
Efficient and Retargetable Dynamic Binary
Translation on Multicores

Ding-Yong Hong, Student Member, IEEE, Jan-Jan Wu, Member, IEEE, Pen-Chung Yew, Fellow, IEEE,

Wei-Chung Hsu, Chun-Chen Hsu, Pangfeng Liu, Member, IEEE, Chien-Min Wang, Member, IEEE, and

Yeh-Ching Chung, Senior Member, IEEE Computer Society

Abstract—Dynamic binary translation (DBT) is a core technology to many important applications such as system virtualization, dynamic

binary instrumentation, and security. However, there are several factors that often impede its performance: 1) emulation overhead

before translation; 2) translation and optimization overhead; and 3) translated code quality. The issues also include its retargetability that

supports guest applications from different instruction-set architectures (ISAs) to host machines also with different ISAs—an important

feature to system virtualization. In this work, we take advantage of the ubiquitous multicore platforms, and use a multithreaded approach

to implement DBT. By running the translator and the dynamic binary optimizer on different cores with different threads, it could off-load

the overhead incurred by DBT on the target applications; thus, afford DBT of more sophisticated optimization techniques as well as its

retargetability. Using QEMU (a popular retargetable DBT for system virtualization) and Low-Level Virtual Machine (LLVM) as our

building blocks, we demonstrated in a multithreaded DBT prototype, called Hybrid-QEMU (HQEMU), that it could improve QEMU

performance by a factor of 2:6� and 4:1� on the SPEC CPU2006 integer and floating point benchmarks, respectively, for dynamic

translation of x86 code to run on x86-64 platforms. For ARM codes to x86-64 platforms, HQEMU can gain a factor of 2:5� speedup over

QEMU for the SPEC CPU2006 integer benchmarks. We also address the performance scalability issue of multithreaded applications

across ISAs. We identify two major impediments to performance scalability in QEMU: 1) coarse-grained locks used to protect shared

data structures, and 2) inefficient emulation of atomic instructions across ISAs. We proposed two techniques to mitigate those problems:

1) using indirect branch translation caching (IBTC) to avoid frequent accesses to locks, and 2) using lightweight memory transactions to

emulate atomic instructions across ISAs. Our experimental results show that for multithread applications, HQEMU achieves 25�
speedups over QEMU for the PARSEC benchmarks.

Index Terms—Dynamic binary translation, multicores, feedback-directed optimization, hardware performance monitoring, traces

Ç

1 INTRODUCTION

DYNAMIC binary translators (DBT) that emulate a guest
binary executable code in one instruction-set architec-

ture (ISA) on a host machine with a different ISA are gaining
importance. It is because dynamic binary translation is a
core technology of system virtualization. DBT is also
frequently used in binary instrumentation, security mon-
itoring, and other important applications. However, there
are several factors that could impede the effectiveness of a
DBT: 1) emulation overhead before the translation; 2) trans-
lation and optimization overhead; and 3) the quality of the
translated code. Retargetablity of the DBT is also an

important requirement. We would like to have a single
DBT to take on application binaries from several different
ISAs and retarget them to host machines with different ISAs.
This requirement imposes additional constraints on the
structure of a DBT and, thus, additional overheads.

As a DBT is running at the same time the application is
being executed, the overall performance is, thus, very
sensitive to the overhead of the DBT itself. A DBT could
ill-afford to have sophisticated techniques and optimiza-
tions for better codes. However, with the ubiquity of the
multicore processors today, most of the DBT overheads
could be off-loaded to other cores when they are not in
use. The DBT could, thus, leverage multithreading on
multicores itself. This allows DBT to become more
scalable when it needs to take on large-scale multi-
threaded applications.

In this work, we developed a multithreaded DBT prototype,
called Hybrid-QEMU (HQEMU), which uses QEMU [1], a
retargetable DBT system as its front end for fast binary code
emulation and translation. However, QEMU lacks a sophisti-
cated optimization back end to generate more efficient code.
To this, we use the LLVM compiler [2], also a popular
compiler with sophisticated compiler optimization as its
back end, together with a dynamic binary optimizer (DBO) that
uses on-chip hardware performance monitor (HPM) to
dynamically improve code for higher performance. With
the hybrid QEMUþ LLVM approach, we successfully ad-
dress the dual issues of high-quality translated code and low
translation overhead. Significant performance improvement

622 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

. D.-Y. Hong and Y.-C. Chung are with the Department of Computer
Science, National Tsing Hua University, 30013 No. 101, Section 2,
Kuang-Fu Road, Hsinchu 30013, Taiwan.
E-mail: dyhong@sslab.cs.nthu.edu.tw, ychung@cs.nthu.edu.tw

. P.-C. Yew is with the Department of Computer Science, University of
Minnesota, 4-192 Keller Hall, 200 Union St, Minneapolis, MN 55455.
E-mail: yew@cs.umn.edu.

. C.-C. Hsu, P. Liu, and W.-C. Hsu are with the Department of Computer
Science and Information Engineering, National Taiwan University, No. 1,
Section 4, Roosevelt Rd., Taipei 10617, Taiwan.
E-mail: {d95006, pangfeng, hsuwc}@csie.ntu.edu.tw

. J.-J. Wu and C.-M. Wang are with the Institute of Information Science,
Academia Sinica, No. 128 Academia Road, Section 2, Taipei 11529,
Taiwan. E-mail: {wuj, cmwang}@iis.sinica.edu.tw.

Manuscript received 19 Aug. 2012; revised 20 Jan. 2013; accepted 6 Feb. 2013;
published online 27 Feb. 2013.
Recommended for acceptance by M. Kandemir.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2012-08-0747.
Digital Object Identifier no. 10.1109/TPDS.2013.56.

1045-9219/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

over QEMU has been observed. To our knowledge, our work
is the first successful effort to integrate QEMU and LLVM to
achieve significant improvement.

We also addressed the performance scalability issue in
translating multithreaded applications across ISAs. It
requires reducing the amount of shared resources and
more efficient synchronization mechanisms to handle the
large number of application threads that need to be
translated and optimized.

The main contributions of this work are as follows:

. We developed a multithreaded retargetable DBT on
muticores that achieved low translation overhead and
good translated code quality on the guest binary
applications. We show that this approach can be
beneficial to both short- and long-running applications.

