
Ž .The Journal of Supercomputing, 15, 25]49 2000
Q 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Prefix Code Matching Parallel Load-Balancing
Method for Solution-Adaptive Unstructured
Finite Element Graphs on Distributed
Memory Multicomputers
YEH-CHING CHUNG, CHING-JUNG LIAO,
DON-LIN YANG ychung, cjliao, dlyang@iecs.fcu.edu.tw

Department of Information Engineering, Feng Chia Unï ersity, Taichung, Taiwan 407, ROC

Ž .Receï ed February 18, 1998; final ¨ersion accepted No¨ember 13, 1998.

Ž .Abstract. In this paper, we propose a prefix code matching parallel load-balancing method PCMPLB
to efficiently deal with the load imbalance of solution-adaptive finite element application programs on
distributed memory multicomputers. The main idea of the PCMPLB method is first to construct a prefix
code tree for processors. Based on the prefix code tree, a schedule for performing load transfer among
processors can be determined by concurrently and recursively dividing the tree into two subtrees and
finding a maximum matching for processors in the two subtrees until the leaves of the prefix code tree
are reached. We have implemented the PCMPLB method on an SP2 parallel machine and compared its
performance with two load-balancing methods, the directed diffusion method and the multilevel
diffusion method, and five mapping methods, the AErORB method, the AErMC method, the ML kP
method, the PARTY library method, and the JOSTLE-MS method. An unstructured finite element
graph Truss was used as a test sample. During the execution, Truss was refined five times. Three
criteria, the execution time of mappingrload-balancing methods, the execution time of an application
program under different mappingrload-balancing methods, and the speedups achieved by mappingr
load-balancing methods for an application program, are used for the performance evaluation. The

Ž .experimental results show that 1 if a mapping method is used for the initial partitioning and this
mapping method or a load-balancing method is used in each refinement, the execution time of an

Ž .application program under a load-balancing method is less than that of the mapping method. 2 The
execution time of an application program under the PCMPLB method is less than that of the directed
diffusion method and the multilevel diffusion method.

Keywords: distributed memory multicomputers, partitioning, mapping, remapping, load balancing,
solution-adaptive unstructured finite element models

1. Introduction

The finite element method is widely used for the structural modeling of physical
w xsystems 27 . To solve a problem using the finite element method, in general, we

need to establish the finite element graph of the problem. A finite element graph is
a connected and undirected graph that consists of a number of finite elements.
Each finite element is composed of a number of nodes. The number of nodes of a
finite element is determined by an application. In Figure 1, an example of a
21-node finite element graph consisting of 24 finite elements is shown. Due to the



CHUNG, LIAO AND YANG26

ŽFigure 1. An example of a 21-node finite element graph with 24 finite elements the circled and
.uncircled numbers denote the node numbers and finite element numbers, respectively .

properties of computation-intensiveness and computation-locality, it is very attrac-
tive to implement the finite element method on distributed memory multicomput-

w xers 1, 41]42, 47]48 . In the context of parallelizing a finite element application
w xprogram that uses iterative techniques to solve a system of equations 2]3 , a

parallel program may be viewed as a collection of tasks represented by nodes of a
finite element graph. Each node represents a particular amount of computation
and can be executed independently.

To efficiently execute a finite element application program on a distributed
memory multicomputer, we need to map nodes of the corresponding graph to
processors of the multicomputer such that each processor has approximately the
same amount of computational load and the communication among processors is

w xminimized. Since this mapping problem is known to be NP-complete 13 , many
wheuristic methods were proposed to find satisfactory suboptimal solutions 4]6, 8,

x10]11, 14]15, 17]18, 24]26, 29, 31, 33, 35, 41, 43]44, 47]48 .
If the number of nodes of a finite element graph does not increase during the

execution of a finite element application program, the mapping algorithm only
needs to be performed once. For a solution-adaptive finite element application
program, the number of nodes increases discretely due to the refinement of some
finite elements during the execution. This may result in load imbalance of proces-
sors. A node remapping or a load-balancing algorithm has to be performed many
times in order to balance the computational load of processors while keeping the
communication cost among processors as low as possible. For the node remapping
approach, some mapping algorithms can be used to partition a finite element graph
from scratch. For the load-balancing approach, some load-balancing algorithms can
be used to perform the load balancing process according to the current load of
processors. Since node remapping or load-balancing algorithms are performed at
run-time, their execution must be fast and efficient.



A PREFIX CODE 27

In this paper, we propose a prefix code matching parallel load-balancing
Ž .PCMPLB method to efficiently deal with the load imbalance of solution-adaptive
finite element application programs on distributed memory multicomputers. In a
finite element graph, the value of a node n depends on the values of node n and
other nodes that are in the same finite elements of node n . For example, in Figure
1, nodes 3, 5, and 6 form element 3, nodes 5, 6, and 9 form element 5, and nodes 6,
9, and 10 form element 8. The value of node 6 depends on the values of node 6,
node 3, node 5, node 9, and node 10. When nodes of a solution-adaptive finite
element graph were evenly distributed to processors by some mapping algorithms,
two processors, P and P , need to communicate to each other if two nodes in thei j
same finite element are mapped to P and P , respectively. According to thisi j
communication property of a partitioned finite element graph, we can get a
processor graph from the mapping. In a processor graph, nodes represent the
processors and edges represent the communication needed among processors. The
weights associated with nodes and edges denote the computation and the commu-

Ž .nication costs, respectively. Figure 2 a shows a mapping of Figure 1 on 7 proces-
Ž . Ž .sors. The corresponding processor graph of Figure 2 a is shown in Figure 2 b .

When a finite element graph is refined at run-time, it may result in load imbalance
of processors. To balance the computational load of processors, the PCMPLB
method is first to construct a prefix code tree for processors according to the
processor graph, where the leaves of the prefix code tree are processors. Based on
the prefix code tree, a schedule for performing load transfer among processors can
be determined by concurrently and recursively dividing the tree into two subtrees
and finding a maximum matching for processors in the two subtrees until the
leaves of the prefix code tree are reached.

We have implemented this method on an SP2 parallel machine and compared its
wperformance with two load-balancing methods, the directed diffusion method 9,

x w x44 and the multilevel diffusion method 37]38 , and five mapping methods, the

Ž . Ž .Figure 2. a A mapping of Figure 1 on 7 processors. b The corresponding processor graph of Fig-
Ž .ure 2 a .



CHUNG, LIAO AND YANG28

w x w xAErORB method 4, 8, 29, 48 , the AErMC method 8, 10, 12, 14, 26 , the ML kP
w x w xmethod 24 , the PARTY library method 35 , and the JOSTLE-MS method

w x43]46 . An unstructured finite element graph Truss was used as the test sample.
During the execution, Truss was refined five times. Three criteria, the execution
time of mappingrload-balancing methods, the execution time of an application
program under different mappingrload-balancing methods, and the speedups
achieved by mappingrload-balancing methods for an application program, are used

Ž .for the performance evaluation. The experimental results show that 1 if a
mapping method is used for the initial partitioning and this mapping method or a
load-balancing method is used in each refinement, the execution time of an
application program under a load-balancing method is less than that of the

Ž .mapping method. 2 The execution time of an application program under the
PCMPLB method is less than that of the directed diffusion method and the
multilevel diffusion method.

