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Abstract. To efficiently execute a finite element application program on a distributed memory multi-
computer, we need to distribute nodes of a finite element graph to processors of a distributed memory
multicomputer as evenly as possible and minimize the communication cost of processors. This parti-
tioning problem is known to be NP-complete. Therefore, many heuristics have been proposed to find
satisfactory sub-optimal solutions. Based on these heuristics, many graph partitioners have been devel-
oped. Among them, Jostle, Metis, and Party are considered as the best graph partitioners available
up-to-date. For these three graph partitioners, in order to minimize the total cut-edges, in general, they
allow 3% to 5% load imbalance among processors. This is a tradeoff between the communication cost
and the computation cost of the partitioning problem. In this paper, we propose an optimization method,
the dynamic diffusion method (DDM), to balance the 3% to 5% load imbalance allowed by these three
graph partitioners while minimizing the total cut-edges among partitioned modules. To evaluate the pro-
posed method, we compare the performance of the dynamic diffusion method with the directed diffusion
method and the multilevel diffusion method on an IBM SP2 parallel machine. Three 2D and two 3D
irregular finite element graphs are used as test samples. For each test sample, 3% and 5% load imbal-
ance situations are tested. From the experimental results, we have the following conclusions. (1) The
dynamic diffusion method can improve the partition results of these three partitioners in terms of the
total cut-edges and the execution time of a Laplace solver in most test cases while the directed diffusion
method and the multilevel diffusion method may fail in many cases. (2) The optimization results of the
dynamic diffusion method are better than those of the directed diffusion method and the multilevel dif-
fusion method in terms of the total cut-edges and the execution time of a Laplace solver for most test
cases. (3) The dynamic diffusion method can balance the load of processors for all test cases.

Keywords: distributed memory multicomputers, partition, mapping, load balancing, dynamic diffusion,
irregular finite element graphs

1. Introduction

The finite element method is widely used for the structural modeling of physical
systems. In the finite element model, an object can be viewed as a finite element
graph, which is a connected and undirected graph that consists of a number of finite
elements. Each finite element is composed of a number of nodes. The number of
nodes of a finite element is determined by an application. In Figure 1, an example of
a 21-node finite element model consisting of 24 finite elements is shown. Due to the
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Figure 1. An example of a 21-node finite element graph with 24 finite elements (the circled and uncir-
cled numbers denote the node numbers and finite element numbers, respectively).

properties of computation-intensiveness and computation-locality, it is very attrac-
tive to implement the finite element method on distributed memory multicomputers.

To efficiently execute a finite element application program on a distributed mem-
ory multicomputer, we need to map nodes of the corresponding finite element graph
to processors of a distributed memory multicomputer such that each processor has
the same amount of computational load and the communication among processors
is minimized. Since this partitioning problem is known to be NP-complete [5], many
heuristics have been proposed to find satisfactory sub-optimal solutions [1, 3, 4, 6,
8, 9, 12–15, 17–22]. Based on these heuristics, many graph partitioners have been
developed [8, 12, 13, 17, 18, 21, 22]. Among them, Jostle [20], Metis [12], and Party
[17] are considered as the best graph partitioners available up-to-date.

For these three graph partitioners, in order to minimize the total cut-edges, they
allow 3% to 5% load imbalance among processors. This is a tradeoff between the
communication cost and the computation cost in the partitioning problem. For some
applications, the 3% to 5% load imbalance is acceptable. However, for most par-
allel finite element application programs, load balancing is a critical factor and
can greatly affect the overall performance of application programs. In this paper,
we propose an optimization method, the dynamic diffusion method (DDM), to
efficiently balance the 3% to 5% load imbalance allowed by these three graph
partitioners while minimizing the total cut-edges among partitioned modules. The
dynamic diffusion method is designed to optimize the partitioning results of these
three partitioners. Therefore, it is an offline (preprocessing) method. This method
may not be suitable for adaptive mesh applications, that is, it is used as a dynamic
load-balancing method. The reason is that it may fail to improve the overall perfor-
mance of application programs when the load imbalance factor is greater than or
equal to 10% among processors which usually occurs in adaptive mesh applications.

To evaluate the proposed method, we compare the performance of the dynamic
diffusion method with the directed diffusion method and the multilevel diffusion
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method on an IBM SP2 parallel machine. Three 2D and two 3D irregular finite
element graphs are used as test samples. For each test sample, 3% and 5% load
imbalance situations are tested. From the experimental results, we have the follow-
ing conclusions. (1) The dynamic diffusion method can improve the partition results
of these three partitioners in terms of the total cut-edges and the execution time of
a Laplace solver in most test cases while the directed diffusion method and the mul-
tilevel diffusion method may fail in many cases. (2) The optimization results of the
dynamic diffusion method are better than those of the directed diffusion method
and the multilevel diffusion method in terms of the total cut-edges and the execu-
tion time of a Laplace solver for most test cases. (3) The dynamic diffusion method
can balance the load of processors for all test cases.

The rest of the paper is organized as follows. Related work is presented in
Section 2. In Section 3, the proposed dynamic diffusion method will be described
in detail. In Section 4, the experimental results will be presented.

2. Related work

Many methods have been proposed in the literature to deal with the partitioning
problems of irregular graphs onto distributed memory multicomputers. In general,
they can be divided into five classes, the orthogonal section approach [19, 22], the
min-cut approach [3, 4, 14], the spectral approach [1, 9, 19], the multilevel approach
[1, 12, 13, 18, 22], and miscellaneous approaches [6, 15, 22]. These methods have
been implemented in several graph partitioners, such as Chaco [8], DIME [22],
Jostle [20], Metis [12], and Party [17], etc.

