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Abstract The multicast operation is a very commonly used operation in parallel ap-
plications. It can be used to implement many collective communication operations
as well. Therefore, its performance will affect parallel applications and collective
communication operations. With the hardware supported multicast of the InfiniBand
Architecture (IBA), in this paper, we propose a cyclic multicast scheme for fat-tree-
based (m-port n-tree) InfiniBand networks. The basic concept of the proposed cyclic
multicast scheme is to find the union sets of the output ports of switches in the paths
between the source processing node and each destination processing node in a mul-
ticast group. Based on the union sets and the path selection scheme, the forwarding
table for a given multicast group can be constructed. We implement the proposed mul-
ticast scheme along with the OpenSM multicast scheme and the unicast scheme on
an m-port n-tree InfiniBand network simulator. Several one-to-many, many-to-many,
many-to-all, and all-to-many multicast cases are simulated. The simulation results
show that the proposed multicast scheme outperforms the unicast scheme for all sim-
ulated cases. For one-to-many case, the performance of the cyclic multicast scheme
is the same as that of the OpenSM multicast scheme. For many-to-many and all-to-
many cases, the cyclic multicast scheme outperforms the OpenSM multicast scheme.
For many-to-all case, the performance of the cyclic multicast scheme is a little better
than that of the OpenSM multicast scheme.
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1 Introduction

Interconnection networks in cluster systems have great impact on the performance
of communication-bounded applications. The InfiniBand Architecture (IBA) [6] is
a new industry-standard architecture for server I/O and inter-server communication.
The IBA defines a switch-based, point-to-point interconnection network that enables
high-speed, low-latency communication between connected devices. Due to the char-
acteristics of the IBA, it is very attractive to use the IBA as the interconnection net-
work of a cluster system.

The multicast operation [1, 4, 5, 9, 13, 16–18, 21–23] is a very common used
operation in cluster systems. It can improve the performance of interconnection com-
munication of processors [14] and can be used to implement many efficient collective
communication operations. It can also be used in distributed shared memory (DSM)
systems [2, 11] to enhance their performance. For data parallel languages, multicast
is the fundamental of several operations such as data replication [19] and barrier syn-
chronization [25]. For parallel applications, one can get the benefits from the use of
multicast operation [3, 7].

Since the InfiniBand Architecture supports hardware multicast, one can take ad-
vantage of this feature to speedup the multicast operation. OpenSM [15] is an im-
plementation of subnet manager. In OpenSM, it implements a hardware supported
multicast scheme by using a spanning tree approach to construct the multicast paths
for a given multicast group. This scheme can be applied to any network topology.
However, its performance may not be satisfied since it does not take the characteris-
tics of a network topology into account.

In this paper, we focus on the fat-tree topology [8, 10, 20, 24] used in most scal-
able cluster systems nowadays. We propose a cyclic multicast scheme for the m-port
n-tree (a fat-tree) InfiniBand networks [12] based on the hardware supported mul-
ticast feature of the IBA and the characteristics of m-port n-tree fat-trees. The con-
struction of the cyclic multicast scheme consists of three parts: the processing node
addressing scheme, the path selection scheme, and the forwarding table assignment
scheme. In the processing node addressing scheme, each processing node is assigned
a set of LIDs. In the path selection scheme, for a given destination processing node,
source processing nodes are divided into cyclic groups based on the cyclic group-
ing policy. Source processing nodes in the same group choose the same LID of the
destination processing node to perform the path selection. In the forwarding table
assignment scheme, a one-to-one forwarding table is set first according to the path
selection scheme. Then, the multicast forwarding table can be set according to the
one-to-one forwarding table and the union operations.

To evaluate the proposed method, we implement the cyclic multicast scheme, the
OpenSM multicast scheme, and a unicast scheme on an m-port n-tree InfiniBand
network simulator that is written in Java. The combinations of different messages
sizes, different numbers of multicast source nodes (traffic load), and different sizes
of multicast groups are used as test samples. The simulation results show that the
proposed cyclic multicast scheme outperform the unicast schemes for all test cases.
The higher the message size, the number of multicast source nodes, and the size of
the multicast group, the better speedup can be expected from the proposed multicast
schemes. For one-to-many case, the performance of the cyclic multicast scheme is the
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same as that of the OpenSM multicast method. For many-to-many and all-to-many
cases, the cyclic multicast scheme outperforms the OpenSM multicast method. For
many-to-all case, the performance of the cyclic multicast scheme is a little better than
that of the OpenSM multicast method.