The paper is organized as follows. The related work is given in Section 2. In
Section 3, the proposed prefix code matching parallel load-balancing method is
described in detail. In Section 4, we present the cost model of mappingrload-bal-
ancing methods for unstructured finite element graphs on distributed memory
multicomputers. The performance evaluation and simulation results are also pre-
sented in this section.

2. Related work

Many methods have been proposed to deal with the load unbalancing problems of
solution-adaptive finite element graphs on distributed memory multicomputers in
the literature. They can be classified into two categories, the remapping method
and the load redistribution method. For the remapping method, many finite
element graph mapping methods can be used as remapping methods. In general,

w xthey can be divided into five classes, the orthogonal section approach 4, 8, 29, 48 ,
w x w xthe min-cut approach 8, 10, 12, 14, 26 , the spectral approach 5]6, 41 , the

w x w xmultilë el approach 5]6, 19, 24]25 , and others 15, 31, 34, 41 . These methods
w xwere implemented in several graph partition libraries, such as Chaco 17 , DIME

w x w x w x w x w x48 , JOSTLE 45 , METIS 24]25 , PARTY 35 , Scotch 33 , and TOPrDOMDEC
w x11 , etc., to solve graph partition problems. Since our main focus is on the
load-balancing methods, we do not describe these mapping methods here.

For the load redistribution method, many load-balancing algorithms can be used
w xas load redistribution methods. In 46 , a recent comparison study of dynamic load

balancing strategies on highly parallel computers is given. The dimension exchange
Ž . w xmethod DEM is applied to application programs without geometric structure 9 .

It is conceptually designed for a hypercube system but may be applied to other
w x w xtopologies, such as k-ary n-cubes 51 . Ou and Ranka 32 proposed a linear

programming-based method to solve the incremental graph partition problem. Wu
w x39, 49 proposed the tree walking, the cube walking, and the mesh walking run
time scheduling algorithms to balance the load of processors on tree-base, cube-
base, and mesh-base paradigms, respectively.



A PREFIX CODE 29

w xHu and Blake 22 proposed a directed diffusion method that computes the
diffusion solution by using an unsteady heat conduction equation while optimally
minimizing the Euclidean norm of the data movement. They proved that the
diffusion solution could be found by solving the linear equation. The diffusion
solution l is a vector with n elements. For any two elements l , l in l, if l y li j i j
is positive, then partition i needs to send l y l nodes to partition j. Otherwise,i j

w xpartition j needs to send l y l nodes to partition i. Heirich and Taylor 16j i
proposed a direct diffusive load balancing method for scalable multicomputers.
They derived a reliable and scalable load balancing method based on properties of
the parabolic heat equation u y a=2 u s 0.t

w xHorton 20 proposed a multilevel diffusion method by recursively bisecting a
communication graph into two subgraphs and balancing the load of processors in
the two subgraphs. In each bisection, the two subgraphs are connected by one or
more edges and the difference of processors in the two subgraphs is less than or
equal to 1.

w xSchloegel et al. 38 also proposed a multilevel diffusion scheme to construct a
new partition of the graph incrementally. It contains three phases, a coarsening
phase, a multilevel diffusion phase, and a multilevel refinement phase. A parallel

w xmultilevel diffusion algorithm was also described in 37 . These algorithms perform
diffusion in a multilevel framework and minimize data movement without compris-
ing the edge-cut. Their methods also include parameterized heuristics to specifi-
cally optimize edge-cut, total data migration, and the maximum amount of data
migrated in and out of any processor.

w xWalshaw et al. 44 implemented a parallel partitioner and a directed diffusion
w xrepartitioner in JOSTLE 45 . The directed diffusion method is based on the

w xdiffusion solver proposed in 22 . It has two distinct phases, the load-balancing
phase and the local refinement phase. In the load-balancing phase, the diffusion
solution guides vertex migration to balance the load of processors. In the local
refinement phase, a local view of the graph guides vertex migration to decrease the
number of cut-edges between processors. They also developed a multilevel diffu-
sion repartitioner in JOSTLE.

w xOliker and Biswas 30 presented a novel method to dynamically balance the
processor workloads with a global view. Several novel features of their framework
were described such as the dual graph repartition, the parallel mesh repartitioner,
the optimal and heuristic remapping cost functions, the efficient data movement
and refinement schemes, and the accurate metrics comparing the computational
gain and the redistribution cost. They also developed generic metrics to model the
remapping cost for multiprocessor systems.

3. The prefix code matching parallel load-balancing method

To deal with the load imbalance of a solution-adaptive finite element application
program on a distributed memory multicomputer, a load-balancing algorithm needs
to balance the load of processors and minimize the communication among proces-
sors. Since a load-balancing algorithm is performed at run-time, the execution of a
load-balancing algorithm must be fast and efficient. In this section, we will describe



CHUNG, LIAO AND YANG30

a fast and efficient load-balancing method, the prefix code matching parallel
Ž .load-balancing PCMPLB method, for solution-adaptive finite element application

programs on distributed memory multicomputers in detail.
The main idea of the PCMPLB method is first to construct a prefix code tree for

processors. Based on the prefix code tree, a schedule for performing load transfer
among processors can be determined by concurrently and recursively dividing the
tree into two subtrees and finding a maximum matching for processors in the two
subtrees until the leaves of the prefix code tree are reached. Once a schedule is
determined, a physical load transfer procedure can be carried out to minimize the
communication overheads among processors. The PCMPLB method can be divided
into the following four phases.

Phase 1: Obtain a processor graph G from the initial partition.
Phase 2: Construct a prefix code tree for processors in G.
Phase 3: Determine the load transfer sequence by using matching theorem.
Phase 4: Perform the load transfer.

In the following, we will describe them in detail.

3.1. The processor graph

In a finite element graph, the value of a node n depends on the values of node n
and other nodes that are in the same finite elements of node n . When nodes of a
solution-adaptive finite element graph were distributed to processors by some
mapping algorithms, two processors, P and P , need to communicate to each otheri j
if two nodes in the same finite element are mapped to P and P , respectively.i j
According to this communication property of a partitioned finite element graph, we
can get a processor graph from the mapping. In a processor graph, nodes represent
the processors and edges represent the communication needed among processors.
The weights associated with nodes and edges denote the computation and the
communication costs, respectively. We now give an example to explain it.

Ž .Example 1. Figure 3 shows an example of a processor graph. Figure 3 a shows an
initial partition of a 100-node finite element graph on 10 processors by using the

Ž .ML kP method. In Figure 3 a , all processors are assigned 10 finite element nodes.
After a refinement, the number of nodes assigned to processors P , P , P , P , P ,0 1 2 3 4
P , P , P , P , and P are 10, 11, 11, 12, 10, 19, 16, 13, 13, and 13, respectively, and5 6 7 8 9

Ž . Ž .is shown in Figure 3 b . The corresponding processor graph of Figure 3 b is shown
Ž .in Figure 3 c .

3.2. The construction of a prefix code tree

Based on the processor graph, we can construct a prefix code tree. The algorithm
w xfor construction of a prefix code tree T is based on Huffman’s algorithm 23P r e f i x

and is given as follows.



A PREFIX CODE 31

Ž . Ž .Figure 3. An example of a processor graph. a The initial partitioned finite element graph. b The
Ž . Ž .finite element graph after a refinement. c The corresponding processor graph obtained from b .

