
Future Generation Computer Systems 53 (2015) 43–54
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Locality and loading aware virtual machine mapping techniques for
optimizing communications in MapReduce applications
Ching-Hsien Hsu a,b,∗, Kenn D. Slagter c, Yeh-Ching Chung c

a Department of Computer Science, Chung Hua University, Hsinchu, 300, Taiwan, ROC
b School of Computer and Communication Engineering, Tianjin University of Technology, Tianjin, 300384, PR China
c Department of Computer Science, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC

h i g h l i g h t s

• Improving performance of MapReduce programs in heterogeneous environments and hybrid clouds.
• Enhancing data locality through a virtual machine mapping technique.
• Optimizing shuffle performance and reducing communication overheads in distributed systems.
• We propose a loading aware technique to balance workload of reducers at run-time.

a r t i c l e i n f o

Article history:
Received 9 January 2014
Received in revised form
15 October 2014
Accepted 16 April 2015
Available online 1 June 2015

Keywords:
BigData
Cloud computing
Distributed computing
Heterogeneity
MapReduce
Virtual machines

a b s t r a c t

Big data refers to data that is so large that it exceeds the processing capabilities of traditional systems. Big
data can be awkward to work and the storage, processing and analysis of big data can be problematic.
MapReduce is a recent programming model that can handle big data. MapReduce achieves this by
distributing the storage and processing of data amongst a large number of computers (nodes). However,
this means the time required to process a MapReduce job is dependent on whichever node is last to
complete a task. Heterogeneous environments exacerbate this problem.

In this paper we propose amethod to improveMapReduce execution in heterogeneous environments.
This is done by dynamically partitioning data before theMap phase and by using virtualmachinemapping
in the Reduce phase in order to maximize resource utilization. Simulation and experimental results show
an improvement in MapReduce performance, including data locality and total completion time with
different optimization approaches.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Big Data is relative term that refers to datasets that have grown
to a size that is awkward to work as conventional software tools
to capture, manage and process in a tolerable period of time [1].
The source of this data is wide and varied. Typical examples in-
clude RFID tags, GPS-enabled smart phones, social media, phone
records, web logs, sensor networks, online browsing, eCommerce,
and in various scientific research such as astronomy, medicine and
weather [2–4]. Bymining this data researchers can discover trends

∗ Correspondence to: Department of Computer Science and Information Engi-
neering, Chung Hua University, Hsinchu, 300, Taiwan, ROC.

E-mail addresses: chh@chu.edu.tw (C.-H. Hsu),
kennslagter@sslab.cs.nthu.edu.tw (K.D. Slagter), ychung@cs.nthu.edu.tw
(Y.-C. Chung).

http://dx.doi.org/10.1016/j.future.2015.04.006
0167-739X/© 2015 Elsevier B.V. All rights reserved.
such as user behavior. Such knowledge can have an impact on busi-
nesses, government, and scientific endeavors.

MapReduce is a programming model to create distributed ap-
plications that can process big data using a large number of com-
modity computers. Originally developed by Google, MapReduce
enjoys wide use by both industry and academia [5] via Hadoop [6].
Hadoop is an open source implementation of MapReduce devel-
oped by Yahoo and is based on Google’sMapReduce [7] and Google
File System [8] papers.

The advantages of MapReduce framework is that it allows users
to execute analytical tasks over big data without worrying about
the myriad of details inherent in distributed programming [5,9].
Both scalable and fault tolerant MapReduce frameworks poten-
tially reduce the time it takes to complete a job by an amount
that is proportionally related to the number of nodes available. The
efficacy of MapReduce can be undermined however by its imple-
mentation. For instance, Hadoop the most popular open source

http://dx.doi.org/10.1016/j.future.2015.04.006
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.04.006&domain=pdf
mailto:chh@chu.edu.tw
mailto:kennslagter@sslab.cs.nthu.edu.tw
mailto:ychung@cs.nthu.edu.tw
http://dx.doi.org/10.1016/j.future.2015.04.006


44 C.-H. Hsu et al. / Future Generation Computer Systems 53 (2015) 43–54
MapReduce framework [9] assumes all the nodes in the network
to be homogeneous. Consequently, Hadoop’s performance is not
optimal in a heterogeneous environment.

In the MapReduce model the time it takes to complete a job
depends on when each node completes its workload. Therefore, if
the workload is distributed evenly, the slowest node determines
the time a job completes. To compensate for this the workload
on slower nodes needs to be less than the faster nodes. This
can be achieved by dividing the workload proportionally amongst
individual nodes based on the processing efficiency of each
node.

In this paper we focus on the Hadoop framework. We look in
particular howMapReduce handles map input and reduce task as-
signment in a heterogeneous environment. This is important area
of research since there is ample opportunity for MapReduce to be
deployed in such environments. For instance, as technology ad-
vances, new machines on the network are likely be dissimilar to
old ones. Alternatively, MapReduce may be deployed on a hybrid
cloud environment, where computing resources tend to be hetero-
geneous. Therefore, this paper proposes a method to improve exe-
cution of MapReduce jobs in a heterogeneous environment.

In summary, this paper presents the following contributions

• A method to improve mapper performance in a heterogeneous
environment by repartitioning data at each node.

• A method to improve virtual machine mapping for reducers.
• A method to improve reducer selection on a heterogeneous

systems.

The rest of this paper is organized as follows. In Section 2, we
present some background onMap Reduce. In Section 3, we present
our proposed dynamic data partitioning and virtual machine
mapping methods. In Section 4, we evaluate our work, present
our experimental results and discuss our findings. In Section 5,
we discuss related work. Finally, in Section 6, we present our
conclusion and give a brief discussion of future work.

2. Background

The term cloud computing appears to have been coined by
Google’s CEO, Eric Shmidt at a conference in 2006, and is likely in-
spired by the use of a cloud to represent the Internet in pictures
and diagrams [10]. Amongst the literature [10–13] it appears that
there is no standard definition of what cloud computing is. There-
fore, this paper uses the NIST definition [14] of cloud computing
being ‘‘a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing re-
sources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction’’.