The rest of this paper is organized as follows. Section 2 will introduce the fat-tree-
based InfiniBand networks. The proposed multicast schemes will be described in
Sect. 3. Section 4 will give the simulation results for the proposed multicast schemes.
The conclusions will be given in Sect. 5.

2 Preliminaries

2.1 InfiniBand Architecture (IBA)

The InfiniBand Architecture (IBA) is a new industry-standard architecture for server
I/O and inter-server communication. The IBA is designed around a point-to-point,
switched I/O fabric, whereby end node devices are interconnected by cascaded switch
devices [10]. An InfiniBand network can be divided into subnets. There is one or sev-
eral subnet manager (SM) in an InfiniBand subnet. The subnet manager is responsible
for the configuration and the control of a subnet. A Local Identifier (LID) is an ad-
dress assigned to an endport by the subnet manager during the subnet initialization
process. LID is unique within an InfiniBand subnet.

The InfiniBand network is a packet-switching network. Routing in an InfiniBand
subnet is deterministic, based on the forwarding table lookup. For a packet, the LIDs
of its source and destination processing nodes are stored in SLID and DLID fields of
the Local Route Header (LRH), respectively. A packet within a switch is forwarded
to an output port based on the packet’s DLID field and the switch’s forwarding table.
An example is illustrated in Fig. 1.

Fig. 1 The switch uses the linear forwarding table (LFT) to determine the output port according to the
DLID field in the packet
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Since the mapping between DLID and output port is one-to-one, in order to sup-
port multiple paths, the IBA defines an LID Mask Control (LMC) value that can be
assigned to each endport. According to the LMC value, an endport can be associated
with more than one LID such that communications between any pair of endports can
go through different available paths. The LMC is a 3-bit field that represents 2LMC

paths (maximum of 128 paths).
The IBA also supports hardware multicast. In the IBA, each multicast group is

assigned a multicast LID and a global identifier (GID) by the subnet manager. The
subnet manager will setup the forwarding table of each switch for each multicast
group according its LID and GID. The range of the LID is divided into two parts,
the unicast LID range and the multicast LID range. Each multicast group is identified
by a unique GID. To perform a multicast operation in an InfiniBand network, the
source processing node uses the multicast LID and the GID of a multicast group to
send packets. When a switch receives a multicast packet, it replicates the packet and
forwards the packet to the corresponding output ports according to its forwarding
table. When a processing node joins or leaves a multicast group, the subnet manager
will send the information to switches and update corresponding forwarding tables.

2.2 The m-port n-tree InfiniBand networks

In [12], we have proposed an m-port n-tree InfiniBand network IBFT(m,n). It has
the following characteristics:

1. The height of IBFT(m,n) is n + 1.
2. IBFT(m,n) consists of 2 × (m/2)n processing nodes and (2n − 1) × (m/2)n−1

InfiniBand switches.
3. Each switch has m ports.

A processing node in IBFT(m,n) is labeled as P(p = p0p1 · · ·pn−1), where p ∈
{0,1, . . . ,m− 1}× {0,1, . . . , (m/2)− 1}n−1. An InfiniBand switch in IBFT(m,n) is
labeled as SW〈w = w0w1 · · ·wn−2, l〉, where l ∈ {0,1, . . . , n − 1} is the level of the
switch and

w ∈
{ {0,1, . . . , (m/2) − 1}n−1 if l = 0

{0,1, . . . ,m − 1} × {0,1, . . . , (m/2) − 1}n−2 if l ∈ {1,2, . . . , n − 1}
Let SW〈w, l〉k denote the kth port of SW〈w, l〉, where k = 1,2, . . . ,m. For switches
SW〈w, l〉 and SW〈w′, l′〉, ports SW〈w, l〉k and SW〈w′, l′〉k′ are connected by an edge
if and only if l′ = l + 1,w0w1 · · ·wn−3 = w′

0w
′
1 · · ·w′

l−1w
′
l+1 · · ·w′

n−2, k = w′
l + 1,

and k′ = wn−2 + (m/2) + 1. For switch SW〈w, (n − 1)〉, port SW〈w, (n − 1)〉k is
connected to processing node P(p) if and only if w0w1 · · ·wn−2 = p0p1 · · ·pn−2
and k = pn−1 + 1. An example is shown in Fig. 2.