Ž .Algorithm build prefix code tree G] ] ]
1 Let V be a set of P isolated vertices, where P is the number of processors

in a processor graph G. Each vertex P in V is the root of a completei
Ž .binary tree of height 0 with a weight w s 1.i

< <2 While V ) 1
�3

4 Find a tree T in V with the smallest root weight w. If there are two or
more candidates, choose the one whose leaf nodes have the smallest
degree in G.

5 For trees in V whose leaf nodes are adjacent to those in T , find a tree
T 9 with the smallest root weight w9. If there are two or more candidates,
choose the one whose leaf nodes have the smallest degree in G.

Ž .6 Create a new complete binary tree T* with root weight w* s w q w9
and having T and T 9 as its left and right subtrees, respectively.

7 Place T* in V and delete T and T 9.
48

end of build prefix code tree] ] ] ] ]

We now give an example to explain algorithm build prefix code tree.] ] ]

Example 2. An example of step by step construction of a prefix code
Ž .tree from the processor graph shown in Figure 3 c is given in Figure 4.

The degrees of processors P , P , P , P , P , P , P , P , P , and P are 3,0 1 2 3 4 5 6 7 8 9
3, 3, 6, 4, 2, 4, 4, 4, and 5, respectively. The initial configuration is shown

Ž .in Figure 4 a . In the first iteration of lines 2]8 of algorithm build pre-]
fix code tree, P has the smallest degree among those trees with root] ] 5
weight s 1. P is selected as the candidate in line 4. In line 5, both P5 6
and P are adjacent to P with root weight s 1. The degrees of P and7 5 6
P are the same. We choose P as the candidate because P has a7 6 6
smaller rank. P and P are then combined as a tree in line 6. After the5 6
execution of line 7, we obtain a new configuration as shown in Figure
Ž .4 b . In the second iteration, P is selected in line 4. P is selected in0 1



CHUNG, LIAO AND YANG32

Ž .Figure 4. A step by step construction of a prefix code tree from Figure 3 c .

line 5. After the execution of lines 6 and 7, we obtain a new configura-
Ž .tion as shown in Figure 4 c . By continuing the iteration seven times, we

Ž . Ž .can obtain Figures 4 d ]4 j .

3.3. Determine a load transfer sequence by using matching theorem

Based on the prefix code tree and the processor graph, we can obtain a communi-
cation pattern graph.



A PREFIX CODE 33

Ž .Definition 1. Given a processor graph G s V, E and a prefix code tree T ,P r e f i x
Ž .the communication pattern graph G s V , E of G and T is a subgraph ofc c c P r e f i x

Ž .G. For every P , P g E , P and P are in the left and the right subtrees ofi j c i j
T , respectively, and P , P g V .P r e f i x i j c

The communication pattern graph has several properties that can be used to
determine the load transfer sequence.

Ž .Definition 2. A graph G s V, E is called bipartite if V s V j V with V l V1 2 1 2
Ž .s f, and every edge of G is of the form a, b with a g V and b g V .1 2

Theorem 1. A communication pattern graph G is a bipartite graph.c

Ž .Proof: According to Definition 1, for every P , P g E , P and P are in the lefti j c i j
and right subtrees of T , respectively. Therefore G is a bipartite graph. IP r e f i x c

Definition 3. A subset M of E is called a matching in G if its elements are edges
and no two of them are adjacent in G; the two ends of an edge in M are said to be
matched under M. M is a maximum matching if G has no matching M9 with
< < < <M9 ) M .

Ž . Ž .Theorem 2. Let G s V, E be a bipartite graph with bipartition V , V . Then G1 2
< Ž . < < <contains a matching that saturates e¨ery ¨ertex in V if and only if N S G S for all1

Ž .S : V , where N S is the set of all neighbors of ¨ertices in S.1

w xProof: The proof can be found in 7 . I

Ž .Corollary 1. Let G s V , E be a communication pattern graph and V and Vc c c L R
are the sets of processors in the left and the right subtrees of T , respecï ely, whereP r e f i x
V , V : V . Then we can find a maximum matching M from G such that for e¨eryL R c c

Ž .element P , P g M, P g V and P g V .i j i L j R

w xProof: From Theorem 2 and Hungarian method 7 , we know that a maximum
matching M from G can be found. Ic

From the communication pattern graph, we can determine a load transfer
sequence for processors in the left and the right subtrees of a prefix code tree by
using the matching theorem to find a maximum matching among the edges of the
communication pattern graph. Due to the construction process used in Phase 2, we
can also obtain communication pattern graphs from the left and the right subtrees
of a prefix code tree. A load transfer sequence can be determined by concurrently
and recursively performing the following steps,

Step 1. Divide a prefix code tree into two subtrees,
Step 2. Construct the corresponding communication pattern graph,



CHUNG, LIAO AND YANG34

Step 3. Find a maximum matching for the communication pattern graph, and
Step 4. Determine the number of finite element nodes to be transferred among

processors,

until a tree contains only one vertex.
Assume that a processor graph has P processors and a refined finite element

graph has N nodes. We define NrP as the average load of a processor. The load
of a processor is defined as the number of finite element nodes assigned to it. Let

Ž . Ž .load P and quota P represent the load and the average load of processor P ,i i i
respectively. The algorithm to determine a load transfer sequence is given as
follows.

Ž .Algorithm determine load transfer sequence G, T] ] ] P r e f i x
1 Let ST be a set that contains the prefix code tree obtained in Phase 2 and

seq s 0;
< < �2 while ST - P r* P is the number of processors in G*r

Ž . �3 ;T g ST , if the number of vertices in T ) 1 thenP r e f i x P r e f i x
4 Let T and T be the left and the right subtrees of T , respec-L R P r e f i x

tively;
5 Find the communication pattern graph G from the processor graph Gc

and the prefix code tree T ;P r e f i x
�Ž . <6 Find a maximum matching M s P , Q P and Q are processors ini i i i

4T and T , respectively, and P and Q are adjacent in G from G ;L R i i c
Ž .7 quota T s the sum of the average load of processors in T ;R R
Ž .8 load T s the sum of the load of processors in T ;R R

Ž Ž . Ž .. �9 if load T ) quota T thenR R
10 seq s seq q 1; LS s B;seq

Ž . �11 For each P , Q in M, doi i
Ž Ž . Ž .. < <12 m s load T y quota T r M ;R R

Ž Ž . .13 if load P - m then flag s 0 else flag s 1;i
�Ž .414 LS s LS j P , Q , m, flag ;seq seq i i

Ž . Ž . Ž . Ž .15 load P s load P y m; and load Q s load Q q m;i i i i
416

417
Ž Ž . Ž . �18 else if load T - quota T thenR R

19 seq s seq q 1; LS s B;seq
Ž . �20 For each P , Q in M, doi i

Ž Ž . Ž .. < <21 m s quota T y load T r M ;R R
Ž Ž . .22 if load Q - m then flag s 0 else flag s 1;i

�Ž .423 LS s LS j Q , P , m, flag ;seq seq i i
Ž . Ž . Ž . Ž .24 load P s load P q m; and load Q s load Q y m;i i i i

425
426

27 Place T and T in ST and delete T from ST ;L R P r e f i x
428

429



A PREFIX CODE 35

r* Exception Handling *r
Ž Ž . . �30 if ' SP, RP, m, 0 g LS , where i s 1, . . . , seq theni

Ž .31 For each processor P , reset load P to its initial value;i i
Ž . �32 for k s 1; k F seq; k q q

