
10 International Journal of Grid and High Performance Computing, 1(1), 10-21, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

ABSTRACT

In a computational grid environment, a common practice is try to allocate an entire parallel job onto a
single participating site. Sometimes a parallel job, upon its submission, cannot fit in any single site due
to the occupation of some resources by running jobs. How the job scheduler handles such situations is
an important issue which has the potential to further improve the utilization of grid resources as well as
the performance of parallel jobs. This paper develops adaptive processor allocation policies based on
the moldable property of parallel jobs to deal with such situations in a heterogeneous computational grid
environment. The proposed policies are evaluated through a series of simulations using real workload
traces. The results indicate that the proposed adaptive processor allocation policies can further improve
the system performance of a heterogeneous computational grid significantly.

Keywords: adaptive processor allocation; computational grid; job scheduling; moldable property

INTRODUCTION

Most parallel computing environments running
scientific applications adopt the space-sharing
approach. In this approach, the processing
elements of a parallel computer are logically
partitioned into several groups. Each group is
dedicated to a single job, which may be serial or
parallel. Therefore, each job has exclusive use
of the group of processing elements allocated
to it when it is running. However, different

running jobs may have to share the networking
and storage resources to some degree.

Most current parallel application programs
have the moldable property (Dror, Larry, Uwe,
Kenneth and Parkson, 1997). It means the pro-
grams are written in a way so that at runtime
they can exploit different parallelisms for ex-
ecution according to specific needs or available
resource. Parallelism here means the number
of processors a job uses for its execution. The
moldable property raises an interesting ques-

Adaptive Processor Allocation
for Moldable Jobs in
Computational Grid

Kuo-Chan Huang, National Taichung University, Taiwan

Po-Chi Shih, National Tsing Hua University, Taiwan

Yeh-Ching Chung, National Tsing Hua University, Taiwan

International Journal of Grid and High Performance Computing, 1(1), 10-21, January-March 2009 11

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

tion whether it is possible to design special
processor allocation policies, taking advantage
of this property, to improve the overall system
performance.

This paper develops adaptive processor al-
location policies based on the moldable property
of parallel jobs for both homogeneous parallel
computers and heterogeneous computational
grid environments. The proposed policies re-
quire users to provide estimations of job execu-
tion times upon job submission. The policies
are evaluated through a series of simulations
using real workload traces. The effects of inexact
runtime estimations on system performance are
also investigated. The results indicate that the
proposed adaptive processor allocation policies
are effective as well as stable under different
system configurations and can tolerate a wide
range of estimation errors.

RELATED WORK

This paper deals with scheduling and allocating
independent parallel jobs in a heterogeneous
computational grid. Without grid computing,
local users can only run jobs on the local site. The
owners or administrators of different sites are
interested in the consequences of participating
in a computational grid, whether such participa-
tion will result in better service for their local
users by improving the job turnaround time.
A common load-sharing practice is to allocate
an entire parallel job to a single site which is
selected from all sites in the grid based on some
criteria. However, sometimes a parallel job,
upon its submission, cannot fit in any single
site due to the occupation of some resources by
running jobs. How the job scheduler handles
such situations is an important issue which has
the potential to further improve the utilization
of grid resources as well as the performance
of parallel jobs.

Job scheduling for parallel computers has
been subject to research for a long time. As
for grid computing, previous works discussed
several strategies for a grid scheduler. One
approach is the modification of traditional list

scheduling strategies for usage on grid (Carsten,
Volker, Uwe, Ramin and Achim, 2002; Carsten
Ernemann, Hamscher, Streit and Yahyapour,
2002a, 2002b; Hamscher, Schwiegelshohn,
Streit and Yahyapour, 2000). Some economic
based methods are also being discussed (Buyya,
Giddy, & Abramson, 2000; Carsten, Volker and
Ramin, 2002; Rajkumar Buyya, 2002; Yanmin
et al., 2005). In this paper, we explore non
economic scheduling and allocation policies
with support for a speed-heterogeneous grid
environment.