For the orthogonal section approach, an irregular graph is partitioned into mod-
ules and each module has the same amount of computational load. These modules
are then assigned to processors. To partition an irregular graph, this approach recur-
sively cut the graph into two subgraphs according to the coordinates of nodes on
x-axis and y-axis in turn. Although this approach does not consider any connectiv-
ity information of the graph, it tries to group nodes that are close together in the
graph to the same modules.

For the min-cut approach, the Kernighan-Lin heuristic [14] is the most frequently
used method for local bisection. It uses a sequence of logical vertex pair exchange
to determine the sets that have to be exchanged physically. Several heuristics are
proposed to improve the performance of KL heuristic [4]. In [3], a recursive min-cut
bipartitioning algorithm was proposed to map graphs onto hypercubes.

The spectral approach is based on algebraic graph theory. In this method, a matrix
similar to the adjacency matrix of the graph is constructed and some specific eigen-
vectors of this matrix are determined. The determination of the eigenvectors is the
major computational task of this method. According to the values of these eigen-
vectors, nodes of the graph are distributed to corresponding processors. Spectral
methods are efficient in graph partitioning. However, the time and space required
by the spectral methods to partition a graph are quite high.

The multilevel approach is based on a coarsening strategy that decreases the size
of a graph in several levels using matching techniques. After the coarsening, it uses
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the spectral method or a k-way partitioning method or other partitioning methods
to partition the coarsening graph. After the partitioning, the partition of the coarse
graph is extrapolated to the original one. Then the partitioned modules are assigned
to processors.

Other methods such as the index-based mapping method [15], the projection-based
mapping method [6], the simulated annealing (SA) method [22], etc., do not belong
to the approaches described above.

If the partitioning method results in load imbalance, many load-balancing algo-
rithms can be used to balance the load of each processor. The dimension exchange
method (DEM) is applied to application programs without geometric structure [2].
Ou and Ranka [16] proposed a linear programming-based method to solve the incre-
mental graph partition problem. This method is not guaranteed to find a solution
since it has scope limitation for the transferred nodes that may result in no solutions
sometimes.

Hu and Blake [11] proposed a directed diffusion method that computes the diffu-
sion solution by using an unsteady heat conduction equation while optimally mini-
mizing the Euclidean norm of the data movement. They proved that the diffusion
solution can be found by solving the linear equation. The diffusion solution λ is
a vector with n elements. For any two elements λi; λj in λ, if λi − λj is positive,
then partition i needs to send λi − λj nodes to partition j. Otherwise, partition j
needs to send λj − λi nodes to partition i. Heirich and Taylor [7] proposed a direct
diffusive load-balancing method for scalable multicomputers. They derived a reli-
able and scalable load balancing method based on properties of the parabolic heat
equation ut − α∇2u = 0.

Horton [10] proposed a multilevel diffusion method by recursively bisecting a
graph into two subgraphs and balancing the load of the two subgraphs. This method
assumes that the graph can be recursively bisected into two connected graphs.

Schloegel et al. [18] also proposed a multilevel diffusion scheme to construct a
new partition of the graph incrementally. It contains three phases, a coarsening
phase, a multilevel diffusion phase, and a multilevel refinement phase. These algo-
rithms perform diffusion in a multilevel framework and minimize data movement
without comprising the edge-cut. Their methods also include parameterized heuris-
tics to specifically optimize edge-cut, total data migration, and the maximum amount
of data migrated in and out of any processor.

Walshaw et al. [21] implemented a parallel partitioner and a directed diffusion
repartitioner in Jostle that is based on the diffusion solver proposed by Hu and
Blake [11]. They also developed a multilevel diffusion repartitioner in Jostle.

3. The dynamic diffusion method

The dynamic diffusion method is a diffusion algorithm. The main difference
between the dynamic diffusion method and the directed diffusion method [11] is
the use of the diffusion process. In the directed diffusion method, the diffusion
process is performed from over-loaded processors to under-loaded processors. How
to select an over-loaded processor to start the diffusion process and how to diffuse
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nodes from the over-loaded processors to its neighbor processors are two important
issues in this method. This method does not guarantee the load-balancing property.

In the dynamic diffusion method, the diffusion process is guided by the load of
processors and the connectivity of processors in a processor graph. When a finite
element graph is partitioned into modules that are assigned to processors, we can
get a processor graph from the partitioned modules (The processor graph will be
described in Section 3.1). The connectivity of processors is the connections of pro-
cessors in a processor graph. In each diffusion step, a processor that satisfies certain
conditions will be selected as the processor to start the diffusion process no mat-
ter whether the processor is an over-loaded or an under-loaded processor. If the
removal of the selected processor will not break the processor graph into two or
more components, the selected processor will be removed from the processor graph
once its load is balanced. Based on the new processor graph (after the removal
of the selected processor), another diffusion step can be carried out. In at most
P × �P + 1�/2 diffusion steps, the load of processors can be balanced, where P is
the number of processors used by a partitioning method. Since the load of proces-
sors and the connectivity of processors are changed from a diffusion step to another,
that is why the term dynamic comes. The dynamic diffusion method can be divided
into the following four phases.

Phase 1: Construct a processor graph G from the partitioning result obtained
from Jostle, Metis, or Party.

