6), then we can substitute TS by TT = max (TS + qi ) from the first
schedule instant. Furthermore, the initial constrain can be written TS = max (TS + 0)
if we assume all queues qi are initially empty.

Although, there is an optimal solution, it is impractical to use an LP solver in the
online scheduler due to the high computation time required to solve the problem.
Even with a single machine, the makespan minimization problem of a splitting job is
proven to be strongly-NP-hard [42]. The motivation behind this work is to introduce a
low-complexity algorithmwhich can schedule the jobs on geo-distributed data centers
such that the total schedule length is minimized.
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5.2 GeoDis scheduler

As explained earlier, the problem is more complex on geo-distributed system and
requires efficient tasks placement to benefit from the replica and to avoid unnecessary
data transfer among data centers. Although significant improvement can be observed
from existing algorithms including locality aware schedulers, there is still a room for
improvement when we include the possibility to migrate the data as we presented
in the example section. However, in order to avoid the high computation complexity
discussed in problem definition section, our method combines the tasks placement
and the job ordering in series of decisions which can be computed in linear time. Our
approach to solve the problem is based of the following rationales:

Rationale 1 It is known that data locality reduces the data transfer time. Therefore,
data locality should be favored whenever it is possible. Should data still be transferred
to gain better performance, we start by the smallest chunks to avoid migrating a large
portion of data. Finally, whenever a data is requested from another data center, we
select the data from the data center with the fastest network bandwidth.

Rationale 2 The tasks from a job needs to be balanced among data centers. This is
because the makespan of a job is bounded by the completion time of the latest tasks
on any data center. Therefore, balancing the tasks from a job can shorten its maximum
schedule length if the tasks distribution is skewed because of the initial data location.
Also, balancing the load of a job can help us balance the load between data center
more easily for our third rationale.

Rationale 3 The total load among data centers needs to be balanced as well. This is
because in theworst case the totalmakespan of aworkload is bounded by themaximum
load among data centers, and the highly loaded data center can easily become the
bottleneck for minimizing the makespan. However, the load of a data center depends
on the scheduling decision between jobs. Therefore, the scheduling algorithm must
be aware of the current loading after each scheduling decision, and place a task to the
data center that has the request data and with the minimum load.

Rationale 1 is addressed by sorting the tasks by their required data size in the
descending order such as larger data get schedules first.Rationale 2 suggests to balance
the load. At this point, there is a conflict with the Rationale 1. If we minimize the
transfer time by only placing the tasks on the data location, due to the skewness of
the data, the makespan will increase considerably. According to the Rationale 3 the
workload should be balanced among data centers. Next, we rely on these rationales
to design our algorithm shown in Algorithm 1. It consists of two steps explained as
follows.

The first step in our approach is to avoid migrating large amount of data. Therefore,
data locality will be favored when the required data to be processed reaches a certain
threshold. In addition, when a file must be transferred, it must be done through the
faster bandwidth between a data center hosting a copy and the placement location
to minimize the transfer time. The result of the first step is to decide which job to
schedule first. The intuition is that tasks from the same job can run together without
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affecting the quality of the schedule. We get as a result of the first step an ordered
list based on the shortest job first policy. In the second step, the tasks are effectively
placed. The distinction between the two phases lies in the optimization mechanism to
reduce the complexity. Further more, to know which job can be balanced among the
data centers, in step 1 line7–line17, we first initialize e j to zero. Then for all the jobs

in the queue, we iteratively compute the resulting execution time: [w
j
k

Cd
+ s jk

Bd,x
] for all

d, x ∈ S. We then choose as targeted data center (target) to place the task, the data
center which result in the minimum makespan (line13). Ultimately, the makespan of
the current job is measured by e j will be qmax (line15). Following, we sort the jobs
by their makespan in ascending order. In the second step, we rely on the shortest job
first and perform the balance in the task placement similarly to the previous step.