England and Weissman (2005) analyzed
the costs and benefits of load sharing of paral-
lel jobs in the computational grid. Experiments
were performed for both homogeneous and
heterogeneous grids. However, in their works
simulations of a heterogeneous grid only cap-
tured the differences in capacities and workload
characteristics. The computing speeds of nodes
on different sites are assumed to be identical.
In this paper, we deal with load sharing issues
regarding heterogeneous grids in which nodes
on different sites may have different comput-
ing speeds.

For load sharing there are several methods
possible for selecting which site to allocate a
job. Earlier simulation studies in the literature
(Hamscher et al., 2000; Huang and Chang,
2006) showed the best results for a selection
policy called best-fit. In this policy a particular
site is chosen on which a job will leave the least
number of free processors if it is allocated to
that site. However, these simulation studies
are performed based on a computational grid
model in which nodes on different sites all run
at the same speed. In this paper we explore pos-
sible site selection policies for a heterogeneous
computational grid. In such a heterogeneous
environment nodes on different sites may run
at different speeds.

In the literature (Barsanti and Sodan, 2007;
John, Uwe, Joel and Philip, 1994; Sabin, Lang,
and Sadayappan, 2007; Srividya, Vijay, Rajku-
mar, Praveen and Sadayappan, 2002; Sudha,
Savitha and Sadayappan, 2003; Walfredo and
Francine, 2000, 2002) several strategies for
scheduling moldable jobs have been introduced.

12 International Journal of Grid and High Performance Computing, 1(1), 10-21, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Most of the previous works either assume the
job execution time is a known function of the
number of processors allocated to it or require
users to provide estimated job execution time.
In Huang (2006) without the requirement of
known job execution time three adaptive proces-
sor allocation policies for moldable jobs were
evaluated and shown to be able to improve the
overall system performance in terms of aver-
age job turnaround time. Most of the previous
work deals with scheduling moldable jobs in a
single parallel computer or in a homogeneous
grid environment. In this paper, we explore
adaptive processor allocation in a heterogeneous
computational grid environment.

COMPUTATIONAL GRID
MODEL AND EXPERIMENTAL
SETTING

In this section, the computational grid model
is introduced on which the evaluations of the
proposed policies are based. In the model,
there are several independent computing sites
with their own local workload and manage-
ment system. This paper examines the impact
on performance results if the computing sites
participate in a computational grid with appro-
priate job scheduling and processor allocation
policies. The computational grid integrates
the sites and shares their incoming jobs. Each
participating site is a homogeneous parallel
computer system. The nodes within each site
run at the same speed and are linked with a fast
interconnection network that does not favor any
specific communication pattern (Feitelson and
Rudolph, 1995). This means a parallel job can
be allocated on any subset of nodes in a site. The
parallel computer system uses space-sharing and
run the jobs in an exclusive fashion.

The system deals with an on-line schedul-
ing problem without any knowledge of future
job submissions. The jobs under consideration
are restricted to batch jobs because this job type
is dominant on most parallel computer systems
running scientific and engineering applications.

For the sake of simplicity, in this paper we as-
sume a global grid scheduler which handles all
job scheduling and resource allocation activi-
ties. The local schedulers are only responsible
for starting the jobs after their allocation by
the global scheduler. Theoretically, a single
central scheduler could be a critical limitation
concerning efficiency and reliability. However,
practical distributed implementations are pos-
sible, in which site-autonomy is still maintained
but the resulting schedule would be the same
as created by a central scheduler (Ernemann,
Hamscher and Yahyapour, 2004).

For simplification and efficient load shar-
ing all computing nodes in the computational
grid are assumed to be binary compatible. The
grid is heterogeneous in the sense that nodes on
different sites may differ in computing speed
and different sites may have different numbers
of nodes. When load sharing activities occur a
job may have to migrate to a remote site for
execution. In this case the input data for that job
have to be transferred to the target site before
the job execution while the output data of the
job is transferred back afterwards. This network
communication is neglected in our simulation
studies as this latency can usually be hidden in
pre- and post-fetching phases without regards
to the actual job execution phase (Ernemann
et al., 2004).