Ž . �33 For each element SP, RP, m, flag in LS , dok
Ž Ž . .34 if load SP - m then flag s 0 else flag s 1;
Ž . � Ž . Ž . Ž . Ž .35 if flag s 1 then load SP s load SP y m; load RP s load RP
4qm

�36 else
ŽŽ .37 if SP, RP, m, flag can be performed with other elements in

. �Ž .438 LS in parallel then LS s LS j SP, RP, m, flagseq seq seq
� �Ž .4 439 else seq q q; LS s SP, RP, m, flag ;seq

�Ž .440 LS s LS y SP, RP, m, flag ;k k
441

442
443

444
end of determine load transfer sequence] ] ] ] ]

In the above description, lines 2]29 construct a load transfer sequence,
LS , LS , . . . , LS , according to the processor graph, the prefix code tree, and the1 2 seq
matching theorem. Each step LS in a load transfer sequence may contain morei
than one element. It means that the load transfer process for each processor pair
in LS can be performed in parallel. Lines 30]44 form an exception handlingi

Ž . Ž .process. For an element SP, RP, m, flag in LS , it is possible that load SP - m.i
In this case, if we perform the load transfer process, processor SP fails to send the
desired nodes to processor RP. To avoid this situation, in the exception handling

Ž .process, we postpone the execution of all elements SP, RP, m, 0 in LS by movingi
them to the end of the sequence. We have the following theorem.

Theorem 3. By executing the load transfer sequence obtained from algorithm deter-
mine load transfer sequence, the load of processors can be fully balanced.] ] ]

Proof: Assume that a processor graph has P processors and a refined finite
element graph has N nodes, where N is divisible by P. According to lines 2]29, we
know that a load transfer sequence, LS , LS , . . . , LS , can be generated. Each1 2 seq

Ž .LS is generated by lines 9]26, where i s 1, . . . , seq. For a processor SP RP ini
Ž . Ž .SP, RP, m, flag of LS , LS , . . . , LS , it needs to send receive m finite ele-1 2 seq

Ž . Ž .ment nodes to from processor RP SP . Due to the method used to determine the
load transfer numbers in lines 9]26, after a sequence of send and receive
operations, the number of nodes in each processor will be equal to NrP. We have
the following two cases.

Ž .Case 1. If the value of flag of each element SP, RP, m, flag in LS , LS ,1 2
, . . . LS is equal to 1; that is, the load of SP is always greater than or equal to m,seq



CHUNG, LIAO AND YANG36

then the load of processors can be balanced after executing the load transfer
sequence produced by lines 2]29. In this case, the load transfer sequence is
obtained according to the communication pattern graphs and the maximum match-

u ving. The value of seq is equal to log P .

Ž .Case 2. If there exists some elements SP, RP, m, 0 in LS , LS , . . . , LS , then1 2 seq
a new load transfer sequence, LSX , LSX , . . . , LSX , is produced by lines 30]44.1 2 seq
Since lines 30]44 only alter the execution order of elements in LS , LS , . . . , LS ,1 2 seq
the load transfer pairs and the number of finite element nodes needed to be
transferred between processors in the load transfer pair in LSX , . . . , LSX , are the1 seq
same as those in LS , . . . , LS . Therefore, if we can claim that the value of flag1 seq

Ž . X X Xof each element SP, RP, m, flag in LS , LS , . . . , LS , is equal to 1, then the1 2 seq
load of processors can be balanced after the load transfer sequence
LSX , LSX , . . . , LSX , is performed.1 2 seq

Ž .Let CG s V, E be a communication graph, where V is the set of processors
Ž .that appear in the first two positions of elements SP, RP, m, flag in

LSX , LSX , . . . , LSX , and E is the set of arcs that represent the sendrreceive1 2 seq9

Ž . X X Xrelations of SP and RP for elements SP, RP, m, flag in LS , LS , . . . , LS .1 2 seq9

Obviously, CG is a digraph. Assume that there exists some elements
Ž . X X XSP, RP, m, flag in LS , LS , . . . , LS in which the values of flag are equal to 0.1 2 seq9

According to lines 30]44, these elements are in LSX , . . . , LSX , where k ) 1.k seq9

When we perform load transfer according to LSX , LSX , . . . , LSX , whenever a1 2 seq9

processor sends nodes to another processor, we remove the corresponding
sendrreceive relation from CG. After steps LSX , . . . , LSX are performed, we1 ky1
have a communication graph CG9 that corresponds to the sendrreceive relations

Ž . X Xof elements SP, RP, m, flag in LS , . . . , LS . Since the value of flag for eachk seq9

Ž . X Xelement SP, RP, m, flag in LS , . . . , LS is equal to 0, each processor in CG9k seq9

needs to receive nodes from other processors of CG9 in order to balance its load.
Therefore, the in-degree of each vertex in CG9 is greater than or equal to 1. It
implies that CG9 contains loops. However, the construction of a load transfer
sequence in lines 2]29 is based on the bipartite graphs and the maximum
matching. CG contains no loops. Since CG9 is a subgraph of CG, it implies that
CG9 contains no loops either. This contradicts our assumption. Therefore, the

Ž . X X Xvalue of flag for each element SP, RP, m, flag in LS , LS , . . . , LS is equal to1 2 seq9

1. In this case, the load transfer sequence is obtained according to lines 2]29 and
Ž .lines 30]44. The number of elements SP, RP, m, flag that can be generated in

u v u vlines 2]29 is less than or equal to log P = Pr2 . Therefore, the number of steps
of the load transfer sequence generated by lines 30]44 is less than or equal to
u v u v u v u vlog P = Pr2 , i.e., seq9 F log P = Pr2 . I

We now give an example to explain the behavior of algorithm determine]
load transfer sequence.] ]

Example 3. Figure 5 shows the communication pattern graphs and the corre-
sponding maximum matching for the example shown in Figures 3 and 4 step by step

Ž .when performing algorithm determine load transfer sequence. Figure 5 a shows] ] ]
the communication pattern graph for the prefix code tree with root at level 1. In



A PREFIX CODE 37

Ž . Ž .Figure 5. The matching of the communication pattern graph. a The first matching. b The second
Ž . Ž .matching. c The third matching. d The fourth matching.

Ž .Figure 5 a , an arrow is an element of a matching. The number associated with an
arrow denotes the number of finite element nodes that a processor needs to send

� 4 �to another processor. In this case, T s P , P , P , P , T s P , P , P , P ,L 5 6 7 9 R 0 1 2 3
4 Ž . Ž . Ž . Ž .P , P , load T s 61, load T s 67, quota T s 51, and quota T s 77. Ac-4 8 L R L R

cording to line 20 of algorithm determine load transfer sequence, the processors in] ] ]
T need to receive 10 nodes from the processors in T . From the communicationR L

�Ž . Ž .pattern graph and the matching theorem, we have LS s P , P , 4, 1 , P , P , 3, 1 ,1 6 8 7 4
Ž .4 Ž . Ž .P , P , 3, 1 . Figure 5 b to Figure 5 d show the communication pattern graphs9 3
and the corresponding maximum matching for the prefix code trees with roots at
levels 2, 3, and 4, respectively. After the execution of lines 2]29 of algorithm
determine load transfer sequence, we have the following load transfer sequence.] ] ]

