
�

�

�

�

�

�

�

�

19

Optimizing Pairwise Box Intersection Checking on GPUs for
Large-Scale Simulations

SHIH-HSIANG LO and CHE-RUNG LEE, National Tsing Hua University
I-HSIN CHUNG, IBM T.J. Watson Research Center
YEH-CHING CHUNG, National Tsing Hua University

Box intersection checking is a common task used in many large-scale simulations. Traditional methods
cannot provide fast box intersection checking with large-scale datasets. This article presents a parallel al-
gorithm to perform Pairwise Box Intersection checking on Graphics processing units (PBIG). The PBIG
algorithm consists of three phases: planning, mapping and checking. The planning phase partitions the
space into small cells, the sizes of which are determined to optimize performance. The mapping phase maps
the boxes into the cells. The checking phase examines the box intersections in the same cell. Several perfor-
mance optimizations, including load-balancing, output data compression/encoding, and pipelined execution,
are presented for the PBIG algorithm. The experimental results show that the PBIG algorithm can process
large-scale datasets and outperforms three well-performing algorithms.

Categories and Subject Descriptors: I.3.1 [Computer Graphics]: Hardware Architecture—Parallel process-
ing; I.6.7 [Simulation and Modeling]: Simulation Support Systems

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Box intersection checking, load-balancing, data compression, pipelined
execution

ACM Reference Format:
Lo, S.-H., Lee, C.-R., Chung, I.-H., and Chung, Y.-C. 2013. Optimizing pairwise box intersection checking on
GPUs for large-scale simulations. ACM Trans. Model. Comput. Simul. 23, 3, Article 19 (July 2013), 22 pages.
DOI:http://dx.doi.org/10.1145/2499913.2499918

1. INTRODUCTION

Box intersection checking is the process of finding all intersecting pairs of iso-oriented
boxes in a space. It has many applications in computer simulations, including motion
simulation, geometry modeling, computer games, many-body dynamics analysis and
granular dynamics. In motion simulations, an intersection query is a mechanism used
to determine the movement and interaction of entities with one another. In particle
simulations, the distinct-element method (DEM) requires millions of particles for real-
istic results of fluids and granular materials [Harada 2007]. In massively multiplayer
online role-playing games [EVE Online 2003], tens of thousands of players, entering
the same server, interact with other players and many computer-generated objects.
In high-level architecture (HLA) compliant simulations, the intersection checking is

The authors would like to thank the CUDA Center of Excellence (CCOE) at National Tsing Hua
University and National Science Council of Taiwan (under Contract No. 101-2115-M-007-004-MY2) for
financially/partially supporting this research.
Authors’ addresses: S.-H. Lo, C.-R. Lee, and Y.-C. Chung, Computer Science Department, National
Tsing Hua University, Hsinchu, Taiwan; email: albert@sslab.cs.nthu.edu.tw; I.-H. Chung, IBM T. J. Watson
Research Center, Yorktown Heights, NY 10598.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1049-3301/2013/07-ART19 $15.00
DOI:http://dx.doi.org/10.1145/2499913.2499918

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 19, Publication date: July 2013.

�

�

�

�

�

�

�

�

19:2 S.-H. Lo et al.

performed to reduce unnecessary communication between simulation federates [Liu
and Theodoropoulos 2009; Santoro and Fujimoto 2008]. These applications require an
efficient box intersection checking algorithm for large-scale datasets.

This article presents an algorithm, called PBIG, to optimize iso-oriented box
intersection checking using graphics processing units (GPUs). Three specific reasons
motivate this direction of research. First, when the number of entities scales substan-
tially, the intersection calculation becomes one of performance bottlenecks [Avril et al.
2010], which makes real-time simulation difficult. Second, pairwise intersection check-
ing falls under the scope of data parallelism, which fits naturally into the massive
parallel computing environments such as GPUs. Third, the maturity of programmable
graphic hardware allows users to utilize massively parallel processing units in GPUs
based on a single-instruction multiple-thread (SIMT) programming model.

Using GPUs to perform box intersection checking is not new. Several GPU-based
algorithms [BULLET 2011; Le Grand 2007; Liu et al. 2010] have been proposed to
accelerate broad-phase collision detection for graphics applications. These algorithms
adopt the uniform partition strategy to fit the GPU execution; however, they do not
address the issues that have arisen for large-scale datasets, such as the large output
problem. Although the GPU-based algorithm [Lo et al. 2011] can handle large datasets
for 2-D rectangle intersection checking on GPUs, it causes workload imbalances among
threads, and its applicability is limited to certain types of datasets.

The proposed algorithm consists of three phases: planning, mapping and checking.
The planning phase determines an optimal cell size, which is the key factor in reducing
unnecessary computations. Based on the cell size, the space is partitioned into smaller
cells. The mapping phase finds the cells that the boxes occupy and stores the boxes in
a continuous space for better memory access. The checking phase performs pairwise
checks of the boxes in the same cell and employ a load-balancing scheme to equalize
the workload among threads. To attack the large output problem, the GPU encodes the
intersection results using a 3-level compression scheme, which the CPU reports (de-
codes). In addition, to hide the data transmission and decoding overheads in the GPU
execution, the proposed algorithm enables a pipelined execution of the GPU execution,
data transmission and CPU execution.

We compare the PBIG implementation with one sequential implementation and
two GPU-accelerating implementations. The sequential implementation [Kettner et al.
2011] from the computational geometry algorithms library [CGAL 2011] is proven to
be one of the fastest implementations in practice. The first GPU-based implementa-
tion, called BULLET, is from the bullet physics engine library [BULLET 2011]; the
second implementation, called PRI, extends the implementation in a previous work
[Lo et al. 2011] for the 3-D environment. The comparisons were performed on different
problem settings, including the number, density, and distribution of boxes. The exper-
imental results show that the proposed algorithm has up to 110× faster performance
than the sequential algorithm and up to 10× and 3× performance improvements over
the BULLET and PRI, respectively.

This article makes two major contributions. First, we propose an efficient implemen-
tation to optimize box intersection checking on GPUs, which can be used in large-scale,
real-time simulations. The implementation is available as open-source for download
at Google-Code [PBIG 2013]. Second, we present analyses and techniques to address
the performance challenges in implementing box intersection checking algorithms on
GPUs. Those analyses and techniques can be used for box intersection checking and
many related problems implemented on GPUs.

The remainder of this article is organized as follows. In Section 2, we survey the
sequential and parallel box intersection checking algorithms reported in the literature.
In Section 3, we introduce the GPU architecture used, CUDA, and the challenges in

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 19, Publication date: July 2013.

�

�

�

�

�

�

�

�

Optimizing Pairwise Box Intersection Checking on GPUs for Large-Scale Simulations 19:3

implementing box intersection checking algorithms on GPUs. In Section 4, we present
our algorithm PBIG in detail. In Section 5, we explain the performance optimization
methods developed for the PBIG algorithm. In Section 6, we discuss the experimental
results for performance evaluation. Section 7 presents our conclusion and directions
for future work.

2. RELATED WORK

The box intersection checking problem has received many investigations, including
analyses on its time complexity [Guting and Wood 1984; Petty and Morse 2004] and
algorithms to solve it. In this section, we provide a brief survey of sequential and
parallel algorithms for box intersection checking.

The sequential algorithms can be roughly classified into the following categories
according to the techniques used.