. We propose a novel trace combining technique to
improve existing trace formation algorithms. It could
effectively combine/merge traces based on the
information provided by the on-chip HPM. We
demonstrate that such feedback-directed trace mer-
ging optimization can significantly improve the
overall code performance.

. We use two optimization schemes, indirect branch
translation caching (IBTC) and lightweight memory
transactions, to reduce the contention on shared
resources when emulating a large number of
application threads. We show that these optimiza-
tions significantly reduce the emulation overhead of
a DBT and make it more scalable.

. We built a HQEMU prototype, and the experimental
results show it could improve the performance by a
factor of 2:6� and 4:1� over QEMU for x86 to x86-64
emulation using SPEC CPU2006 integer and floating
point benchmarks, respectively. For ARM to x86-64
emulation, HQEMU shows a gain of 2:5� speedup
over QEMU for SPEC integer benchmarks. For the
performance of multithreaded applications, HQE-
MU achieves 25� speedup over QEMU for the
PARSEC benchmarks with 32 emulated threads.

This paper extends our previous work [3], which focuses
on the techniques to enhance single-thread performance,
with techniques to enhance scalability of emulating multi-
threaded programs.

The rest of this paper is organized as follows: Section 2
provides a brief overview of our multithreaded hybrid
QEMUþ LLVM DBT system. We then elaborate on three
unique aspects of HQEMU: 1) Techniques to improve single-
thread performance that include trace formation and trace
merging in Section 3; 2) Techniques to enhance scalability that
address the contention of shared resources among multiple
threads, IBTC, and handling of atomic operations for
synchronization using light-weight memory transactions in
Section 4; and 3) Issues related to retargetability of DBT in
Section 5. We detail some experimental results on the
effectiveness of HQEMU in Section 6. Section 7 presents
some related work. Finally, Section 8 concludes this paper.
Also, extra supporting data, figures, and details are
presented in our supplemental materials, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2013.56.

2 A TRACE-BASED HYBRID DYNAMIC BINARY

TRANSLATOR

QEMU is a state-of-the-art retargetable DBT system that
enables both full-system virtualization and process-level
emulation. It has been widely used in many applications.
This motivates us to use QEMU as our base.

The core translation engine of QEMU is called Tiny Code
Generator (TCG), which provides a small set of intermediate
representation (IR) operations. The main loop of QEMU
translates and executes the emulated code one basic block at
a time. TCG provides two simple optimization passes:
register liveness analysis and store forwarding optimization.
Dead code elimination is done as a by-product of these two
optimizations. Finally, the intermediate code is translated
into the host binary. The whole translation and optimization
process is designed to be lightweight and with negligible
overhead. Such design considerations make QEMU an ideal
platform for emulating short-running applications or appli-
cations with few hot blocks, such as during the booting of an
operating system.

Fig. 1 shows the organization of HQEMU. It has an
enhanced QEMU as its front end, and an LLVM together
with a DBO as its back end. QEMU is running by the
execution thread(s), LLVM and DBO are running on
separate threads depending on their workloads. Two code
caches, a block-code cache and a trace cache, are used in
HQEMU. They keep translated binary codes at different
optimization levels.

There are two translators in HQEMU for different
purposes. The translator in the enhanced QEMU (i.e.,
TCG) acts as a fast translator. TCG translates guest binary
at the granularity of a basic block, and emits translated codes
to the block-code cache. It also keeps the translated guest
binary in its TCG IR format for further optimization in the
HQEMU back end. The emulation module (i.e., the dispatcher
in QEMU) coordinates the translation and the execution of
guest binaries. When the emulation module detects that
some code region has become hot and is worthy of further
optimization, it sends a request to the optimization request
FIFO queue with the translated guest binary in its TCG IR
format. The requests will be serviced by the HQEMU back-
end optimizer running on another thread. We use an
enhanced LLVM compiler as the back end because it
consists of a rich set of aggressive optimizations and a just-
in-time runtime system.

When the LLVM optimizer receives an optimization
request from the FIFO queue, it converts its TCG IR to
LLVM IR directly instead of converting guest binary

HONG ET AL.: EFFICIENT AND RETARGETABLE DYNAMIC BINARY TRANSLATION ON MULTICORES 623

Fig. 1. Major components of HQEMU on an m-core platform.

from its original ISA. This approach simplifies the back-
end translator tremendously (see Section 5 for more
details). A rich set of program analysis facilities and
powerful optimization passes in LLVM can produce very
high-quality host codes, and they are stored in the trace
cache. Such analysis and optimization are running concur-
rently on another thread. Hence, their overhead can be
hidden and without interfering with the execution of the
guest program. The back-end LLVM translator can also
spawn more worker threads to accelerate the processing of
optimization requests if there are many waiting in the
queue. We also apply the structure of a nonblocking FIFO
queue [4] to reduce the overhead of communication among
these threads.

The DBO uses a hardware performance monitor based (i.e.,
HPM based), feedback-directed runtime optimization
scheme. It can detect separate traces with low overhead
and work with the LLVM translator to reoptimize the
merged traces (see Section 3 for more details).

With the hybrid QEMUþ LLVM approach, we can
benefit from the strength of both translators. This approach
successfully addresses the dual issues of good translated
code quality and low translation overhead.

3 TECHNIQUES TO ENHANCE SINGLE-THREAD

PERFORMANCE

A typical binary translator needs to save and restore
program contexts when the control switches between the
dispatcher and the execution of translated code in the code
caches, and also among small code regions in code caches.
Such small code region transitions could incur significant
overhead. Enlarging the code regions can alleviate such
overheads. The idea is to merge many small code regions
into larger ones, called traces, and thus eliminating the
redundant load and store operations by promoting such
memory operations to register accesses within traces.
Through such trace formation, we not only can eliminate
the high overhead of region transitions, but also can apply
more code optimizations to a larger code region.

A relaxed version of Next Executing Tail (NET) [5] is
chosen as our trace selection algorithm. In the original NET
scheme, it considers every backward branch as an indicator
of a cyclic execution path, and terminates the trace
formation at such backward branches. We relax such a
backward-branch constraint, and stop trace formation only
when the same program counter (PC) is executed again.
More details on trace formation, hot trace detection, and
optimization techniques in HQEMU can be found in Section 1
of the supplemental materials, available online.