�Ž . Ž . Ž .4LS s P , P , 4, 1 , P , P , 3, 1 , P , P , 3, 1 ;1 6 8 9 3 7 4
�Ž . Ž . Ž . Ž .4LS s P , P , 3, 1 , P , P , 2, 1 , P , P , 3, 1 , P , P , 4, 1 ;2 5 7 6 9 3 0 8 1
�Ž . Ž . Ž .4LS s P , P , 3, 1 , P , P , 2, 1 , P , P , 1, 1 ;3 5 6 0 2 8 3
�Ž .4LS s P , P , 2, 1 .4 1 0

Ž .Since the value of flag of each element SP, RP, m, flag in LS , . . . , LS is equal1 4
to 1, the execution of algorithm determine load transfer sequence is terminated.] ] ]



CHUNG, LIAO AND YANG38

Table 1. The load of each processor in each matching

Load in each matchingInitial
Processor a weight Quota 1 2 3 4

0 10 13 10 13 11 13
1 11 13 11 15 15 13
2 11 13 11 11 13 13
3 12 13 15 12 13 13
4 10 13 13 13 13 13
5 19 13 19 16 13 13
6 16 13 12 10 13 13
7 13 13 10 13 13 13
8 13 12 17 13 12 12
9 13 12 10 12 12 12

Table 1 shows the initial load of each processor, the quota of each processor, and
the load of each processor after each matching for the given example.

3.4. Perform the physical load transfer

After the determination of the load transfer sequence, the physical load transfer
can be carried out among the processors according to the load transfer sequence in
parallel. The goals of the physical load transfer are balancing the load of proces-
sors and minimizing the communication cost among processors. Assume that
processor P needs to send m finite element nodes to processor Q . To minimizei i

the communication cost between processors P and Q , P sends finite elementi i i
Ž .nodes that are adjacent to those in Q we called these nodes as boundary nodesi

to Q . If the number of boundary nodes is greater than m, boundary nodes withi

smaller degrees will be sent from P to Q . If the number of boundary nodes is lessi i

than m, the boundary nodes and nodes that are adjacent to the boundary nodes
will be sent from P to Q .i i

The algorithm of the PCMPLB method is summarized as follows.

Ž .Algorithm Prefix Code Matching Parallel Load Balancing P, N] ] ] ] ]
r* P is the number of processors and N is the number of finite element
nodes *r

1. Obtain a processor graph G from the initial partition;
Ž .2. T s build prefix code tree G ;] ] ]

Ž .3. determine load transfer sequence G, T] ] ]
4. Transfer the finite element nodes according to the load transfer sequence

in parallel;
end of Prefix Code Matching Parallel Load Balancing] ] ] ] ] ] ]



A PREFIX CODE 39

Ž .Figure 6. The test sample Truss 7325 nodes, 14024 elements .

4. Performance evaluation and experimental results

We have implemented the PCMPLB method on an SP2 parallel machine and
compared its performance with two load-balancing methods, the directed diffusion

Ž . w x Ž . w xmethod DD 45 and the multilevel diffusion method MD 45 , and five mapping
w x w xmethods, the AErMC method 8 , the AErORB method 8 , the JOSTLE-MS

w x w x w xmethod 45 , the ML kP method 24 , and the PARTY library method 35 . Three
criteria, the execution time of mappingrload-balancing methods, the computation
time of an application program under different mappingrload-balancing methods,
and the speedups achieved by the mappingrload-balancing methods for an applica-
tion program, are used for the performance evaluation.

In dealing with the unstructured finite element graphs, the distributed irregular
Ž . w xmesh environment DIME 48 is used. DIME is a programming environment for

doing distributed calculations with unstructured triangular meshes. The mesh
covers a two-dimensional manifold, whose boundaries may be defined by straight
lines, arcs of circles, or Bezier cubic sections. It also provides functions for
creating, manipulating, and refining unstructured triangular meshes. Since the
number of nodes in an unstructured triangular mesh cannot be over 10,000 in
DIME, in this paper, we only use DIME to generate the initial test sample. From
the initial test graph, we use our refining algorithms and data structures to
generate the desired test graphs. The initial test graph used for the performance
evaluation is shown in Figure 6. The number of nodes and elements for the test
graph after each refinement are shown in Table 2. For the presentation purpose,

Table 2. The number of nodes and elements of the test graph Truss

Refinement

Initial
Ž .Samples 0 1 2 3 4 5

Truss
Node a 18407 23570 29202 36622 46817 57081
Element a 35817 46028 57181 71895 92101 112494



CHUNG, LIAO AND YANG40

the number of nodes and the number of finite elements shown in Figure 6 are less
than those shown in Table 2.

To emulate the execution of a solution-adaptive finite element application
program on an SP2 parallel machine, we have the following steps. First, we read
the initial finite element graph. Then we use the AErMC method, the AErORB
method, the JOSTLE-MS method, the ML kP method, or the PARTY library
method to map nodes of the initial finite element graph to processors. After the
mapping, the computation of each processor is carried out. In our example, the

Ž .computation is to solve Laplaces’s equation Laplace solver . The algorithm of
w xsolving Laplaces’s equation is similar to that of 2 . Since it is difficult to predict the

number of iterations for the convergence of a Laplace solver, we assume that the
maximum number of iterations executed by our Laplace solver is 1000. When
the computation is converged, the first refined finite element graph is read. To
balance the computational load of processors, the AErMC method, the AErORB
method, the JOSTLE-MS method, the ML kP method, the PARTY library method,
the directed diffusion method, the multilevel diffusion method, or the PCMPLB
method is applied. After a mappingrload-balancing method is performed, the
computation for each processor is carried out. The mesh refinement, load balanc-
ing, and computation processes are performed in turn until the execution of a
solution-adaptive finite element application program is completed.

By combining the initial mapping methods and methods for load balancing, there
are twenty methods used for the performance evaluation. We defined M sf

�AErMC, AErORB, JOSTLE-MS, ML k P, PARTY, AErMCrDD,
AErORBrDD, JOSTLE-MSrDD, ML kPrDD, PARTYrDD, AErMCrMD,
A E r O R B r M D , JO STL E -M Sr M D , M L k P r M D , P A R TY r M D ,
AErM CrPCM PLB, AErO RBrPCM PLB, JO STLE-M SrPCM PLB,

4ML kPrPCMPLB, PARTYrPCMPLB . In M , AErORB means that thef

AErORB method is used to perform the initial mapping and the AErORB
method is used to balance the computational load of processors in each refine-
ment. AErORBrPCMPLB means that the AErORB method is used to perform
the initial mapping and the PCMPLB method is used to balance the computational
load of processors in each refinement.