— sweep-line-based algorithms: Bentley and Ottmann [1979], Bentley and Wood
[1980], Six and Wood [1980];

— tree-based algorithms: Vaishnavi and Wood [1982], Edelsbrunner [1983], Petty and
Mukherjee [1997], Zomorodian and Edelsbrunner [2002];

— uniform partition-based algorithms: Van Hook et al. [1996], Tan et al. [2000],
Boukerche et al. [2005];

— sort-based algorithms: Raczy et al. [2005], Gupta and Guha [2007], Pan et al. [2011].

Among these sequential algorithms, Zomorodian and Edelsbrunner [2002] presented
a fast algorithm in practice and its implementation [Kettner et al. 2011] is widely
available for research.

The parallel box intersection checking algorithms have also been widely studied.
Chow [1980] proposed three parallel algorithms using two theoretical models: the
parallel random access machine (PRAM) and cube-connected cycles (CCC) models. For
shared memory multiprocessor systems, Overmars [1992] used the flat subdivision
and insertion-sort techniques to find box intersections. Liu and Theodoropoulos
presented parallel matching algorithms using the insertion-sort technique on a
multicore platform [Liu and Theodoropoulos 2009] and on distributed systems [Liu
and Theodoropoulos 2011]. Batista et al. [2010] also presented a parallel algorithm
for d-D box intersection checking, which is based on the efficient sequential algorithm
[Zomorodian and Edelsbrunner 2002]. Their parallel algorithm divides box interval
sequences into subtasks and handles the subtasks using the OpenMP framework.

To handle large datasets, the GPU-accelerating algorithms have been proposed in
the literature [BULLET 2011; Le Grand 2007; Liu et al. 2010; Lo et al. 2011]. Le Grand
[2007] employed a uniform partition strategy to separate boxes into different cells
and sorted the cells to filter out empty ones. The algorithm uses a static cell size,
such that a box crosses at most 2d cells, where d is the number of dimensions. Such a
cell size introduces unnecessary computations when box sizes vary. The bullet physics
library [BULLET 2011] provides a similar algorithm to perform broad-phase collision
detection for graphics applications on GPUs. The boxes that cross a certain number of
cells, which are considered large boxes, are directly matched with one another without
mapping them into cells. Liu et al. [2010] presented an algorithm that applies a coarse
partition strategy, which divides the space into subdivisions and then employs the
sweep-line technique to find box intersections for each subdivision. Lo et al. [2011]
proposed a 2-D rectangle intersection algorithm on GPUs for overcrowded situations,
in which many intersecting box pairs are reported. However, the presented algorithm
introduced load imbalances among computing units, and the compression scheme used
was ineffective in handling nonuniform datasets.

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 19, Publication date: July 2013.

�

�

�

�

�

�

�

�

19:4 S.-H. Lo et al.

3. BOX INTERSECTION CHECKING ON GPUS

3.1. CUDA Overview

Compute unified device architecture (CUDA) is a parallel computing architecture with
an array of streaming multiprocessors (SMs) and various memory spaces for execution.
In the CUDA architecture, threads are assigned to groups (called warps) and executed
by SMs in the device (i.e., the CUDA-enabled product). Because the CUDA architec-
ture employs single-instruction multiple-threads (SIMT) paradigm, all the threads in
a warp synchronously perform one common instruction. Each SM can execute one or
more warps concurrently. For memory access, threads can access data in different lev-
els of the device memory hierarchy, including registers, shared memory, cache, con-
stant memory, texture memory and global memory.

To perform tasks using CUDA, the host (i.e., the computer system) copies data from
the host memory to the device memory. The host then invokes a GPU kernel function
with a specified execution configuration. The execution configuration defines the
thread organization (i.e., the number of thread blocks in a kernel grid and the number
of threads in a thread block). While running a kernel function, each SM receives a
certain number of thread blocks and arranges those thread blocks into warps for exe-
cution. The result is subsequently copied from the device memory to the host memory.

Two key issues concern application performance on CUDA. One is branch diver-
gence. If the threads in a warp have different execution paths because of a data-
dependent condition, the threads must take turns performing instructions (i.e., if- and
else-parts). As the threads encounter more branch divergences, the execution becomes
more serialized. Another issue is memory access. Threads should reuse the data in
the low-latency memory (e.g., shared memory or cache) as opposed to the high-latency
memory (e.g., global memory). If accessing global memory is required, coalescing mem-
ory accesses can reduce the number of memory transactions.

3.2. Computational Challenges

There are two major computational challenges in implementing box intersection check-
ing algorithms on GPUs.

(1) Data partitioning. A large dataset must be divided into small datasets for parallel
processing. Traditional adaptive partition techniques, such as binary space parti-
tioning (BSP), divide the space into subspaces and let each subspace contain an
equal number of boxes. However, such adaptive techniques favor and fit CPU exe-
cution but not GPU execution. Static partition techniques have better parallelism
for GPU [Ming and Stefan 1998] but could cause load imbalances among the parti-
tions. If few threads within a thread block perform tasks or if certain of the threads
have heavy workloads, this situation causes GPU resources to idle. The load imbal-
ances situation worsens for box intersection checking because it has the symmetric
property and performs symmetric data operations.

(2) Large output processing. The number of intersecting box pairs can be large and
unpredictable. Outputting all intersecting box pairs becomes a crucial factor for
performance. For N boxes, the output size is generally O(N) [Zomorodian and
Edelsbrunner 2002]. When N is large, the output size also grows, which degrades
the overall performance on GPUs. Allocating the memory for the output also affects
the performance. A common allocation method is to create a designated space for
each box. This method wastes memory space and requires post-processing when
an application has few intersecting pairs or features a non-uniform distribution
of boxes. When N is large, the required memory space cannot fit into the GPU
memory.

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 19, Publication date: July 2013.

�

�

�

�

�

�

�

�

Optimizing Pairwise Box Intersection Checking on GPUs for Large-Scale Simulations 19:5

Table I. List of Symbols

Symbol Meaning
N number of boxes
Nc number of boxes in a cell c
M number of cells
α average number of cells a box occupies
f objective function to minimize the number of intersection checks
W number of threads per warp
T number of threads per thread block
�i
s length of a space s in the ith dimension

�i
c length of a cell c in the ith dimension

�i
b length of a box b in the ith dimension

pi
b lower coordinate of a box b in the ith dimension

qi
b upper coordinate of a box b in the ith dimension

4. PBIG ALGORITHM

This paper considers the box intersection checking problem: given N iso-oriented boxes
in a 3-D space, find all the intersecting box pairs. Each box is numbered by a unique
identification (box ID). The position of a box b is defined by three pairs of real numbers,
(p1

b, q1
b), (p2

b, q2
b), and (p3

b, q3
b), which denote the lower and upper coordinates of box b in

each dimension. Two boxes b1 and b2 intersect if and only if for i = 1, 2, 3,

pi
b1

≤ qi
b2

and pi
b2

≤ qi
b1

. (1)

This section presents the PBIG algorithm to efficiently perform box intersection
checking on GPUs. The presented algorithm requires all the information of boxes in
the GPU memory and comprises three phases to obtain the intersection results (i.e.,
intersecting box IDs) in an intersection list. The intersection list is an array in the
GPU global memory. The following describes the three phases, planning, mapping and
checking. To clarify the description, Table I lists the symbols used in this section.