Although using such NET-based algorithm can generate
high-quality traces with low cost, such trace formation
techniques have some well-known weaknesses such as trace
separation and early exits [6]. The main cause of the
weaknesses is that NET-based algorithm can only handle
code regions with simple control flow graph (CFG), such as
straight fall-through paths or simple loops. It cannot deal
with code regions with more complex control flow patterns.
Fig. 2a shows a code example with three basic blocks.
Applying NET on this code region will result in two separate
traces as shown in Fig. 2b. Trace 1 will have a frequent early
exit to Trace 2 that could incur significant transition
overhead. To overcome such problems, our improved
trace-merging algorithm will force the merging of proble-
matic traces that frequently jump between themselves.

The trace merging is different from conventional trace
chaining [7] where two traces are chained together by
patching a jump from the side exit of one trace to the head of
the other. Conducting trace chaining does not solve the
problem of early exits due to trace separation, i.e., control
transfer occurs in the middle of a trace, instead of from the
tail, to another trace. In contrast, trace merging can keep the
execution staying in the combined trace.

The challenges for trace merging are 1) efficient detection
of such problematic traces, and 2) implementation of such
merging at runtime. One feasible approach is to insert
detection routines to detect the separation of traces and
early exits at each jump instruction in each trace. This
approach, however, will incur substantial overhead because
they are likely to be in frequently executed hot code regions.
Instead, we use a feedback-directed approach with the help
of on-chip hardware performance monitor to support trace
merging. The workflow of such trace merging in DBO is
shown in Fig. 3.

The DBO consists of three components: a profile analyzer,
a trace filter, and a trace combiner. At first, the profile analyzer
collects sampled PCs and accumulates the sample counts
for each trace to determine its hotness. In the second step,
the trace filter selects hot candidate traces for merging. In
our algorithm, a trace has to meet three criteria to be
considered as a hot trace: 1) the trace is in a stable state;
2) the trace is in the 90 percent cover set (to be explained
later), and 3) the sampled PC count of the trace must be
greater than a threshold.

To determine if a trace has entered a stable state, a circular
queue is maintained in the trace filter to keep track of the
traces executed in the most recent N sampled intervals. The
collection of traces executed in the most recently sampled
interval is put in an entry of the circular queue, and the

624 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

Fig. 2. A CFG of three basic blocks and traces generated with NET trace
selection algorithm.

Fig. 3. Workflow of the HPM-based trace merging in DBO.

oldest entry at the tail of the queue is discarded if the queue
overflows. We consider a trace is in a stable state if it appears
in all entries of the circular queue. The top traces that
contribute to 90 percent of total sample counts are collected
as the 90 percent cover set.

The trace combiner then chooses the traces that are likely
to cause trace separation for merging. Note that, in trace
formation, we apply the concept in NET to collect the basic
blocks that form a cyclic path to build a trace. The same
concept is applied here in trace merging. The trace combiner
collects all traces that form cyclic paths after merging.
However, we do not limit the shape of the merged trace to a
simple loop. Any CFG that has nested loops, irreducible
loops, or several loops in a trace, can be formed as a merged
trace. Moreover, it is possible to have several groups of
traces being merged at a time.

Finally, the groups of traces merged by the trace
combiner are placed in the optimization request FIFO queue
for further optimization by LLVM, and then the LLVM
translator rebuilds the LLVM IR of the merged traces from
their component blocks’ TCG IR. After a merged trace is
optimized, its initial sample count is set to the maximum
sample count of its component traces. Moreover, the
sample counts of the component traces are reset to zero
so that they will not affect the formation of the next 90
percent cover set for future trace combination.

4 TECHNIQUES TO ENHANCE SCALABILITY OF

EMULATING MULTITHREADED PROGRAMS

QEMU has two modes in emulating an application binary:
1) full-system emulation, in which all OS kernels involved
are also emulated, and 2) process-level emulation, in which
only application binaries are emulated. In this work, we
focus on process-level emulation. When emulating a multi-
threaded application, QEMU creates one host thread for
each guest thread, and all these guest threads are
emulated concurrently.

QEMU uses a globally shared code cache, i.e., all executing
threads share a single code cache, and each guest block has
only one translated copy in the shared code cache. All
threads maintain a single directory that records the
mapping from a guest code block to its translated host
code region. An execution thread first looks up the
directory to locate the translated code region. If not found,
it kick-starts the TCG to translate the untranslated guest
code block. Since all execution threads share the code cache
and the directory, QEMU uses a critical section to serialize all
accesses to the shared structures. Such a design yields very
efficient memory space usage, but it could cause severe
contention to the shared code cache and directory when a
large number of guest threads are emulated.

In this section, we identify two problems in QEMU
when emulating multithread programs, and then describe
the optimization strategies used in HQEMU to mitigate
those problems.

4.1 Indirect Branch Handling

Indirect branches, such as indirect jump, indirect call, and
return instructions, cannot be linked in the same way as
direct branches because they can have multiple jump targets.
Making the execution threads go back to the dispatcher for

the branch target translation each time when an indirect
branch is encountered may cause huge performance
degradation. The degradation is due to the overhead from
1) saving and restoring program contexts when a context
switch occurs, and 2) the contention for the shared directory
(protected in a critical section) to find the branch target
address when a large number of threads are emulated.

To mitigate this overhead, we try to avoid going back to
the dispatcher for branch target translation. For the indirect
branches that leave a block or exit a trace, the IBTC [8] is
used. The translation of an indirect branch target with IBTC
is performed as a fast hash table lookup inside the code
cache. Only upon an IBTC miss, the execution thread goes
back to the dispatcher, performs expensive translation of
indirect branch with the shared directory, and caches the
lookup result in the IBTC entry. Upon an IBTC hit, the
execution jumps directly to the next translated code region
so that a context switch back to the dispatcher is not
required. The IBTC in our framework is a large hash table
shared by all indirect branches, including indirect jump/
call and return instructions. That is, the translation of
branch targets looks up the same IBTC for all indirect
branches. We set up one IBTC for each execution thread.
Such thread-private IBTC can avoid contention during the
branch target translation. The detailed implementation of
IBTC hash table and a comparison with Pin’s indirect
branch chain are described in Section 2 of the supplemental
materials, available online.