In this paper, we focus on the area of high
throughput computing, improving system’s
overall throughput with appropriate job schedul-
ing and allocation methods. Therefore, in our
studies, the requested number of processors
for each job is bound by the total number of
processors on the local site from which the
job is submitted. The local site in which a job
is submitted from will be called the home site
of the job henceforth in this paper. We assume
all jobs have the moldable property. It means
the programs are written in a way so that at
runtime they can exploit different parallelisms
for execution according to specific needs or
available resource. Parallelism here means the
number of processors a job uses for its execu-
tion. In our model we associated each job with
several attributes. The following five attributes

International Journal of Grid and High Performance Computing, 1(1), 10-21, January-March 2009 13

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

are provided before a simulation starts. The
first four attributes are directly gotten from
the SDSC SP2’s workload log. The estimated
runtime attribute is generated by the simula-
tion program according to the specified range
of estimation errors and their corresponding
statistical distributions.

• Site number. This indicates the home site
of a job which it belongs to.

• Number of processors. It is the number
of processors a job uses according to the
data recorded in the workload log.

• Submission time. This provides the infor-
mation about when a job is submitted to
its home site.

• Runtime. It indicates the required ex-
ecution time for a job using the specified
number of processors on its home site.
This information for runtime is required
for driving the simulation to proceed.

• Estimated runtime. An estimated runtime
is provided upon job submission by the
user. The job scheduler uses this informa-
tion to guide the determination process of
job scheduling and allocation.

The following job attributes are collected
and calculated during the simulation for per-
formance evaluation.

• Waiting time. It is the time between a job’s
submission and its allocation.

• Actual runtime. When adaptive proces-

sor allocation is applied to a job, its actual
runtime may be different from the runtime
recorded in the workload log. This attribute
records the actual runtime it takes.

• Actual number of processors. When the
scheduler applies adaptive processor al-
location to a job, the number of processors
the job actually uses for execution may be
different from the value recorded in the
workload log. This attribute records the
number of processors actually used.

• Execution site. In a computational grid
environment, a job may be scheduled to
run on a site other than its home site. The
attribute records the actual site that it runs
on.

• Turnaround time. The simulation program
calculates each job’s turnaround time after
its execution and records the value in this
attribute.

Our simulation studies were based on pub-
licly downloadable workload traces (“Parallel
Workloads Archive,”). We used the SDSC’s
SP2 workload logs on (“Parallel Workloads
Archive,”) as the input workload in the simula-
tions. The detailed workload characteristics are
shown in Table 1.

In the SDSC’s SP2 system the jobs in the
logs are put into different queues and all these
queues share the same 128 processors. In sec-
tion 4, this original workload is directly used
to simulate a homogeneous parallel computer
with 128 processors. In section 5, the work-

Table 1. Characteristics of the workload log on SDSC’s SP2

Number of jobs Maximum execu-
tion time (sec.)

Average execu-
tion time (sec.)

Maximum num-
ber of processors

per job

Average number
of processors

per job

Queue 1 4053 21922 267.13 8 3

Queue 2 6795 64411 6746.27 128 16

Queue 3 26067 118561 5657.81 128 12

Queue 4 19398 64817 5935.92 128 6

Queue 5 177 42262 462.46 50 4

Total 56490

14 International Journal of Grid and High Performance Computing, 1(1), 10-21, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

load log will be used to model the workload
on a computational grid consisting of several
different sites whose workloads correspond
to the jobs submitted to the different queues
respectively. Table 2 shows the configuration of
the computational grid according to the SDSC’s
SP2 workload log. The number of processors
on each site is determined according to the
maximum number of required processors of
the jobs belonged to the corresponding queue
for that site.

