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ABSTRACT

In a computational grid environment, a common practice is try to allocate an entire parallel job onto a 
single participating site. Sometimes a parallel job, upon its submission, cannot fit in any single site due 
to the occupation of some resources by running jobs. How the job scheduler handles such situations is 
an important issue which has the potential to further improve the utilization of grid resources as well as 
the performance of parallel jobs. This paper develops adaptive processor allocation policies based on 
the moldable property of parallel jobs to deal with such situations in a heterogeneous computational grid 
environment. The proposed policies are evaluated through a series of simulations using real workload 
traces. The results indicate that the proposed adaptive processor allocation policies can further improve 
the system performance of a heterogeneous computational grid significantly.

Keywords: adaptive processor allocation; computational grid; job scheduling; moldable property

INTRODUCTION

Most parallel computing environments running 
scientific applications adopt the space-sharing 
approach. In this approach, the processing 
elements of a parallel computer are logically 
partitioned into several groups. Each group is 
dedicated to a single job, which may be serial or 
parallel. Therefore, each job has exclusive use 
of the group of processing elements allocated 
to it when it is running. However, different 

running jobs may have to share the networking 
and storage resources to some degree.

Most current parallel application programs 
have the moldable property (Dror, Larry, Uwe, 
Kenneth and Parkson, 1997). It means the pro-
grams are written in a way so that at runtime 
they can exploit different parallelisms for ex-
ecution according to specific needs or available 
resource. Parallelism here means the number 
of processors a job uses for its execution. The 
moldable property raises an interesting ques-
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tion whether it is possible to design special 
processor allocation policies, taking advantage 
of this property, to improve the overall system 
performance.

This paper develops adaptive processor al-
location policies based on the moldable property 
of parallel jobs for both homogeneous parallel 
computers and heterogeneous computational 
grid environments. The proposed policies re-
quire users to provide estimations of job execu-
tion times upon job submission. The policies 
are evaluated through a series of simulations 
using real workload traces. The effects of inexact 
runtime estimations on system performance are 
also investigated. The results indicate that the 
proposed adaptive processor allocation policies 
are effective as well as stable under different 
system configurations and can tolerate a wide 
range of estimation errors.

RELATED WORK

This paper deals with scheduling and allocating 
independent parallel jobs in a heterogeneous 
computational grid. Without grid computing, 
local users can only run jobs on the local site. The 
owners or administrators of different sites are 
interested in the consequences of participating 
in a computational grid, whether such participa-
tion will result in better service for their local 
users by improving the job turnaround time. 
A common load-sharing practice is to allocate 
an entire parallel job to a single site which is 
selected from all sites in the grid based on some 
criteria. However, sometimes a parallel job, 
upon its submission, cannot fit in any single 
site due to the occupation of some resources by 
running jobs. How the job scheduler handles 
such situations is an important issue which has 
the potential to further improve the utilization 
of grid resources as well as the performance 
of parallel jobs. 

Job scheduling for parallel computers has 
been subject to research for a long time. As 
for grid computing, previous works discussed 
several strategies for a grid scheduler. One 
approach is the modification of traditional list 

scheduling strategies for usage on grid (Carsten, 
Volker, Uwe, Ramin and Achim, 2002; Carsten 
Ernemann, Hamscher, Streit and Yahyapour, 
2002a, 2002b; Hamscher, Schwiegelshohn, 
Streit and Yahyapour, 2000). Some economic 
based methods are also being discussed (Buyya, 
Giddy, & Abramson, 2000; Carsten, Volker and 
Ramin, 2002; Rajkumar Buyya, 2002; Yanmin 
et al., 2005). In this paper, we explore non 
economic scheduling and allocation policies 
with support for a speed-heterogeneous grid 
environment. 

England and Weissman (2005) analyzed 
the costs and benefits of load sharing of paral-
lel jobs in the computational grid. Experiments 
were performed for both homogeneous and 
heterogeneous grids. However, in their works 
simulations of a heterogeneous grid only cap-
tured the differences in capacities and workload 
characteristics. The computing speeds of nodes 
on different sites are assumed to be identical. 
In this paper, we deal with load sharing issues 
regarding heterogeneous grids in which nodes 
on different sites may have different comput-
ing speeds. 