During trace formation, the prediction routine might
record two successive blocks following the path of an
indirect branch. We use Indirect Branch Inlining (IB Inlining)
[9] to facilitate the translation of indirect branch target. In IB
inlining, when translating an indirect branch in the
predecessor block, the code to compare the value in the
indexing register against the address of the successor block
is inlined in the trace. Upon a match, the execution will
continue to the successor block without leaving the trace. If
there is a no-match, meaning that the prediction fails, this
indirect branch will leave the trace and the execution
is redirected to the IBTC. Such IB inlining is advantageous
because it must be hot to be included in a trace, and thus,
the prediction is most likely to succeed. Using thread-private
IBTC and IB inlining, we can effectively reduce the overhead
by avoiding thread contention and keeping the execution
threads staying in the code cache most of the time.

4.2 Atomic Instruction Emulation

The emulation of guest atomic instructions, which are often
used to implement synchronization primitives, poses
another design challenge. The correctness and efficiency
of emulating atomic instructions are critical to multi-
threaded applications. To ensure the correctness, DBT must
guarantee that the translated host code be executed atom-
ically. To emulate the atomicity of a guest atomic instruction,
QEMU places the translated code region that corresponds
to the guest atomic instruction in a critical section, protected
with a lock-unlock pair, on the host machine. Thus,
concurrent accesses to the critical section are serialized.
However, QEMU uses the same lock variable for all such
critical sections. Fig. 4a shows how two guest atomic
instructions, atomic INC and atomic XCHG, are protected by

HONG ET AL.: EFFICIENT AND RETARGETABLE DYNAMIC BINARY TRANSLATION ON MULTICORES 625

the same lock variable global_lock. The reason that QEMU
uses the same global lock variable for all such critical
sections is because it cannot determine if any two memory
addresses are aliases at the translation time.

Although the global lock scheme of QEMU is portable, it
has several problems: 1) Wang et al. [10] proved that this
approach could still have correctness issues that may cause
deadlocks; 2) accesses to nonaliased memory locations (e.g.,
two independent mutex variables in the guest source file) by
different threads are serialized because of the same global
lock; and 3) the performance is poor due to the high cost of
the locking mechanism. The overhead of accessing the global
lock depends on the design of the locking mechanism. For
example, the locking mechanism in QEMU is implemented
using NPTL synchronization primitives, which use Linux
futex (a fast user-space mutex). When an execution thread
fails to acquire or release the global lock, the thread is put to
sleep in a wait-queue, and is waken later via an expensive
futex system call. Such expensive switching between user
and kernel mode and the additional contention caused by
false protection of nonaliased memory accesses could result
in significant performance degradation.

To solve the problems incurred by the global lock, we
use lightweight memory transactions proposed in [10] to
address the correctness issues, as well as to achieve efficient
atomic instruction emulation. The lightweight memory
transaction based on the multiword compare-and-swap
(CASN) algorithm [11] allows translated code of atomic
instructions to be executed optimistically. It detects data
races while emulating an atomic instruction using the
atomic primitives supported by the host architecture, and
re-executes this instruction until the entire emulation is
atomically performed. Fig. 4b illustrates the translation of
the same two guest atomic instructions using lightweight
memory transactions. At first, the value of the referenced
memory is loaded to the temporary register, Old. The new
value after the computation is atomically stored in the
memory if the value in the memory is the same as Old.
Otherwise, the emulation keeps retrying if the CAS
transaction fails.

Based on this approach, the protection of memory
accesses with a global lock can be safely removed because

the lightweight memory transactions can guarantee correct
emulation of atomic instructions. Moreover, the perfor-
mance will not degrade much because the false protection
of nonalias memory accesses and the overhead of expensive
locking mechanism are eliminated as a result of the removal
of global lock.

5 RETARGETABILITY

The goal of HQEMU is to have a single DBT framework to
take on application binaries from several different ISAs and
retarget them to host machines with different ISAs. Using a
common IR is an effective approach to achieve retarget-
ability, which is used in both QEMU (i.e., TCG) and LLVM.
By combining these two frameworks, HQEMU inherits their
retargetability with minimum effort. In HQEMU, when
LLVM optimizer receives an optimization request from the
FIFO queue, it converts its TCG IR to LLVM IR directly
instead of converting guest binary from its original ISA.
Such two-level IR conversion simplifies the translator tremen-
dously because TCG IR only consists of about 142 different
operation codes—much smaller than in most existing ISAs.
Without such two-level IR conversion, for example, sup-
porting full x86 ISA requires implementing more than 2,000
x86 opcode to LLVM IR conversion routines.

A retargetable DBT does not maintain a fixed register
mapping between the guest architectural states and the host
architectural states. It, thus, has extra overhead compared to
same-ISA DBTs (e.g., Dynamo [7]) or dedicated DBTs (e.g.,
IA-32 EL [12]), which usually assume the host ISA has the
same or richer register set than the guest ISA. Moreover,
retargetable DBTs allow flexible translation, such as
adaptive SIMDization to any vector size or running 64-bit
binary on 32-bit machines. This is hard to achieve by same-
ISA and dedicated DBTs.

6 PERFORMANCE EVALUATION

In this section, we present the performance evaluation of
HQEMU by using both single-threaded and multithreaded
benchmarks. To show the performance portability of
HQEMU across different ISAs, we also compare the results
with QEMU. Other DBT systems, such as Pin or DynamoRIO,
are not compared because they are not cross-ISA DBTs, and
most of their execution is done in native mode with no need for
translation, and hence, no performance degradation.

6.1 Emulation of Single-Thread Programs

We first evaluate the performance of HQEMU on single-
threaded programs. SPEC CPU2006 benchmark suite is
chosen as the test programs in this experiment.

6.1.1 Experimental Setup

All performance evaluation is conducted on three host
platforms listed in Table 1. The SPEC CPU2006 benchmark
suite is tested with both test and reference inputs and for
two different guest ISAs, ARM and x86, to show the
retargetability of HQEMU. All benchmarks are compiled
with GCC 4.4.2 for the x86 guest ISA and GCC 4.4.1 for the
ARM guest ISA. LLVM version 3.0 is used for the x86 and
PPC host, and version 2.8 for the ARM host. The default

626 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

Fig. 4. An example of translating two atomic instructions using global
lock and lightweight memory transactions.

optimization level (-O2) is used for JIT compilation. We run
only one thread with the LLVM translator and this thread is
capable of handling all optimization requests. The trace-
profiling threshold is set at 50 and the maximum length of a
trace is 16 basic blocks. We use Perfmon2 for performance
monitoring with HPM. The sampling interval is set at
1 million cycles/sample. The size of the circular queue, N,
for trace merging in the dynamic optimizer is set at 8. We
compare the results to the native runs whose programs are
compiled to the host executable with SIMD enabled. All
compiler optimization flags used are listed in Table 1. Four
different configurations are used to evaluate the effective-
ness of HQEMU:

. QEMU which is the vanilla QEMU version 0.13 with
the fast TCG translator.