To simulate the speed difference among
participating sites we define a speed vector, e.g.
speed=(sp1,sp2,sp3,sp4,sp5), to describe the
relative computing speeds of all the five sites
in the grid, in which the value 1 represents the
computing speed resulting in the job execution
time in the original workload log. We also define
a load vector, e.g. load=(ld1,ld2,ld3,ld4,ld5),
which is used to derive different loading levels
from the original workload data by multiplying
the load value ldi to the execution times of all
jobs at site i.

ADAPTIVE PROCESSOR
ALLOCATION ON
HOMOGENEOUS PARALLEL
COMPUTER

The moldable property raises an interesting
question whether it is possible to design special
processor allocation policies, taking advantage
of this property, to improve the overall system
performance. For example, an intuitive idea is
allowing a job to use a less number of proces-
sors than originally specified for immediate
execution if at that moment the system has not
enough free processors otherwise the job has to
wait in a queue for a uncertain period of time.

On the other hand, if the system has more free
processors than a job’s original requirement,
the system might let the job to run with more
processors than originally required to shorten
its execution time. This is called adaptive
processor allocation in this paper. Therefore,
the system can dynamically determine the
runtime parallelism of a job before its execu-
tion through adaptive processor allocation to
improve system utilization or reduce the job’s
waiting time in queue.

For a specific job, intuitively we know
that allowing higher parallelism can lead to
shorter execution time. However, when the
overall system performance is concerned, the
positive effects of raising a job’s parallelism
can not be so assured under the complex system
behavior. For example, although raising a job’s
parallelism can reduce its required execution
time, it might, however, increase other jobs’
probability of having to wait in queue for longer
time. This would increase those jobs’ waiting
time and in turn turnaround time. Therefore, it
is not straightforward to know how raising a
single job’s parallelism would affect the overall
system-level performance, e.g. the average
turnaround time of all jobs. On the other hand,
reducing a job’s parallelism might shorten its
waiting time in queue at the cost of enlarged
execution time. It is not always clear whether the
combined effects of shortened waiting time and
enlarged execution time would lead to a reduced
or increased overall turnaround time. Moreover,
the reduced parallelism of a job would usually
in turn result in the decreased waiting time of
other jobs. This makes it even more complex
to analyze the overall system effects.

The above examples illustrate that the
effects of the idea of adaptive processor alloca-
tion on overall system performance is complex

Table 2. Configuration of the computational grid according to SDSC’s SP2 workload

total site 1 site 2 site 3 site 4 site 5

Number of processors 442 8 128 128 128 50

International Journal of Grid and High Performance Computing, 1(1), 10-21, January-March 2009 15

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

and require further evaluation. In our previous
work (Huang, 2006), we proposed two pos-
sible adaptive processor allocation policies.
In this paper, we improve the two policies by
requiring users to provide estimated job execu-
tion time upon job submission, just like what
is required by the backfilling algorithms. The
estimated job execution time is used to help
the system determine whether to dynamically
scale down a job’s parallelism for immediate
execution, i.e. shorter waiting time, at the cost
of longer execution time or to keep it waiting
in queue for the required amount of processors
to become available. This section explores and
evaluates the two improved adaptive processor
allocation policies which take advantage of
the moldable property on homogeneous paral-
lel computers. The three processor allocation
policies to be evaluated are described in detail
in the following.

• No adaptive scaling. This policy allocates
the number of processors to each parallel
job exactly according to its specified re-
quirement. The policy is used in this section
as the performance basis for evaluating the
adaptive processor policies.

• Adaptive scaling down. If a parallel job
specifies an amount of processors which
at that moment is larger than the number
of free processors. The system has two
choices for scheduling the job: scaling its
parallelism down for immediate execution
or keeping it waiting in queue. According
to the estimated execution time of the job,
the system can compute the job’s enlarged

execution time once scaling down its
parallelism. On the other hand, based on
the estimated execution time of each job
running on the system, it is possible to pre-
dict how long it will take for the system to
gather enough free processors to fulfill the
original requirement of the job. Therefore,
the system can compare the resultant per-
formances of the two choices and choose
the better one. We use a threshold vari-
able to control the selection between the
two choices. The system chooses to scale
down the job’s parallelism for immediate
execution only if, where To is the predicted
turnaround time if the job waits in queue
until enough free processors are available
and Tsd is the predicted turnaround time
if the job run immediately with reduced
parallelism.