The introduction of cloud computing presents the concept
of utility computing. Utility computing provides consumer-
computing resources as a service. Utility computing treats
computing as a metered service, like electricity or natural gas [11].
It provides consumers access to computing resources dependent
on their needs from providers. This benefits users, as they need not
invest capital to build and maintain their own data center. It also
gives customers the ability to cope with unexpected demands for
resources, and only pay for resources they need during non-peak
periods [11].

In this paper, there are two important enabling technologies
used by cloud computing, virtualization and MapReduce. Virtual-
ization provides cloud computing’s flexible and scalable hardware
services [12]. Meanwhile, MapReduce is a programming model to
process and access large datasets in a distributed programming en-
vironment.
Fig. 1. An example of hypervisors, virtual machines and physical machines on the
cloud.

2.1. Virtualization

Virtualization technologies provide an abstraction of comput-
ing resources to the end user [15,16]. From the resources point of
view, virtualization provides a way to create logical subsets of re-
sources from a physical machine. From the users point of view the
virtual environment behaves like a real physicalmachine (PM). The
flexibility of virtualization is why it is a key component in cloud
computing.

On the cloud, physical machines are logically partitioned using
virtual machine techniques such as Xen [17], VMWare [18] and
KVM [19]. Virtual machines are a way to provide computing
resources to users,which they canmanage and configure to fit their
specific needs.

For example in Fig. 1, there are two physical machines, both
hosting three virtual machines managed by a hypervisor. From
the provider’s perspective, they have two physical machines to
maintain, while from the users perspective it appears that they
have access to six different machines.

2.2. MapReduce

Currently, the only viable way to work with voluminous
amounts of data is to use a divide and conquer strategy. The es-
sential principle to the divide and conquer strategy is to break
down a large problem into several smaller problems. MapReduce
achieves this by dividing the storage and processing of data and
distributing them amongst a number of computers, known as
nodes, in a network. In other words, MapReduce is a framework
for writing distributed applications that process large amounts of
data.

Traditionally, parallel or distributed environments required
programmers to handle a multitude of issues. For instance, how
does one divide the large problem? Exactly, what sub-problems
and what tasks need to be performed? How will the different
tasks be instantiated? How will they communicate? How will the
workload be distributed?What happenswith the results produced
by the individual tasks? What happens if there is a software
error? What happens if there is a hardware failure? How does
one coordinate the system so that one can avoid deadlock or a
race condition? These myriad details are quandaries that many
developers have had to contend with.



C.-H. Hsu et al. / Future Generation Computer Systems 53 (2015) 43–54 45
Fig. 2. MapReduce dataflow.

The MapReduce framework was proposed as a way to alleviate
the burden placed on software developers and to prevent devel-
opers from having to reinvent solutions to similar or even identi-
cal problems. In essence, MapReduce provides an abstraction that
allows software developers to ignore the details and allows them
to focus their attention on the problem they are really trying to
solve. This abstraction is one of the main advantages of MapRe-
duce. While language extensions such as OpenMP [20] or MPI [21]
provide parallel systems a way to communicate, they still require
developers to keep track of resources and provide little support
when handling large amounts of data. From the programmers per-
spective MapReduce is a relatively easy way to create distributed
applications compared to traditional methods. It is one of themain
reasons for MapReduce’s popularity.

The idea of MapReduce evolved from principles used in
functional programming. The basic principles of MapReduce can
be summarized as being two distinct programming functions, a
map function and a reduce function. It is the responsibility of the
programmer to provide these functions. These functions are then
incorporated into two tasks knownas amapper and reducer,which
handle the map and reduce functions respectively. In this paper,
the terms mapper and reducer are used interchangeably with the
terms map task and reduce task.

The dataflow for the MapReduce framework is shown in Fig. 2.
In Hadoop, additional tasks and nodes are required to handle er-
rors, initiate jobs, and to coordinate the various tasks. For the sake
of simplicity, details relevant to coordination and communication
as well as other extraneous details used have been simplified, and
amalgamated into a single master task.

In MapReduce, the purpose of the map and reduce functions is
to handle sets of keys–value pairs. When a user runs a MapReduce
program, data from a file or set of files is split amongst themappers
provided and read as a series of key–value pairs. The mapper then
applies the map function on these key–value pairs. It is the duty of
the map function to derive meaning from the input, to manipulate
or filter the data, and to compute a list of key–value pairs. The list
of key–value pairs is then partitioned based on the key, typically
via a hash function (1). During this process, data is stored locally in
temporary intermediate file.

partitionNumber = key % totalNumberOfReducers. (1)

InMapReduce, the purpose of partitioning is to ensure that each
mapper sends all its key–value pairs with the same key to the
same reducer. Eventually, all of the key–value pairs for a particular
partition merge at a specific reducer. During the merge, all keys
are sorted into a unique list of keys with a corresponding list of
values for each of these keys. The reducer then executes in a loop a
reduce functionwhich takes as input a key and a list of values. Once
the reduce function finishes computing the data an output file is
produced. Each reducer generates a separate output file. These files
can be searched, merged or handled however the user wants once
all reducers have completed their workload.

3. Proposed techniques and implementation

Hadoop has garnered much popularity in both academia and
industry. The popularity it enjoys is a result of both its speed
and economic efficacy. Furthermore, since Hadoop is open source,
academics have been provided a useful platform on which to base
their research. However, one of the drawbacks of the Hadoop
implementation is it assumes that the computing nodes in the
network are homogeneous [22].

Consequently, Hadoop exhibits several inefficient behaviors
when employed in a heterogeneous environment. This paper
therefore proposes some methods that can improve the perfor-
mance of MapReduce when executing in such an environment.

The research model for this study is presented in Fig. 3, which
shows a network that consists of several physical machines. Each
physical machine (PM) has a limited number of virtual machines
(VM). Without losing generality, virtual machines are used as a
basic unit with which to execute a task. Each virtual machine
represents a processing unit that can run either a map task or a
reduce task. Due to the heterogeneous nature of the environment,
the processing capabilities of any particular virtual machine may
differ from other virtual machines in the environment.