For load sharing there are several methods 
possible for selecting which site to allocate a 
job. Earlier simulation studies in the literature 
(Hamscher et al., 2000; Huang and Chang, 
2006) showed the best results for a selection 
policy called best-fit. In this policy a particular 
site is chosen on which a job will leave the least 
number of free processors if it is allocated to 
that site. However, these simulation studies 
are performed based on a computational grid 
model in which nodes on different sites all run 
at the same speed. In this paper we explore pos-
sible site selection policies for a heterogeneous 
computational grid. In such a heterogeneous 
environment nodes on different sites may run 
at different speeds. 

In the literature (Barsanti and Sodan, 2007; 
John, Uwe, Joel and Philip, 1994; Sabin, Lang, 
and Sadayappan, 2007; Srividya, Vijay, Rajku-
mar, Praveen and Sadayappan, 2002; Sudha, 
Savitha and Sadayappan, 2003; Walfredo and 
Francine, 2000, 2002) several strategies for 
scheduling moldable jobs have been introduced. 
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Most of the previous works either assume the 
job execution time is a known function of the 
number of processors allocated to it or require 
users to provide estimated job execution time. 
In Huang (2006) without the requirement of 
known job execution time three adaptive proces-
sor allocation policies for moldable jobs were 
evaluated and shown to be able to improve the 
overall system performance in terms of aver-
age job turnaround time. Most of the previous 
work deals with scheduling moldable jobs in a 
single parallel computer or in a homogeneous 
grid environment. In this paper, we explore 
adaptive processor allocation in a heterogeneous 
computational grid environment.

COMPUTATIONAL GRID  
MODEL AND EXPERIMENTAL 
SETTING

In this section, the computational grid model 
is introduced on which the evaluations of the 
proposed policies are based. In the model, 
there are several independent computing sites 
with their own local workload and manage-
ment system. This paper examines the impact 
on performance results if the computing sites 
participate in a computational grid with appro-
priate job scheduling and processor allocation 
policies. The computational grid integrates 
the sites and shares their incoming jobs. Each 
participating site is a homogeneous parallel 
computer system. The nodes within each site 
run at the same speed and are linked with a fast 
interconnection network that does not favor any 
specific communication pattern (Feitelson and 
Rudolph, 1995). This means a parallel job can 
be allocated on any subset of nodes in a site. The 
parallel computer system uses space-sharing and 
run the jobs in an exclusive fashion. 

The system deals with an on-line schedul-
ing problem without any knowledge of future 
job submissions. The jobs under consideration 
are restricted to batch jobs because this job type 
is dominant on most parallel computer systems 
running scientific and engineering applications. 

For the sake of simplicity, in this paper we as-
sume a global grid scheduler which handles all 
job scheduling and resource allocation activi-
ties. The local schedulers are only responsible 
for starting the jobs after their allocation by 
the global scheduler. Theoretically, a single 
central scheduler could be a critical limitation 
concerning efficiency and reliability. However, 
practical distributed implementations are pos-
sible, in which site-autonomy is still maintained 
but the resulting schedule would be the same 
as created by a central scheduler (Ernemann, 
Hamscher and Yahyapour, 2004).

For simplification and efficient load shar-
ing all computing nodes in the computational 
grid are assumed to be binary compatible. The 
grid is heterogeneous in the sense that nodes on 
different sites may differ in computing speed 
and different sites may have different numbers 
of nodes. When load sharing activities occur a 
job may have to migrate to a remote site for 
execution. In this case the input data for that job 
have to be transferred to the target site before 
the job execution while the output data of the 
job is transferred back afterwards. This network 
communication is neglected in our simulation 
studies as this latency can usually be hidden in 
pre- and post-fetching phases without regards 
to the actual job execution phase (Ernemann 
et al., 2004).