• Conservative scaling up and down. In
addition to the scaling down mechanism
described in the previous policy, this policy
automatically scales a parallel job’s paral-
lelism up to use the amount of total free
processors even if its original requirement
is not that large. However, to avoid a single
job from exhausting all free processors,
resulting in subsequent jobs’ unnecessary
enlarged waiting time in queue, the policy
scales a parallel job’s parallelism up only
if there are no jobs behind it in queue. This
is why it is called conservative.

Table 3 shows the performance evaluation
of various processor allocation policies. For the
adaptive policies with runtime estimation, we

Table 3. Performance comparison of adaptive processor allocation policies

Average turnaround
time (sec.)

No adaptive scaling 51677

Adaptive scaling down (without runtime estimation) 17805

Adaptive scaling down (with runtime estimation) 13746

Conservative scaling up and down (without runtime estimation) 18072

Conservative scaling up and down (with runtime estimation) 12270

16 International Journal of Grid and High Performance Computing, 1(1), 10-21, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

experimented with several possible threshold
values and chose the best result to present in
Table 3. For the adaptive scaling down policy,
the best threshold value is 2.1 and the conser-
vative scaling up and down policy delivers the
best performance when the threshold value
is 2. Table 3 shows that adaptive processor
allocation in general can improve the overall
system performance several times, compared
to the traditional allocation policy sticking to a
job’s original amount of processor requirement.
Moreover, the improved adaptive processor
allocation policies presented in this paper can
further improve the performance significantly
with the aid of runtime estimation. For the
original adaptive allocation policies, allowing
scaling up parallelism cannot improve system
performance further in addition to scaling down
parallelism in terms of average turnaround time.
However, for the improved adaptive allocation
policies, scaling up parallelism does improve
the system performance delivered by the policy
which scales down the parallelism only. Overall
speaking, the conservative scaling up and down

policy with runtime estimation outperforms the
other policies.

The studies in Table 3 assume that users al-
ways provide exact estimations of job execution
times. However, this is by no means possible in
real cases. Therefore, we performed additional
simulation studies to evaluate the stability of
the adaptive processor allocation policies
when users provide only inexact estimations.
The results are presented in Table 4. The error
range of estimation is relative to a job’s actual
execution time. Table 4 shows that sometimes
small estimation error might even lead to bet-
ter performance than exact estimation such as
the case of conservative scaling up and down
with a 20% error range. In general, a larger
error range results in degraded performance.
However, up to 90% error range, the improved
adaptive policies with runtime estimation still
outperform the original adaptive policies, com-
pared to Table 3. The results illustrate that the
proposed adaptive processor allocation policies
are stable and practical.

Table 4. Effects of inexact runtime estimation under uniform distribution

Average turnaround
time (sec.)

Adaptive scaling down

0% error range of estimation 13746

20% error range of estimation 14217

40% error range of estimation 14660

60% error range of estimation 14934

80% error range of estimation 15264

90% error range of estimation 15582

Conservative scaling up and down

0% error range of estimation 12270

20% error range of estimation 11926

40% error range of estimation 12396

60% error range of estimation 12607

80% error range of estimation 14657

90% error range of estimation 17964

International Journal of Grid and High Performance Computing, 1(1), 10-21, January-March 2009 17

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

The simulations for Table 4 assume the
estimation errors conform to the uniform dis-
tribution. In the following, Table 5 presents
another series of simulations which evaluate
the cases where the estimation errors conform
to the normal distribution. The results again
show that sometimes larger error ranges lead
to better performances. Moreover, Table 5
indicates that the adaptive processor alloca-
tion policies perform even more stably under
the normal distribution of estimation errors,
compared to Table 4.