Phase 2: Calculate the under-load and over-load weights of processors in G.
Phase 3: Determine the load transfer sequence by using the dynamic diffusion

heuristic.
Phase 4: Perform the load transfer and use the KL heuristic to reduce the cut-

edges of boundary nodes.

In the following, we will describe the details of the algorithm. We assume that an
N-node finite element graph and a P-processor distributed memory multicomputer
are given.

3.1. The processor graph

When nodes of an irregular finite element graph are distributed to processors by
Jostle, Metis, or Party, according to the communication property of the irregular
finite element graph, we can get a processor graph from the partition. In a proces-
sor graph, nodes represent the processors and edges represent the communication
needed among processors. The weights associated with nodes and edges denote the
computation and the communication costs, respectively. We now give an example
to explain it.

Example 1. Figure 2 shows an example of a processor graph. Figure 2(a) shows
an initial partition of a 128-node irregular finite element graph on 10 processors
by using the MLkP method (Metis). In Figure 2(a), the number of nodes assigned
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Figure 2. An example of a processor graph. (a) A partition of an irregular finite element graph. (b)
The corresponding processor graph obtained from (a).

to processors P0; P1; P2; P3; P4; P5; P6; P7; P8, and P9 are 10, 11, 11, 12, 10, 19, 16,
13, 13, and 13, respectively. The corresponding processor graph of Figure 2(a) is
shown in Figure 2(b).

3.2. Calculate the under-load and over-load weights of processors

In a processor graph, let load�Pi� denote the number of nodes assigned to proces-
sor Pi, quota�Pi� = N/P is the balanced load for processor Pi, and weight�Pi� =
load�Pi� − quota�Pi�. If load�Pi� > quota�Pi�, processor Pi is called an over-loaded
processor and the value of weight�Pi� is called the over-loaded weight of processor
Pi. If load�Pi� < quota�Pi�, processor Pi is called an under-loaded processor and
the value of weight�Pi� is called the under-loaded weight of processor Pi. Other-
wise, Pi is called a balanced processor. Based on the processor graph obtained in
phase 1 and above definitions, we can calculate the under-loaded and over-loaded
weights of processors. Table 1 shows the under-loaded and over-loaded weights of
the processors shown in Figure 2.

3.3. Determine a load transfer sequence by using the dynamic diffusion heuristic

A load transfer sequence for processors can be determined by using the dynamic
diffusion heuristic. Assume that a processor graph G = �V;E� is given. The dynamic
diffusion heuristic is performed as follows:

Step 1: Sort processors in G according to their degrees in ascending order.
Step 2: Starting from the processor with the smallest degree, find processor Pv

that satisfies the following conditions. If there are two or more candidate
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Table 1. The under-loaded/over-loaded weights of processors shown in Figure 2

weight
Processor load quota (under-loaded/over-loaded)

0 10 13 −3
1 11 13 −2
2 11 13 −2
3 12 13 −1
4 10 13 −3
5 19 13 6
6 16 13 3
7 13 13 0
8 13 12 1
9 13 12 1

processors, select the processor that has the smallest under-loaded/over-
loaded weight of candidate processors.

(a) The removal of Pv from G will not break G into two or more
components.

(b) Pv is an over-loaded/balanced processor or if Pv is an under-loaded
processor, the load of one of its neighboring processors is greater than
its under-loaded weight.

Step 3: If no processor satisfies the conditions listed in Step 2, then select pro-
cessor Pv that has the largest load in G. Mark processor Pv.

Step 4: If Pv is an under-loaded processor, then Pv needs to receive �load�Pv� −
quota�Pv�� nodes from its neighbor processor Pu, where Pu is one of the
neighbor processors of Pv with the largest load. Record the send/receive
relation and update the values of load�Pv� and load�Pu�.

Step 5: If Pv is an over-loaded processor, then Pv needs to send load�Pv� −
quota�Pv� nodes to its neighbor processor Pw, where Pw is one of its
neighbor processors with the smallest load and Pw has not been marked.
Record the send/receive relation and update the values of load�Pv� and
load�Pw�.

Step 6: If the removal of processor Pv from G will not break G into two or more
components, then remove Pv from G and clear all marks of processors.

Step 7: Perform Step 1 to Step 6 until the load of processors is balanced.

In the dynamic diffusion method, it tries to balance the load of one processor in
each diffusion step. We have two possible cases. The first case is that we can find
a processor Pv that satisfies the conditions listed in Step 2. In Step 2, if condition
(a) is not satisfied, the removal of Pv from G will break G into two or more com-
ponents. The consequence is that the dynamic diffusion method may not be able to
balance the load of processors because processors can only transfer nodes to pro-
cessors in the same component. Condition 2(b) ensures that a processor can receive
the desired nodes from one of its neighbors if it is an under-loaded processor. If
processor Pv satisfies the conditions listed in Step 2, we can balance the load of Pv
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in current diffusion step. Once the load of Pv is balanced, it is deleted from the
processor graph and will not be involved in the subsquent diffusion steps.

The second case is that we cannot find a processor that satisfies the conditions
listed in Step 2. Therefore, the processor Pv selected in Step 3 is an over-loaded
processor and the removal of Pv from G will break G into two or more componets.
In this case, the load of Pv will be balanced in Step 5 and Pv will not be deleted
from G in Step 6. Whenever a processor is marked, the load of the processor
is balanced. Therefore, it is impossible to mark all processors in G; otherwise the
load of processors will be balanced. It turns out that we can find a processor Px that
satisfies the conditions listed in Step 2 after several processors were marked. Then,
the load of Px can be balanced and Px can be removed from G in the next diffusion
step. For a given processor graph with P processors, at most P − 1 processors can be
marked. In the worst case, after P ×�P + 1�/2 diffusion steps, the load of processors
can be balanced. We now give an example to show the behavior of the dynamic
diffusion heuristic.