. LLVM which uses the same modules of QEMU
except that the TCG translator is replaced by the
LLVM translator.

. HQEMU-S which is the single-threaded HQEMU
with TCG and LLVM translators running on the
same thread.

. HQEMU-M which is the multithreaded HQEMU,
with TCG and LLVM translators running on
separate threads.

In both QEMU and LLVM configurations, code transla-
tion is conducted at the granularity of basic blocks without
trace formation. In HQEMU-S and HQEMU-M configura-
tions, trace formation and trace merging are used. IBTC is
used in all configurations except QEMU.

6.1.2 Overall Performance of SPEC CPU2006

Fig. 5 illustrates the overall performance of x86-32 to x86-64,
ARM to x86-64, ARM to PPC64, and x86-32 to ARM

emulations against the native runs with reference inputs.
The Y -axis is the normalized execution time over native
execution time. Note that in all figures, we do not provide
the confidence intervals because there was no noticeable
performance variation among different runs. Detailed
performance results with test inputs are shown in Section 3
of the supplemental materials, available online.

Figs. 5a and 5b present the x86-32 to x86-64 emulation
results for integer and floating point benchmarks. Unlike
test inputs, the programs spend much more proportion of
time running in the code caches. As the results show,
the LLVM configuration outperforms QEMU because

optimization overhead is mostly amortized. The speedup
from LLVM includes some DBT-related optimizations such
as indirect branch prediction, as well as regular compiler
optimizations such as redundant load/store elimination.
Redundant load/store elimination is effective in reducing
expensive memory operations. Trace formation and trace
merging in HQEMU further eliminate many redundant
load/store instructions related to architecture state transi-
tions. Through trace formation, HQEMU achieves signifi-
cant improvement over both QEMU and LLVM. Using
reference inputs, the benefit of HQEMU-M is not as
significant as that of using test inputs when compared to
HQEMU-S. This is because the translation overhead is
playing less of a role using reference inputs. As shown in
Figs. 5a and 5b, HQEMU-M achieves about 45.5 and
50 percent of the native speed for CINT and CFP bench-
marks, respectively. Compared to QEMU, HQEMU-M is
2:6� and 4:1� faster for CINT and CFP, respectively.

For CFPs, the speedup of LLVM and HQEMU over
QEMU is greater than that of CINTs. This is partly due to
the translation ability of the current QEMU/TCG. The
current TCG translator does not emit floating point instruc-
tions for the host machine. Instead, all floating point
instructions are emulated via helper function calls. By
using the LLVM compiler infrastructure, such helper
functions can be inlined and allow floating point host
instructions to be generated directly in the code cache.

Figs. 5c, 5d, and 5e illustrate the performance results of
ARM to x86-64, ARM to PPC64, and x86-32 to ARM
emulation over native execution (i.e., running binary code
natively). For PPC64 and ARM host, trace merging is not
used.1 The performance results are similar to those of x86-32
to x86-64 emulation—HQEMU-M is 2:5� and 2:9� faster
than QEMU for CINT with ARM guest to x86-64 and PPC64
host, respectively, and are about 31.2 and 32.3 percent of the
native speed, respectively. As for x86-32 to ARM emulation,
HQEMU-M achieves 2:8� speedup over QEMU for CINT
with reference inputs, and is about 37 percent of the native
speed. The results show the retargetability of HQEMU and
that the optimizations used in HQEMU can indeed achieve
performance portability.

The above results show that QEMU is suitable for
emulating short runs or programs with very few hot blocks.
The LLVM configuration is better for long running
programs with heavy reuse of translated codes. HQEMU
has successfully combined the advantages of both QEMU
and LLVM, and can efficiently emulate both short- and
long-running applications. Furthermore, the trace formation
and merging in HQEMU expand the power of LLVM
optimization to significantly remove redundant loads/
stores. With HQEMU, cross-ISA emulation is getting closer
to the performance of native runs.

6.1.3 Results of Trace Formation and Trace Merging

To evaluate the impact of trace formation and trace merging,
we use x86-32 to x86-64 emulation with SPEC CPU2006
benchmarks as an example to show how much emulation
overhead can be removed from reducing code region
transitions. In this experiment, the total number of

HONG ET AL.: EFFICIENT AND RETARGETABLE DYNAMIC BINARY TRANSLATION ON MULTICORES 627

TABLE 1
Configurations

DEFAULT¼ “-O2 -fno-strict-aliasing”

1. We failed to enable hardware counters on these two platforms.

memory operations in each benchmark is measured for (a)
LLVM, (b) HQEMU with trace formation only, and
(c) HQEMU with both trace formation and merging. The
difference between (a) and (b) represents the number of
redundant memory accesses eliminated by trace formation;
the difference between (b) and (c) represents the impact of
trace merging. Hardware monitoring counters are used
to track the events, MEM_INST_RETIRED:LOADS/
STORES, and to collect the total number of memory
operations. Table 2 lists the results of such measurements
for CINTs. The results for CFPs are listed in Table 4 of the
supplemental materials, available online.

Column 2 in Table 2 presents the total number of traces
generated in each benchmark. Column 3 lists the total
translation time by the LLVM compiler and its percentage
over total execution time. Each trace is associated with a
version number and is initially set to zero. After trace
merging, the version number of the new trace is set to the
maximum version number of the traces merged plus
one. The number of traces merged and the maximum
version number are listed in columns 4 and 5, respectively.
The reduced numbers of memory operations after trace
formation (b)-(a) and trace merging (c)-(b) are listed in
columns 6 and 7, respectively. The improvement rate by

trace merging is shown in Fig. 6. From Table 2, we can see

that most redundant memory operations can be eliminated

by trace formation in almost all benchmarks. libquantum

has the most redundant memory operations eliminated and

the most significant performance improvement from trace

merging (see Fig. 6).
As for libquantum, its hottest code region is composed

of three basic blocks, and its CFG is shown in Fig. 2a. The

code region is split into two separate traces by the NET

trace selection algorithm. During trace transitions, almost

all general-purpose registers of the guest architecture need

to be stored and reloaded again. In addition, there are

billions of transitions between these two traces during the

entire execution. Through trace merging, HQEMU success-

fully merges these two traces with its CFG shown in Fig. 2a.