ADAPTIVE PROCESSOR
ALLOCATION IN
HETEROGENEOUS GRID

In a computational grid environment, a common
practice is try to allocate an entire parallel job
onto a single participating site. Sometimes a
parallel job, upon its submission, cannot fit
in any single site due to the occupation of
some processors by running jobs. How the job

scheduler handles such situations is an important
issue which has the potential to further improve
the utilization of grid resources as well as the
performance of parallel jobs. This section
extends the adaptive processor allocation
policies proposed in the previous sections to
deal with such situations in a heterogeneous
computational grid environment.

The detailed adaptive processor allocation
procedure is illustrated in Figure 1. The major
difference between the adaptive processors
allocation procedures for a homogeneous
parallel computer and for a heterogeneous
grid environment is the site selection process
regarding the computation and comparison of
computing power of different sites. A site’s free
computing power is defined as the number of
free processors on it multiplied by the computing
speed of a single processor. Similarly, the
required computing power of a job is defined
as the number of required processors specified
in the job multiplied by the computing speed of
a single processor on its home site.

In the following, we compare the per-
formances of five different cases. They are

Table 5. Effects of inexact runtime estimation under normal distribution

Average turnaround
time (sec.)

Adaptive scaling down

0% error range of estimation 13746

20% error range of estimation 13958

40% error range of estimation 14067

60% error range of estimation 13897

80% error range of estimation 14217

100% error range of estimation 14068

Conservative scaling up and down

0% error range of estimation 12270

20% error range of estimation 12491

40% error range of estimation 12310

60% error range of estimation 11816

80% error range of estimation 12350

90% error range of estimation 12895

18 International Journal of Grid and High Performance Computing, 1(1), 10-21, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

independent clusters representing a non-grid
architecture, adaptive processor allocation
without runtime estimation, adaptive processor
allocation with exact runtime estimation,
adaptive processor allocation with uniform
distribution of runtime-estimation errors,
adaptive processor allocation with normal
distribution of runtime-estimation errors.
Table 6 presents the results of simulations
for a heterogeneous computational grid with
speed vector (1,3,5,7,9) and load vector
(10,10,10,10,10). For the last two cases in
Table 6, we present their worst-case data
within the estimation-error range from 10%
to 100% with the step of 10%. The results in
Table 6 show that grid computing with adaptive
processor allocation can greatly improve the
system performance compared to the non-
grid architecture. Moreover, the improved
adaptive processor allocation policies with
runtime estimation can improve the system
performance further compared to the original

adaptive processor allocation policy. The
results also indicate that estimation errors
lead to little influence on overall system
performance. Therefore, the proposed adaptive
allocation policies are stable in a heterogeneous
computational grid.

Table 6 represents only one possible speed
configuration in a heterogeneous computational
grid environment. To further investigate the
effectiveness of the proposed policies, we
conducted a series of 120-case simulations
corresponding to all possible permutations
of the site speed vector (1,3,5,7,9) under the
SDSC’s SP2 workload. Table 7 shows the
average turnaround times over the 120 cases
for the five allocation policies in Table 6,
accordingly. The results again confirm that the
proposed adaptive processor allocation policies
are stable and can significantly improve system
performance. For the details, among all the 120
cases, the proposed adaptive allocation policies

Figure 1. Adaptive processor allocation procedure in heterogeneous grid

Check if the waiting queue becomes empty

after this job¡¦s allocation

Pick up the site with the largest free
computing power Pick up the site whose free computing power is best close to the

required computing power of the job

No

Yes

No

Predict if adaptive allocation
would lead to better

turnaround time than
waiting in queue for more

processors

Perform
allocation

Yes

International Journal of Grid and High Performance Computing, 1(1), 10-21, January-March 2009 19

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Table 6. Performance evaluation in a heterogeneous computational grid

Average turnaround time (sec.)