4.1. Planning Phase

The planning phase determines a cell size for space partitioning. The space partition-
ing allows comparing boxes with other boxes in the same cell only, which reduces un-
necessary computations in the checking phase. Cell size is thus crucial to intersection
checking performance. If the cell size is too large, the number of unnecessary intersec-
tion checks (UCs), which compare pairs of distant boxes, becomes large. Conversely,
if the cell size is too small, many redundant intersection checks (RCs) are performed.
That is, the same box pair, intersecting or not, is checked many times in different cells.
The cell size thus significantly influences the number of intersection checks performed.

In this article, the 3-D space is partitioned into uniform cells, and the size of each cell
c is �1

c ×�2
c ×�3

c , where �i
c is the length of c in the ith dimension and symbol × stands for

the multiplication sign between scalars. Finding the optimal cell size that minimizes
the number of unwanted intersection checks, UCs and RCs, can be formulated as an
optimization problem,

min
�1

c ,�2
c ,�3

c

f = Nα

M
, (2)

where f is the objective function, N is the number of boxes, M is the number of cells,
and α is the average number of cells that a box occupies. The value of N/M means

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 19, Publication date: July 2013.

�

�

�

�

�

�

�

�

19:6 S.-H. Lo et al.

the average number of boxes per cell. A larger N/M indicates that more unnecessary
checks (UCs) can occur. On the other hand, a larger α implies that more redundant
checks (RCs) can occur. The objective function f is therefore designed to minimize both
unwanted checks.

In a 3-D space s of size �1
s ×�2

s ×�3
s , where �i

s is the length of s in the ith dimension and
symbol × stands for the multiplication sign between scalars, M can be calculated as

M =
⌈

�1
s

�1
c

⌉ ⌈
�2

s

�2
c

⌉ ⌈
�3

s

�3
c

⌉
. (3)

Similarly, given the size of a box b, �1
b × �2

b × �3
b, where �i

b is the length of b in the
ith dimension and symbol × stands for the multiplication sign between scalars, the
number of cells occupied by b can be estimated using⌈

�1
b

�1
c

⌉ ⌈
�2

b

�2
c

⌉⌈
�3

b

�3
c

⌉
. (4)

Thus, α is defined as

α = 1
N

∑
b∈B

(⌈
�1

b

�1
c

⌉ ⌈
�2

b

�2
c

⌉⌈
�3

b

�3
c

⌉)
, (5)

where B denotes the set of N boxes in a space.
The relationship between cell size and box intersection checking performance is even

more complicated on the GPU because GPU hardware efficiency must also be consid-
ered. The CUDA architecture employs the SIMT computing model, in which a warp
(i.e., a group of 32 threads) executes one common instruction synchronously. If a cell
contains fewer boxes than the number of threads in a warp W, hardware resource
utilization is low. The problem in Eq. (2) can be therefore reformatted as

min
�1

c ,�2
c ,�3

c

f = Nα

M
, subject to :f ≥ W. (6)

If we set all �i
c values to be equal, we can solve this optimization problem using a

binary search on �i
c. The most time-consuming task in Eq. (6) is computing α, the time

complexity of which is O(N) per trial of �i
c. To reduce the computational cost, we take a

simple random sample of size 1000 from N boxes to estimate α and offload computing
α onto the GPU.

4.2. Mapping Phase

The mapping phase determines a list of occupied cells for each box and generates a list
of boxes for each cell c to store the boxes in c. Since all of the cells have equal and fixed
size, the mapping phase can determine the cells that the boxes occupy in parallel. The
difficulty is efficiently converting the lists of cells for all boxes to the lists of boxes for
all cells on GPUs. The lists of boxes are concatenated in a continuous memory space
for performance, which is discussed in this article.

To achieve these goals (i.e., parallelization, one box list per cell, and a concatenated
storage), three arrays are used. First, the box array stores the concatenated box lists
for all cells. Second, the offset array keeps the beginning address of each box list in the
box array. Third, the counter array, which is an auxiliary array, records the number

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 19, Publication date: July 2013.

�

�

�

�

�

�

�

�

Optimizing Pairwise Box Intersection Checking on GPUs for Large-Scale Simulations 19:7

Fig. 1. Example of the counter, offset, and box arrays. Boxes are concatenated in the box array according to
the cell order.

of boxes in each cell. Figure 1 shows an example: cell c1 contains 10 boxes and the
beginning address (i.e., the offset) of its box list in the box array is 0; cell c2 contains
8 boxes and its offset is 10; cell c3 has no boxes in it, giving cells c3 and c4 the same
offset.

The mapping phase uses three GPU kernels to produce the desired arrays.

Box Counting Kernel. The box counting kernel generates the counter array. Each
thread handles a box and computes the cells it occupies. For an occupied cell of
index i, the thread increases the ith element in the counter array. This kernel uses
one atomic instruction to guarantee counter array correctness because it is possible
for multiple threads to simultaneously access the same counter.

Offset Calculating Kernel. This kernel generates the offset array by performing
the parallel prefix sum algorithm [Harris et al. 2007] on the counter array.

Box Mapping Kernel. The box mapping kernel fills the box array with the boxes.
The position of a box in the box array corresponds to the offset of the cell (in the off-
set array) and the order of executing one atomic instruction. Each thread performs
one atomic instruction to acquire the order instead of recording the order obtained
in the box counting kernel.

We briefly discuss two implementation decisions made for this phase. The first de-
cision is concerned with the data structure of box lists. For better memory access, all
the box lists are concatenated in a continuous array, which is statically allocated.1

Although CUDA provides a dynamical allocation method2 for GPU kernel functions,
simultaneously creating dynamic arrays introduces a heavy overhead [Huang et al.
2010]. We further conduct an experimental test to measure the overhead. In the test
case, the number of boxes is 107 and other settings are the same as in Section 6.1.
The result shows the dynamic allocation method takes 95 seconds for memory alloca-
tion, which is extremely slow in comparison with 1 millisecond by the static allocation
method.

The second decision is the use of atomic instructions in the box counting and box
mapping kernels. It is generally believed that atomic instructions harm performance
because they serialize the memory accesses to the same address. However, using
atomic instructions is a better choice. An alternative approach that avoids atomic

1Before the box mapping kernel execution, the host uses cudaMalloc() function [CUDA 2011] to allocate a
device memory space.
2In the CUDA programming model, a GPU thread can dynamically allocate a device memory space from a
fixed-size heap using the device malloc() function.

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 19, Publication date: July 2013.

�

�

�

�

�

�

�

�

19:8 S.-H. Lo et al.

Fig. 2. Execution diagram of parallel box intersection checking.

instructions is the scan technique [Merrill and Grimshaw 2011], in which each thread
uses a temporary space of size O(M) to record the number of boxes in each cell
for M cells. Since M is large, the total temporary space must reside in the global
(off-chip) memory, which causes great performance degradation. On the other hand,
if atomic instructions are used, there is a small chance that there are simultaneous
memory accesses to the same address. The reason is that the cell size derived from
the planning phase controls the number of boxes per cell. The performance slowdown
caused by atomic instructions is relatively small.

4.3. Checking Phase

This phase uses a checking kernel to perform pairwise box intersection checks for a set
of cells C. Each cell c in C is assigned to a certain number of thread blocks for the check-
ing kernel execution. If cell c contains Nc boxes, the boxes in c are divided into �Nc/T�
box segments. The size of a box segment equals the number of threads per thread block
T. Each box segment is assigned to a thread block such that each box is assigned to one
thread. This assignment is achieved using dynamic thread block scheduling. Figure 2
illustrates an execution diagram of the checking kernel, and Algorithm 1 presents the
pseudocode of the checking kernel.