3 The proposed multicast scheme

A multicast operation can be either one-to-many or many-to-many. In this paper,
we will discuss the one-to-many case. For many-to-many multicast, it can be imple-
mented as many one-to-many multicasts. An example of hardware supported multi-
cast of the IBA is shown in Fig. 3. In Fig. 3a, an 8-port 2-tree InfiniBand network,
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Fig. 2 An example of a 4-port 3-tree InfiniBand network

IBFT(8,2), is shown. To simplify the presentation, we use the set of DLIDs of a
multicast group to indicate the multicast LID of the multicast group. In Fig. 3, if
processing node A wants to send a message to processing nodes E,F , and G, it needs
to perform three send operations when the unicast operation is used. With hardware
supported multicast in the IBA, the forwarding tables of switches can be set as shown
in Fig. 3b. Based on the forwarding tables shown in Fig. 3b, processing node A sends
only one packet with multicast LID α to processing nodes E, F , and G. If we change
the forwarding tables shown in Fig. 3c, we can see that processing nodes E, F , and
G will receive the same packet three times.

From Fig. 3, we can see that it is important to setup the forwarding tables of
switches correctly. In Fig. 3, we observe that if a packet is duplicated in the descend-
ing phase, the duplication will result in the case shown in Fig. 3b, that is, the multicast
is performed correctly. If a packet is duplicated in the ascending phase, the duplica-
tion will result in the case shown in Fig. 3c, that is, the multicast is not performed
correctly. From the above observations, we propose a multicast scheme based on
the MLID routing scheme [12] to correctly setup the forwarding tables of switches.
The proposed multicast scheme consists of three sub-schemes, the processing node
addressing scheme, the path selection scheme, and the forwarding table assignment
scheme. We need the following definitions when discussing these three schemes.

Definition 1 Given an m-port n-tree InfiniBand network, IBFT(m,n), for process-
ing nodes P(p = p0p1 · · ·pn−1) and P(p′ = p′

0p
′
1 · · ·p′

n−1), gcp(P (p),P (p′)) =
p0p1 · · ·pα−1 is the greatest common prefix of P(p) and P(p′) if p0p1 · · ·pα−1 =
p′

0p
′
1 · · ·p′

α−1 and pαpα+1 · · ·pn−1 �= p′
αp′

α+1 · · ·p′
α−1, where α ≥ 0 is the length of

gcp(P (p),P (p′)). If α = 0, it denotes that the labels of two processing nodes have
no common prefix.

Definition 2 Let IBFT(m,n) be an m-port n-tree InfiniBand network and
p0p1 · · ·pα−1 be the greatest common prefix of processing nodes P(p) and P(p′),
the set of least common ancestors of processing nodes P(p) and P(p′), is defined as
lca(P (p),P (p′)) = {SW〈w, l〉 | w0w1 · · ·wα−1 = p0p1 · · ·pα−1 and l = α}.
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(a) An example of 8-port 2-tree InfiniBand network

(b) Correct setting

(c) Incorrect setting

Fig. 3 An example of a multicast in an 8-port 2-tree InfiniBand network

Definition 3 Given an m-port n-tree InfiniBand network, IBFT(m,n), a greatest
common prefix group, gcpg(x,α), is a set of processing nodes that have the same
greatest common prefix x and |x| = α. There are (m/2)n−α processing nodes in an
gcpg(x,α). Set gcpg(x,0) is the set of all processing nodes, where x is a null string.
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Definition 4 Let processing node P(p) ∈ gcpg(x,α), the rank of P(p) in gcpg(x,α)

is defined as rank(gcpg(x,α),P (p)) = ∑n−1
i=α pi × (m/2)(n−1)−i = pα ×

(m/2)(n−1)−α + pα+1 × (m/2)(n−1)−(α+1) + · · · + pn−1 × (m/2)0, where p =
p0p1 · · ·pn−1. The ranks of processing nodes in gcpg(x,α) are between 0 and
(m/2)n−α − 1. Since gcpg(x,0) contains all processing nodes in an InfiniBand net-
work, the rank of a processing node P(p) in gcpg(x,0) is also called the PID of
P(p), denoted as PID(P (p)).

Let us give some examples to explain the above definitions. Given the 4-port
3-tree InfiniBand network shown in Fig. 2, for processing nodes P(200) and P(211),
gcp(P (200),P (211)) is 2 and lca(P (200),P (211)) is {SW〈20,1〉,SW〈21,1〉}.
Both P(100) and P(111) are members of gcpg(1,1). There are 4 processing
nodes, P(200), P(201), P(210), and P(211), in group gcpg(2,1). The ranks of
P(200) and P(211) in gcpg(2,1) are 0 and 3, respectively. PID(P (200)) = 8 and
PID(P (211)) = 11.