Independent clusters 51163

Adaptive processor allocation without runtime estimation 17381

Adaptive processor allocation with exact runtime estimation 15953

Adaptive processor allocation with uniform distribution of runtime-estima-
tion errors 15956

adaptive processor allocation with normal distribution of runtime-estimation
errors 15953

Table 7. Average performance over 120 different speed configurations

Average turnaround
time (sec.)

Independent clusters 8562757

Adaptive processor allocation without runtime estimation 20987

Adaptive processor allocation with exact runtime estimation 19695

Adaptive processor allocation with uniform distribution of runtime-estimation errors 19732

adaptive processor allocation with normal distribution of runtime-estimation errors 19720

with runtime estimation outperform the original
adaptive policy in 108 cases.

CONCLUSION

In the real world, a grid environment is
usually heterogeneous at least for the different
computing speeds at different participating
sites. The heterogeneity presents a challenge
for effectively arranging load sharing activities
in a computational grid. This paper develops
adaptive processor allocation policies based
on the moldable property of parallel jobs
for heterogeneous computational grids. The
proposed policies can be used when a parallel
job, during the scheduling activities, cannot
fit in any single site in the grid. The proposed
policies require users to provide estimations
of job execution times upon job submission.
The policies are evaluated through a series of
simulations using real workload traces. The
results indicate that the adaptive processor
allocation policies can further improve the

system performance of a heterogeneous
computational grid significantly when parallel
jobs have the moldable property. The effects
of inexact runtime estimations on system
performance are also investigated. The results
indicate that the proposed adaptive processor
allocation policies are effective as well as stable
under different system configurations and can
tolerate a wide range of estimation errors.

REFERENCE
Barsanti, L., & Sodan, A. (2007). Adaptive Job
Scheduling Via Predictive Job Resource Allocation.
Job Scheduling Strategies for Parallel Processing
(pp. 115-140).

Buyya, R., Giddy, J., & Abramson, D. (2000). An
Evaluation of Economy-Based Resource Trading
and Scheduling on Computational Power Grids for
Parameter Sweep Applications. Paper presented at
the Proceedings of the Second Workshop on Ac-
tive Middleware Services (AMS2000), Pittsburgh,
USA.

20 International Journal of Grid and High Performance Computing, 1(1), 10-21, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Carsten, E., Volker, H., & Ramin, Y. (2002). Economic
Scheduling in Grid Computing. Paper presented
at the Revised Papers from the 8th International
Workshop on Job Scheduling Strategies for Parallel
Processing.

Carsten, E., Volker, H., Uwe, S., Ramin, Y., & Achim,
S. (2002). On Advantages of Grid Computing for
Parallel Job Scheduling. Paper presented at the
Proceedings of the 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid.

Dror, G. F., Larry, R., Uwe, S., Kenneth, C. S., &
Parkson, W. (1997). Theory and Practice in Parallel
Job Scheduling. Paper presented at the Proceed-
ings of the Job Scheduling Strategies for Parallel
Processing.

England, D., & Weissman, J. B. (2005). Costs and
Benefits of Load Sharing in the Computational Grid.
In Job Scheduling Strategies for Parallel Processing
(pp. 160-175).

Ernemann, C., Hamscher, V., Streit, A., & Yahyapour,
R. (2002a). Enhanced Algorithms for Multi-site
Scheduling. In Grid Computing — GRID 2002 (pp.
219-231).

Ernemann, C., Hamscher, V., Streit, A., & Yahyapour,
R. (2002b). On Effects of Machine Configurations
on Parallel Job Scheduling in Computational Grids.
Proceedings of International Conference on Archi-
tecture of Computing Systems, ARCS, 169-179.

Ernemann, C., Hamscher, V., & Yahyapour, R.
(2004). Benefits of global grid computing for job
scheduling. Paper presented at the Grid Computing,
2004. Proceedings. Fifth IEEE/ACM International
Workshop on.

Feitelson, D., & Rudolph, L. (1995). Parallel job
scheduling: Issues and approaches. In Job Scheduling
Strategies for Parallel Processing (pp. 1-18).