In the checking kernel, each thread block compares the assigned box segment with
all the box segments in the same cell. Each thread first receives the assigned cell c and
fetches the assigned box in cell c from the global memory. Threads cooperatively load
all of the boxes within a box segment into the shared memory. (Loading T boxes into
the shared memory enables the threads to compare approximately T2/2 box pairs with
fast memory access.) Block-level barrier synchronization is required to wait for all of
the boxes within a box segment to be loaded into the shared memory. Each thread then
compares the assigned box against the boxes residing in the shared memory. Equation
(1) is used to check the intersection of two boxes. When one intersecting box pair is
found, the box pair is temporarily stored in the thread-local memory.

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 19, Publication date: July 2013.

�

�

�

�

�

�

�

�

Optimizing Pairwise Box Intersection Checking on GPUs for Large-Scale Simulations 19:9

ALGORITHM 1: Parallel Box Intersection Checking Kernel
Data: C: a set of cells to be checked
Data: c: the assigned cell c, where c ∈ C
Data: segv: the assigned box segment segv in c
Data: tid: the thread index in a thread block
Data: cnt: a temporary variable indicating the number of intersecting box pairs
Data: pairs: a temporary array to hold intersecting box IDs in the thread-local memory
Data: shbox: a temporary array to hold boxes in the shared memory
Data: shcnt: a temporary array to hold counter values in the shared memory
Result: IDs of intersecting box pairs get recorded in the intersection list L

1 i ← tid
2 bi ← segv[i] // load the assigned box
3 for each box segment segh in c do
4 n ← the number of boxes in segh
5 cnt ← 0
6 shbox[tid] ← segh[tid] // load one box into the shared memory
7 Perform block-level barrier synchronization
8 j ← tid
9 while j < n do

10 bj ← shbox[j]
11 Compare bi and bj using Equation (1)
12 Calculate the cell ĉ where the box pair (bi,bj) can be output
13 if bi is intersected by bj, bi 	= bj, and c = ĉ then
14 Output IDs of bi and bj to pairs
15 cnt ← cnt + 1
16 end
17 j ← j + 1
18 end
19 shcnt[tid] ← cnt
20 Perform block-level barrier synchronization
21 Get the thread’s output offset post by computing a prefix sum on shcnt
22 Get the thread block’s output offset posb in L using an atomic instruction
23 Output pairs to L from the offset pos = post + posb
24 end

To avoid redundant box intersection output, the checking kernel must require two
procedures. First, the box intersection checking has the symmetric property, which
means that if box b1 intersects with box b2, box b2 must intersect with box b1. Only half
of box pairs in each cell must therefore be checked. Threads compare box pairs (bi,bj)
for i ≤ j, where i and j are the box indices within a box segment, as in Figure 2. (Note
that boxes bi and bj could be in different box segments.) Second, because boxes could
reside in one or more cells, different thread blocks could find the same intersecting
pair. Only the thread in the output cell (denoted ĉ in Algorithm 1), where the corner
of the intersection of two boxes with the largest coordinates resides, must output the
intersecting pair. All other threads could compare the same pair without outputting it.

When completing the checks for one box segment, all of the threads within a thread
block output the intersection results to the intersection list. To parallelize the output
process, each thread must know the output address (offset) of the intersection list for
outputting its intersection result. An output offset comprises two parts: the thread
offset in a thread block and the thread block offset in a kernel grid. Threads’ offsets
are obtained by computing prefix sums, and thread blocks’ offsets are obtained using
atomic instructions by the first thread within a thread block.

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 19, Publication date: July 2013.

�

�

�

�

�

�

�

�

19:10 S.-H. Lo et al.

This difference in how the offsets are calculated is a result of the different paral-
lelism granularities. For the threads, the number of their offsets is massive and their
action is more synchronous. For the thread blocks, the number of their offsets is much
smaller and their execution is more asynchronous. If the checking kernel obtains the
offset of each thread block by computing prefix sums, the output process must wait
for the checks performed by all thread blocks to finish, which is less efficient than the
atomic approach.

4.4. Application Considerations

Although box intersection checking is a common task in applications, the PBIG algo-
rithm has three specific considerations when applied to various applications.

First, some applications exhibit a strong temporal consistency, as described by Cohen
et al. [1995]. Exploiting the temporal consistency of objects’ locations can usually ac-
celerate box intersection checking. For instance, Liu and Theodoropoulos [2009] cache
the intersection results of the previous iteration and use the insertion-sort technique
to reduce the computational complexity. To integrate this idea, a dynamic data struc-
ture (i.e., a container) on GPUs is required for updating the intersection results from
iteration to iteration. However, GPU implementations of such a structure are expen-
sive because updating the structure involves non-uniform memory accesses [Lefohn
et al. 2005] and branch divergences. The PBIG algorithm does not exploit the tempo-
ral consistency property of applications on current GPUs.

Second, the PBIG algorithm can be performed in either a centralized platform or dis-
tributed platforms. The algorithm requirement is the GPU hardware. In a distributed
simulation, such as an HLA federation, the box intersection checking can be performed
in either the Central RTI Component (CRC) or the Local RTI Components (LRCs). If
the PBIG algorithm is performed in the CRC, a single GPU device in the CRC is re-
quired to perform intersection checking. With multiple GPU devices, the PBIG algo-
rithm can be performed in multiple LRCs.

Finally, PBIG can be easily generalized to perform the box intersection checking in
d-dimension. These are the required modifications.

— The planning phase considers d dimensions to compute Eqs. (3), (5), and (6).
— The mapping phase considers d coordinate pairs of a box to determine the occupied

cells of the box.
— The checking phase considers d dimensions in Eq. (1) to perform an intersection

check of two boxes.

5. PERFORMANCE OPTIMIZATIONS

We present three optimization techniques to further enhance the PBIG performance.
The first technique handles a load-balancing issue for threads and warps. The second
technique uses data compression to reduce the communication cost of outputting in-
tersecting pairs. The third technique enables a 3-stage pipelined execution to overlap
communication and computation.

5.1. Load-Balancing

Because of the symmetric property of box intersection checking, threads only compare
box pairs (bi,bj) for i ≤ j, where i and j are the box indices within a box segment.
As in Figure 2, only the box pairs in the top-right part are checked. The workload
assignment presented in Section 4.3 is to simply assign box pairs in one row to one
thread. The advantage of the assignment is that all the required data can be pre-
loaded into the shared memory and reused many times. The assignment, however,

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 19, Publication date: July 2013.

�

�

�

�

�

�

�

�

Optimizing Pairwise Box Intersection Checking on GPUs for Large-Scale Simulations 19:11

Fig. 3. Example of the load-balancing assignment for an 8 × 8 matrix. Eight GPU threads compare the
assigned box segment with one box segment. Each of the top-half threads compares 5 pairs; each of the
bottom-half threads compares 4 pairs.

causes load imbalances among threads because some threads check more box pairs
than other threads.

To achieve better load-balancing among threads, we present a new workload
assignment. In the new assignment, pairwise checks for two box segments of sizes
m and n are represented as an m × n matrix, in which each element is a box pair.
Each thread handles one row of a matrix, but some top-right matrix elements are
shifted to the bottom-left part. Figure 3 demonstrates this new assignment for an
8 × 8 matrix. In Figure 3, the elements (0, 5), (0, 6), (0, 7), (1, 6), (1, 7), and (2, 7) are
shifted to (5, 0), (6, 0), (7, 0), (6, 1), (7, 1), and (7, 2), respectively.