Algorithm 1 GEODIS
1: procedure GEODIS(DC, B, J, T,L, s, Q)
2: Input:
3: DC : data centers;B: Network bandwidth; J : jobs; T : tasks; L: data placements; s: data size ; Q =

{q1, · · · , qN }: schedule queue of data centers
4: Output:
5: Q = {q1, · · · , qN }: updated schedule queue of data centers
6: //Step1: Balance the load and sort jobs by their minimum execution time
7: e j ← 0, ∀J j ∈ J
8: for J j ∈ J do
9: curr_qd ← qd , ∀qd ∈ Q

10: for t jk ∈ J j do
11: for d ∈ DC do
12: for x ∈ DC do

13: target ← mind |curr_qd + [w
j
k

Cd
+ s jk

Bd,x
]|, ∀DCd , DCx ∈ S and Lxj,k = 1

14: curr_qtarget = curr_qtarget ∪ t jk
15: curr_qmax ← max |curr_qd |)
16: e j ← |curr_qmax |
17: Sort J j ∈ J by e j in ascending order
18: //Step2: Place tasks on the data center with minimum load
19: for J j ∈ J do

20: for t jk ∈ J j do
21: for d ∈ DC do
22: for x ∈ S do

23: target ← mind |qd + [w
j
k

Cd
+ s jk

Bd,x
]|, ∀DCd , DCx ∈ S and Lxj,k = 1

24: qtarget = qtarget ∪ t jk
25: return Q

5.3 Workload-aware greedy scheduling (SWAG)

SWAG [23] is a workload-aware greedy scheduling technique that prioritizes jobs
execution among data centers. SWAG and GeoDis use the same job and task model.
SWAG schedules jobs iteratively and keeps track of the queue length in each data
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center. Initially, the queues in each data center is set to zero. Iteratively, SWAG picks
a job and base on the data location, place the tasks such as the length of the queues
are minimized, then recodes the highest queue length. The jobs with the minimum
highest queue length is then scheduled and the queue lengths are updated in each
data center respectively to the completion time of the latest task. Clearly, in each
iteration, SWAG picks the job that will result in the lowest maximum queue length
among all data centers. However, SWAG is not aware of data replication and schedule
job based on the initial data location. Since data replication is normally controlled
by its data collection sources, and for fault tolerant purpose, we cannot assume the
initial or primary data location will favor one particular scheduling algorithm and
produce reasonable scheduling performance. Especially, in practice, the initial data
placement is more likely to be skewed and caused unbalanced workload and longer
job makespan. In addition, SWAG does not propose any mechanism to transfer data
and the processing task to a remote data center. In contrast, we intend in GeoDis to
take advantage of the replicas and task migration.

6 Performance evaluation and analysis

Weevaluated and compared the following approaches:Using theGLPKsolver [39] and
allowing migration as specified in the problem setting. The second approach also uses
the LP solver with extra condition to enforce the locality. They are labeled respectively
as LP_Migration and LP_Locality. GeoDis is our solution which also allows data
transfer from remote data center. The fourth algorithm is SWAG [23] which uses the
initial data location as tasks placement polity.

The goal of these evaluations is to show the potential of locality and data migration
for a scheduler in geo-distributed data centers. Specifically, in Fig. 3 we show the
overall evaluation. Following, we discuss the impact of the system utilization in Fig. 4
and brought up some analysis on the data distribution in Figs. 5 and 6. Finally, we
reported the time to solution analysis of the algorithms in Fig. 7. In the following, we
present the setup and the analysis of the experimentation conducted on simulations
with realistic settings.
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Fig. 3 Performances on makespan minimization with different workloads normalized to GeoDis. a Per-
formance on Facebook 2009 trace. b Performance on Facebook 2010 trace. c Performance on exponential
synthetic trace
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Fig. 4 Performances on makespan minimization at different system utilization normalized to GeoDis. a
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Fig. 6 Impact of the data replication

6.1 Setup

6.1.1 System

The default system setting is composed of 8 data centers, each with a different number
of nodes and cores per node as described in Table 3. The capacity of a data center
is equal to the #nodes × #cores_per_node. Unless specified, the classical 3-replica
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Fig. 7 Time complexity analysis: comparison of time to solution