In this paper, we focus on the area of high 
throughput computing, improving system’s 
overall throughput with appropriate job schedul-
ing and allocation methods. Therefore, in our 
studies, the requested number of processors 
for each job is bound by the total number of 
processors on the local site from which the 
job is submitted. The local site in which a job 
is submitted from will be called the home site 
of the job henceforth in this paper. We assume 
all jobs have the moldable property. It means 
the programs are written in a way so that at 
runtime they can exploit different parallelisms 
for execution according to specific needs or 
available resource. Parallelism here means the 
number of processors a job uses for its execu-
tion. In our model we associated each job with 
several attributes. The following five attributes 



International Journal of Grid and High Performance Computing, 1(1), 10-21, January-March 2009  13

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global 
is prohibited.

are provided before a simulation starts. The 
first four attributes are directly gotten from 
the SDSC SP2’s workload log. The estimated 
runtime attribute is generated by the simula-
tion program according to the specified range 
of estimation errors and their corresponding 
statistical distributions.

• Site number. This indicates the home site 
of a job which it belongs to.

• Number of processors. It is the number 
of processors a job uses according to the 
data recorded in the workload log.

• Submission time. This provides the infor-
mation about when a job is submitted to 
its home site.

• Runtime. It indicates the required ex-
ecution time for a job using the specified 
number of processors on its home site. 
This information for runtime is required 
for driving the simulation to proceed.

• Estimated runtime. An estimated runtime 
is provided upon job submission by the 
user. The job scheduler uses this informa-
tion to guide the determination process of 
job scheduling and allocation.

The following job attributes are collected 
and calculated during the simulation for per-
formance evaluation.

• Waiting time. It is the time between a job’s 
submission and its allocation.

• Actual runtime. When adaptive proces-

sor allocation is applied to a job, its actual 
runtime may be different from the runtime 
recorded in the workload log. This attribute 
records the actual runtime it takes.

• Actual number of processors. When the 
scheduler applies adaptive processor al-
location to a job, the number of processors 
the job actually uses for execution may be 
different from the value recorded in the 
workload log. This attribute records the 
number of processors actually used.

• Execution site. In a computational grid 
environment, a job may be scheduled to 
run on a site other than its home site. The 
attribute records the actual site that it runs 
on.

• Turnaround time. The simulation program 
calculates each job’s turnaround time after 
its execution and records the value in this 
attribute.

Our simulation studies were based on pub-
licly downloadable workload traces (“Parallel 
Workloads Archive,”). We used the SDSC’s 
SP2 workload logs on (“Parallel Workloads 
Archive,”) as the input workload in the simula-
tions. The detailed workload characteristics are 
shown in Table 1.

In the SDSC’s SP2 system the jobs in the 
logs are put into different queues and all these 
queues share the same 128 processors. In sec-
tion 4, this original workload is directly used 
to simulate a homogeneous parallel computer 
with 128 processors. In section 5, the work-

Table 1. Characteristics of the workload log on SDSC’s SP2

Number of jobs Maximum execu-
tion time (sec.)

Average execu-
tion time (sec.)

Maximum num-
ber of processors

per job

Average number 
of processors

per job

Queue 1 4053 21922 267.13 8 3

Queue 2 6795 64411 6746.27 128 16

Queue 3 26067 118561 5657.81 128 12

Queue 4 19398 64817 5935.92 128 6

Queue 5 177 42262 462.46 50 4

Total 56490
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load log will be used to model the workload 
on a computational grid consisting of several 
different sites whose workloads correspond 
to the jobs submitted to the different queues 
respectively. Table 2 shows the configuration of 
the computational grid according to the SDSC’s 
SP2 workload log. The number of processors 
on each site is determined according to the 
maximum number of required processors of 
the jobs belonged to the corresponding queue 
for that site.

To simulate the speed difference among 
participating sites we define a speed vector, e.g. 
speed=(sp1,sp2,sp3,sp4,sp5), to describe the 
relative computing speeds of all the five sites 
in the grid, in which the value 1 represents the 
computing speed resulting in the job execution 
time in the original workload log. We also define 
a load vector, e.g. load=(ld1,ld2,ld3,ld4,ld5), 
which is used to derive different loading levels 
from the original workload data by multiplying 
the load value ldi to the execution times of all 
jobs at site i.

ADAPTIVE PROCESSOR  
ALLOCATION ON  
HOMOGENEOUS PARALLEL 
COMPUTER

The moldable property raises an interesting 
question whether it is possible to design special 
processor allocation policies, taking advantage 
of this property, to improve the overall system 
performance. For example, an intuitive idea is 
allowing a job to use a less number of proces-
sors than originally specified for immediate 
execution if at that moment the system has not 
enough free processors otherwise the job has to 
wait in a queue for a uncertain period of time. 