3.1 The processing node addressing scheme

Given an m-port n-tree InfiniBand network IBFT(m,n), in the multicast scheme,
every processing node in IBFT(m,n) is assigned a set of LIDs. The set of LIDs
assigned to each processing node is formed by the combination of one base LID and
a LID Mask Control value LMC, where LMC = log2(m/2)n−1. For processing node
P(p = p0p1 · · ·pn−1) in IBFT(m,n), the set of LIDs assigned to P(p), denoted
by LIDset(P (p)), is {BaseLID(P (p)), BaseLID(P (p)) + 1, . . . ,BaseLID(P (p)) +
(2LMC − 1)}, where BaseLID(P (p)) = 2LMC × (

∑n−1
i=0 pi × (m/2)n−(i+1)) + 1 is

the base LID of P(p). There are 2LMC LIDs in LIDset(P (p)), which indicates that
there are maximal 2LMC paths between any pair of processing nodes. Figure 4 shows
an example of multiple LIDs assignment for each processing node in a 4-port 3-tree

Fig. 4 A multiple LIDs assignment
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InfiniBand network. In Fig. 4, for processing node P(300), BaseLID(P (300)) = 49.
We have LIDset(P(300)) = {49,50,51,52}.

3.2 The path selection scheme

After each processing node is assigned a set of LIDs, the next problem is how to
take the advantage of multiple LIDs of a processing node such that the duplication
of a packet will not occur in the ascending phase. We propose a cyclic path selection
scheme according to the cyclic grouping policy. The grouping policy is to decide
what processing nodes are in the same group for a given destination processing node
P(p). For the processing nodes in the same group, they will send messages to the
destination processing node P(p) by choosing the same LID of P(p).

Given an m-port n-tree InfiniBand network IBFT(m,n), for a destination process-
ing node P(p = p0p1 · · ·pn−1), source processing nodes P(s1) and P(s2) are in the
same cyclic group CG(P (p), l, y) if the following two rules are satisfied.

Rule 1: The level l of the least common ancestors lca(P (p),P (s1)) is the same
as that of lca(P (p),P (s2)).

Rule 2: P(s1) and P(s2) have the same common suffix y and |y| = n − l − 1.
The cyclic path selection scheme is performed as follows. For a destination

processing node P(p = p0p1 · · ·pn−1) and a source processing node P(p′ =
p′

0p
′
1 · · ·p′

n−1) in CG(P (p), l, y), when P(p′) wants to send messages to P(p), it
will select BaseLID(P (p)) + rank(gcpg(p′

0p
′
1 · · ·p′

l , l + 1),P (p′)) as the LID of
P(p).

Figure 5 shows an example of the cyclic path selection scheme for a 4-port 3-tree
InfiniBand network IBFT(4,3). Given a destination processing node P(200), we
can divide the source processing nodes into cyclic groups CG(P (200),0,00) =
{P(000),P (100),P (300)}, CG(P (200),0,01) = {P(001),P (101),P (301)},
CG(P (200),0,10) = {P(010),P (110),P (310)}, CG(P (200),0,11) = {P(011),

P (111),P (311)}, CG(P (200),1,0) = {P(210)}, CG(P (200),1,1) = {P(211)},
and CG(P (200),2, ε) = {P(201)} based on the cyclic grouping policy, where
ε is a null string. Assume that there are four source processing nodes P(000),

Fig. 5 The cyclic path selection scheme



Hardware supported multicast in fat-tree-based InfiniBand networks 341

Fig. 6 An example of one-to-many multicast

P(001), P(010), and P(011) want to send messages to the destination process-
ing node P(200). Since the four source processing nodes are in different groups of
CG(P (200),0), they will choose the different LIDs 33, 34, 35, and 36 (33 + 0,33 +
1,33 + 2, and 33 + 3) of the destination processing node P(200) and send messages
through paths Q, R, S, and T , respectively.

According to the path selection scheme, the duplication of packets can be avoided
in the ascending phase when a processing node sends packets to different destination
processing nodes. An example is shown in Fig. 6. In Fig. 6, the source processing
node P(000) sends messages to P(200), P(201), P(210), and P(211) through routes
Q, R, S, and T , respectively. From Fig. 6, we can see that all routes take the same
path in the ascending phase. Therefore, the duplication of packets will not occur in
the ascending phase.

3.3 The forwarding table assignment scheme

The next task is to setup the forwarding table in each InfiniBand switch such that
a message sent from one processing node to others will follow the paths we set in the
path selection scheme. The forwarding table assignment consists of two phases: the
one-to-one forwarding table assignment and the multicast forwarding table assign-
ment based on union operation.