Table 3 General system setting Heterogeneous distributed system

Data center # of nodes # of cores per node

DC1 13 24

DC2 7 12

DC3 7 8

DC4 12 8

DC5 31 32

DC6 31 32

DC7 10 16

DC8 8 12

policy is adopted by default and replicated data are randomly placed in the data centers.
The bandwidth among data centers are based on Amazon EC2 small instance using S3
as storage in each data center. The bandwidth values in Table 4 are the Min between
the network among the source data center from which data is migrated and destination
data center; and the storage i/o bandwidth at the destination data center [2]. A similar
setting has been used by previous work [22].
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Table 4 Bandwidth among data
centers (Mbps)

DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8

DC1 – 931 376 822 99 677 389 935

DC2 931 – 97 672 381 82 408 93

DC3 376 97 – 628 95 136 946 175

DC4 822 672 628 – 945 52 77 50

DC5 99 381 95 945 – 822 685 535

DC6 677 82 136 52 822 – 69 639

DC7 389 408 946 77 685 69 – 243

DC8 935 93 175 50 535 639 243 –

Table 5 Settings of job traces

Trace type Avg. job size Small jobs
(1–150) (%)

Medium jobs
(151–600) (%)

Large jobs
(>601) (%)

FB-2009 76.86 87.30 8.55 4.15

FB-2010 157.12 48.12 4.71 47.18

Synthetic 662.06 6.93 23.15 69.92

6.1.2 Workloads traces

We used two traces from Facebook workloads [4,5]: one ( FB-2010) with the data
input path and the other (FB-2009) without that information. In total, there are about
24000 jobs in each traces. The arrival rates are respectively 3.54 and 3.4 s for FB-2009
and FB-2010. The summary can be found in the Table 5. For example, jobs with less
than 150 tasks are considered small, 151 to 600 tasks are considered medium and any
job having more than 601 tasks is considered a large job. Since each task processes a
portion of data, the size of a job often measured by the number of tasks. Moreover, the
model followed here is extended from that presented by Hung et al. [23]. Along with
these traces, we randomly generate traces from a random generator to evaluate the
performance under various tests settings. The synthetic workload generator randomly
generates traces based on the data model described by Chen et al. [12]. By default,
we randomly generated 1000 jobs following a uniform distribution. The initial data
location follows a Zipf distribution α = [0.001, 30] which indicated the skewness of
data location on the data centers. Note that the larger α value means a higher skewness.
In the extreme case, data are skewed in one data center when α is equal to 30. Note
that using Zipf-like distributions in data analytic applications simulation provides a
wide range of data skewness to assess the scheduling performance. This scenario has
been evaluated for various Web cashing, Data Grid and geo-distributed data analytics
related publications [7,8,23,27].
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6.2 Performance evaluation and analysis

6.2.1 The overall performance analysis

This section compares the performance of the GeoDis with that of SWAG and the LP
solver. For this purpose, we consider the three traces described above with the default
settings. The values in Fig. 3 are normalized to GeoDis. In the FB-2009 trace which
is dominated by small jobs—87.30% of them have fewer tasks, GeoDis reduced the
makespan by (5.54−1)/5.54 = 82% as compared to SWAG. For the performance on
FB-2010 trace presented inFig. 3b,GeoDis outperformsSWAGby (6.21−1)/6.21 =
84% on the makespan. We explain this by the fact that the tasks placement policy
used in SAWG is based on the initial data location. As a consequence, when the
data are initially skewed on the same fewer data centers, the resulting makespan is
high. Enforcing the data locality with LP_Locality reduces the makespan by 74%
in comparison to SWAG. Furthermore, the optimization decision based on the data
transfermade byLP_Migration andGeoDis adds evenmore substantial contribution to
themakespanminimization. Specifically, as shown in Fig. 3b, themakespan ofGeoDis
still remains within only 10 ∼ 14% higher than the result by LP_Migration, with an
observation that small tasks favors the LP solver more than the larger tasks. Enforcing
data locality in the placement decision has not been beneficial to LP_Locality either.
This observation is consistent throughout Fig. 3a–c. For example, in the results shown
in Fig. 3c, GeoDis outperforms LP_Locality by 44%. LP_Migration on the other hand,
can take advantage on the idle data centers to schedule tasks and transfer their required
data as far as it minimizes the overall makespan. We can draw two conclusions in this
overall performance analysis: First, enforcing locality or relying on the initial data
location has a significant impact on the makespan. Secondly, when data are skewed
in fewer data centers, there is a huge potential to rely on the data transfer to minimize
the overall makespan. As reported in this analysis, GeoDis can achieve as close as
86–91% of the solution by the LP solver.