Example 2. Figure 3 shows a step by step example of determining the load transfer
sequence by using the dynamic diffusion heuristic for the processor graph shown
in Figure 3(a). Initially, the degrees of processors P0, P1, P2, P3, P4, P5, P6, P7,
P8, P9, P10, P11, and P12 are 2, 5, 4, 3, 4, 2, 3, 5, 2, 2, 2, 4, and 2, respectively.
The values of load, quota, and weight (under-loaded or over-loaded) of proces-
sors shown in Figure 3(a) are given in Table 2. When apply the dynamic diffusion
heuristic to the processor graph shown in Figure 3(a), processors P5, P8, P9, P10,
and P12 satisfy the conditions listed in Step 2. Since P10 has the smallest under-
loaded/over-loaded weight among these five candidate processors, P10 is selected.
Since weight�P10� = 0, no send/receive relation is recorded in this diffusion step
and P10 is removed from Figure 3(a). We obtain a new processor graph shown in
Figure 3(b). Figure 3(c) to Figure 3(g) can be obtained in a similar manner as that
of Figure 3(b).

When apply the dynamic diffusion heuristic to the processor graph shown in
Figure 3(g), no processor satisfies the conditions listed in Step 2. Since P6 has
the largest load among processors, P6 is selected as the candidate processor and
is marked. P6 has two neighbor processors, P1 and P11. Since P1 has the smallest
load in the neighbor processors of P6 and P1 has not been marked, a send/receive
relation, P6

49−→P1, is recorded in this diffusion step. Since P6 does not satisfy the
conditions listed in Step 2, P6 is not removed from the processor graph shown in
Figure 3(g). We obtain the processor graph shown in Figure 3(h). From Figure 3(h),
we can see that if P6 is removed from the processor graph, the load of processors
cannot be balanced. Continuing to apply the dynamic diffusion heuristic to the
processor graph shown in Figure 3(h), processor P0 satisfies the conditions listed

in Step 2. A send/receive relation, P1
8−→P0, is recorded in this diffusion step, P0

is removed from Figure 3(h), and all marks are cleared. We obtain the processor
graph shown in Figure 3(i). Figure 3(j) to Figure 3(n) can be obtained in a similar
manner as that of Figure 3(b). After the execution of the dynamic diffusion heuristic



a dynamic diffusion optimization method 99

Figure 3. A step by step determination of the load transfer sequence by using the dynamic diffusion
heuristic for the processor graph shown in (a).

is terminated, we obtain the following load transfer sequence,

P5
8←−P3; P3

2←−P4; P9
21−→P7; P8

23−→P7; P7
59−→P6; P6

49−→P1; P0
8←−P1;

P2
8←−P1; P4

8←−P1; P1
16−→P6; P6

16−→P11; and P11
8−→P12:
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Table 2. The under-loaded/over-loaded weights of processors shown in Figure 3(a)

weight

Processor load quota (under-loaded/over-loaded)

0 7 15 −8
1 6 15 −9
2 7 15 −8
3 21 15 6
4 9 15 −6
5 7 15 −8
6 5 15 −10
7 30 15 15
8 38 15 23
9 31 15 16

10 15 15 0
11 7 15 −8
12 7 15 −8

Theorem 1. Given a processor graph G = �V;E� and the values of load and
quota of processors, the dynamic diffusion heuristic can balance the load of
processors.

Proof. When determining load transfer sequence, in each diffusion step, processor
Pv selected falls into one of the following cases.

Case 1: Pv satisfies the conditions listed in Step 2.
Case 2: Pv is an over-loaded processor and the removal of Pv from G will break

G into two or more components.

If processor Pv selected in each diffusion step falls into case 1, the load of pro-
cessors can be balanced after P − 1 diffusion steps. If processor Pv selected in some
diffusion steps falls into case 2, the load of Pv will be balanced in Step 5 and Pv will
not be deleted from G in Step 6. Since it is impossible to mark all processors in G
(otherwise the load of processors is balanced), we can find a processor Px that satis-
fies the conditions listed in Step 2 after several processors were marked (a sequence
of diffusion steps). Then, the load of Px can be balanced, Px can be removed from
G, and all marks will be reset in next diffusion step. For a given processor graph
with P processors, at most P − 1 processors can be marked. In the worst case, after
P × �P + 1�/2 diffusion steps, the load of processors can be balanced.

3.4. Perform the load transfer and minimize the cut-edges of boundary nodes

After the determination of the load transfer sequence, the physical load transfer
can be carried out among the processors according to the load transfer sequence.
The goals of the physical load transfer are to balance the load of processors and
to minimize the communication cost among processors. Assume that processor
Pi needs to send m nodes to processor Pj . To minimize the communication cost
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between processors Pi and Pj , Pi sends nodes that are adjacent to those in Pj (we
call these nodes as boundary nodes) to Pj . If the number of boundary nodes is
greater than m, nodes with smaller degrees will be sent from Pi and Pj . If the num-
ber of boundary nodes is less than m, the boundary nodes and nodes that are adja-
cent to the boundary nodes will be sent from Pi to Pj . After performing the physical
load transfer, the KL heuristic [14] is applied to minimize the cut-edges of boundary
nodes.