Given an m × n matrix, the number x of matrix elements to be checked in ith row is

x =
{

(n − m) + �(m + 1)/2� if i ≤ �m/2�
(n − m) +
(m + 1)/2� otherwise

, (7)

where m is the number of rows of the matrix, n is the number of columns of the matrix,
and m ≤ n. The reason why m ≤ n is that each thread only compares box pairs from
the diagonal element, as in Figure 3. The number of box pairs assigned to a thread
depends on the row the thread handles. This new assignment equalizes the box pairs
among threads. In addition, since each thread still handles one row of the matrix, all
the required data also can be preloaded into the shared memory and reused many
times, as in the original assignment.

Algorithm 2 presents the details of the checking kernel with the proposed workload
assignment. The workload assignment requires two operations. First, each thread com-
pares box pairs from the diagonal box pairs until it finishes comparing x box pairs, that

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 19, Publication date: July 2013.

�

�

�

�

�

�

�

�

19:12 S.-H. Lo et al.

ALGORITHM 2: Parallel Box Intersection Checking Kernel with Load-Balancing
Data: C: a set of cells to be checked
Data: c: the assigned cell c, where c ∈ C
Data: segv: the assigned box segment segv in c
Data: tid: the thread index in a thread block
Data: cnt: a temporary variable indicating the number of intersecting box pairs
Data: pairs: a temporary array to hold intersecting box IDs in the thread-local memory
Data: shbox: a temporary array to hold boxes in the shared memory
Data: shcnt: a temporary array to hold counter values in the shared memory
Result: IDs of intersecting box pairs get recorded in the intersection list L

1 i ← tid
2 bi ← segv[i] // load the assigned box
3 for each box segment segh in c do
4 n ← the number of boxes in segh
5 m ← min(the number of boxes in segv, n)
6 cnt ← 0
7 j ← tid, k ← 0
8 shbox[tid] ← segh[tid] // load one box into the shared memory
9 Perform block-level barrier synchronization

// Compare x box pairs
10 Compute the number x of box pairs assigned for an m × n matrix using Equation (7)
11 while i < n and k < x do
12 if j = n then
13 j ← 0 // shift to the first box in segh
14 end
15 bj ← shbox[j]
16 Compare bi and bj using Equation (1)
17 Calculate the cell ĉ where the box pair (bi,bj) can be output
18 if bi is intersected by bj, bi 	= bj, and c = ĉ then
19 Output IDs of bi and bj to pairs
20 cnt ← cnt + 1
21 end
22 j ← j + 1, k ← k + 1
23 end
24 shcnt[tid] ← cnt
25 Perform block-level barrier synchronization
26 Get the thread’s output offset post by computing a prefix sum on shcnt
27 Get the thread block’s output offset posb in L using an atomic instruction
28 Output pairs to L from the offset pos = post + posb
29 end

is, lines 10–11 in Algorithm 2. Second, when reaching the boundary of a box segment,
threads continue to compare other box pairs by shifting to the first box in the box
segment, that is, lines 12–14 in Algorithm 2.

5.2. Data Compression

To reduce the output size, we design a hierarchical coding scheme for box IDs, under
which each box ID can be represented by a three-tuple

box ID = (cell ID, segment ID, local ID). (8)

The first level ID is the cell ID, obtained after the mapping phase. In each cell, we
use the box indices according to the order in which they are being mapped into cells.

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 19, Publication date: July 2013.

�

�

�

�

�

�

�

�

Optimizing Pairwise Box Intersection Checking on GPUs for Large-Scale Simulations 19:13

Fig. 4. The encoded intersection list. Each box ID is represented by a three-tuple (cell ID, segment ID, and
local ID).

Fig. 5. Example of the encoded intersection list. Six intersecting box pairs are encoded, and the length of a
box segment is 4.

Because the number of boxes in a cell can be large and varied, we further partition
the boxes into segments. (The length of a box segment can be equal to or smaller than
the length of a box segment used in Section 4.3. In this article, we set them to be
equal.) Each segment can contain only a fixed number of boxes, for example, 256. For
a box with a new index idx in a cell, its segment ID is
idx/256�, and its local ID is
mod(idx, 256). Each box in a cell thus has a unique pair of segment ID and local ID.

Figure 4 shows how box IDs are encoded using the hierarchical IDs. First, a thread
block performs intersection checks for a box segment in a cell at a time, and therefore
only one thread in a thread block outputs the cell ID. Second, because each thread
compares one assigned box with the other boxes, it can output the segment IDs of
the assigned box and intersecting boxes within a box segment only once. Finally, we
combine the local ID of the assigned box, the number of intersecting boxes and the
local IDs of the intersecting boxes. The number of intersecting boxes is output for
decompression.

Figure 5 shows an example of encoding box IDs. Suppose that the length of a box
segment is 4; there are 8 boxes in cell c10 and the intersecting box pairs in c10 are
as shown in Figure 5. When a thread finds an intersecting box pair, for example, (b3,
b4), it stores the segment IDs of b3 and b4 (i.e., SID1=0 and SID2=1 in Figure 5), the
local IDs of b3 and b4 (i.e., 0 and 2), and the number of intersecting pairs for b3 in the
thread-local memory. The encoded intersection results in the thread-local memory are
output to the intersection list, which is attached to the cell ID of the current cell (i.e.,
10 in this example).

The CPU is responsible for decoding the encoded intersection results. After the map-
ping phase, the CPU obtains (duplicates) the decoding information, including the offset

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 19, Publication date: July 2013.

�

�

�

�

�

�

�

�

19:14 S.-H. Lo et al.

Fig. 6. Double-buffering. Two device buffers and two host buffers enable three tasks (the checking kernel,
data transmission and reporting (including decoding)) to access different buffers simultaneously.

and box arrays defined in Section 4.2. Combing with the segment ID, box segment size,
and local ID, the CPU can locate the original box IDs of intersecting boxes.

Suppose that a box ID uses x memory bits, a cell ID uses y memory bits, and a
segment ID uses z memory bits. Let L be the maximum number of boxes a segment
can keep. One local ID requires �log2L� memory bits. In a segment, the maximum
number of intersecting pairs is L. The number of intersecting pairs of a box is thus
encoded into �log2L� memory bits. To output k intersecting box pairs in a segment, the
compression ratio of the compressed to uncompressed output size is

y + 2z + 2�log2L� + k�log2L�
2xk

. (9)

When the number of intersecting pairs is large, the cell and segment IDs appear in the
intersection list occasionally. The asymptotical compression ratio is

�log2L�
2x

. (10)

5.3. Pipelined Execution

After the GPU outputs the intersecting box pairs to the encoded intersection list, the
encoded intersection list must be transmitted from the device to the host, and the
CPU is then responsible for reporting (including decoding) the encoded information. To
reduce the communication and decoding costs, we divide the computation into stages
and overlap the execution of the following three tasks.

(1) The GPU executes the checking kernel and encodes/compresses the intersecting
box pairs.

(2) The encoded intersection list is transmitted from the device to the host.
(3) The CPU decodes the encoded intersection list and reports the intersecting box

pairs.