3.3.1 The one-to-one forwarding table assignment

Given an m-port n-tree InfiniBand network IBFT(m,n), a switch SW〈w, l〉 of
IBFT(m,n), and a packet whose DLID field is lid, when the packet arrives in switch
SW〈w, l〉, the output port SW〈w, l〉k of the packet can be determined based on the
construction of IBFT(m,n), the processing node assignment scheme, and the path
selection scheme. We have the following two cases.

Case 1: If the processing node P(p = p0p1 · · ·pn−1) that owns the lid can be
reached downward from SW〈w, l〉, then k can be determined by the following equa-
tion

k = pl + 1. (1)
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For SW〈w = w0w1 · · ·wn−2, l〉, processing node P(p = p0p1 · · ·pn−1) that owns
the lid can be reached downward from SW〈w, l〉 if PID(P (p)) = � (lid−1)

( m
2 )n−1 	 and

w0w1 · · ·wl−1 = p0p1 · · ·pl−1. The conversion between PID(P (p)) and P(p =
p0p1 · · ·pn−1) can be done either by table lookup or by arithmetic operations.

Case 2: If the processing node that owns the lid can not be reached downward
from SW〈w, l〉, then k can be determined by the following equation

k =
(⌊

(lid − 1)

(m
2 )(n−1)−l

⌋
mod

(
m

2

))
+

(
m

2

)
+ 1. (2)

To verify the correctness of Eqs. (1) and (2), let us take Fig. 6 as an exam-
ple. In Fig. 6, assume that processing node P(000) wants to send messages to
processing node P(200), P(201), P(210), and P(211). According to the path
selection scheme, packets sent from P(000) to P(200), P(201), P(210), and
P(211) will go through paths Q, R, S, and T , respectively. When a packet is
sent from P(000) to P(200) through path Q, the DLID of the packet is 33 and
ports SW〈00,2〉1, SW〈00,2〉3, SW〈00,1〉1, SW〈00,1〉3, SW〈00,0〉1, SW〈00,0〉3,
SW〈20,1〉3, SW〈20,1〉1, SW〈20,2〉3, and SW〈20,2〉1 will be traversed in sequence.
When the packet arrives in switch SW〈00,2〉, lid = 33 matches case 2 and the output
port of the packet is k = 3. When the packet arrives in switch SW〈00,1〉, lid = 33
matches case 2 and the output port of the packet is k = 3. When the packet arrives in
switch SW〈00,0〉, lid = 33 matches case 1 and the output port of the packet is k = 3.
When the packet arrives in switch SW〈20,1〉 , lid = 33 matches case 1 and the output
port of the packet is k = 1. When the packet arrives in switch SW〈20,2〉 , lid = 33
matches case 1 and the output port of the packet is k = 1. From the above analysis,
we can see that Eqs. (1) and (2) can correctly setup path Q for the packet sent from
P(000) to P(200). For paths R, S, and T , we can obtain similar results.

3.3.2 The multicast forwarding table assignment based on union operations

After the one-to-one forwarding table assignment is performed, we can setup the
multicast forwarding table for a given source processing node and a multicast group
based on union operations. Let P(p = p0p1 · · ·pn−1) be a source processing node
and lid = {lid1, lid2, . . . , lidt | t ≤ 2 × (m/2)n} be the DLID of a multicast group,
where {lid1, lid2, . . . , lidt |t ≤ 2 × (m/2)n} is the set of LIDs of destination process-
ing nodes in a multicast group. For each switch SW〈w, l〉, based on Eqs. (1) and
(2), we can determine the output port of a packet whose DLID is lid1, lid2, . . . , and
lidt as SW〈w, l〉k1 , SW〈w, l〉k2, . . . , and SW〈w, l〉kt , respectively. It means that when
a packet whose DLID is lid1, lid2, . . . , and lidt arrives in switch SW〈w, l〉, it will
be forwarded to port SW〈w, l〉k1 , SW〈w, l〉k2, . . ., and SW〈w, l〉kt , respectively. Since
an InfiniBand switch can duplicate a packet to different output ports and the path
selection schemes given in Sect. 3.2 will prevent the packet from being duplicated
in the ascending phase, the output ports of a multicast packet {lid1, lid2, . . . , lidt |t ≤
2 × (m/2)n} can be set as the union of SW〈w, l〉k1,SW〈w, l〉k2, . . . , and SW〈w, l〉kt

in switch SW〈w, l〉.
An example is shown in Fig. 7. In Fig. 7, assume that processing node P(000)

wants to send multicast packets to processing nodes P(200), P(201), P(210) and
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Fig. 7 An example of multicast forwarding table setup