It keeps the execution staying within this region. Thus, its

performance is improved by 82 percent. The analysis of

translation overhead and the breakdown of time with

reference inputs are presented in Section 4 of the supple-

mental materials, available online.

6.2 Emulation of Multithread Programs

In the following experiments, we evaluate the performance

of HQEMU for multithreaded programs. PARSEC [13]

version 2.1 is used as the testing benchmarks.

628 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

Fig. 6. Improvement of trace merging with x86 to x86-64 emulation for
SPEC CPU2006 with reference inputs.

Fig. 5. SPEC CPU2006 results of x86/32-x86/64, ARM-x86/64, ARM-PPC64, and x86/32-ARM emulation with reference inputs.

TABLE 2
Measures of Traces with x86 to x86-64 Emulation for SPEC

CPU2006 Benchmarks with Reference Input

(Unit of time: second. Unit of column six and seven: 1010 memory-ops.)

6.2.1 Experimental Setup

The experiments are conducted on two systems: 1) eight six-
core AMD Opteron 6,172 processors (48 cores in total) with
a clock rate of 2 GHz and 32-GBytes main memory; 2) the
ARM platform listed in Table 1. The PARSEC benchmarks
are evaluated with the native and simlarge input sets
for x86-64 and ARM platform, respectively. All benchmarks
are parallelized with the Pthread model and compiled
for x86-32 guest ISA with PARSEC default compiler
optimization and SIMD enabled. We compare their perfor-
mance to native execution with three different configura-
tions: 1) QEMU, 2) HQEMU (multithread mode), and
3) QEMU-Opt which is an enhanced QEMU with IBTC
optimization and block chaining across page boundary. For
all configurations, atomic instructions are emulated with
lightweight memory transactions so that the benchmarks
can be emulated correctly.

6.2.2 Overall Performance of PARSEC

Figs. 7a, 7b, and 7c illustrate the performance results of
three PARSEC benchmarks with native input sets. The
results of all benchmarks are shown in Section 5 of
the supplemental materials, available online. The X-axis is
the number of worker threads created via the command
line argument. The Y -axis is the total time measured in
seconds with the time command. As shown in Figs. 7a,
7b, and 7c, the performance of QEMU does not scale well.
The execution time increases dramatically when the
number of guest threads increases from 1 to 8, then
decreases with more threads. It remains mostly un-
changed as the number of threads is above 16. The poor
scalability of QEMU is mostly due to the sequential
translation of branch targets within the QEMU dispatcher
because the mapping directory is protected in a critical
section. Since IBTC optimization is not used in QEMU, the
execution threads frequently enter dispatcher for branch
target lookups. Although the computation time can be
reduced through parallel execution with more threads, the

overhead incurred by thread contention can result in
significant performance degradation.

Fig. 8 shows the breakdown of time for blackscholes
with simlarge input set for QEMU. Lock and Other represent
the average time of a worker thread spent in critical sections
(including wait and directory lookup time) and for the
remaining code portions, respectively. As the figure shows,
the time of Other decreases linearly with the number of
threads because of increased parallelism. The time of Lock
increases significantly because the worker threads contend
for the critical section within the dispatcher where the
serialization lengthens the wait time. Moreover, the time
increased from such serialization outweighs the reduced
execution time when more worker threads are added. Such
high locking overhead dominates the total execution time,
and results in poor performance of the parallel PARSEC
benchmarks. Figs. 7a, 7b, and 7c show that emulating single
thread with the vanilla QEMU results in the best perfor-
mance compared to its multithreaded counterparts.

With IBTC optimization, keeping the execution threads
staying in the code cache alleviates the large overhead that
includes the cost of context switching and threads conten-
tion in the dispatcher. Performance gains from IBTC can be
observed by comparing QEMU-Opt and QEMU. The trace
formation of HQEMU further improves the indirect branch

HONG ET AL.: EFFICIENT AND RETARGETABLE DYNAMIC BINARY TRANSLATION ON MULTICORES 629

Fig. 7. PARSEC performance results of x86 to x86-64 emulation and overall performance with 32 threads using native input set. The unit of
execution time in Y -axis is second. X-axis shows the number of threads.

Fig. 8. Breakdown of time with blackscholes with simlarge input. The
unit of execution time in Y -axis is second. X-axis shows the number of
threads.

prediction via indirect branch inlining. It also eliminates a
large amount of redundant load/store instructions related
to storing and reloading the architecture states. Highly
optimized host code generated by LLVM makes HQEMU
achieve significant performance improvement over both
QEMU and QEMU-Opt. The performance curve with
HQEMU is very similar to that of native execution.

Fig. 7d shows the overall performance of QEMU, QEMU-
Opt, and HQEMU over native execution with 32 guest
threads. A significant improvement of about 6� speedup on
average is achieved with QEMU-Opt over QEMU because
of the IBTC optimization. This result shows that the design
of shared mapping directory in the QEMU dispatcher is
inadequate for emulating multithreaded guest applications.
HQEMU achieves about 25� and 4� speedup over QEMU
and QEMU-Opt, respectively. It runs at 28.6 percent of the
native speed on average with 32 emulated threads.

6.2.3 Performance of Lightweight Memory Transactions

In this experiment, we evaluate performance of emulating
atomic instructions by comparing lightweight memory
transactions with the global lock scheme. The comparison
is conducted using QEMU-Opt and HQEMU. Fig. 9 shows
the results for benchmark canneal. As the figure shows,
the scalability is poor with the global lock scheme for both
QEMU-Opt and HQEMU. The performance remains poor
when emulating multiple threads. In contrast, the perfor-
mance improves linearly with the number of threads
using lightweight memory transactions, about 8� speedup
over the global lock scheme with 32 threads for canneal.
The result of fluidanimate is shown in Fig. 18 of the
supplemental materials, available online. No significant
improvement is observed for the rest of benchmarks
because they have fewer thread contentions for shared
memory locations at runtime.