3.1. Dynamic data partitioning

A file system that handles storing and the manipulation of the
file or files in which the dataset is stored across multiple machines
is called a distributed file system. In the age of big data, the size
of a dataset can exceed the storage capacity of a single physical
machine. It therefore becomes necessary to distribute the storage
of the dataset on multiple machines. For this reason Hadoop has
its own distributed file system called the Hadoop Distributed File
System (HDFS).

In Hadoop, a MapReduce job begins by first reading a large
input file. This file is usually stored on the HDFS. The data from
this file is then divided into a set of fixed sized pieces known
as splits. Hadoop then creates a mapper for each split. Hadoop
assumes a homogeneous cluster in which each node has the same
processing power and capabilities. If this is the case, then each
mapper will finish processing its split at approximately the same
time. Of course in a heterogeneous network, where nodes do not
have this property some nodes will complete their work sooner
than others will.

If a mapper with greater processing efficiency is able to reduce
the workload from one that is slower one, then the maximum
time to complete the task for those two mappers is reduced.
It would seem then that it would be desirable to have all
mappers dynamically sharing their workload with one another.
Unfortunately, access data rates between nodes on the HDFS are
inconsistent due to issues of data locality. Therefore, we propose
the following dynamic data partitioning scheme in which each
node performs dynamic data partitioning irrespective of other
nodes on the network.

An example of the dynamic data partitioner is shown in Fig. 4.
In this example, a 600 GB file is used as input data. In this scenario,
the data is to be divided up into six equal sized pieces, which
are to sent to six virtual machines. Each of these virtual machines
execute a map task. Each virtual machine is given a value n that
indicates the relative processing ability of each machines virtual



46 C.-H. Hsu et al. / Future Generation Computer Systems 53 (2015) 43–54
Fig. 3. Dataflow of dynamic data partitioner and virtual machine mapper.
processing unit (VPU). Both the CPU of the physical machine and
the total number of vCPU assigned to the VMdetermines the actual
processing ability of the VPU.

For instance, the virtual machine VM1 has an n value of 10 and
the virtual machine VM2 has an n value of 2. This means that VM1
is able to process data 5 times faster than VM2. The processing
speed of each virtualmachine is calculated prior to execution using
a profiling tool.

As previously mentioned, the proportion of data to be reas-
signed amongst virtual machines is determined by the processing
ability of all the virtualmachines running on the samephysicalma-
chine. The following algorithm calculates the amount of data to be
assigned to each virtual machine:

Algorithm 1 Data Repartitioning
Input:

SPM: set of all physical machines
PM: physical machine
VM: virtual machine

1. for each PM on SPM
2. //calculate fragment size
3. for each VM on PM
4. totalDataSize = totalDataSize + VM.init.splitSize
5. totalSpeed = totalSpeed + VM.processingSpeed
6. end for
7. fragmentSize = totalDataSize/totalSpeed
8. //calculate data to be reassigned to each VM
9. for each VM on PM
10. VM.ideal.splitSize = VM.processingSpeed *

fragmentSize
11.

VM.diff.splitSize = VM.init.splitSize-VM.ideal.splitSize
12. end for
13. // data migration from over-loadingVMoto

under-loadingVMuin O(n), wherenis the number of VMs
14. for each over-loading VM, e.g. VMo

15. for each under-loading VM, e.g., VMu

16. Send.fragment (fragment.size =

min{VMo.diff.splitSize, VMu.diff.splitSize},
VMo, VMu)

17. VMo.diff.splitSize − = fragment.size
18. VMu.diff.splitSize + = fragment.size
19. end for
20. end for
21. end for

For example, in Fig. 4 there are two physical machines. Both
physical machines have three virtual machines. The attributes of
which are summarized in Table 1.

Once the initial input splits are designated to each virtual
machine the DDP repartitions the data on each physical machine.
Fig. 4. Dynamic data partitioner.

Table 1
Summary of initial inputsplit.

Physical machine Virtual machine VPU speed Input data (GB)

1
1 10 100
2 2 100
3 8 100

2
4 6 100
5 4 100
6 10 100

On PM1 there is three virtual machines VM1, VM2 and VM3. VM1
has aVPU speed of 10, VM2has aVPU speed of 2 andVM3has aVPU
speed of 8. Each virtual machine has an initial split size of 100 GB.
Consequently, the total data size of the three virtual machines is
300 GB, and the total VPU speed of the three virtual machines is
20 units. The input split is then divided into fragments. The size of
fragment is calculated using the following equation:

fragmentSize = totalDataSize/totalSpeed. (2)

The split size for each virtual machine is then reassessed by
multiplying the VPU speed of each virtual machine by the
fragmentSize. For PM1 the fragmentSize is 300/20 = 15.

splitSize = VPU.processingSpeed ∗ fragmentSize. (3)

Therefore, for PM1, where VM1 has a VPU speed of 10, its split size
is reassessed to be 10 * 15 = 150 GB. All other data splits are
calculated using the same method. The results are summarized in
Table 2.

3.2. Virtual machine mapping

After a mapper processes an input split, the mapper writes to
a temporary file on the local disk. The mapper output is a list of
key–value pairs. This list is partitioned based on the key–value,
and on how many reducers there are. Each partition is then sent
to a different reducer. The reducer receives and merges this data
from each of the mappers. The reducer then processes this data
and produces the final output.



C.-H. Hsu et al. / Future Generation Computer Systems 53 (2015) 43–54 47
Fig. 5. Virtual machine mapper model.
Table 2
Summary of final inputsplit.

Physical machine Virtual machine VPU speed Input data (GB)

1
1 10 150
2 2 30
3 8 120

2
4 6 90
5 4 60
6 10 150

A master node determines where mappers or reducers reside
on a network. When assigning a mapper to a node, it is important
that it is located on or near the data it is going to access. This is
because transferring data from one node to another takes time and
delays task execution. The problem of determining where to place
a task on the network so that it is close to the data it uses is known
as data locality. Data locality is a key concept inMapReduce and has
a major impact on its performance.

A key concept for MapReduce is that: ‘‘moving computation
towards data is cheaper than moving data towards computation’’.
Even thoughHadoop uses this conceptwhen determiningwhere to
execute itsmappers, it does not exploit this concept for its reducers
and locate reducers near these partitions. We therefore propose
for this purpose a virtual machine mapper (VMM) which allocates
the reducer to the appropriate physicalmachine based on partition
size and the availability of a virtual machine (see Fig. 5).