P(211). The lid set of the multicast group is {33,37,41,45}. From Fig. 7, we can
see that when a packet is sent from P(000) to P(200), switch ports SW〈00,2〉1,
SW〈00,2〉3, SW〈00,1〉1, SW〈00,1〉3, SW〈00,0〉1, SW〈00,0〉3, SW〈20,1〉3,
SW〈20,1〉1, SW〈20,2〉3, and SW〈20,2〉1 will be traversed. When a packet is
sent from P(000) to P(201), switch ports SW〈00,2〉1, SW〈00,2〉3, SW〈00,1〉1,
SW〈00,1〉3, SW〈00,0〉1, SW〈00,0〉3, SW〈20,1〉3, SW〈20,1〉1, SW〈20,2〉3, and
SW〈20,2〉2 will be traversed. When a packet is sent from P(000) to P(210), switch
ports SW〈00,2〉1, SW〈00,2〉3, SW〈00,1〉1, SW〈00,1〉3, SW〈00,0〉1, SW〈00,0〉3,
SW〈20,1〉3, SW〈20,1〉2, SW〈21,2〉3, and SW〈21,2〉1 will be traversed. When
a packet is sent from P(000) to P(211), switch ports SW〈00,2〉1, SW〈00,2〉3,
SW〈00,1〉1, SW〈00,1〉3, SW〈00,0〉1, SW〈00,0〉3, SW〈20,1〉3, SW〈20,1〉2,
SW〈21,2〉3, and SW〈21,2〉2 will be traversed. According the above union oper-
ations, for a multicast packet whose DLID = {33,37,41,45}, we can determine
that its output ports in switch SW〈00,2〉 = {3}, SW〈00,1〉 = {3}, SW〈00,0〉 = {3},
SW〈20,1〉 = {1,2}, SW〈20,2〉 = {1,2}, and SW〈21,2〉 = {1,2}, respectively. The
multicast operation can be performed correctly.

4 Performance evaluation

To evaluate the performance of the proposed multicast scheme, we design an m-port
n-tree InfiniBand network simulator by using Java. Three schemes, the proposed
cyclic multicast scheme, the OpenSM multicast scheme, and the unicast scheme were
simulated for performance evaluation.

In our simulation, an 8-port 3-tree InfiniBand network is simulated. The network
contains 80 switches and 128 processing nodes. The packet size ranges from 32 bytes
to 128 Kbytes. The size of source processing nodes is set to 1 processing node, 40%
of all processing nodes, 70% of all processing nodes, and all processing nodes. The
size of multicast group is set to 10%, 40%, 70%, and 100% of all processing nodes.
We assume that the flying time of a packet between devices (endnode-to-switch and
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switch-to-switch) is 20 ns. The routing time of a packet from one input port to one
output port of the crossbar in a switch is 100 ns, including forwarding table lookup,
packet replication, arbitration, and message startup time. The byte injection rate is
4 ns assume that a 1X link configuration (2.5 Gbps) is used. Flow control is also
taken into account. The packet must wait in the input port buffer until the output port
buffer is available.

The simulation results are shown in Fig. 8 to Fig. 16. We have the following cases.
Case 1 (one-to-many multicast): Fig. 8 to Fig. 10 show the results of one-to-many

multicast. Since there is only one source processing node, the traffic congestion of
two packets using the same buffer is never occurred. From the simulation results, we
can see that the multicast schemes outperform the unicast scheme. The time of our
cyclic multicast scheme is the same as that of OpenSM multicast scheme given the
same destination group size.

Case 2 (many-to-many multicast): Fig. 11 to Fig. 13 show the results of many-to-
many multicast. Since there are more than one source processing nodes send mes-
sages to the destination processing nodes, the traffic congestion did occur. From
the simulation results, we can see that the multicast schemes outperform the unicast
scheme. Moreover, our cyclic multicast scheme outperforms the OpenSM multicast
scheme when the destination group size is small (10% and 40%). This is because the
OpenSM multicast scheme only builds one multicast tree, while our scheme builds
more multicast trees to take the advantages of available bandwidth of fat-tree topol-
ogy. When the destination group size is large (100%), the performance of our scheme

Fig. 8 One-to-10% multicast

(a) Small size

(b) Large size
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Fig. 9 One-to-40% multicast

(a) Small size

(b) Large size

Fig. 10 One-to-all multicast

(a) Small size

(b) Large size
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Fig. 11 40%-to-10% multicast

(a) Small size

(b) Large size

Fig. 12 40%-to-40% multicast

(a) Small size

(b) Large size
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Fig. 13 40%-to-all multicast

(a) Small size

(b) Large size

is a little better than that of the OpenSM multicast scheme since the serious traffic
congestion in the descending phase.