6.2.2 System tilization

In this section we want to measure the performance of the algorithms with regard to
the system utilization. The system utilization is measured by the ratio of the workload
divided by the system capacity Ci . The jobs inter-arrival rate determines how many
jobs are queued between each schedule instant. In fact a larger rate means less jobs will
arrive to the global scheduler while a small rate (e.g every second) will result in a larger
number of jobs arriving for the same schedule instant. The default setting assumes a
fixed arrival rate in the system. In reality, jobs arrive at different rate in the course
of the day. One way to investigate the robustness of our scheduling algorithm is to
assume that arrival time follows an exponential distribution, leading to various levels
of system utilization. Following this, we increase the job inter-arrival rate such that at
any given schedule instant, we can reach a certain system utilization. We measured
and reported the performance of the algorithms on Fig. 4. The results show that as the
system utilization increases, the makespan increase for both algorithms. However, for
the different traces, the variance between the makespan produced by GeoDis remains
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small. In Fig. 4a and b, we present the log values of the makespan in order to show
how close are the results. Again it shows how close is GeoDis as compared to the
LP_Migration. Unlike the other algorithms, SWAG results in a longer makespan. A
higher system utilization results in a larger number of jobs per schedule instant and
therefore requires tasks to be placed carefully. As we report in Fig. 4c, the resulting
makespan of the LP_Migration and that of GeoDis remains within 5%of themakespan
while SWAG performs up 89% longer makespan over GeoDis.

These results are in line with those we analyzed in the overall analysis. Moreover,
unlike the LP_Locality and SWAG, the makespan of both the LP_Migration and
GeoDis algorithm do not exhibit a larger variation as the system utilization increase.
For example, in Fig. 4c, increasing the system utilization by 15% (50% utilization to
65% system utilization), it only occurs on average in 2 and 6% makespan increase
for LP_Migration and GeoDis respectively. This is a testimony from which we can
conclude that the two algorithms still perform very well in different system utilization
level.

6.2.3 Data characteristic analysis

In Fig. 5 we report the makespan obtained for each data characteristics. We show
the impact of the initial data location within the geo-distributed data centers on the
makespan produced by the algorithms. Data are generally produced or collected by
different techniques with different objective functions. Therefore, it is not always
possible to accurately predict or set the initial data location in a simulation. To capture
various initial data locations and to assess the performance of the algorithms under
different initial conditions, this section evaluates the initial data characteristics. It
encompasses different initial data location and the replicas as well. To this end, we
used different data skewness and present the results in Fig. 5. The skewness factor
α = [ 1

1000 , 0.1] results in a uniform distribution, while any value higher than 1 results
in a skewed distribution ( at α = 30, almost all the data are initially stored in one data
center). The first observation is that both of LP solutions and GeoDis perform closely
at α = [ 1

1000 , 0.1]. Recall that the core technique of GeoDis is to balance the workload
per job level and at the overall data centers level. When data are uniformly distributed,
both advantages are considerably reduced as shownwith the FB-2009 trace in Fig. 5a
and the FB-2009 trace in Fig. 5b. The difference in the makespan produced by the
algorithms is even smaller for small tasks (e.g the case of Fig. 5a). Furthermore, on
the other hand, when the data are severely skewed (at α = 30), more transfers can
be initiated to minimize the makespan. That is the reason why LP_Migration has the
least makespan increase throughout the different skewness factors. It is also essential
to note the transitions between the LP_Locality and GeoDis over the two categories:
GeoDis is within a ratio of 2 ∼ 9% of the makespan produced by LP_Locality for
uniform distributed data. However, for skewed data, the former outperform the results
of the LP_Locality by 25 ∼ 82% as shown in Fig. 5a. The results show that our
algorithm has a best performance over the LP_Locality. The reason is that as data
are more and more skewed, there is an opportunity to balance the processing tasks
through data migration; at the same time the locality of tasks placement is reduced to
fewer number of data centers resulting in imbalance load among data centers. Since
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the makespan is governed by the latest task to complete in any data center, the over
loaded data center is bottleneck in this particular situation.