The algorithm of the dynamic diffusion method is given as follows.

Algorithm Dynamic Diffusion Method�P� �
/* P is the number of processors */
/* Phase 1 */

1. Obtain a processor graph G from the partitioning result obtained from
Jostle, Metis, or Party;
/* Phase 2 */

2. Calculate the under-load and over-load weights of processors in G;
/* Phase 3 */

3. Determine the load transfer sequence by using the dynamic diffusion
heuristic;
/* Phase 4 */

4. doparallel �
5. Perform the load transfer according to the load transfer sequence;
6. Reduce the cut-edges of boundary nodes by using the KL heuristic; �
end of Dynamic Diffusion Method

4. Performance evaluation and experimental results

To evaluate the performance of the dynamic diffusion method, three 2D and two
3D irregular finite element graphs are used as test samples. To obtain the three 2D
irregular finite element graphs, we use the distributed irregular mesh environment
(DIME) [23] to generate the initial irregular finite element graphs. We then use our
mesh refinement tool to get the desired graphs. The two 3D finite element graphs,
human femur and tibia, are produced by using our auto mesh generation program
on source images obtained from CT (computer tomography). These five irregular
finite element graphs are shown in Figure 4. The number of nodes, the number of
elements, and the number of edges of these five irregular finite element graphs are
given in Table 3. For presentation purposes, the number of nodes, the number of
elements, and the number of edges of the irregular finite element graphs shown in
Figure 4 are less than those shown in Table 3.

To get the experimental results, each test sample with 3% and 5% load imbal-
ance cases on 10, 30, and 50 processors are tested. For each case, Jostle [20], Metis
[12], and Party [17] are used to partition the test graph. Their partitioned results
are then optimized by the dynamic diffusion method, the directed diffusion method
(DD), and the multilevel diffusion method (MD). The programs of the directed
diffusion method and the multilevel diffusion method used for the performance
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Figure 4. The test samples.
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Table 3. The number of nodes, elements, and edges of the test samples

Samples #nodes #elements #edges

Hook 80494 158979 239471
Letter 106215 126569 316221
Truss 57081 91968 169518
Femur 477378 953344 1430784
Tibia 557058 1114112 1671168

comparison were provided by Jostle [20]. By combining the partitioning methods
and methods for optimization, there are twelve methods, denoted by Mφ = �Jostle,
Metis, Party, Jostle/DD, Metis/DD, Party/DD, Jostle/MD, Metis/MD, Party/MD,
Jostle/DDM, Metis/DDM, Party/DDM�, used for the performance comparison. In
Mφ, Jostle means that the partitioning method provided in Jostle is used to per-
form the partitioning without optimization. Metis/DDM means that the partitioning
method provided in Metis is used to perform the partitioning and the dynamic diffu-
sion method is used to optimize the partitioned result. In the following, we compare
these methods in terms of the total cut-edges and the execution time of a Laplace
solver of the partitioned/optimized results of test cases on an IBM SP2 parallel
machine.

4.1. The total cut-edges

Table 4 to Table 8 show the total cut-edges and the maximum cut-edges of proces-
sors for test samples with 3% and 5% load imbalance on 10, 30, and 50 proces-
sors under different partitioning and/or optimization schemes. The total cut-edge
is defined as the sum of the cut-edge of each processor. The maximum cut-edge is
defined as the largest cut-edge of processors. Tables 4–6 show the total cut-edges
and the maximum cut-edges of the three 2D test samples under different partition-
ing/optimization methods. In Tables 4–6, for Jostle, Metis, and Party, the dynamic

Table 4. The comparison of the total cut-edges and the maximum cut-edges for test sample Hook

10 processors 30 processors 50 processors

3% 5% 3% 5% 3% 5%

Method Max Total Max Total Max Total Max Total Max Total Max Total

Jostle 233 1699 247 1732 162 4188 148 4255 142 6333 144 6214
Jostle/DD 233 1703 242 1748 162 4193 157 4215 141 6307 140 6189
Jostle/MD 229 1681 242 1745 160 4173 146 4157 142 6334 143 6125
Jostle/DDM 227 1644 230 1660 151 4085 148 4133 141 6020 144 6258
Metis 232 1716 210 1616 175 4381 175 4403 130 6296 118 6105
Metis/DD 229 1769 211 1687 175 4434 173 4439 128 6272 120 6193
Metis/MD 233 1760 217 1683 176 4391 173 4394 132 6190 118 6078
Metis/DDM 206 1610 206 1613 167 4362 150 4394 126 6367 117 6101
Party 236 1758 236 1789 176 4774 176 4745 157 6534 143 6480
Party/DD 227 1759 238 1797 176 4781 176 4778 157 6566 166 6392
Party/MD 228 1775 239 1791 181 4768 169 4739 151 6437 141 6533
Party/DDM 218 1743 221 1778 176 4800 167 4714 155 6501 143 6382
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Table 5. The comparison of the total cut-edges and the maximum cut-edges for test sample Letter