6.2.4 PARSEC Results for x86-32 to ARM Emulation

Fig. 10 illustrates the results of three benchmarks for x86-32
to ARM emulation with simlarge input sets. As shown in
Figs. 10a and 10b, the performance of QEMU does not scale
well for benchmark blacksholes and swaptions. This
is because larger number of threads will likely cause
serialization of threads in the QEMU dispatcher. The
performance of QEMU on the ARM platform does not
degrade as significantly as that on the x86-64 platform (e.g.,
Fig. 7a). This is because synchronization on the ARM
platform’s single chip multiprocessor (CMP) is much less
expensive than that on the AMD Opteron machine whose
eight processors are based on the nonuniform memory
architecture (NUMA). For QEMU-Opt and HQEMU, the
results are similar to those on the x86-64 host. Fig. 10c
shows the performance result of canneal compared with
the global lock scheme. In Fig. 10c, the result of native run
is not shown because canneal includes some code written
in assembly language, currently not supporting the ARM
architecture. The only way to run canneal on the ARM
platform is through binary translation. As the figure shows,
using lightweight memory transactions, it also achieves
better performance than the global lock scheme, with about
26 percent improvement when emulating four execution
threads with HQEMU.

7 RELATED WORK

Dynamic binary translation is widely used for many
purposes: transparent performance optimization [7], run-
time profiling [14], [15], and cross-ISA emulation [16]. With
the advances of multicore architectures, several multi-
threaded DBT systems exploiting multicore resources for
optimization have been proposed in the literatures.
However, most of them have very different objectives
and approaches in their designs.

Hiniker et al. [6] addresses the trace separation problem
in two trace selection algorithms, NET and LEI. The authors
focus on the issues of code expansion and locality for same-
ISA DBT systems. A software-based approach for trace
merging is also proposed. Davis and Hazelwood [17] also
use software-based approach to solve trace separation
problem by performing a search for any loop back to the
trace head. Our work targets cross-ISA DBT systems and
addresses issues of trace separation problem especially for
performance and emulation overhead. We reduce redun-
dant memory operations during region transitions and use
a novel trace combination approach based on HPM
sampling techniques.

630 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

Fig. 9. Comparison of using software memory transactions and global
lock scheme for cannea.l X-axis shows the number of threads, and
the unit of time for Y -axis is in seconds.

Fig. 10. PARSEC results of x86-32 to ARM emulation with simlarge input sets. X-axis shows the number of threads, and the unit of time for Y -axis is
in seconds.

Optimization for indirect branch handling in DBT
systems has been studied in several literatures [14], [16].
Pin [14] uses an indirect branch chain, and for each indirect
branch instruction, Pin associates it with one chain list.
Unlike Pin, we use a big per-thread hash table shared by all
indirect branches. Shadow stack [16] is used to optimize the
special type of indirect branch, return, by using a software
return stack. This approach works fine for the guest
architecture that has explicit call and return instructions,
but it does not work for ARM because function return in
ARM can be implicit. In contrast, we use IBTC for all
indirect branch instructions, including returns. Our ap-
proach is retargetable for any guest architecture. More
related works are discussed in Section 7 of the supplemental
materials, available online.

8 CONCLUSION

In this paper, we presented HQEMU, a multithreaded
retargetable dynamic binary translator on multicores. HQE-
MU runs a fast translator (QEMU) and an optimization-
intensive translator (LLVM) on different processor cores. We
demonstrated that such multithreaded QE MUþ LLVM
hybrid approach can achieve low translation overhead and
with good translated code quality on the target binary
applications. We showed that this approach could be
beneficial to both short-running and long-running applica-
tions. We have also proposed a novel trace merging
technique to improve existing trace selection algorithms. It
can effectively merge separated traces based on the
information provided by the on-chip hardware HPM and
remove redundant memory operations incurred from
transitions among translated code regions. It can also detect
and merge traces that have trace separation and early exit
problems using existing trace selection algorithms. We
demonstrate that such feedback-directed trace merging
optimization can significantly improve the overall code
performance. We also use the IBTC optimization and
lightweight memory transactions to alleviate the problem
of thread contention when a large number of guest threads
are emulated. They can effectively eliminate the huge
contention overhead incurred from indirect branch target
lookups and the emulation of atomic instructions.

ACKNOWLEDGMENTS

This work was supported in part by Taiwan National
Science Council (NSC) grant NSC99-2221-E-001-003-MY3,
and was also supported in part by the US National Science
Foundation (NSF) grant CNS-0834599.

REFERENCES

[1] F. Bellard, “QEMU, A Fast and Portable Dynamic Translator,”
Proc. USENIX Ann. Technical Conf., pp. 41-46, 2005.

[2] C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” Proc. Int’l Symp.
Code Generation and Optimization: Feedback-Directed and Runtime
Optimization (CGO), 2004.

[3] D.-Y. Hong, C.-C. Hsu, P.-C. Yew, J.-J. Wu, W.-C. Hsu, P. Liu,
C.-M. Wang, and Y.-C. Chung, “HQEMU: A Multi-Threaded
and Retargetable Dynamic Binary Translator on Multicores,”
Proc. 10th Int’l Symp. Code Generation and Optimization (CGO),
pp. 104-113, 2012.

[4] M. Michael and M. Scott, “Simple, Fast, and Practical Non-
Blocking and Blocking Concurrent Queue Algorithms,” Proc. 15th
Ann. ACM Symp. Principles of Distributed Computing (PODC), 1996.

[5] E. Duesterwald and V. Bala, “Software Profiling for Hot Path
Prediction: Less Is More,” ACM SIGPLAN Notices, vol. 35, pp. 202-
211, 2000.

[6] D. Hiniker, K. Hazelwood, and M. Smith, “Improving Region
Selection in Dynamic Optimization Systems,” Proc. IEEE/ACM
38th Ann. Int’l Symp. Microarchitecture (MICRO ’05), 2005.

[7] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A Transparent
Dynamic Optimization System,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation (PLDI), pp. 1-
12, 2000.

[8] K. Scott, N. Kumar, B.R. Childers, J.W. Davidson, and M.L. Soffa,
“Overhead Reduction Techniques for Software Dynamic Transla-
tion,” Proc. 18th Int’l Parallel and Distributed Symp. (IPDPS),
pp. 200-207, 2004.

[9] D.L. Bruening, “Efficient, Transparent, and Comprehensive
Runtime Code Manipulation,” PhD dissertation, MIT, Sept. 2004.

[10] Z. Wang, R. Liu, Y. Chen, X. Wu, H. Chen, W. Zhang, and B. Zang,
“COREMU: A Scalable and Portable Parallel Full-System Emu-
lator,” Proc. 16th ACM Symp. Principles and Practice of Parallel
Programming (PPoPP), pp. 213-222, 2011.