On the other hand, if the system has more free 
processors than a job’s original requirement, 
the system might let the job to run with more 
processors than originally required to shorten 
its execution time. This is called adaptive 
processor allocation in this paper. Therefore, 
the system can dynamically determine the 
runtime parallelism of a job before its execu-
tion through adaptive processor allocation to 
improve system utilization or reduce the job’s 
waiting time in queue. 

For a specific job, intuitively we know 
that allowing higher parallelism can lead to 
shorter execution time. However, when the 
overall system performance is concerned, the 
positive effects of raising a job’s parallelism 
can not be so assured under the complex system 
behavior. For example, although raising a job’s 
parallelism can reduce its required execution 
time, it might, however, increase other jobs’ 
probability of having to wait in queue for longer 
time. This would increase those jobs’ waiting 
time and in turn turnaround time. Therefore, it 
is not straightforward to know how raising a 
single job’s parallelism would affect the overall 
system-level performance, e.g. the average 
turnaround time of all jobs. On the other hand, 
reducing a job’s parallelism might shorten its 
waiting time in queue at the cost of enlarged 
execution time. It is not always clear whether the 
combined effects of shortened waiting time and 
enlarged execution time would lead to a reduced 
or increased overall turnaround time. Moreover, 
the reduced parallelism of a job would usually 
in turn result in the decreased waiting time of 
other jobs. This makes it even more complex 
to analyze the overall system effects.

The above examples illustrate that the 
effects of the idea of adaptive processor alloca-
tion on overall system performance is complex 

Table 2. Configuration of the computational grid according to SDSC’s SP2 workload

total site 1 site 2 site 3 site 4 site 5

Number of processors 442 8 128 128 128 50
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and require further evaluation. In our previous 
work (Huang, 2006), we proposed two pos-
sible adaptive processor allocation policies. 
In this paper, we improve the two policies by 
requiring users to provide estimated job execu-
tion time upon job submission, just like what 
is required by the backfilling algorithms. The 
estimated job execution time is used to help 
the system determine whether to dynamically 
scale down a job’s parallelism for immediate 
execution, i.e. shorter waiting time, at the cost 
of longer execution time or to keep it waiting 
in queue for the required amount of processors 
to become available. This section explores and 
evaluates the two improved adaptive processor 
allocation policies which take advantage of 
the moldable property on homogeneous paral-
lel computers. The three processor allocation 
policies to be evaluated are described in detail 
in the following. 

• No adaptive scaling. This policy allocates 
the number of processors to each parallel 
job exactly according to its specified re-
quirement. The policy is used in this section 
as the performance basis for evaluating the 
adaptive processor policies.

• Adaptive scaling down. If a parallel job 
specifies an amount of processors which 
at that moment is larger than the number 
of free processors. The system has two 
choices for scheduling the job: scaling its 
parallelism down for immediate execution 
or keeping it waiting in queue. According 
to the estimated execution time of the job, 
the system can compute the job’s enlarged 

execution time once scaling down its 
parallelism. On the other hand, based on 
the estimated execution time of each job 
running on the system, it is possible to pre-
dict how long it will take for the system to 
gather enough free processors to fulfill the 
original requirement of the job. Therefore, 
the system can compare the resultant per-
formances of the two choices and choose 
the better one. We use a threshold vari-
able to control the selection between the 
two choices. The system chooses to scale 
down the job’s parallelism for immediate 
execution only if, where To is the predicted 
turnaround time if the job waits in queue 
until enough free processors are available 
and Tsd is the predicted turnaround time 
if the job run immediately with reduced 
parallelism.

• Conservative scaling up and down. In 
addition to the scaling down mechanism 
described in the previous policy, this policy 
automatically scales a parallel job’s paral-
lelism up to use the amount of total free 
processors even if its original requirement 
is not that large. However, to avoid a single 
job from exhausting all free processors, 
resulting in subsequent jobs’ unnecessary 
enlarged waiting time in queue, the policy 
scales a parallel job’s parallelism up only 
if there are no jobs behind it in queue. This 
is why it is called conservative.