To relieve the data dependency of the three tasks, the double-buffering technique is
employed such that the three tasks can simultaneously access data in different buffers.
Figure 6 illustrates the double-buffering idea. First, we create two device buffers for

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 19, Publication date: July 2013.

�

�

�

�

�

�

�

�

Optimizing Pairwise Box Intersection Checking on GPUs for Large-Scale Simulations 19:15

Fig. 7. Pipelined execution of the checking kernel, data transmission and reporting (and decoding) tasks.

Table II. Specifications of the Experimental Platform

Host
Processor Intel i7 processor 2.67 GHz
Memory 6 GB DRAM
Operating System openSUSE 11.1 with kernel version 2.6.27
Compiler GCC 4.3 with optimizations –O3 and –DNDEBUG

Device
GPU Device NVIDIA Tesla C2070
Global Memory 6 GB DRAM
Shared Memory 48 KB
Compiler CUDA 4.0

the GPU and two host buffers for the CPU. When the GPU outputs data into the first
device buffer, the data in the second device buffer is transmitted to the second host
buffer. Meanwhile, the CPU can access the compressed data in the first host buffer. In
the next iteration, the GPU and the CPU can work on the data in the second device
buffer and the second host buffer respectively, and the data in the first device buffer
are transmitted to the first host buffer.

The CUDA Stream technology [CUDA 2011] is required to enable executing multi-
ple streams independently. A stream means an execution of the three tasks discussed
above. Using the double-buffering and CUDA Stream, the three tasks become a 3-stage
pipelined execution. Figure 7 shows the 3-stage pipelined execution using two streams
(Stream1 and Stream2), two device buffers (DB1 and DB2) and two host buffers (HB1
and HB2).

In Figure 7, the pipelined execution effectiveness requires two mechanisms. First,
the exact number of intersecting box pairs is available only when finishing the check-
ing kernel. Data are prefetched to hide the time required to transmit data from the
device to the host in the time to perform the checking kernel. The prefetching size
equals the number of intersecting box pairs found in the previous kernel execution.
Second, three synchronizations (as in Figure 7) are required to guarantee the execu-
tion correctness of the three tasks. The first synchronization waits for the data (in
DB1) produced by the checking kernel before transmitting the data. The second syn-
chronization waits for the data to be copied from the device (DB2) to the host (HB2)
before reporting the encoded intersecting box pairs. The last synchronization waits for
the data to be copied from the device (DB2) to the host (HB2) before the next checking
kernel execution.

6. PERFORMANCE EVALUATION

We evaluate the performance of the proposed algorithm on a workstation with one
GPU device. Table II lists the details of our experimental platform. We measure the
time to perform box intersection checking for N boxes in 3-D space, including the data
transmission.

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 19, Publication date: July 2013.

�

�

�

�

�

�

�

�

19:16 S.-H. Lo et al.

Fig. 8. Performance of the four algorithms with various numbers of boxes.

We compare the performance of our algorithm with those of one sequential and two
parallel (GPU-based) algorithms. The sequential algorithm (called CGAL) is a fast
algorithm in practice [Kettner et al. 2011]. The first parallel algorithm (called PRI) is
an extension of the algorithm [Lo et al. 2011]; the second one (called BULLET) is the
btCudaBroadphase module in the Bullet Physics Engine library [BULLET 2011]. The
thread block size for the GPU-based implementations is 256; the cell sizes of the three
algorithms, BULLET, PRI and PBIG, are the same, which are derived from Eq. (6). We
use these algorithms for reference.

We present four sets of experimental results, each of which addresses one of the
following performance factors:

— Number of boxes,
— Density of boxes,
— Distribution of boxes, and
— Optimization techniques.

6.1. Number of Boxes

We evaluate the performance of the four algorithms for various numbers of boxes.
Boxes are randomly distributed in a 3-D space of size 104×104×104. Specifically, the
coordinate of the center point of a box in each dimension is a uniform random variable
within the interval [0,10000], and the length of a box in each dimension is a uniform
random variable within the interval [1,100]. The numbers of boxes tested are 103, 104,
105, 106 and 107.

Figure 8 shows the execution times of four implementations with various numbers
of boxes. When N = 103, the performance of PBIG is slower than that of CGAL and
BULLET because PBIG must perform additional tasks (e.g., CPU-GPU data commu-
nication and thread block scheduling), which results in a computational overhead for
PBIG. Our profiling result shows that those tasks account for more than 50% of the to-
tal execution time of PBIG in this case. However, as N grows to 107, PBIG outperforms
CGAL and PRI by 116× and 3.3× performance, respectively. BULLET cannot handle

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 19, Publication date: July 2013.

�

�

�

�

�

�

�

�

Optimizing Pairwise Box Intersection Checking on GPUs for Large-Scale Simulations 19:17

Fig. 9. Performance of PBIG using various cell sizes with various numbers of boxes.

the largest problem size, that is, 107 boxes in this experiment, because it allocates a
fixed memory space for each box to record the output per box and a fixed capacity for
each cell to record the boxes in a cell. For a problem of size 107, BULLET requires more
memory space than the GPU Tesla C2070 has available.

Figure 9 shows the performance differences for various cell sizes. The cell
sizes tested include the one derived from Equation (6), 64×64×64, 128×128×128,
256×256×256, 512×512×512 and 1024×1024×1024. Figure 9 demonstrates that cell
size affects performance significantly. When N = 107, the performance for cell size
64×64×64 or 1024×1024×1024 is worsen than that for cell size 256×256×256. PBIG
uses Eq. (6) to determine the cell size, the performance of which, as in Figure 9, is
close to optimal in all cases.

6.2. Density of Boxes

In this paper, we use the Degree of Coverage (DoC) to adjust the density of boxes. The
DoC is defined as

DoC = The sum of volumes of all boxes
The volume of the domain space

. (11)

The DoC value means the average number of boxes per unit area.
The DoC settings include 10−3, 10−2, 10−1, 1 and 10. Figure 10 shows the execution

times of the four algorithms for density of boxes. PBIG can perform intersection check-
ing for 107 boxes with various DoC settings within one second, which outperforms the
other three algorithms in all cases. For the greatest density of boxes, the number of in-
tersecting pairs reported approximates 5×107, and the uncompressed and compressed
output sizes are 377.76 MB and 44.73 MB, respectively.

Table III lists the PBIG statistics for various DoC settings. As the density of boxes
grows, the number of intersecting pairs also increases, as in the second column of
Table III. However, the number of intersection checks (reported in the third column
of Table III) does not grow with the number of intersecting pairs. The number of

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 19, Publication date: July 2013.

�

�

�

�

�

�

�

�

19:18 S.-H. Lo et al.

Fig. 10. Performance of the four algorithms with various DoC settings.

Table III. Statistics of the PBIG in Various Values of DoC for N = 107

DoC Total Number of Total Number of Input Size Output Size
Intersecting Pairs Intersection Checks (MB) (MB)a

0.001 6,234 879×106 280 0.024
0.01 50,064 930×106 280 0.183

0.1 530,689 1062×106 280 1.334
1 5,165,837 286×106 280 9.369

10 49,514,252 744×106 280 44.734
aThis is the compressed size.

intersection checks becomes large for DoC = 0.001, 0.01, and 0.1, whereas the number
drops at DoC = 1. This phenomenon results from the cell size adjustment. For
various DoC settings, the cell size is adjusted to reduce unnecessary checks and to
achieve better hardware efficiency. For example, PBIG uses a larger cell size (i.e.,
256×256×256) to make cells contain at least 32 boxes when DoC = 0.1, but it uses a
smaller cell size (i.e., 128×128×128) to reduce unnecessary intersection checks when
DoC = 1 or DoC = 10.