Given a mapper i, the intermediate data that resides on that
mapper’s ath partition can be described as ID(i, a). Before physical
sending this data to a VM, the partition data from all the mappers
forms a set of shuffle blocks. Each shuffle block contains all the
data produced by the mappers on a single physical machine for a
specific reducer. The total number of shuffle blocks (NSB) destined
to each reducer is equal to the total number of reducers (N)
multiplied by the total number of physical machines (P).

NSB = N ∗ P. (4)

A shuffle block SB (a, p) is created by combining partition a
data from each mapper on a given physical machine p. Given P
physical machines, with M mappers on each machine, this can be
summarized using the following formula:
Where ID(i, a) = intermediate data stored in the ath partition
on mapper i
Where SB(a, p) = shuffled block of the ath partition gathered
from physical machine p
Where α = (p − 1) ∗ M + 1
Where β = (p − 1) ∗ M + M
SB (a, p) =

M
i=0 ID(i, a)

α≤i≤α+β

ID (i, a) . (5)

For instance based on an environment that has two physical
machines, with three virtual machines on each virtual machine:

SB(1,1) = ID(1,1) + ID(2,1) + ID(3,1).
SB(1,2) = ID(4,1) + ID(5,1) + ID(6,1).
SB(2,1) = ID(1,2) + ID(2,2) + ID(3,2).
SB(2,2) = ID(4,2) + ID(5,2) + ID(6,2).

Shuffle blocks that have the same value of a form a single
reducer block (RB). A reducer block is a superset of data and
contains all the data to be processed by a single reducer.

RB(a) =

(P∗M)
j=(i∗M)+a

SB(i, a). (6)

For instance based on an environment that has two physical
machines,with three virtualmachines on each virtualmachine and
the shuffle blocks above:

RB(1) = SB(1,1) + SB(1,2).
RB(2) = SB(2,1) + SB(2,2).

Once reducer blocks are formed, the VMM assigns them to an
appropriate mapper based on data locality and is based on first
come first served (FCFS) and BestFit and are assigned to a VM on a
PM based on the aggregate partition size of its component shuffle
blocks. For example if the aggregate partition size of SB(1, 1) >
SB(1, 2) then RB(1) would be assigned to physical machine 1.
However if SB(1, 1) < SB(1, 2) then RB(1) would be assigned to
physical machine 2.



48 C.-H. Hsu et al. / Future Generation Computer Systems 53 (2015) 43–54
Fig. 6 shows an example of the VMM ascribing reduce tasks
to physical machines. In this example, there are six mappers on
two physical machines, with three mappers per physical machine.
Since this job requests three reduce tasks, each mapper creates
three partitions. The total amount of data to be received by each
reducer is then deduced by summing up the respective partition at
each mapper.

Based on the concept of data locality, reducers are assigned
locations on physical machines based on where the data for each
reducer is stored. On a physical machine there are multiple virtual
machines. Once a reducer is assigned to a physical machine the
reducer is then assigned whichever virtual machine has the fastest
processing speed. The algorithm for the virtual machine mapper is
presented as follows:

Algorithm 2 Virtual Machine Mapper
Input:

SPM: set of physical machines
PM: physical machine
SVM: set of virtual machines
VM: virtual machine
i reducer index
j partition index

1. // retrieve partition metadata
2. SPM = the set of all physical machine on the network
3. reducers = array of all reducers
4. for each PM on SPM
5. for eachmapper on PM
6. fori = 1to NumberOfReducers
7. forj = 1to NumberOfPartitions
8. reducers[i].partition[j].size =

mapper.partition[i].size
9. reducers[i].partitionSize + =

mapper.partition[i].size
10. end for
11. end for
12. end for
13. // Perform BestFit reducer assignment
14. // reducer is assigned whichever virtual machine has the

fastest processing speed.
15. // assign reducers to physical machines based on

reducers[i].partition[j].size and available VM’s
16. for each PM on SPM
17. SVM = the set of all virtual machines on the PM
18. reducers = array of reducers on PM
19. // sort virtual machines based on speed.
20. sortByProcessingSpeed(SVM)
21. fori = 1to PM.numberOfReducers
22. SVM[i] = reducers[i]
23. end for
24. end for

For example, in Fig. 6 there are two physical machines. Both
physical machines have three virtual machines each running a
mapper. Each mapper produces three data partitions which are
to be assigned to three reducers. Using Algorithm 2, reducer
1 is assigned to physical machine 1, virtual machine 1. This is
because physical machine 1 stores the largest fraction of the data
designated for that reducer. Similarly, reducer 2 and reducer 3 are
assigned to a virtual machine on physical machine 2. On physical
machine 1 there are three viable virtual machines (VM1, VM2,
VM3). Reducer 1 is assigned to VM1 as it has the fastest processing
speed. On physical machine 2 there are also three viable virtual
machines (VM4, VM5, VM6) eachwith different processing speeds.
Fig. 6. Virtual machine mapper.

Fig. 7. When more reducers request the same physical machine than there are
virtual machines available, the VMM has to select a virtual machine on a different
physical machine.

Table 3
Virtual machine mapping.

PM VM VPU
speed

Data locality
(PM)

Data size
(GB)

Total data
size (GB)

Reducer

1
1 10 1 150 245 12 95
2 2 NIL 0 0 n/a
3 8 NIL 0 0 n/a

2

4 6 1 105 255 32 150
5 4 NIL 0 0 n/a

6 10 1 45 100 22 55

Since Reducer 2 is processed first it is assigned to the fastest
virtual machine (VM6). Consequently, reducer 3 is assigned to the
second fastest virtual machine (VM4). Details regarding the virtual
machine mapping for Fig. 6 are summarized in Table 3.

In this example, all of the reducers are allocated to the
appropriate physical machine. However, there may be cases when
there are no virtualmachines available. In this case, the reducer has
to be allocated to another physical machine. This is achieved using
the best fit selection method.