[11] T.L. Harris, K. Fraser, and I.A. Pratt, “A Practical Multi-Word
Compare-and-Swap Operation,” Proc. 16th Int’l Conf. Distributed
Computing (DISC), pp. 265-279, 2002.

[12] L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skaletsky, Y. Wang,
and Y. Zemach, “IA-32 Execution Layer: A Two-Phase Dynamic
Translator Designed to Support IA-32 Applications on Itanium-
Based Systems,” Proc. IEEE/ACM 36th Ann. Int’l Symp. Micro-
architecture (MICRO), 2003.

[13] C. Bienia, S. Kumar, J.P. Singh, and K. Li, “The PARSEC
Benchmark Suite: Characterization and Architectural Implica-
tions,” Proc. 17th Int’l Conf. Parallel Architectures and Compilation
Techniques (PACT), 2008.

[14] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V.J. Reddi, and K. Hazelwood, “Pin: Building Custo-
mized Program Analysis Tools with Dynamic Instrumentation,”
Proc. ACM SIGPLAN Conf. Programming Language Design and
Implementation (PLDI), 2005.

[15] N. Nethercote and J. Seward, “Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation,” Proc. ACM
SIGPLAN Conf. Programming Language Design and Implementation
(PLDI), 2007.

[16] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye,
S.B. Yadavalli, and J. Yates, “FX!32: A Profile-Directed Binary
Translator,” IEEE Micro, vol. 18, no. 2, pp. 56-64, Mar./Apr. 1998.

[17] D.M. Davis and K. Hazelwood, “Improving Region Selection
through Loop Completion,” Proc. ASPLOS Workshop Runtime
Environments/Systems, Layering, and Virtualized Environments
(RESoLVE), 2011.

Ding-Yong Hong received the BS and MS
degrees in computer science from National
Tsing Hua University in 2004 and 2005, respec-
tively. He is currently working toward the PhD
degree in the Department of Computer Science
at National Tsing Hua University. He is a
research assistant at the Institute of Information
Science, Academia Sinica. His research inter-
ests include dynamic binary translation, virtuali-
zation, compiler optimization, and parallel and

distributed computing. He is a student member of the IEEE.

Jan-Jan Wu received the BS and MS degrees in
computer science from National Taiwan Univer-
sity in 1985 and 1987, respectively, and the MS
and PhD degrees in computer science from Yale
University in 1991 and 1995, respectively. She is
currently a research fellow and the leader of the
Computer Systems Laboratory at the Institute of
Information Science, Academia Sinica. Her
current research interests include parallel and
distributed computing, cloud computing, cloud

databases, virtualization, and dynamic binary translation on multicores.
She is a member of the ACM and IEEE.

HONG ET AL.: EFFICIENT AND RETARGETABLE DYNAMIC BINARY TRANSLATION ON MULTICORES 631

Pen-Chung Yew has been a professor in the
Department of Computer Science and Engineer-
ing, University of Minnesota since 1994, and
was the head of the department and the holder
of the William-Norris Land-Grant chair professor
between 2000 and 2005. He also served as the
director of the Institute of Information Science
(IIS) at Academia Sinica in Taiwan between
2008 and 2011. Before joining the University of
Minnesota, he was an associate director of the

Center for Supercomputing Research and Development (CSRD) at the
University of Illinois at Urbana-Champaign. From 1991 to 1992, he
served as the program director of the Microelectronic Systems
Architecture Program in the Division of Microelectronic Information
Processing Systems at the National Science Foundation, Washington.
He served as the editor-in-chief of the IEEE Transactions on Parallel and
Distributed Systems between 2000 and 2005. He has also served on the
organizing and program committees of many major conferences. His
current research interests include system virtualization, compilers, and
architectural issues related multicore/many-core systems. He is a fellow
of the IEEE.

Wei-Chung Hsu received the PhD degree in
computer science from the University of
Wisconsin-Madison. He first joined Cray Re-
search in 1987 after receiving the PhD degree.
He is a professor in the Department of
Computer Science and Information Engineering
at the National Taiwan University, Taiwan.
From 1992 to 1999, he was at the Hewlett
Packard Company in California. In 1999, he
joined the University of Minnesota. In 2009,

he joined the National Chiao-Tung University. In 2013, he joined the
National Taiwan University. His recent research concerns the
development of both static and dynamic binary translation and
optimization systems.

Chun-Chen Hsu received the MS degree in
computer science from National Taiwan Uni-
versity in 2004. He is currently working toward
the PhD degree in computer science at
National Taiwan University. His research inter-
ests include dynamic binary translation, virtual
machines, runtime code generation and opti-
mizations for Just-In-Time compilation sys-
tems, and feedback-directed optimizations.

Pangfeng Liu received the BS degree in
computer science from National Taiwan Uni-
versity in 1985, and the MS and PhD degrees
in computer science from Yale University in
1990 and 1994. He is currently a professor in
the Department of Computer Science and
Information Engineering of National Taiwan
University, Taiwan, and the deputy director of
the TrendMicro Cloud Computing Program of
National Taiwan University, the first cloud

computing program sponsored by industry in Taiwan. His research
interests include parallel and distributed computing, cloud computing,
dynamic binary translation, and the design and analysis of algorithms.
He is a member of the ACM and IEEE.

Chien-Min Wang received the BS and PhD
degrees in electrical engineering from National
Taiwan University, Taipei, Taiwan, in 1987 and
1991, respectively. Since then he joined the
Institute of Information Science, Academia
Sinica, Taipei, Taiwan, as an assistant research
fellow, where he is currently an associate
research fellow. His major research interest
includes parallel and distributed computing,
cloud computing, virtualization technology, and

dynamic binary translation. He is a member of the IEEE.

Yeh-Ching Chung received the BS degree in
information engineering from Chung Yuan
Christian University in 1983, and the MS and
PhD degrees in computer and information
science from Syracuse University in 1988 and
1992, respectively. He joined the Department of
Information Engineering at Feng Chia Univer-
sity as an associate professor in 1992 and
became a full professor in 1999. From 1998 to
2001, he was the chairman of the department.

In 2002, he joined the Department of Computer Science at National
Tsing Hua University as a full professor. His research interests include
parallel and distributed processing, embedded systems, and cloud
computing. He is a senior member of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

632 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