6.3. Distribution of Boxes

We further investigate the performance changes in a nonuniform distribution. The co-
ordinates of the center points of boxes follow a Gaussian distribution, whose mean is
(5000,5000,5000) with a standard deviation of 1000. Boxes are distributed in a 3-D
space of size 104×104×104. The numbers of boxes tested are 103, 104, 105, 106, and
107. For 107 boxes, this box distribution generates approximately 112×107 intersect-
ing pairs. Other parameter settings are the same as in Section 6.1. Figure 11 shows
the execution times of the four algorithms. Overall, all the execution times for the
four algorithms in the nonuniform distribution are greater than those in the uniform
distribution in Section 6.1.

Although PBIG is the fastest algorithm in most cases, its performance increase com-
paring the sequential algorithm CGAL for the non-uniformly distributed data is not

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 19, Publication date: July 2013.

�

�

�

�

�

�

�

�

Optimizing Pairwise Box Intersection Checking on GPUs for Large-Scale Simulations 19:19

Fig. 11. Performance of the four algorithms with various numbers of boxes in a non-uniform distribution
of boxes.

Table IV. Speedups of the PBIG Algorithm with Various Optimizations

Combinations of Optimizations Speedup
Data Compression 1.86
Pipelined Execution 1.98
Load-Balancing 1.01
Data Compression and Pipelined Execution 2.63
Data Compression and Load-Balancing 2.88
Pipelined Execution and Load-Balancing 1.92
Compression, Pipelined Execution and Load-Balancing 4.81

comparable to that for the uniformly distributed data. For instance, when N = 107, the
performance increase is 116× for uniformly distributed data, but only 65.66× for the
non-uniformly distributed data. The major reason is the rapid increases of intersecting
pairs in the non-uniformly distributed data. PBIG requires more memory operations
and copies for data output, whereas CGAL does not incur the transmission overhead.

The PBIG algorithm still achieves a substantial performance increase in the nonuni-
formly distributed data. The data compression and pipelined execution schemes can
help the box intersection checking performance in the simulations with a nonuniform
distribution of entities.

6.4. Optimization Techniques

We demonstrate the effectiveness of three performance optimization techniques on our
algorithm: load-balancing, data compression and pipelined execution. The number of
boxes evaluated is 107. Other settings are the same as in Section 6.3. The baseline
configuration is the PBIG algorithm without any optimization. Table IV lists the PBIG
performance speedups using different optimization techniques.

We further analyze the performance speedups by breaking the PBIG execution into
tasks, listed in Table V. Table VI shows the execution time breakdown. In Table VI,
when the pipelined execution is activated, the CHECK, DataOut and REPORT tasks

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 19, Publication date: July 2013.

�

�

�

�

�

�

�

�

19:20 S.-H. Lo et al.

Table V. List of Tasks in the PBIG Algorithm According to the Execution Order

Tasks Description
DataIn Copy boxes from the host to the device.
PLAN Determine a cell size.
MAP Map boxes into cells.
SCHED Do thread block scheduling.
CHECK Perform box intersection checks and output the intersecting pairs to global memory.
DataOut Copy the encoded intersection list from the device to the host.
REPORT Report (including the decoding) the intersecting pairs.

Table VI. Execution Time Breakdown of the PBIG Algorithm

PBIG Total DataIn PLAN MAP SCHED CHECK DataOut REPORT
Baseline 10264940 50423 30 137909 2644 4970496 1740208 3312812
Baseline+Ca 5512054 52686 35 137713 2709 3806897 473857 995124
Baseline+Pb 5181014 48470 28 137649 2753 4983314
Baseline+C+P 3891116 49243 30 137845 2684 3697194
Baseline+Bc 10167360 49926 31 137854 2701 5039146 1696377 3191348
Baseline+C+B 3562590 54857 39 137996 3193 2097496 483593 740671
Baseline+P+B 5337236 48115 41 137856 2837 5139588
Baseline+C+P+B 2132998 47760 35 137840 2537 1941184

aC: Data compression is activated.
bP: Pipelined execution is activated.
cB: Load-balancing is activated.

overlap. Table VI present the total execution time of the three tasks. The three tasks
occupy more than 90% of the execution time. We use the three optimizations to handle
the three PBIG tasks.

Among the three optimizations, data compression and pipelined execution can in-
crease performance by factors of 1.86× and 1.98×, respectively. The load-balancing-
only optimization contributes much less performance than the other two optimizations.
Applying all of the optimizations, however, multiplies the effect on performance by a
factor of 4.81×. As in Table VI, the PBIG algorithm with the three optimizations can
reduce the execution time of the three tasks to 1.941 seconds, compared with that for
only the data compression and pipelined execution, that is, 3.697 seconds.

The effect of the load-balancing optimization is constrained by the performance of
outputting intersecting pairs to the intersection list. This test case generates many
intersecting pairs (i.e., 112×107 pairs), which dominates the overall execution time.
The algorithm without compression produces approximately 8.968 GB of data, whereas
the algorithm with data compression reduces the output size to approximately 1.824
GB. The load-balancing method is effective in reducing the execution time when the
data compression is first applied to handle the large output issue.

7. CONCLUSIONS AND FUTURE WORK

For large-scale, real-time computer simulations, pairwise intersection checking is
essential to prune unwanted interactions among millions of objects. This paper
investigated pairwise box intersection checking on GPUs for large-scale datasets.
Two major challenges for parallelizing box intersection checking are data partitioning
and large output processing. The proposed algorithm utilizes several optimization
techniques for performance enhancement. The PBIG algorithm was compared with
one well-implemented sequential algorithm and two GPU-based algorithms: up to
110×, 10× and 3× performance increases, respectively, were observed.

The optimization techniques and analyses developed to improve the performance
can be applied to a broad range of applications implemented on GPUs. First, problems

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 19, Publication date: July 2013.

�

�

�

�

�

�

�

�

Optimizing Pairwise Box Intersection Checking on GPUs for Large-Scale Simulations 19:21

with random access behaviors can utilize the three-phase strategy to reduce the
random access cost and enhance scalability. Second, problems with massive data
output can utilize the data compression and pipelined execution to reduce the I/O
time. Third, applications with symmetric properties can apply the load-balancing
method to equalize the workload among computing threads.

There are several directions for future work. First, parallelizing the more general
computations, such as arbitrary-oriented box intersection checking or triangulation
intersection checking in 3-D environments, will be our future studies. Second, the pos-
sibility of efficient implementations exploiting the temporal consistency property of
applications requires further study. Third, utilizing different computational architec-
tures, including multiple GPUs or multicore CPUs with GPUs, to enhance scalability
and performance also holds great interest. Because of the importance of box intersec-
tion checking in various applications, further investigations addressed to generalizing
the techniques used are also required to develop practical packages.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers for their valuable comments and suggestions.

REFERENCES

Avril, Q., Gouranton, V., and Arnaldi, B. 2010. A broad phase collision detection algorithm adapted to multi-
cores architectures. In Proceedings of the IEEE Virtual Reality International Conference. IEEE, Los
Alamitos, CA, 95–100.