When a single physical machine has more reducers requesting
a virtual machine than there are available virtual machines, the
VMM has to locate the reducer on another physical machine.
However, arbitrarily rejecting reducers based on a first come first
served (FCFS) order is suboptimal (see Fig. 7).

3.3. Priority based virtual machine mapping

To improve data locality further, the VMM assesses the
size of the data contributed by each physical machine to each
reducer. The VMM then gives priority to the reducers with the



C.-H. Hsu et al. / Future Generation Computer Systems 53 (2015) 43–54 49
Fig. 8. VMM priority fit: reducers are assigned to a virtual machine based on data
locality. Using a priority based order, Reducer 2 is reassigned to physical machine
2.

Table 4
Priority based order.

Reducer Data locality
(PM)

Data size
(GB)

Absolute
difference

Priority

1 1 165 20 22 145

2 1 120 5 32 115

3 1 180 40 12 100

greatest difference between the largest and second largest data
contributions.

Fig. 8, gives an example of the VMM using priority-based
reassignment. Using the laws of data locality, all three reducers
should be assigned to PM1. This is not possible, as there are only
two virtual machines available. Priority based order is thus used to
determinewhich reducers should be assigned to PM1 andwhich to
reject. An example of the priority-based calculations used for Fig. 8,
is presented in Table 4.

By prioritizing reducers, one can improve data locality. This
is because priority is given to those reducers that receive data
disproportionally more from a single physical machine. This is
preferable to FCFS reducer order (e.g. reducer 1, reducer 2, . . . ,
reducer n) which does not use such a criteria to differentiate
between reducers.

3.4. Load aware virtual machine mapping

One of the original drawbacks of VMM is that it treats all
reducers equally regardless of the difference in the workload.
This method works in a homogeneous system, in which all
virtual machines have the same characteristics. However, in a
heterogeneous environment one needs to consider the VPU of
each virtual machine. Therefore, this paper proposes Load Aware
Virtual Machine Mapping (LA-VMM) which takes into account the
processing speed of each virtual machine. LA-VMM achieves this
by assigning reducers with greater workloads to virtual machines
with faster processing speeds.

In Fig. 9, the LA-VMM assigns reducer 1 to PM1, and reducer 2
and reducer 3 to PM2. On PM1, reducer 1 is assigned to VM1 as it
has the fastest processing speed. On PM2 there are also three viable
virtual machines (VM4, VM5, VM6) each with different processing
Fig. 9. Load aware virtual machine mapper.

Table 5
Load aware—virtual machine mapping.

PM VM VPU
speed

Data locality
(PM)

Data size
(GB)

Total data size
(GB)

Reducer

1
1 10 1 150 245 12 95
2 2 NIL 0 0 n/a
3 8 NIL 0 0 n/a

2

4 6 1 45 100 22 55
5 4 NIL 0 0 n/a

6 10 1 105 255 32 150

speeds. Since Reducer 2 has the greatest workload it is assigned to
the virtual machine which has the fastest processing speed (VM6).
Consequently, reducer 3 is assigned to the second fastest virtual
machine (VM4). Details regarding the virtual machinemapping for
load aware dynamic data partitioning LA-VMM are summarized in
Table 5.

4. Evaluation

To evaluate the performance of the proposed techniques, we
have implemented the dynamic data partitioning and virtual ma-
chine mapping algorithms and tested these methodologies with a
900MB randomly generated input data file on a simulatedMapRe-
duce environment. The performance analysis was reported with
synthesized datasets, where the number of key–value pairswas set
equal to the number of reducers. A 1:3 performance ratio (low het-
erogeneity) and 1:5 performance ratio (high heterogeneity) indi-
cate the possible difference in processing ability between any two
virtual machines in the network.

4.1. Data locality

We measure data locality by the total amount of data stored
locally on the physical machine for each virtual machine. When
data is local, access is fast. Data locality is therefore a reflection
of performance for MapReduce. The heterogeneous environment
is tested using either 2 or 5 virtual machines per physical machine.
The total number of virtual machines used was 10, 20 or 30 virtual
machines.

Fig. 10 depicts data locality in a heterogeneous environment.
Fig. 10(a) has a heterogeneous performance ratio of 1:3, with 2



50 C.-H. Hsu et al. / Future Generation Computer Systems 53 (2015) 43–54
a b

c d

Fig. 10. Data locality (a) low heterogeneity, vm = 2, (b) low heterogeneity, vm = 5, (c) high heterogeneity, vm = 2, (d) high heterogeneity, vm = 5.
virtual machines per physical machine. One can see that both
best fit and priority based VMM improved data locality compared
to Hadoop by more than 33%. Fig. 10(b) has 5 virtual machines
per physical machine. In this case the difference in data locality
between best fit and priority methods and Hadoop has reduced.
This is due to increased ratio of data shared between virtual
machines on the same physical machine. Despite the increase to a
heterogeneous performance ratio of 1:5, data locality in Fig. 10(c)
and (d) mostly mirror the performance of Fig. 10(a) and (b).

4.2. Task execution time

Experiments in this section explore how long Mappers and Re-
ducers take to complete their tasks. The heterogeneous environ-
ment is tested using either 2 or 5 virtual machines per physical
machine. The total number of virtual machines used was 10, 20 or
30 virtual machines.

In Fig. 11, we explored map completion time. In the Map
phase, the Dynamic Data Partitioner repartitions the input split
size based on virtual machine performance. Map completion time
reduced, by a factor of 44%, when the number of virtual machines
per physical machine increased. This highlights how inefficient
Hadoop’s implementation is in a heterogeneous environment.

In Fig. 12, we explored reduce completion time. In the Reduce
phase, the Virtual Machine Mapper selects which virtual machine
a reducer should reside. In this paper, we presented two ways for
the VMM to decide which order reducers are processed, which we
designated best fit and priority based order. Fig. 12(a) shows an
improvement in reduce completion time of 14%, Fig. 12(b) shows
an improvement in reduce completion time of 16%, Fig. 12(c)
shows an improvement in reduce completion time of 23%, and
Fig. 12(d) shows an improvement in reduce completion time of
29%. These simulation results show that our proposed methods
save more time as heterogeneity increases.