Case 3 (all-to-many multicast): Fig. 14 to Fig. 16 show the results of all-to-many
multicast. From Fig. 14 to Fig. 16, we observe that all the simulation results of all-
to-many multicast are similar to those of many-to-many multicast. Obviously, the
cases of all-to-many multicast spend more time because of more packets need to be
transmit and more traffic congestion occurred.

Figure 17 shows the speedups of the proposed multicast scheme over the OpenSM
multicast scheme under different multicast group sizes. From Fig. 17, we observe that
when the destination group size (multicast group size) is small, we can expect a higher
speedup from our method. The reason is that our method can take the advantages of
available bandwidth of fat-tree topology. As the destination group size close to 100%,
the speedup will close to 1, that is, the performance of our method is a little better
than that of the OpenSM method. The reason is that when the multicast group size
is getting larger, the multicast packets need to be duplicated and forwarded to most
ports in the switches. Serious traffic congestions are raised in the descending phase
and dominated the performance.

5 Conclusions

In this paper, we propose a hardware supported multicast scheme for the fat-tree-
based InfiniBand networks. We describe how to implement the schemes in detail.
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Fig. 14 All-to-10% multicast

(a) Small size

(b) Large size

Fig. 15 All-to-40% multicast

(a) Small size

(b) Large size
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Fig. 16 All-to-all multicast

(a) Small size

(b) Large size

Fig. 17 The speedup of cyclic
multicast scheme comparing to
the OpenSM multicast scheme

We also write a simulator to evaluate the proposed scheme. The simulation re-
sults show that the proposed cyclic multicast scheme can speed up the execution of
multicast operations. From the simulations results, we have the following remarks:

Remark 1 We observe that the proposed multicast scheme outperforms the unicast
scheme for all simulated cases. This result indicates that the hardware supported mul-
ticast of the IBA can help to speedup the execution of multicast operations.

Remark 2 Comparing to the OpenSM multicast scheme, for one-to-many case, the
performance of the cyclic multicast scheme is the same as that of the OpenSM mul-
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ticast method. For many-to-many and all-to-many cases, the cyclic multicast scheme
outperforms the OpenSM multicast method. For many-to-all case, the performance
of the cyclic multicast scheme is a little better than that of the OpenSM multicast
method.

References

1. Chiang C-M, Ni LM (1995) Deadlock-free multi-head wormhole routing, In: Proceedings of the first
high performance computing-Asia, 1995

2. Dai D, Panda DK (1993) Reducing cache invalidation overheads in wormhole routed DSMs using
multidestination message passing. In: Proceedings of the 5th annual ACM symposium on parallel
algorithms and architectures, May 1993, pp 2–13

3. DeMara RF, Moldovan DI (1991) Performance indices for parallel marker-propagation. In: Proceed-
ings of the 1991 international conference on parallel processing, St. Charles, Illinois, August 12–17,
1991, pp 658–659

4. Duato J, Yalamanchili S, Ni L (1997) Interconnection networks—an engineering approach. IEEE CS
Press

5. Hwang K (1993) Advanced computer architecture—parallelism, scalability, programmability.
McGraw-Hill

6. InfiniBand™ trade association (October 2004) InfiniBand™ architecture specification, vol 1. Release
1.2

7. Kumar V, Singh V (1991) Scalability of parallel algorithms for the all-pairs shortest path problem.
Tech. Rep. ACT-OODS-058-90, Rev. 1, MCC

8. Kumar S, Kale LV (2004) Scaling all-to-all multicast on fat-tree networks. In: International conference
on parallel and distributed systems, July 2004, pp 205–214

9. Leighton FT (1992) Introduction to parallel algorithms and architectures: arrays, trees, hypercubes
Morgan Kaufmann Publishers, San Mateo

10. Leiserson CE (1985) Fat-Trees: universal networks for hardware-efficient supercomputing. IEEE
Trans Comput 3410:892–901

11. Li K, Schaefer R (1989) A hypercube shared virtual memory. In: Proceedings of the 1989 international
conference on parallel processing, vol I, August 1989, pp 125–132

12. Lin XY, Chung YC, Huang TY (2004) A multiple LID routing scheme for fat-tree-based infiniband
networks. In: Proceedings of IEEE international parallel and distributed proceeding symposiums,
April 2004 (CD-ROM)