In Fig. 6 we present the data access results. The goal is to evaluate the impact of
the replication factor over the data access patterns. Here, a replication factor of 50%
means each data has a replica in half of the data centers that compose the system. In
this experiment we only consider the LP_Migration and GeoDis. The other algorithms
do not consider migration and therefore are not interesting for this analysis. Here we
want to report the percentage of data processed by the tasks either the initial data or
fist copy, the replica or data which is migrated then processed in different data center.
A general observation for both algorithms reads like this: as the number of replicas
increases, more tasks are scheduled based on locality. The reason for this observation
is that as more data are replicated, more tasks can be placed on the replicas reducing
the total execution time. In addition, the percentage of initial data processed by the
tasks remain consistent between 11–22%.Migration and locality combinedmake 80%
of the data process. When we break locality and migration apart, at a lower replication
factor, GeoDis migrates more data than it relies on locality; 54% of data migrated over
33% using locality. For 50–63%, both algorithms rely more on locality with more
than 70% of the data process for the LP solver and 66% for GeoDis. In the extreme,
although unrealistic, when we duplicate data over 88% of the data centers, very few
data transfers are needed to minimize the makespan. This results is in conformity with
our assumptions. Data is only migrated when workload schedule can benefit the from
it to minimize the overall makespan.

6.2.4 Evaluation of the running time

We evaluate the running time of the algorithms in this experiment.We removed SWAG
from this experiments. We set the arrival rate to 0.1 ms to ensure that there is no idle
data center during the course of the scheduling process. In total we scheduled 1300
jobs and record the time taken to compute the task placement and the data access.
Figure 7 shows the time to solution between GeoDis and the LP solver. In this figure,
our algorithm considerably outperforms the LP solver. As compared to GeoDis, it
takes on average 3 additional minutes to run the LP solver for a workload consisting
of 5 jobs.We further observe that there is a slight difference between the LP_Migration
and LP_Locality. Intuitively, more constrains to satisfy make the placement decision
harder to compute. Therefore, whenwe force data localitywith an additional constrain,
we increase the size of the solution matrix and therefore it will require more time to
compute the solution.This validates the efficiencyofGeoDis andour goal of generating
the schedule within a reasonable time.

6.2.5 Discussion

In this study, we evaluated two main optimization conditions on geo-distributed sys-
tems. One considering data migration and the second one forcing locality. Our model
and simulations lead to the following insights:

– The approach which allows migration in the optimization process is a subset of the
one that forces data locality. We came to this conclusion because we observed that
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when the network connection is very low (e.g higher transfer time) both approaches
perform equally.

– From the previous observation, it worths using an approach which allows data
migration in case we have no knowledge of the workload size or the initial data
location. The reality is that, forcing locality requires more time to solution while
in any case an optimal solution forcing locality can perform any better than an
optimal solution with migration.

7 Conclusion

Geo-distributed data centers have increasingly enabled the deployment of large-scale
data-intensive applications. The advent of big data, have also changed the way we
collect, reproduce and store data. In addition, to guarantee service availability insti-
tutions often replicate the data in different locations. Data locality aware scheduling
have been efficiently used in cluster systems to avoid the growing network bandwidth
requirement. However, scheduling the data processing jobs for the data hosted in dif-
ferent datacenters suffer sometimes of imbalanced load since data are expected to
be skewed. As a result, data may still be transferred over the network to other data
centers. To efficiently schedule jobs composed of multi-tasks in such environment
such as to combine the benefit of data locality and avoid unnecessary data movement,
we firstly demonstrate that the task placement and the data access can be formulated
as a linear programing problem. Then, we proposed a low complexity algorithm for
data processing jobs which are split and placed on different data centers. Through
simulations with realistic traces we have demonstrated that the makespan our solution
remains within 91% close to the optimal solution by the LP solver and can outperform
the locality aware schedule by 44%, when initial data are skewed.
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