Table 3 shows the performance evaluation 
of various processor allocation policies. For the 
adaptive policies with runtime estimation, we 

Table 3. Performance comparison of adaptive processor allocation policies

Average turnaround 
time (sec.)

No adaptive scaling 51677

Adaptive scaling down (without runtime estimation) 17805

Adaptive scaling down (with runtime estimation) 13746

Conservative scaling up and down (without runtime estimation) 18072

Conservative scaling up and down (with runtime estimation) 12270
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experimented with several possible threshold 
values and chose the best result to present in 
Table 3. For the adaptive scaling down policy, 
the best threshold value is 2.1 and the conser-
vative scaling up and down policy delivers the 
best performance when the threshold value 
is 2. Table 3 shows that adaptive processor 
allocation in general can improve the overall 
system performance several times, compared 
to the traditional allocation policy sticking to a 
job’s original amount of processor requirement. 
Moreover, the improved adaptive processor 
allocation policies presented in this paper can 
further improve the performance significantly 
with the aid of runtime estimation. For the 
original adaptive allocation policies, allowing 
scaling up parallelism cannot improve system 
performance further in addition to scaling down 
parallelism in terms of average turnaround time. 
However, for the improved adaptive allocation 
policies, scaling up parallelism does improve 
the system performance delivered by the policy 
which scales down the parallelism only. Overall 
speaking, the conservative scaling up and down 

policy with runtime estimation outperforms the 
other policies.

The studies in Table 3 assume that users al-
ways provide exact estimations of job execution 
times. However, this is by no means possible in 
real cases. Therefore, we performed additional 
simulation studies to evaluate the stability of 
the adaptive processor allocation policies 
when users provide only inexact estimations. 
The results are presented in Table 4. The error 
range of estimation is relative to a job’s actual 
execution time. Table 4 shows that sometimes 
small estimation error might even lead to bet-
ter performance than exact estimation such as 
the case of conservative scaling up and down 
with a 20% error range. In general, a larger 
error range results in degraded performance. 
However, up to 90% error range, the improved 
adaptive policies with runtime estimation still 
outperform the original adaptive policies, com-
pared to Table 3. The results illustrate that the 
proposed adaptive processor allocation policies 
are stable and practical.

Table 4. Effects of inexact runtime estimation under uniform distribution

Average turnaround 
time (sec.)

Adaptive scaling down

0% error range of estimation 13746

20% error range of estimation 14217

40% error range of estimation 14660

60% error range of estimation 14934

80% error range of estimation 15264

90% error range of estimation 15582

Conservative scaling up and down

0% error range of estimation 12270

20% error range of estimation 11926

40% error range of estimation 12396

60% error range of estimation 12607

80% error range of estimation 14657

90% error range of estimation 17964
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The simulations for Table 4 assume the 
estimation errors conform to the uniform dis-
tribution. In the following, Table 5 presents 
another series of simulations which evaluate 
the cases where the estimation errors conform 
to the normal distribution. The results again 
show that sometimes larger error ranges lead 
to better performances. Moreover, Table 5 
indicates that the adaptive processor alloca-
tion policies perform even more stably under 
the normal distribution of estimation errors, 
compared to Table 4.

ADAPTIVE PROCESSOR  
ALLOCATION IN  
HETEROGENEOUS GRID

In a computational grid environment, a common 
practice is try to allocate an entire parallel job 
onto a single participating site. Sometimes a 
parallel job, upon its submission, cannot fit 
in any single site due to the occupation of 
some processors by running jobs. How the job 

scheduler handles such situations is an important 
issue which has the potential to further improve 
the utilization of grid resources as well as the 
performance of parallel jobs. This section 
extends the adaptive processor allocation 
policies proposed in the previous sections to 
deal with such situations in a heterogeneous 
computational grid environment. 

The detailed adaptive processor allocation 
procedure is illustrated in Figure 1. The major 
difference between the adaptive processors 
allocation procedures for a homogeneous 
parallel computer and for a heterogeneous 
grid environment is the site selection process 
regarding the computation and comparison of 
computing power of different sites. A site’s free 
computing power is defined as the number of 
free processors on it multiplied by the computing 
speed of a single processor. Similarly, the 
required computing power of a job is defined 
as the number of required processors specified 
in the job multiplied by the computing speed of 
a single processor on its home site.