Batista, V. H. F., Millman, D. L., Pion, S., and Singler, J. 2010. Parallel geometric algorithms for multi-core
computers. Computat. Geometry 43, 8, 663–677.

Bentley, J. L. and Ottmann, T. A. 1979. Algorithms for reporting and counting geometric intersections. IEEE
Trans. Comput. C-28, 9, 643–647.

Bentley, J. L. and Wood, D. 1980. An optimal worst case algorithm for reporting intersections of rectangles.
IEEE Trans. Comput. C-29, 7, 571–577.

Boukerche, A., McGraw, N., Dzermajko, C., and Lu, K. 2005. Grid-filtered region-based data distribution
management in large-scale distributed simulation systems. In Proceedings of the 38th Annual Simula-
tion Symposium. IEEE, Los Alamitos, CA, 259–266.

BULLET. 2011. Bullet Physics Library. (2011). http://bulletphysics.org/wordpress/.
CGAL. 2011. Computational geometry algorithms library. (2011). http://www.cgal.org.
Chow, A. L. 1980. Parallel algorithms for geometric problems. Ph.D. dissertation, University of Illinois at

Urbana-Champaign.
Cohen, J. D., Lin, M. C., Manocha, D., and Ponamgi, M. 1995. I-COLLIDE: An interactive and exact colli-

sion detection system for large-scale environments. In Proceedings of the Symposium on Interactive 3D
Graphics. ACM, 189–196.

CUDA. 2011. CUDA Programming Guide, 4.0, NVIDIA. (2011). http://developer.nvidia.com/cuda-downloads.
Edelsbrunner, H. 1983. A new approach to rectangle intersections part I. Int. J. Comput. Math. 13, 3, 209–

219.
EVE Online. 2003. EVE online game. (2003). http://www.eveonline.com/.
Gupta, P. and Guha, R. K. 2007. A comparative study of data distribution management algorithms. J. Defen.

Model. Simul. Appl. Method. Tech. 4, 2, 127–146.
Guting, R. H. and Wood, D. 1984. Finding rectangle intersections by divide-and-conquer. IEEE Trans.

Comput. C-33, 7, 671–675.
Harada, T. 2007. Real-time rigid body simulation on GPUs. In GPU Gems 3, Addison-Wesley, Boston MA,

611–632.
Harris, M., Shubhabrata, S., and Owens, J. D. 2007. Parallel prefix sum (scan) with CUDA. In GPU Gems 3,

Addison-Wesley, Boston MA, 851–876.
Huang, X., Rodrigues, C. I., Jones, S., Buck, I., and Hwu, W. M. 2010. XMalloc: A scalable lock-free dynamic

memory allocator for many-core machines. In Proceedings of the IEEE 10th International Conference on
Computer and Information Technology (CIT). IEEE, Los Alamitos, CA, 1134–1139.

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 19, Publication date: July 2013.

�

�

�

�

�

�

�

�

19:22 S.-H. Lo et al.

Kettner, L., Meyer, A., and Zomorodian, A. 2011. Intersecting sequences of dD iso-oriented boxes.
http://www.cgal.org.

Lefohn, A., Kniss, J., and Owens, J. 2005. Implementing efficient parallel data structures on GPUs. In GPU
Gems 2, Addison-Wesley, Boston MA, 521–545.

Le Grand, S. 2007. Broad-phase collision detection with CUDA. In GPU Gems 3, Addison-Wesley, Boston
MA, 697–721.

Liu, E. S. and Theodoropoulos, G. K. 2009. An approach for parallel interest matching in distributed virtual
environments. In Proceedings of the 13th IEEE/ACM International Symposium on Distributed Simula-
tion and Real Time Applications. IEEE, Los Alamitos, CA, 57–65.

Liu, E. S. and Theodoropoulos, G. K. 2011. A parallel interest matching algorithm for distributed-memory
systems. In Proceedings of the IEEE/ACM 15th International Symposium on Distributed Simulation
and Real Time Applications (DS-RT). IEEE, Los Alamitos, CA, 36–43.

Liu, F., Harada, T., Lee, Y., and Kim, Y. J. 2010. Real-time collision culling of a million bodies on graphics
processing units. In Proceedings of ACM SIGGRAPH Asia 2010. ACM, New York, 154:1–154:8.

Lo, S. H., Lee, C. R., Chung, I. H., and Chung, Y. C. 2011. A parallel rectangle intersection algorithm on
GPU+CPU. In Proceedings of the 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid). IEEE, Los Alamitos, CA, 43–52.

Merrill, D. and Grimshaw, A. 2011. High performance and scalable radix sorting: A case study of implement-
ing dynamic parallelism for GPU computing. Paral. Proc. Lett. 21, 02, 245–272.
DOI:http://dx.doi.org/10.1142/S0129626411000187.

Ming, C. L. and Gottschalk, S. 1998. Collision detection between geometric models: A survey. In IMA Con-
ference on Mathematics of Surfaces, Vol. 1. Springer, New York, NY 37–56.

Overmars, M. H. 1992. Point location in fat subdivisions. Inform. Process. Lett. 44, 5, 261–265.
Pan, K., Turner, S. J., Cai, W., and Li, Z. 2011. A dynamic sort-based DDM matching algorithm for HLA

applications. ACM Trans. Model. Comput. Simul. 21, 3, Article 17.
DOI:http://dx.doi.org/10.1145/1921598.1921601.

PBIG. 2013. Implementation of pairwise box intersection checking on graphics processing units. (2013).
http://code.google.com/p/pbig/.

Petty, M. D. and Mukherjee, A. 1997. Experimental comparison of d-rectangle interection algorithms applied
to HLA data distribution. In Proceedings of the Distributed Simulation Symposium. 13–26.

Petty, M. D. and Morse, K. L. 2004. The computational complexity of the high level architecture data distri-
bution management matching and connecting processes. Simul. Model. Pract. Theory 12, 3–4, 217–237.
http://www.sciencedirect.com/science/article/pii/S1569190X04000395.

Raczy, C., Tan, G., and Yu, J. 2005. A sort-based DDM matching algorithm for HLA. ACM Trans. Model.
Comput. Simulat. 15, 1, 14–38.

Santoro, A. and Fujimoto, R. M. 2008. Offloading data distribution management to network processors in
HLA-based distributed simulations. IEEE Trans. Paral. Distrib. Syst. 19, 3, 289–298.

Six, H. W. and Wood, D. 1980. The rectangle intersection problem revisited. BIT Numer. Math. 20, 4,
426–433.

Tan, G., Yusong, Z., and Ayani, R. 2000. A hybrid approach to data distribution management. In Proceedings
of the 4th IEEE International Workshop on Distributed Simulation and Real-Time Applications. IEEE,
Los Alamitos, CA, 55–61.

Vaishnavi, V. K. and Wood, D. 1982. Rectilinear line segment intersection, layered segment trees, and dy-
namization. J. Algor. 3, 2, 160–176.

Van Hook, D. J., Rak, S. J., and Calvin, J. O. 1996. Approaches to RTI implementation of HLA data distri-
bution management services. In Proceedings of the 15th Distributed Iinteractive Simulation Workshop.
IEEE, Los Alamitos, CA, 96–14–084.

Zomorodian, A. and Edelsbrunner, H. 2002. Fast software for box intersections. Int. J. Computat. Geom.
Appl. 12, 1–2, 143–172.

Received January 2012; revised July 2012, January 2013; accepted February 2013

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 19, Publication date: July 2013.