In Fig. 13, we explored the total completion time. Total
completion time combines the time taken for both reduce and
map completion times. In Fig. 13, it is shown that the combination
of DDP and VMM has shortened total completion time by
up to 29% for low heterogeneous environments and shortened
total completion time by upto 41% in high heterogeneous
environments.

In Fig. 14, we explored the total completion time using
load aware optimization. The heterogeneous environment used 3
physical machines with 5 virtual machines per physical machine.
Therefore, a total of 15 virtual machines were used. The test
was performed with a randomly generated 900 GB file. The load
awareness optimization is an optimization of the Virtual Machine
Mapperwhich focuses on placing reducerswith heavier workloads
on to faster virtual machines, consequently the map phase shows
no improvement. The load aware optimization improved the
reduce phase by 13% for both best fit order and priority based order
Virtual Machine Mapping.

In Fig. 15,we explored the total completion time forMapReduce
using different number of virtual machines per physical machine.
The heterogeneous environment used a fixed number of 12
workers. The test was performed with a randomly generated
600 GB file. The purpose of the test was to determine how differing
ratio of physicalmachines and virtualmachines affectsMapReduce
completion time. When the number of virtual machines increased
on each physical machine increased, there were more input splits
presented to the dynamic data mapper on each physical machine.
This provides the data repartitioner access to more locations with
which to distribute the data. This provides greater opportunities
for more even distribution amongst the virtual machines, if the
performance improves. Furthermore, the virtual machine mapper
performance also improves as having more virtual machines
reduces chances of collisions as well as increased data locality.

In Fig. 16, we compared the total completion time for
a MapReduce using different data sizes. The heterogeneous
environment used 3 physical machines with 5 virtual machines
per physical machine. The amount of data used as input for
MapReduce ranged from 400 GB to 1200 GB. The results show that
the time to completion increases for all methods as the amount of



C.-H. Hsu et al. / Future Generation Computer Systems 53 (2015) 43–54 51
a b

c d

Fig. 11. Map completion time (a) low heterogeneity, vm = 2, (b) low heterogeneity, vm = 5, (c) high heterogeneity, vm = 2, (d) high heterogeneity, vm = 5.
data to process increases. However, the dynamic data partitioning
with best fit or priority based virtual machine mapping method
performed better than Hadoop as the data load increased.

5. Related work

There has been a variety of studies done by researchers
on MapReduce and heterogeneous environments. We begin by
summarizing some of the recent works here.

MapReduce frameworks such as Hadoop make an assumption
that they will be deployed in a homogeneous environment.
However, there are times where that assumption is untrue. Khalil,
Salem, Nassar, and Saad [23] identified three reasons why this
assumption may be broken. Firstly, it is often impossible or even
undesirable to have only one type of machine in a network.
Secondly, homogeneity is not satisfied by virtualized data centers.
Thirdly, scheduling decisions do not take into account differences
in workload characteristics for different jobs.

Overall, researchers [22–26] have noted that various aspects of
MapReduce’s performance is not as efficient as it could be within
a heterogeneous environment. There has been prior research into
improving data locality within the MapReduce environment. As
has been noted amongst the literature [4,27,28], data locality
has a large influence on MapReduce performance. From the
mappers perspective, researchers have studied how throughput
of MapReduce can be optimized during periods of heavy traffic.
Meanwhile developers of a locality aware reduce task scheduler
(LARTS) [28], noted that Hadoop did not schedule reducers using
any data locality optimization. The LARTS study focused on
reducing network traffic by identifying whether partition data
was on the same node, on the same rack or on a different rack
when scheduling a reducer.While LARTSwas shown to outperform
Hadoop reduce task scheduler for homogeneous environments, it
had no provisions for heterogeneous environments.

Another method to improve data locality in heterogeneous
environment is to focus on data placement [22,25]. In this scenario,
a large dataset is partitioned into data fragments and then
distributed across multiple heterogeneous nodes. The intent is
to ensure each node has a balanced processing load. For this
purpose, the researchers implemented a data reorganization and
data redistribution method within the HDFS. The purpose of this
method is to distribute more fragments near higher performing
nodes. As MapReduce executes on top of HDFS this method is
orthogonal to the one proposed in this paper which works above
the file system layer.

Research into onMapReduce clouds [26] looked at how locality
aware VM reconfiguration could be attained. The researchers took
a different approach to the problem of data locality, and modified
the computing environment based on the locality of the data.



52 C.-H. Hsu et al. / Future Generation Computer Systems 53 (2015) 43–54
a b

c d

Fig. 12. Reduce completion time (a) low heterogeneity, vm = 2, (b) low heterogeneity, vm = 5, (c) high heterogeneity, vm = 2, (d) high heterogeneity, vm = 5.
Essentially, the researchers adjusted the computing capabilities of
individual VM’s in order to maximize utilization of resources.

Li et al. designed topology aware scheduling algorithms for
map tasks [29]. Extending the rack aware feature of the existing
scheduler, this work makes MapReduce scheduler aware of
network topology to provide one more level of caching. In such
design, a master node has information about the physical location
of the requesting client node to enhance resource provisioning. As
data locality is critical to map performance, many work have been
done to preserve locality via map scheduling or input replication.
Another prior study improved the locality of map and reduce
tasks in the cloud by locality-aware VM placement [30]. This
study proposes data and virtual machine placement strategies
accord to the cost of data shuffling between map tasks and reduce
tasks. The authors assumed that having prior knowledge about
the characteristics of MapReduce workloads before customers
execute them, the cloud scheduler could place data to the proper
physical machines using the workload information. According to
data layout, the VM scheduler places VMs to the physical systems
with the corresponding input data.

One of the benefits of MapReduce is that it is fault tolerant,
that it handles these faults automatically and that it keeps its fault
tolerant implementation hidden from the programmer. However,
whenHadoop is deployed in a heterogeneous environment, certain
assumptions are false. Consequently, faultsmaybe detected falsely,
or it may respond with an under correction or overcorrection. One
of themethods employed byMapReduce to handle faults is known
as speculative execution. Speculative execution is a method that
detects a slow task, and then duplicates that task on another node.
A task can be slow for many reasons. For instance the node the
task is running on may underperform due to a hardware fault or
due tomisconfiguration. How to determinewhich node is slow and
when to trigger speculative execution has been a subject of several
papers [31–34].