Hamscher, V., Schwiegelshohn, U., Streit, A., &
Yahyapour, R. (2000). Evaluation of Job-Scheduling
Strategies for Grid Computing. In Grid Computing
— GRID 2000 (pp. 191-202).

Huang, K.-C. (2006). Performance Evaluation of
Adaptive Processor Allocation Policies for Moldable
Parallel Batch Jobs. Paper presented at the Proceed-
ings of the Third Workshop on Grid Technologies
and Applications.

Huang, K.-C., & Chang, H.-Y. (2006). An Integrated
Processor Allocation and Job Scheduling Approach
to Workload Management on Computing Grid. Paper
presented at the Proceedings of the 2006 International
Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’06), Las
Vegas, USA.

John, T., Uwe, S., Joel, L. W., & Philip, S. Y. (1994).
Scheduling parallel tasks to minimize average re-
sponse time. Paper presented at the Proceedings of
the fifth annual ACM-SIAM symposium on Discrete
algorithms.

Parallel Workloads Archive. from http://www.cs.huji.
ac.il/labs/parallel/workload/

Rajkumar Buyya, D. A. J. G. H. S. (2002). Economic
models for resource management and scheduling in
Grid computing. Concurrency and Computation:
Practice and Experience, 14(13-15), 1507-1542.

Sabin, G., Lang, M., & Sadayappan, P. (2007). Mold-
able Parallel Job Scheduling Using Job Efficiency:
An Iterative Approach. In Job Scheduling Strategies
for Parallel Processing (pp. 94-114).

Srividya, S., Vijay, S., Rajkumar, K., Praveen, H.,
& Sadayappan, P. (2002). Effective Selection of
Partition Sizes for Moldable Scheduling of Paral-
lel Jobs. Paper presented at the Proceedings of the
9th International Conference on High Performance
Computing.

Sudha, S., Savitha, K., & Sadayappan, P. (2003). A
Robust Scheduling Strategy for Moldable Scheduling
of Parallel Jobs.

Walfredo, C., & Francine, B. (2000). Adaptive
Selection of Partition Size for Supercomputer Re-
quests. Paper presented at the Proceedings of the
Workshop on Job Scheduling Strategies for Parallel
Processing.

Walfredo, C., & Francine, B. (2002). Using mold-
ability to improve the performance of supercom-
puter jobs. J. Parallel Distrib. Comput., 62(10),
1571-1601.

Yanmin, Z., Jinsong, H., Yunhao, L., Ni, L. M. A. N.
L. M., Chunming Hu, A. C. H., & Jinpeng Huai, A.
J. H. (2005). TruGrid: a self-sustaining trustworthy
grid. Paper presented at the Distributed Computing
Systems Workshops, 2005. 25th IEEE International
Conference on.

International Journal of Grid and High Performance Computing, 1(1), 10-21, January-March 2009 21

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Kuo-Chan Huang received his BS and PhD degrees in computer science and information engineering
from National Chiao-Tung University, Taiwan, in 1993 and 1998, respectively. He is currently an assistant
professor in Computer and Information Science Department at National Taichung University, Taiwan. He
is a member of ACM and IEEE Computer Society. His research areas include parallel processing, cluster
and grid computing, workflow computing.

Po-Chi Shih received the BS and MS degrees in computer science and information engineering from
Tunghai University in 2003 and 2005, respectively. He is now studying PhD degree at computer science
in National Tsing Hua University.

Yeh-Ching Chung received a BS degree in information engineering from Chung Yuan Christian University
in 1983, and the MS and PhD degrees in computer and information science from Syracuse University in
1988 and 1992, respectively. He joined the Department of Information Engineering at Feng Chia University
as an associate professor in 1992 and became a full professor in 1999. From 1998 to 2001, he was the
chairman of the department. In 2002, he joined the Department of Computer Science at National Tsing Hua
University as a full professor. His research interests include parallel and distributed processing, cluster
systems, grid computing, multi-core tool chain design, and multi-core embedded systems. He is a member
of the IEEE computer society and ACM.