10 processors 30 processors 50 processors

3% 5% 3% 5% 3% 5%

Method Max Total Max Total Max Total Max Total Max Total Max Total

Jostle 270 2110 281 2005 187 5187 161 4966 159 7246 149 7114
Jostle/DD 270 2107 291 2062 187 5192 161 5077 159 7279 148 7154
Jostle/MD 266 2084 273 1995 187 5133 155 5054 153 7179 150 7132
Jostle/DDM 249 1919 267 1955 167 4934 152 4785 144 6949 147 6886
Metis 271 2020 303 2052 211 5408 247 5225 176 7311 147 7491
Metis/DD 275 2078 299 2121 210 5423 240 5330 175 7341 147 7551
Metis/MD 277 2052 295 2063 200 5296 182 5103 175 7252 140 7450
Metis/DDM 234 1878 248 1906 200 5145 184 5035 155 7025 144 7408
Party 325 2712 326 2711 250 5502 249 5490 164 7822 160 7753
Party/DD 325 2721 326 2718 250 5522 249 5517 171 7838 160 7785
Party/MD 322 2504 326 2697 245 5354 244 5483 162 7770 156 7724
Party/DDM 325 2634 326 2714 250 5466 244 5450 157 7750 153 7658

diffusion method and the multilevel diffusion method can improve their total cut-
edges and maximum cut-edges in most test cases. The directed diffusion method
fails to improve their total cut-edges and maximum cut-edges in many test cases.
Moreover, the total cut-edges and the maximum cut-edges produced by the dynamic
diffusion method are less than those of the directed diffusion method and the multi-
level diffusion method in most test cases. For the three partitioning methods, Jostle
produces the smallest total cut-edges and the smallest maximum cut-edges in most
test cases.

Tables 7 and 8 show the total cut-edges and the maximum cut-edges of the two 3D
test samples under different partitioning and/or optimization schemes. In Tables 7
and 8, for Jostle and Metis, the dynamic diffusion method can improve their total
cut-edges and maximum cut-edges for all test cases. However, the directed diffusion
method and the multilevel diffusion method fail to improve their total cut-edges and
maximum cut-edges in some test cases. The total cut-edges and the maximum cut-

Table 6. The comparison of the total cut-edges and the maximum cut-edges for test sample Truss

10 processors 30 processors 50 processors

3% 5% 3% 5% 3% 5%

Method Max Total Max Total Max Total Max Total Max Total Max Total

Jostle 218 2073 184 2053 121 4279 125 4387 107 5955 99 5753
Jostle/DD 218 2073 184 2050 122 4314 123 4395 107 5953 96 5792
Jostle/MD 223 2111 180 2049 121 4255 115 4327 106 5875 96 5732
Jostle/DDM 202 1960 177 1924 109 4031 116 4214 102 5787 97 5614
Metis 209 2267 212 2146 143 4520 153 4405 105 5895 114 5930
Metis/DD 209 2265 213 2171 143 4533 154 4440 105 5896 116 5956
Metis/MD 195 2238 191 2111 140 4510 154 4399 101 5839 114 5931
Metis/DDM 191 2158 184 2029 129 4276 129 4193 101 5676 109 5667
Party 265 2435 258 2404 135 4686 140 4687 148 5916 148 5902
Party/DD 265 2438 258 2412 135 4710 140 4722 147 5948 147 5947
Party/MD 274 2427 258 2404 156 4706 135 4670 97 5874 100 5959
Party/DDM 267 2332 252 2343 133 4650 132 4634 94 5658 96 5638
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Table 7. The comparison of the total cut-edges and the maximum cut-edges for test sample Femur

10 processors 30 processors 50 processors

3% 5% 3% 5% 3% 5%

Method Max Total Max Total Max Total Max Total Max Total Max Total
Jostle 634 5480 628 5286 440 15146 392 14907 310 20067 285 19353
Jostle/DD 634 5478 628 5284 440 15123 392 14927 310 19897 286 19405
Jostle/MD 632 5462 628 5280 440 15062 386 14879 310 20075 285 19384
Jostle/DDM 624 5148 618 5122 398 14304 371 14330 308 18826 276 18798
Metis 872 5916 786 6012 430 14971 433 14825 324 19850 308 19688
Metis/DD 880 5976 762 5870 430 14967 435 14916 324 19848 308 19682
Metis/MD 838 6074 766 6100 429 14917 408 15056 318 19817 308 19662
Metis/DDM 736 5184 734 5710 415 14462 388 13976 314 19548 290 18878
Party 514 4626 514 4624 372 13973 372 14169 267 18856 267 18891
Party/DD 516 4640 516 4638 372 13989 372 14198 267 18913 267 18964
Party/MD 516 4642 518 4644 372 13973 372 14176 271 18914 270 18967
Party/DDM 516 4638 516 4634 349 13798 366 14048 280 19173 262 18626

edges produced by the dynamic diffusion method are less than those of the directed
diffusion method and multilevel diffusion method for all test cases. For Party, the
dynamic diffusion method can improve its total cut-edges and maximum cut-edges in
most test cases. However, the directed diffusion method and the multilevel diffusion
method fail to improve its total cut-edges and maximum cut-edges in most test cases.
The total cut-edges and the maximum cut-edges produced by the dynamic diffusion
method are less than those of the directed diffusion method and multilevel diffusion
method in most test cases. For the three partitioning methods, Party produces the
smallest total cut-edges and the smallest maximum cut-edges for all test cases.