6. Conclusion

This paper is based on MapReduce and the Hadoop framework.
Its purpose is to improve the performance of MapReduce
distributed application when executing in a heterogeneous
environment. By dynamically partitioning input data being read
by map tasks and by judicious assignation of reduce tasks based
on data locality using a Virtual MachineMapper. Furthermore, this
paper presents an optimization of this method called a Load Aware
Virtual Machine Mapper.

Simulation and experimental results show an improvement
in MapReduce performance, improving data locality by 33% and
optimizing total completion time by 41%. Furthermore, using the
Load Aware Virtual Machine Mapper there was additional 13%
improvement in reduce phase completion time.

In future research, this work can be expanded to dynamically
determine the number of reducers deployed on the MapReduce



C.-H. Hsu et al. / Future Generation Computer Systems 53 (2015) 43–54 53
Fig. 13. Total completion time (a) low heterogeneity, vm = 2, (b) low
heterogeneity, vm = 5, (c) high heterogeneity, vm = 2, (d) high heterogeneity,
vm = 5.

a

b

Fig. 14. Total completion time with load aware optimization: (a) Best fit method.
(b) Priority method.

environment. This is an important topic, which analyzes the
cost–benefits of increasing the number of reducers, and compares
whether the impact on performance justifies the amount of
computing resources used. Furthermore, this study has showed
some encouraging results and it is hoped that this work can be
ported from a simulated environment to a physical platform.

Acknowledgments

We thank the anonymous reviewers for their insightful com-
ments. This work was funded by Ministry of Science and Technol-
ogy, Taiwan, under grant number NSC-101-2918-I-216-001.
a

b

Fig. 15. Total completion time for different number of virtualmachines. Using high
heterogeneity, vm = 5.

Fig. 16. Total completion time for different number of virtualmachines. Using high
heterogeneity, vm = 5.

References

[1] A.B. Patel,M. Birla, U. Nair, Addressing big data problemusingHadoop andMap
Reduce, in: 2012 Nirma University International Conference on Engineering,
NUiCONE, 2012, pp. 1–5.

[2] B. Feldman, E.M. Martin, T. Skotnes, Big data in healthcare hype and hope,
2012.

[3] R. Smolan, J. Erwitt, The Human Face of Big Data, Against All Odds Productions,
2012.

[4] T. White, Hadoop: The Definitive Guide, third ed., O’Reilly Media, Inc., 2012.
[5] K.-H. Lee, Y.-J. Lee, H. Choi, Y.D. Chung, B. Moon, Parallel data processing with

MapReduce: a survey, ACM SIGMOD Rec. 40 (2012) 11–20.
[6] Apache Hadoop. Available at: http://hadoop.apache.org [August 12, 2013].
[7] J. Dean, S. Ghemawat,MapReduce: simplified data processing on large clusters,

Commun. ACM 51 (2008) 107–113.
[8] S. Ghemawat, H. Gobioff, S.-T. Leung, The Google file system, ACM SIGOPS

Oper. Syst. Rev. (2003) 29–43.
[9] J. Dittrich, J.-A. Quiané-Ruiz, Efficient big data processing in Hadoop

MapReduce, Proc. VLDB Endow. 5 (2012) 2014–2015.
[10] N. Sultan, S. van de Bunt-Kokhuis, Organisational culture and cloud

computing: coping with a disruptive innovation, Technol. Anal. Strateg.
Manag. 24 (2012) 167–179.

http://refhub.elsevier.com/S0167-739X(15)00098-9/sbref3
http://refhub.elsevier.com/S0167-739X(15)00098-9/sbref4
http://refhub.elsevier.com/S0167-739X(15)00098-9/sbref5
http://hadoop.apache.org
http://refhub.elsevier.com/S0167-739X(15)00098-9/sbref7
http://refhub.elsevier.com/S0167-739X(15)00098-9/sbref8
http://refhub.elsevier.com/S0167-739X(15)00098-9/sbref9
http://refhub.elsevier.com/S0167-739X(15)00098-9/sbref10


54 C.-H. Hsu et al. / Future Generation Computer Systems 53 (2015) 43–54
[11] J. Lin, C. Dyer, Data-intensive text processing with MapReduce, in: G. Hirst
(Ed.), Synthesis Lectures on Human Language Technologies, Morgan &
Claypool, 2010, pp. 1–35.

[12] L. Wang, G. Von Laszewski, A. Younge, X. He, M. Kunze, J. Tao, C. Fu, Cloud
computing: a perspective study, New Gener. Comput. 28 (2010) 137–146.

[13] M. Böhm, S. Leimeister, C. Riedl, H. Krcmar, Cloud computing and computing
evolution, Technische Universität München, TUM, Germany, 2010. pp. 3–6.

[14] P. Mell, T. Grance, The NIST definition of cloud computing (draft), NIST Spec.
Publ. 800 (2011) 7.

[15] Y. Xing, Y. Zhan, Virtualization and cloud computing, in: Future Wireless
Networks and Information Systems, Springer, 2012, pp. 305–312.

[16] B. Furht, Cloud computing fundamentals, in: B. Furht, A. Escalante (Eds.),
Handbook of Cloud Computing, Springer, US, 2010, pp. 3–19. [online] Available
at: http://dx.doi.org/10.1007/978-1-4419-6524-0_1.

[17] Xen, Available at: http://www.xenproject.org [August 21, 2013].
[18] VMWare, Available at: http://www.vmware.com [August 21, 2013].
[19] KVM, Available at: http://www.linux-kvm.org [August 21, 2013].
[20] The OpenMP API specification for parallel programming. Available at: August

12, 2013.
[21] The Message Passing Interface (MPI) standard.

Available at: http://www.mcs.anl.gov/mpi [August 12, 2013].
[22] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J.Majors, A.Manzanares, X. Qin, Improving

mapreduce performance through data placement in heterogeneous hadoop
clusters, in: 2010 IEEE International Symposium on Parallel & Distributed
Processing, Workshops and Phd Forum, IPDPSW, 2010, pp. 1–9.