4.1. The cost model for mapping unstructured solution-adaptï e finite element models
on distributed memory multicomputers

To map an N-node finite element graph on a P-processor distributed memory
multicomputer, we need to assign nodes of the graph to processors of the
multicomputer. There are P N mappings. The execution time of a finite element
graph on a distributed memory multicomputer under a particular mappingrload-
balancing method L can be defined as follows:i

T L s max T L , P q T L , P , 1Ž . Ž .� 4Ž . Ž .p ar i com p i j com m i j



A PREFIX CODE 41

Ž .where T L is the execution time of a finite element application program on ap ar i
Ž .distributed memory multicomputer under L , T L , P is the computation costi com p i j

Ž .of processor P under L , and T L , P is the communication cost of processorj i com m i j
P under L , where i s 1, . . . , P N and j s 0, . . . , P y 1.j i

The cost model used in Equation 1 is assuming a synchronous communication
mode in which each processor goes through a computation phase followed by a
communication phase. Therefore, the computation cost of processor P under aj
mappingrload-balancing method L can be defined as follows:i

T L , P s S = load P = T , 2Ž .Ž . Ž .com p i j i j t ask

where S is the number of iterations performed by a finite element method,
Ž .load P is the number of nodes of a finite element graph assigned to processor P ,i j j

and T is the time for a processor to execute a task.t ask
In our communication model, we assume that every processor can communicate

with all other processors in one step. In general, it is possible to overlap the
Ž .communication with the computation. In this case, T L , P may not alwayscom m i j

reflect the true communication cost since it could be partially overlapped with that
Ž .of the computation. However, T L , P can provide a good estimate for thecom m i j

communication cost. Since we use a synchronous communication mode,
Ž .T L , P can be defined as follows:com m i j

T L , P s S = d = T q f = T , 3Ž .Ž . Ž .com m i j set u p c

where S is the number of iterations performed by a finite element method, d is the
number of processors that processor P has to send data to in each iteration, Tj set u p
is the setup time of the IrO channel, f is the total number of bytes that processor
P has to send out in each iteration, and T is the data transmission time of thej c
IrO channel per byte.

Let T denote the execution time of a finite element graph on a distributedseq
memory multicomputer with one processor. The speedup resulted from a map-
pingrload-balancing method L for an application program is defined asi

Tseq
Speedup L s , 4Ž . Ž .i T LŽ .p ar i

Ž .Let T L denote the time for the Laplace solver to execute one iteration for thei
ith refinement of the test finite element graph under a mappingrload-balancing
method, where i s 0, 1, . . . , 5 and L g M . For the presentation purpose, wef

assume that the initial finite element graph is the 0th refined finite element graph.
Ž .T L is defined as follows:i

T L s T L, P q T L, P , 5Ž . Ž .Ž . Ž .i com p j com m j



CHUNG, LIAO AND YANG42

The total execution time of test finite element graphs on a distributed memory
multicomputer is defined as follows:

5

T L s T L q T L = S , 6Ž . Ž . Ž . Ž .Ýt o t al e x ec i i
is0

Ž .where T L is the total execution time of the test samples under at o t al
mappingrload-balancing method L on a distributed memory multicomputer, L g

Ž .M , T L is the total execution time of a mappingrload-balancing method Lf e x ec
for test samples, and S is the number of iterations executed by the Laplace solveri
for the ith refinement. From Equation 6, we can derive the speedup achieved by a
mappingrload-balancing method as follows:

Ý5 Seq = Sis0 i i
Speedup L s , 7Ž . Ž .5T L q Ý T L = SŽ . Ž .e x ec is0 i i

Ž .where Speedup L is the speedup achieved by a mappingrload-balancing L for test
samples, L g M , and Seq is the time for the Laplace solver to execute onef i
iteration for the ith refinement of test graphs in sequential.

The maximum speedup achieved by a mappingrload-balancing L can be derived
Ž .by setting the value of S to `. In this case, T L is negligible. We have thei e x ec

following equation:

Ý5 Seqis0 i
Speedup L s . 8Ž . Ž .max 5Ý T LŽ .is0 i

Ž .where Speedup L is the maximum speedup achieved by mappingrload-balanc-max
ing L and L g M .f

4.2. Comparisons of the execution time of mappingr load-balancing methods

The execution times of different mappingrload-balancing methods for Truss on
the 10, 30, and 50 processors of an SP2 parallel machine are shown in Table 3. In
Table 3, we list the initial mapping time and the refinement time for
mappingrload-balancing methods. The initial mapping time is the execution time
of mapping methods to map finite element nodes of the initial test sample to
processors. The refinement time is the sum of the execution time of
mappingrload-balancing methods to balance the load of processors after each
refinement. Since we deal with the load balancing issue in this paper, we will focus
on the refinement time comparison of mappingrload-balancing methods. From
Table 3, we can see that, in general, the refinement time of load-balancing

Ž .methods is less than that of the mapping methods. The reasons are 1 the mapping
methods have a higher time complexity than those of the load-balancing methods;



A PREFIX CODE 43

Table 3. The execution time of different mappingrload-balancing methods for the test sample on
different numbers of processors

Number of processors

10 30 50

Initial Initial Initial
Method mapping Refinement mapping Refinement mapping Refinement

AErMC 5.054 37.563 7.964 67.061 10.256 129.929
AErMCrDD 5.035 1.571 7.671 1.383 10.041 1.585
AErMCrMD 5.035 7.231 7.671 4.043 10.041 4.245
AErMCrPCMPLB 5.035 0.444 7.671 0.652 10.041 0.458
AErORB 0.633 7.493 0.637 6.713 0.742 6.938
AErORBrDD 0.614 1.607 0.614 2.086 0.586 2.763
AErORBrMD 0.614 4.586 0.614 5.028 0.586 6.013
AErORBrPCMPLB 0.614 0.474 0.614 0.769 0.586 1.475
JOSTLE-MS 1.055 3.459 1.02 4.426 2.26 5.763
JOSTLE-MSrDD 1.036 0.741 0.997 1.968 0.704 2.954
JOSTLE-MSrMD 1.036 3.45 0.997 4.838 0.704 6.173
JOSTLE-MSrPCMPLB 1.036 0.483 0.997 1.57 0.704 0.922
ML kP 0.567 4.96 0.589 5.279 0.771 5.908
ML kPrDD 0.548 1.289 0.566 1.872 0.621 2.295
ML kPrMD 0.548 4.142 0.566 4.867 0.621 5.612
ML kPrPCMPLB 0.548 1.083 0.566 0.684 0.621 1.233
PARTY 1.969 18.195 1.809 19.6 1.752 19.262
PARTYrDD 1.937 1.347 1.786 2.009 1.577 2.578
PARTYrMD 1.937 4.255 1.786 5.157 1.577 6.278
PARTYrPCMPLB 1.937 1.58 1.786 1.09 1.577 0.941

Time unit: seconds

Ž .and 2 the mapping methods need to perform gather-scatter operations that are
time consuming in each refinement.

For the same initial mapping method, the refinement time of the PCMPLB
method, in general, is less than that of the directed diffusion and the multilevel
diffusion methods. The reasons are as follows:

Ž .1 The PCMPLB method has less time complexity than those of the directed
diffusion and the multilevel diffusion methods.

Ž .2 The number of data movement steps among processors in the PCMPLAB
method is less than those of the directed diffusion method and the multilevel
diffusion method.

4.3. Comparisons of the execution time of the test sample under different mapping r
load-balancing methods

ŽThe times for a Laplace solver to execute one iteration computation q
.communication for the test sample under different mappingrload-balancing meth-



CHUNG, LIAO AND YANG44

ods on the 10, 30, and 50 processors of an SP2 parallel machine are shown in
Figure 7, Figure 8, and Figure 9, respectively. Since we assume a synchronous
communication model, the total time for a Laplace solver to complete its job is the
sum of the computation time and the communication time. From Figure 7 to
Figure 9, we can see that if the initial mapping is performed by a mapping method
Ž .for example AErORB and the same mapping method or a load-balancing

Ž .method DD, MD, PCMPLB is performed for each refinement, the execution time
of a Laplace solver under the proposed load-balancing method is less than that of
other methods. The reasons are as follows:

Ž .1 In the PCMPLB method, data migration is done between adjacent processors.
This local data migration mechanism can reduce the communication cost of a
Laplace Solver.