In the following, we compare the per-
formances of five different cases. They are 

Table 5. Effects of inexact runtime estimation under normal distribution

Average turnaround 
time (sec.)

Adaptive scaling down

0% error range of estimation 13746

20% error range of estimation 13958

40% error range of estimation 14067

60% error range of estimation 13897

80% error range of estimation 14217

100% error range of estimation 14068

Conservative scaling up and down

0% error range of estimation 12270

20% error range of estimation 12491

40% error range of estimation 12310

60% error range of estimation 11816

80% error range of estimation 12350

90% error range of estimation 12895
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independent clusters representing a non-grid 
architecture, adaptive processor allocation 
without runtime estimation, adaptive processor 
allocation with exact runtime estimation, 
adaptive processor allocation with uniform 
distribution of runtime-estimation errors, 
adaptive processor allocation with normal 
distribution of runtime-estimation errors. 
Table 6 presents the results of simulations 
for a heterogeneous computational grid with 
speed vector (1,3,5,7,9) and load vector 
(10,10,10,10,10). For the last two cases in 
Table 6, we present their worst-case data 
within the estimation-error range from 10% 
to 100% with the step of 10%. The results in 
Table 6 show that grid computing with adaptive 
processor allocation can greatly improve the 
system performance compared to the non-
grid architecture. Moreover, the improved 
adaptive processor allocation policies with 
runtime estimation can improve the system 
performance further compared to the original 

adaptive processor allocation policy. The 
results also indicate that estimation errors 
lead to little influence on overall system 
performance. Therefore, the proposed adaptive 
allocation policies are stable in a heterogeneous 
computational grid.

Table 6 represents only one possible speed 
configuration in a heterogeneous computational 
grid environment. To further investigate the 
effectiveness of the proposed policies, we 
conducted a series of 120-case simulations 
corresponding to all possible permutations 
of the site speed vector (1,3,5,7,9) under the 
SDSC’s SP2 workload. Table 7 shows the 
average turnaround times over the 120 cases 
for the five allocation policies in Table 6, 
accordingly. The results again confirm that the 
proposed adaptive processor allocation policies 
are stable and can significantly improve system 
performance. For the details, among all the 120 
cases, the proposed adaptive allocation policies 

Figure 1. Adaptive processor allocation procedure in heterogeneous grid
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Table 6. Performance evaluation in a heterogeneous computational grid

Average turnaround time (sec.)

Independent clusters 51163

Adaptive processor allocation without runtime estimation 17381

Adaptive processor allocation with exact runtime estimation 15953

Adaptive processor allocation with uniform distribution of runtime-estima-
tion errors 15956

adaptive processor allocation with normal distribution of runtime-estimation 
errors 15953

Table 7. Average performance over 120 different speed configurations

Average turnaround 
time (sec.)

Independent clusters 8562757

Adaptive processor allocation without runtime estimation 20987

Adaptive processor allocation with exact runtime estimation 19695

Adaptive processor allocation with uniform distribution of runtime-estimation errors 19732

adaptive processor allocation with normal distribution of runtime-estimation errors 19720

with runtime estimation outperform the original 
adaptive policy in 108 cases.

CONCLUSION

In the real world, a grid environment is 
usually heterogeneous at least for the different 
computing speeds at different participating 
sites. The heterogeneity presents a challenge 
for effectively arranging load sharing activities 
in a computational grid. This paper develops 
adaptive processor allocation policies based 
on the moldable property of parallel jobs 
for heterogeneous computational grids. The 
proposed policies can be used when a parallel 
job, during the scheduling activities, cannot 
fit in any single site in the grid. The proposed 
policies require users to provide estimations 
of job execution times upon job submission. 
The policies are evaluated through a series of 
simulations using real workload traces. The 
results indicate that the adaptive processor 
allocation policies can further improve the 

system performance of a heterogeneous 
computational grid significantly when parallel 
jobs have the moldable property. The effects 
of inexact runtime estimations on system 
performance are also investigated. The results 
indicate that the proposed adaptive processor 
allocation policies are effective as well as stable 
under different system configurations and can 
tolerate a wide range of estimation errors.
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