4.2. The execution time of a Laplace solver

To map an N-node finite element graph onto a P-processor distributed memory
multicomputer, we need to assign nodes of the graph to processors of the multi-

Table 8. The comparison of the total cut-edges and the maximum cut-edges for test sample Tibia

10 processors 30 processors 50 processors

3% 5% 3% 5% 3% 5%

Method Max Total Max Total Max Total Max Total Max Total Max Total

Jostle 743 9257 698 9057 528 17553 424 16932 411 22620 338 21922
Jostle/DD 743 9257 698 9057 528 17542 424 16930 411 22614 338 21887
Jostle/MD 741 9195 690 9032 524 17364 443 16790 397 22404 326 21738
Jostle/DDM 690 8337 675 8655 420 15403 377 15651 353 20495 299 19719
Metis 805 9559 818 9372 519 17749 530 17091 386 22555 385 22391
Metis/DD 805 9559 818 9372 519 17745 530 17091 384 22530 383 22388
Metis/MD 801 9549 818 9362 514 17532 507 17069 370 22395 383 22320
Metis/DDM 695 8353 741 8346 499 15682 399 15423 273 19945 339 20325
Party 696 8639 682 8664 414 16064 444 16069 339 21403 331 21222
Party/DD 697 8644 684 8677 414 16085 445 16116 341 21458 330 21302
Party/MD 726 8902 715 8781 412 16068 444 16070 338 21559 331 21308
Party/DDM 686 8393 670 8279 397 15445 439 15469 342 20601 328 20868
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computer. There are PN mappings. The execution time of a finite element graph
on a distributed memory multicomputer under a particular partitioning/optimization
method Li can be defined as follows:

Tpar�Li� = max�Tcomp�Li; Pj� + Tcomm�Li; Pj��; (1)

where Tpar�Li� is the execution time of a finite element application program on a
distributed memory multicomputer under Li, Tcomp�Li; Pj� is the computation cost
of processor Pj under Li, and Tcomm�Li; Pj� is the communication cost of processor
Pj under Li, where i = 1; :::; PN and j = 0; :::; P − 1.

The cost model used in Equation 1 is assuming a synchronous communication
mode in which each processor goes through a computation phase followed by a
communication phase. Therefore, the computation cost of processor Pj under a
partitioning/optimization method Li can be defined as follows:

Tcomp�Li; Pj� = S × loadi�Pj� × Ttask; (2)

where S is the number of iterations performed by a finite element method, loadi�Pj�
is the number of nodes of a finite element graph assigned to processor Pj , and Ttask
is the time for a processor to execute a task.

In general, it is possible to overlap the communication with the computation.
In this case, Tcomm�Li; Pj� may not always reflect the true communication cost
since it could be partially overlapped with that of the computation. However,
Tcomm�Li; Pj� can provide a good estimate for the communication cost. Since we
use a synchronous communication mode, Tcomm�Li; Pj� can be defined as follows:

Tcomm�Li; Pj� = S × �δ× Tsetup +φ× Tc�; (3)

where S is the number of iterations performed by a finite element method, δ is the
number of processors that processor Pj has to send data to in each iteration, Tsetup
is the setup time of the I/O channel, φ is the total number of bytes that processor
Pj has to send out in each iteration, and Tc is the data transmission time of the I/O
channel per byte.

In our experimental test, a finite element application program is a Laplace
solver. Tables 9–13 show the time of a Laplace solver to execute one itera-
tion (computation + communication) for test cases under different partition-
ing/optimization methods. Comparing Tables 4–8 and Tables 9–13, for the same
test case, if the total cut-edge produced by a partitioning/optimization method Li is
less than that of another Lj , in general, the execution time of a Laplace solver for
the test case under Li is less than that of Lj . However, there are some exceptions.
For example, for the test sample Femur, the total cut-edges produced by Party and
Party/DDM are 4626 and 4638, respectively, for the case where 3% load imbalance
and 10 processors are tested. The execution time of a Laplace solver for the test
case under Party and Party/DDM is 737.694 and 737.302 milliseconds. The reason
is that Party allows 3% load imbalance while Party/DDM fully balances the load
of processors. The performance gain of the total cut-edge (the communication) of
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Table 9. The time comparison of a Laplace solver to execute one iteration (computation+
communication) for test sample Hook (time unit: 1× 10−3 second)

10 processors 30 processors 50 processors

Method 3% 5% 3% 5% 3% 5%

Jostle 143.967 149.744 64.677 65.032 56.364 47.800
Jostle/DD 144.687 147.205 66.126 65.461 55.528 46.512
Jostle/MD 144.030 145.596 64.277 62.473 56.259 47.214
Jostle/DDM 142.754 142.665 60.383 61.097 46.169 46.017
Metis 149.494 143.919 64.659 64.918 47.011 43.385
Metis/DD 147.774 142.346 65.330 63.585 48.251 48.041
Metis/MD 148.726 142.589 65.474 63.071 44.628 42.241
Metis/DDM 140.089 138.901 62.878 60.317 50.720 43.595
Party 143.779 144.514 71.496 70.830 61.555 57.736
Party/DD 144.555 145.105 69.985 73.479 60.583 57.582
Party/MD 144.253 144.620 70.201 70.625 54.717 55.676
Party/DDM 142.621 142.138 71.039 69.016 57.068 52.695

Party is offset by the 3% load imbalance (the computation). From this example, we
can see that the load balancing is an important factor for the overall performance
of a finite element application program on a distributed memory multicomputer.