Ž .2 The PCMPLB method can fully balance the load of processors. In JOSTLE-MS,
ML kP, and PARTY, 3%]5% load imbalance are allowed due to the trade-off
between the computation and the communication costs. The DD and MD
methods may not be able to balance the load of processors sometimes. This
load imbalance may result in high computation cost.

Ž .Figure 7. The time for Laplace solver to execute one iteration computation q communication for the
test sample under different mappingrload-balancing methods on 10 processors.



A PREFIX CODE 45

Ž .Figure 8. The time for Laplace solver to execute one iteration computation q communication for the
test sample under different mappingrload-balancing methods on 30 processors.

Ž .Figure 9. The time for Laplace solver to execute one iteration computation q communication for the
test sample under different mappingrload-balancing methods on 50 processors.



CHUNG, LIAO AND YANG46

4.4. Comparisons of the speedups under the mapping r load-balancing methods for
the test sample

The speedups and the maximum speedups under the mappingrload-balancing
methods on the 10, 30, and 50 processors of an SP2 parallel machine for the test
sample are shown in Table 4. From Table 4, we can see that if the initial mapping

Ž .is performed by a mapping method for example AErORB and the same mapping
Ž .method or a load-balancing method DD, MD, PCMPLB is performed for each

refinement, the proposed load-balancing method has the best speedup among
mappingrload-balancing methods.

From Table 4, we can also see that if the initial mapping is performed by a
Ž .mapping method for example AErORB and the same mapping method or a

Ž .load-balancing method DD, MD, PCMPLB is performed for each refinement, the
proposed load-balancing method has the best maximum speedup among
mappingrload-balancing methods. For the mapping methods, AErMC has the
best maximum speedups for test samples. For the load-balancing methods,
AErMCrPCMPLB has the best maximum speedups for test samples. From Table
4, we can see that if a better initial mapping method is used, a better maximum
speedup can be expected when the PCMPLB method is used in each refinement.

Table 4. The speedups and maximum speedups for the test sample under the mappingrload-balancing
methods on an SP2 parallel machine

Number of processors

10 30 50

Max. Max. Max.
Methods Speedup Speedup Speedup Speedup Speedup Speedup

AErMC 5.18 6.66 7.54 17.47 5.71 28.92
AErMCrDD 6.79 7.11 15.73 18.35 23.28 31.96
AErMCrMD 6.90 7.37 15.85 19.48 21.78 31.67
AErMCrPCMPLB 7.48 7.80 18.13 21.19 25.32 34.53
AErORB 6.16 6.49 14.65 16.43 20.95 24.98
AErORBrDD 6.71 6.81 16.66 17.45 27.52 30.32
AErORBrMD 6.74 6.98 17.20 19.05 24.57 29.35
AErORBrPCMPLB 7.39 7.45 19.57 20.11 30.38 32.41
JOSTLE-MS 6.42 6.61 15.11 16.47 22.35 27.25
JOSTLE-MSrDD 6.82 6.91 17.73 18.72 26.22 29.01
JOSTLE-MSrMD 6.99 7.21 17.53 19.53 25.65 31.17
JOSTLE-MSrPCMPLB 7.67 7.77 19.80 20.86 32.31 34.10
ML kP 6.41 6.64 15.59 17.17 22.27 26.18
ML kPrDD 6.93 7.02 17.16 17.91 28.19 30.72
ML kPrMD 6.87 7.10 17.10 18.85 25.85 30.83
ML kPrPCMPLB 7.65 7.75 20.11 20.64 31.59 33.56
PARTY 5.80 6.57 12.27 16.66 17.68 28.19
PARTYrDD 6.90 7.06 17.52 18.77 26.21 29.43
PARTYrMD 6.88 7.19 16.50 18.65 25.13 31.34
PARTY PCMPLB 7.33 7.52 19.27 20.40 30.04 32.50



A PREFIX CODE 47

5. Conclusions

In this paper, we have proposed a prefix code matching parallel load balancing
method, the PCMPLB method, to deal with the load unbalancing problems of
solution-adaptive finite element application programs. We have implemented this
method on an SP2 parallel machine and compared its performance with two
load-balancing methods, the directed diffusion method and the multilevel diffusion
method, and five mapping methods, the AErMC method, the AErORB method,
the JOSTLE-MS method, the ML kP method, and the PARTY library method. An
unstructured finite element graph Truss was used as the test sample. Three
criteria, the execution time of mappingrload-balancing methods, the execution
time of a solution-adaptive finite element application program under different
mappingrload-balancing methods, and the speedups under mappingrload-balanc-
ing methods for a solution-adaptive finite element application program, are used

Ž .for the performance evaluation. The experimental results show that 1 if a
mapping method is used for the initial partitioning and this mapping method or a
load-balancing method is used in each refinement, the execution time of an
application program under a load-balancing method is shorter than that of the

Ž .mapping method. 2 The execution time of an application program under the
PCMPLB method is shorter than that of the directed diffusion method and
the multilevel diffusion method.

Acknowledgments

The authors would like to thank Dr. Robert Preis, Professor Karypis, and Professor
Chris Walshaw for providing the PARTY, the METIS, and JOSTLE software
packages.

The work of this paper was partially supported by the National Science Council
of Republic of China under contract NSC-87-2231-E-035-010.

References

1. I. G. Angus, G. C. Fox, J. S. Kim, and D. W. Walker. Sol̈ ing Problems on Concurrent Processors, Vol.
2. Prentice-Hall, Englewood Cliffs, N. J., 1990.

2. C. Aykanat, F. Ozguner, F. Ercal, and P. Sadayaooan. Iterative algorithms for solution of large¨
Ž .sparse systems of linear equations on hypercubes. IEEE Trans. on Computers, 37 12 :1554]1568,

1988.
3. C. Aykanat, F. Ozguner, S. Martin, and S. M. Doraivelu. Parallelization of a finite element¨

application program on a hypercube multiprocessor. Hypercube Multiprocessor, 662]673, 1987.
4. S. B. Baden. Programming abstractions for dynamically partitioning and coordinating localized

scientific calculations running on multiprocessors. SIAM Journal on Scientific and Statistical Comput-
Ž .ing, 12 1 :145]157, 1991.

5. S. T. Barnard and H. D. Simon. Fast multilevel implementation of recursive spectral bisection for
Ž .partitioning unstructured problems. Concurrency: Practice and Experience, 6 2 :101]117, 1994.



CHUNG, LIAO AND YANG48

6. S. T. Barnard and H. D. Simon. A parallel implementation of multilevel recursive spectral bisection
for application to adaptive unstructured meshes. Proceedings of the Se¨enth SIAM Conference on
Parallel Processing for Scientific Computing, pp. 627]632. San Francisco, Feb. 1995.

7. J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. Elsevier North Holland, New York,
1976.

8. Y. C. Chung and C. J. Liao, A processor oriented partitioning method for mapping unstructured
finite element models on SP2 parallel machines. Technical report. Institute of Information Engi-
neering, Feng Chia University, Taichung, Taiwan, 1996.

9. G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. Journal of Parallel
Ž .and Distributed Computing, 7 2 :279]301, 1989.

10. F. Ercal, J. Ramanujam, and P. Sadayappan. Task allocation onto a hypercube by recursive mincut
bipartitioning. Journal of Parallel and Distributed Computing, 10:35]44, 1990.