[23] S. Khalil, S.A. Salem, S. Nassar, E.M. Saad, Mapreduce performance in
heterogeneous environments: A review, Int. J. Sci. Eng. Res. (IJSER) 4 (4) (2013)
410–416.

[24] X. Bu, J. Rao, C.-Z. Xu, Interference and locality-aware task scheduling
for MapReduce applications in virtual clusters, in: Presented at the The
ACM International Symposium on High-Performance Parallel and Distributed
Computing, HPDC, New York, USA, 2013.

[25] Y. Fan, W. Wu, H. Cao, H. Zhu, X. Zhao, W. Wei, A heterogeneity-aware data
distribution and rebalance method in Hadoop cluster, in: ChinaGrid Annual
Conference (ChinaGrid), 2012 Seventh, 2012, pp. 176–181.

[26] J. Park, D. Lee, B. Kim, J. Huh, S. Maeng, Locality-aware dynamic VM
reconfiguration onmapreduce clouds, in: Proceedings of the 21st International
Symposium on High-Performance Parallel and Distributed Computing, 2012,
pp. 27–36.

[27] W. Wang, K. Zhu, L. Ying, J. Tan, L. Zhang, A throughput optimal algorithm
for map task scheduling in mapreduce with data locality, ACM SIGMETRICS
Perform. Eval. Rev. 40 (2013) 33–42.

[28] M. Hammoud, M.F. Sakr, Locality-aware reduce task scheduling for mapre-
duce, in: 2011 IEEE Third International Conference on Cloud Computing Tech-
nology and Science, CloudCom, 2011, pp. 570–576.

[29] M. Li, D. Subhraveti, A. Butt, A. Khasymski, P. Sarkar, CAM: a topology aware
minimum cost flow based resource manager for MapReduce applications in
the cloud, in: Proceedings of the 21st International Symposium on High-
Performance Parallel and Distributed Computing, Delft, The Netherlands, June
18–22, 2012.

[30] B. Palanisamy, A. Singh, L. Liu, B. Jain, Purlieus: Locality-aware resource
allocation for MapReduce in a cloud, in: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC, 2011.

[31] M. Zaharia, A. Konwinski, A.D. Joseph, R.H. Katz, I. Stoica, Improving
MapReduce performance in heterogeneous environments, in: OSDI, 2008,
p. 7.
[32] X. Zhao, X. Dong, H. Cao, Y. Fan, H. Zhu, A parameter dynamic-tuning
scheduling algorithm based on history in heterogeneous environments, in:
ChinaGrid Annual Conference, ChinaGrid, 2012 Seventh, 2012, pp. 49–56.

[33] X. Sun, C. He, Y. Lu, ESAMR: An enhanced self-adaptiveMapReduce scheduling
algorithm, in: 2012 IEEE 18th International Conference on Parallel and
Distributed Systems, ICPADS, 2012, pp. 148–155.

[34] Q. Chen, M. Guo, Q. Deng, L. Zheng, S. Guo, Y. Shen, HAT: history-based auto-
tuning MapReduce in heterogeneous environments, J. Supercomput. (2013)
1–17.

Ching-Hsien Hsu received B.S. and Ph.D. degrees in
Computer Science from Tung Hai University and Feng
Chia University, Taiwan, in 1995 and 1999, respectively.
From 2001 to 2002, he had been an assistant professor
in the department of Electrical Engineering at Nan Kai
College. He joined the department of Computer Science
and Information Engineering, Chung Hua University in
2002, and has become an associate professor since August
2005. He has publishedmore than 100 academic papers in
journals, books and conference proceedings. His research
interests include parallel and distributed processing,

concurrent programming, parallelizing compilers, grid and pervasive computing.
He is a senior member of the IEEE computer society.

Kenn D. Slagter received an NZCE in Electronics and
Computer Technology from the Eastern Institute of
Technology in 1996, a B.S. degree in Computer Science
from the University of Waikato in 2000 and a Master of
Computer Studies from the University of New England
in 2007. In 2008 he joined the Department of Computer
Science at National Tsing Hua University as a Ph.D.
candidate. He has also over 8 years work experience in
the private sector as a software engineer. His research
interests include high performance computing, cloud
computing and parallel and distributed systems. He is a

student member of the IEEE computer society.

Yeh-Ching Chung received a B.S. degree in Information
Engineering from Chung Yuan Christian University in
1983, and the M.S. and Ph.D. degrees in Computer and
Information Science from Syracuse University in 1988
and 1992, respectively. He joined the Department of
Information Engineering at Feng Chia University as an
associate professor in 1992 and became a full professor
in 1999. From 1998 to 2001, he was the chairman of
the department. In 2002, he joined the Department of
Computer Science at National Tsing Hua University as a
full professor. His research interests include parallel and

distributed processing, cloud computing, and embedded systems. He is a senior
member of the IEEE computer society.

http://refhub.elsevier.com/S0167-739X(15)00098-9/sbref11
http://refhub.elsevier.com/S0167-739X(15)00098-9/sbref12
http://refhub.elsevier.com/S0167-739X(15)00098-9/sbref14
http://refhub.elsevier.com/S0167-739X(15)00098-9/sbref15
http://dx.doi.org/10.1007/978-1-4419-6524-0_1
http://www.xenproject.org
http://www.vmware.com
http://www.linux-kvm.org
http://www.openmp.org
http://www.openmp.org
http://www.openmp.org
http://www.mcs.anl.gov/mpi
http://refhub.elsevier.com/S0167-739X(15)00098-9/sbref23
http://refhub.elsevier.com/S0167-739X(15)00098-9/sbref27
http://refhub.elsevier.com/S0167-739X(15)00098-9/sbref34

	Locality and loading aware virtual machine mapping techniques for optimizing communications in MapReduce applications
	Introduction
	Background
	Virtualization
	MapReduce

	Proposed techniques and implementation
	Dynamic data partitioning
	Virtual machine mapping
	Priority based virtual machine mapping
	Load aware virtual machine mapping

	Evaluation
	Data locality
	Task execution time

	Related work
	Conclusion
	Acknowledgments
	References