13. Lin X, McKinley PK, Ni LM (1991) Performance evaluation of multicast wormhole routing in 2D-
mesh multicomputers. In: Proceedings of the 1991 international conference on parallel proceeding,
August 1991, vol I, pp 435–442

14. Lin X, Ni LM (1993) Multicast communication in multicomputer networks. IEEE Trans Parallel Dis-
trib Syst 4(10):1104–1117

15. Linux InfiniBand Project. http://infiniband.sourceforge.net
16. Liu J, Mamidala AR, Panda DK (2004) Fast and scalable MPI-level broadcast using infiniband’s

hardware multicast support. In: Proceedings of IEEE international parallel and distributed proceeding
symposiums, April 2004 (CD-ROM)

17. Littlefield RJ (1992) Charaterizing and tuning communications performance for real applications. In:
Proceedings of the first intel DELTA applications workshop, February 1992

18. López P, Flich J, Duato J 2001 Deadlock-Free Routing in InfiniBand™ through destination renaming.
In: Proceedings of the international conference on parallel processing, ICPP ’01, September 2001, pp
427–434

19. McKinley PK, Xu H, Kalns E, Ni LM (1992) ComPaSS: efficient communication services for scalable
architectures. In: Proceedings of supercomputing’ 92, November 1992, pp. 478–487

20. Petrini F, Vanneschi M (1997) k-ary n-trees: high performance networks for massively parallel ar-
chitectures. In: Proceedings of the 11th international parallel processing symposium, IPPS’97, April
1997, pp 87–93

21. Sancho JC, Robles A, Duato J (2001) Effective strategy to compute forwarding tables for InfiniBand
networks. In: Proceedings of the international conference on parallel processing, ICPP ’01, September
2001, pp 48–57



Hardware supported multicast in fat-tree-based InfiniBand networks 351

22. Sancho JC, Robles A, Flich J, López P, Duato J (2002) Effective methodology for deadlock-free
minimal routing in infiniband networks. In: Proceedings of the international conference on parallel
processing ICPP ’02, August 2002, pp 48-57

23. Sivaram R, Panda DK, Stunkel CB (1996) Efficient broadcast and multicast on multistage intercon-
nection networks using multiport encoding. In: Proceedings of the 8th IEEE symposium on parallel
and distributed proceeding, October 1996, pp 36–45

24. Valerio M, Moser L, Melliar-Smith P (1994) Recursively scalable fat-trees as interconnection net-
works. In: Proceedings of the 13th IEEE international phoenix conference on computers and commu-
nications, April 1994, pp 40–46

25. Xu H, McKinley PK, Ni LM (1992) Efficient implementation of barrier synchronization in wormhole-
routed hypercube multicomputers. J Parallel Distrib Comput 16:172–184

Jiazheng Zhou received a B.S. degree in Computer Science from National Chengchi University in 2002,
and the M.S. degree in Computer Science from National Tsing Hua University in 2004. He is currently
a Ph.D. student in the Department of Computer Science, National Tsing Hua University. His research inter-
ests include cluster computing and interconnection networks. He is a student member of the IEEE computer
society.

Xuan-Yi Lin received his B.S. degree in Computer Science and Information Engineering from Da-Yeh
University in 2001, and the M.S. degree in Information Engineering and Computer Science from Feng Chia
University in 2003. He is currently a Ph.D. student in the Department of Computer Science, National Tsing
Hua University, Taiwan. His research interests include cluster systems and grid computing. He is a student
member of the IEEE computer society.



352 J. Zhou et al.

Yeh-Ching Chung received a B.S. degree in Information Engineering from Chung Yuan Christian Uni-
versity in 1983, and the M.S. and Ph.D. degrees in Computer and Information Science from Syra-
cuse University in 1988 and 1992, respectively. He joined the Department of Information Engineer-
ing at Feng Chia University as an associate professor in 1992 and became a full professor in 1999.
From 1998 to 2001, he was the chairman of the department. In 2002, he joined the Department of
Computer Science at National Tsing Hua University as a full professor. His research interests in-
clude parallel and distributed processing, cluster systems, grid computing, multi-core tool chain de-
sign, and multi-core embedded systems. He is a member of the IEEE computer society and ACM.


	Hardware supported multicast in fat-tree-based InfiniBand networks
	Abstract
	Introduction
	Preliminaries
	InfiniBand Architecture (IBA)
	The m-port n-tree InfiniBand networks

	The proposed multicast scheme
	The processing node addressing scheme
	The path selection scheme
	The forwarding table assignment scheme
	The one-to-one forwarding table assignment
	The multicast forwarding table assignment based on union operations


	Performance evaluation
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