5. Conclusions

In this paper, we have proposed a dynamic diffusion method to optimize the parti-
tioning results of three partitioners, Jostle, Metis, and Party. For these three graph
partitioners, in order to minimize the total cut-edges, in general, they allow 3% to
5% load imbalance among processors. This is a tradeoff between the communica-
tion cost and the computation cost of the partitioning problem. To evaluate the
dynamic diffusion method, three 2D and two 3D irregular finite element graphs are

Table 10. The time comparison of a Laplace solver to execute one iteration (computation+
communication) for test sample Letter (time unit: 1× 10−3 second)

10 processors 30 processors 50 processors

Method 3% 5% 3% 5% 3% 5%

Jostle 189.600 189.548 83.602 81.175 63.059 60.049
Jostle/DD 189.449 191.055 82.721 84.848 63.863 61.663
Jostle/MD 188.318 185.996 82.418 82.150 60.305 60.916
Jostle/DDM 183.259 185.266 73.162 73.925 52.717 53.912
Metis 190.485 194.287 87.856 91.855 64.274 57.089
Metis/DD 192.009 193.601 87.116 92.541 65.873 58.323
Metis/MD 189.752 191.690 81.950 80.108 62.324 55.134
Metis/DDM 180.614 181.738 77.699 76.551 55.400 52.685
Party 195.709 190.673 89.790 85.635 66.727 61.881
Party/DD 197.177 189.761 89.371 86.569 66.438 64.311
Party/MD 191.658 190.040 83.799 85.730 58.488 61.306
Party/DDM 192.993 190.679 86.401 83.221 59.259 57.816
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Table 11. The time comparison of a Laplace solver to execute one iteration (computation+
communication) for test sample Truss (time unit: 1× 10−3 second)

10 processors 30 processors 50 processors

Method 3% 5% 3% 5% 3% 5%

Jostle 112.879 110.270 55.962 53.933 40.941 39.785
Jostle/DD 112.438 108.844 56.793 53.415 42.140 40.364
Jostle/MD 114.403 109.373 55.791 51.265 40.482 38.655
Jostle/DDM 107.637 104.634 48.332 47.353 36.731 35.837
Metis 111.879 113.619 58.341 57.525 43.324 45.798
Metis/DD 112.949 114.057 57.373 59.411 43.659 46.678
Metis/MD 110.538 109.853 56.584 56.768 40.190 46.874
Metis/DDM 106.363 107.066 49.365 49.432 35.269 38.065
Party 119.516 116.319 56.287 57.536 52.230 51.821
Party/DD 118.104 117.119 57.050 57.759 51.794 53.552
Party/MD 118.465 117.008 58.530 55.573 42.807 44.907
Party/DDM 115.165 115.499 54.296 53.317 35.580 35.233

used as test samples. For each test sample, 3% and 5% load imbalance situations
are tested. We compare the performance of the dynamic diffusion method with the
directed diffusion method and the multilevel diffusion method in terms of the total
cut-edges and the execution time of a Laplace solver for the test samples on an
IBM SP2 parallel machine. From the experimental results, we have the following
conclusions.

1. The dynamic diffusion method can improve the partitioning results of these three
partitioners in terms of the total cut-edges and the execution time of a Laplace
solver in most test cases while the directed diffusion method and the multilevel
diffusion method may fail in many cases.

2. The optimization results of the dynamic diffusion method are better than those
of the directed diffusion method and the multilevel diffusion method in terms

Table 12. The time comparison of a Laplace solver to execute one iteration (computation+
communication) for test sample Femur (time unit: 1× 10−3 second)

10 processors 30 processors 50 processors

Method 3% 5% 3% 5% 3% 5%

Jostle 759.047 754.324 304.355 290.988 214.713 191.519
Jostle/DD 759.062 753.533 303.829 292.203 208.482 193.983
Jostle/MD 758.358 753.265 300.654 290.863 214.428 193.731
Jostle/DDM 749.339 747.962 274.690 272.789 175.536 173.163
Metis 803.828 803.167 292.515 303.963 187.649 201.726
Metis/DD 798.190 767.846 293.150 305.408 188.231 201.162
Metis/MD 796.600 773.730 292.584 307.310 185.608 199.893
Metis/DDM 760.287 759.359 277.461 273.821 177.603 174.247
Party 737.694 736.367 278.361 276.135 173.300 181.736
Party/DD 737.739 738.451 278.391 276.271 174.858 183.251
Party/MD 739.333 739.401 276.395 275.865 175.594 183.024
Party/DDM 737.302 737.412 270.134 270.709 178.754 173.322
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Table 13. The time comparison of a Laplace solver to execute one iteration (computation+
communication) for test sample Tibia (time unit: 1× 10−3 second)

10 processors 30 processors 50 processors

Method 3% 5% 3% 5% 3% 5%

Jostle 904.997 885.558 391.656 355.122 272.735 268.391
Jostle/DD 904.193 884.955 391.139 355.921 274.300 267.793
Jostle/MD 902.412 883.184 385.988 351.614 265.971 262.086
Jostle/DDM 871.809 870.054 316.324 311.341 203.858 198.662
Metis 920.364 915.677 389.514 379.094 285.797 268.843
Metis/DD 921.352 917.348 388.046 378.505 284.380 269.445
Metis/MD 919.571 915.816 381.623 376.092 278.865 268.104
Metis/DDM 874.137 879.595 324.007 315.079 195.532 201.867
Party 881.222 886.099 334.580 336.531 230.737 216.396
Party/DD 883.332 886.816 334.693 340.031 232.150 216.945
Party/MD 891.727 890.122 333.267 337.882 233.089 217.967
Party/DDM 871.196 869.823 313.723 318.067 205.151 205.033

of the total cut-edges and the execution time of a Laplace solver for most test
cases.

3. The dynamic diffusion method can balance the load of processors for all test
cases.
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