11. C. Farhat and H. D. Simon. TOPrDOMDEC}a software tool for mesh partitioning and parallel
processing. Technical report RNR-93-011. NASA Ames Research Center, 1993.

12. C. M. Fiduccia and R. M. Mattheyes. A linear-time heuristic for improving network partitions.
Proceeding of the 19th IEEE Design Automation Conference, pp. 175]181, 1982.

13. M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to Theory of NP-Completeness.
Freeman, San Francisco, 1979.

14. J. R. Gilbert and E. Zmijewski. A parallel graph partitioning algorithm for a message-passing
Ž .multiprocessor. International Journal of Parallel Programming, 16 6 :427]449, 1987.

15. J. R. Gilbert, G. L. Miller, and S. H. Teng. Geometric mesh partitioning: implementation and
experiments. Proceedings of 9th International Parallel Processing Symposium, pp. 418]427. Santa
Barbara, Calif. Apr. 1995.

16. A. Heirich and S. Taylor. A Parabolic Load Balancing Method, Proceeding of ICPP ’95, pp. 192]202,
1995.

17. B. Hendrickson and R. Leland. The Chaco user’s guide: version 2.0. Technical report SAND94-2692.
Sandia National Laboratories, Albuquerque, NM, Oct. 1994.

18. B. Hendrickson and R. Leland. An improved spectral graph partitioning algorithm for mapping
Ž .parallel computations. SIAM Journal on Scientific Computing, 16 2 :452]469, 1995.

19. B. Hendrickson and R. Leland. An multilevel algorithm for partitioning graphs. Proceeding of
Supercomputing ’95, Dec. 1995.

20. G. Horton. A multi-level diffusion method for dynamic load balancing. Parallel Computing,
19:209]218, 1993.

21. S. H. Hosseini, B. Litow, M. Malkawi, J. Mcpherson, and K. Vairavan. Analysis of a graph coloring
based distributed load balancing algorithm. Journal of Parallel and Distributed Computing,
Ž .10 2 :160]166, 1990.

22. Y. F. Hu and R. J. Blake. An optimal dynamic load balancing algorithm. Technical report
DL-P-95-011. Daresbury Laboratory, Warrington, UK, 1995.

23. D. A. Huffman. A method for the construction of minimum redundancy codes. Proceedings of the
IRE 40, pp. 1098]1101, 1952.

24. G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. Technical
report 95-064. Department of Computer Science, University of Minnesota, Minneapolis, 1995.

25. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. Technical report 95-035. Department of Computer Science, University of Minnesota,
Minneapolis, 1995.

26. B. W. Kernigham and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell Syst.
Ž .Tech. J. 49 2 :292]370, 1970.

27. L. Lapidus and C. F. Pinder. Numerical Solution of Partial Differential Equations in Science and
Engineering. Wiley, New York, 1983.

28. F. C. H. Lin, and R. M. Keller. The gradient model load balancing method. IEEE Trans. Software
Ž .Engineering, SE-13 1 :32]38, 1987.

29. D. M. Nicol. Rectilinear partitioning of irregular data parallel computations. Journal of Parallel and
Ž .Distributed Computing, 23 2 :119]134, 1994.

30. L. Oliker and R. Biswas. Efficient load balancing and data remapping for adaptive grid calculations.
Technical report, NASA Ames Research Center, Moffett Field, Calif., 1997.



A PREFIX CODE 49

31. C. W. Ou, S. Ranka, and G. Fox. Fast and parallel mapping algorithms for irregular problems. The
Ž .Journal of Supercomputing, 10 2 :119]140, 1996.

32. C. W. Ou and S. Ranka. Parallel incremental graph partitioning. IEEE Trans. Parallel and
Ž .Distributed Systems, 8 8 :884]896, 1997.

33. F. Pellegrini and J. Roman. Scotch: a software package for static mapping by dual recursive
bipartitioning of process and architecture graphs. Proceedings of HPCN ’96, pp. 493]498, Apr. 1996.

34. J. R. Pilkington and S. B. Baden. Dynamic partitioning of non-uniform structured workloads with
Ž .spacefilling curves. IEEE Trans. Parallel and Distributed Systems, 7 3 :288]300, 1996.

35. R. Preis and R. Diekmann. The PARTY partitioning}library user guide}version 1.1. Heniz
Nexdorf Institute Universitat, Paderborn, Germany, Sep. 1996.¨

36. S. Ranka, Y. Won, and S. Sahni. Programming a hypercube multicomputer. IEEE Software,
Ž .5 5 :69]77, 1988.

37. K. Schloegel, G. Karypis, and V. Kumar. Parallel multilevel diffusion algorithms for repartitioning
of adaptive meshes. Technical report a97-014. University of Minnesota, Department of Computer
Science and Army HPC Center, 1997.

38. K. Schloegel, G. Karypis, and V. Kumar. Multilevel diffusion schemes for repartitioning of adaptive
meshes. Technical report a97-013. University of Minnesota, Department of Computer Science, Jun.
1997.

Ž .39. W. Shu and M. Y. Wu. Runtime incremental parallel scheduling RIPS on distributed memory
Ž .computers. IEEE Trans. Parallel and Distributed Systems, 7 6 :637]649, 1996.

40. W. Shu and M. Y. Wu. The direct dimension exchange method for load balancing in k-ary n-cubes.
Proceedings of Eighth IEEE Symposium on Parallel and Distributed Processing, pp. 366]369, New
Orleans, Oct. 1996.

41. H. D. Simon. Partitioning of unstructured problems for parallel processing. Computing Systems in
Ž .Engineering, 2 2r3 :135]148, 1991.

42. C. H. Walshaw and M. Berzins. Dynamic load-balancing for PDE solvers on adaptive unstructured
Ž .meshes. Concurrency: Practice and Experience, 7 1 :17]28, 1995.

43. C. H. Walshaw, M. Cross, and M. G. Everett. A localized algorithm for optimizing unstructured
Ž .mesh partitions. The International Journal of Supercomputer Applications, 9 4 :280]295, 1995.

44. C. Walshaw, M. Cross, and M. G. Everett. Dynamic mesh partitioning: a unified optimisation and
load-balancing algorithm. Technical Report 95rIMr06. University of Greenwich, London, SE18
6PF, UK, Dec. 1995.

45. C. Walshaw. The Jostle User Manual: Version 2.0. University of Greenwich, London, UK, July, 1997.
46. M. Willebeek-LeMair and A. P. Reeves. Strategies for dynamic load balancing on highly parallel

Ž .computers. IEEE Trans. Parallel and Distributed Systems, 4 9 :979]993, 1993.
47. R. D. Williams. Performance of dynamic load balancing algorithms for unstructured mesh calcula-

Ž .tions. Councurrency: Practice and Experience, 3 5 :457]481, 1991.
48. R. D. Williams. DIME: Distributed Irregular Mesh En¨ironment. California Institute of Technology,

1990.
49. M. Y. Wu. On runtime parallel scheduling for processor load balancing. IEEE Trans. Parallel and

Ž .Distributed Systems, 8 2 :173]186, 1997.
50. C. Z. Xu and F. C. M. Lau. Analysis of the generalized dimension exchange method for dynamic

Ž .load balancing. Journal of Parallel and Distributed Computing, 16 4 :385]393, 1992.
51. C. Z. Xu and F. C. M. Lau. The generalized dimension exchange method for load balancing in k-ary

Ž .n-cubes and variants. Journal of Parallel and Distributed Computing, 24 1 :72]85, 1995.


