
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 4, APRIL 1998 359

A Basic-Cycle Calculation Technique for
Efficient Dynamic Data Redistribution

Yeh-Ching Chung, Ching-Hsien Hsu, and Sheng-Wen Bai

Abstract—Array redistribution is usually required to enhance algorithm performance in many parallel programs on distributed
memory multicomputers. Since it is performed at run-time, there is a performance trade-off between the efficiency of the new data
decomposition for a subsequent phase of an algorithm and the cost of redistributing data among processors. In this paper, we
present a basic-cycle calculation technique to efficiently perform BLOCK-CYCLIC(s) to BLOCK-CYCLIC(t) redistribution. The
main idea of the basic-cycle calculation technique is, first, to develop closed forms for computing source/destination processors of
some specific array elements in a basic-cycle, which is defined as lcm(s, t)/gcd(s, t). These closed forms are then used to efficiently
determine the communication sets of a basic-cycle. From the source/destination processor/data sets of a basic-cycle, we can
efficiently perform a BLOCK-CYCLIC(s) to BLOCK-CYCLIC(t) redistribution. To evaluate the performance of the basic-cycle
calculation technique, we have implemented this technique on an IBM SP2 parallel machine, along with the PITFALLS method and
the multiphase method. The cost models for these three methods are also presented. The experimental results show that the basic-
cycle calculation technique outperforms the PITFALLS method and the multiphase method for most test samples.

Index Terms—Data redistribution, the basic-cycle calculation technique, the PITFALLS method, the multiphase method, distributed
memory multicomputers.

—————————— ✦ ——————————

1 INTRODUCTION

HE data parallel programming model has become a
widely accepted paradigm for programming distrib-

uted memory multicomputers. To efficiently execute a data
parallel program on a distributed memory multicomputer,
an appropriate data decomposition is critical. The data de-
composition involves data distribution and data alignment.
The data distribution deals with how data arrays should be
distributed. The data alignment deals with how data arrays
should be aligned with respect to one another. The purpose
of data decomposition is to balance the computational load
and minimize the communication overheads.

Many data parallel programming languages, such as
High Performance Fortran (HPF) [8], Fortran D [5], Vienna
Fortran [33], and High Performance C (HPC) [28], provide
compiler directives for programmers to specify array dis-
tribution. The array distribution provided by those lan-
guages, in general, can be classified into two categories,
regular and irregular. The regular array distribution, in gen-
eral, has three types, BLOCK, CYCLIC, and BLOCK-

CYCLIC(c). The BLOCK-CYCLIC(c) is the most general regu-
lar array distribution among them. Dongarra et al. [4] have
shown that these distributions are essential for many
dense matrix algorithms design in distributed memory
machines. Examples of distributing a one-dimensional
array with 18 elements to three processors using BLOCK,
CYCLIC, and BLOCK-CYCLIC(c) distribution are shown in
Fig. 1. The irregular array distribution uses user-defined
array distribution functions to specify array distribution.

Fig. 1. Examples of regular data distributions.

In some algorithms, such as multidimensional fast Fou-
rier transform [29], the Alternative Direction Implicit (ADI)
method for solving two-dimensional diffusion equations,
and linear algebra solvers [20], an array distribution that is
well-suited for one phase may not be good for a subsequent
phase in terms of performance. Array redistribution is re-
quired for those algorithms during run-time. Therefore,
many data parallel programming languages support run-
time primitives for changing a program's array decomposi-
tion [1], [2], [8], [28], [33]. Since array redistribution is per-
formed at run-time, there is a performance trade-off be-
tween the efficiency of the new data decomposition for a
subsequent phase of an algorithm and the cost of redistrib-
uting array among processors. Thus, efficient methods for
performing array redistribution are of great importance for
the development of distributed memory compilers for
those languages.

In this paper, we present a basic-cycle calculation (BCC)
technique to efficiently perform BLOCK-CYCLIC(s) to BLOCK-
CYCLIC(t) redistribution. In HPF, it supports array redistri-
bution with arbitrary source and destination processor sets.
The technique developed in this paper assumes that the
source and the destination processor sets are the same. The

1045-9219/98/$10.00 © 1998 IEEE

————————————————

• The authors are with the Department of Information Engineering, Feng
Chia University, Taichung, Taiwan 407, Republic of China.

 E-mail: {ychung, chhsu, swbai}@pine.iecs.fcu.edu.tw.

Manuscript received 26 July 1996; revised 15 Oct. 1997.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 100252.

T

360 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 4, APRIL 1998

main idea of the basic-cycle calculation technique is first to
develop closed forms for computing source/destination
processors of some specific array elements in a basic-cycle,
which is defined as lcm(s, t)/gcd(s, t). These closed forms
are then used to efficiently determine the communication
sets of a basic-cycle. From the source/destination proces-
sor/data sets of a basic-cycle, we can efficiently perform a
BLOCK-CYCLIC(s) to BLOCK-CYCLIC(t) redistribution. Al-
though, in this paper, we present this technique for one-
dimensional array redistribution, this technique can be ex-
tended to multidimensional array redistribution as well.
The basic-cycle calculation technique has the following
characteristics:

• It is a simple one phase method to perform the general
BLOCK-CYCLIC(s) to BLOCK-CYCLIC(t) redistribution.

• The indexing overhead of the basic-cycle calculation
technique is independent of the number of processors
and the array size involved in a redistribution. Given
a BLOCK-CYCLIC(s) to BLOCK-CYCLIC(t) redistribu-
tion on a one-dimensional array A[1 : N] over M proc-
essors, a processor only needs to scan (s + t)/gcd(s, t)
array elements in a basic-cycle and the destina-
tion/source processors for all array elements in its lo-
cal array can be determined.

• Since the basic-cycle calculation technique uses an asyn-
chronous communication scheme, the computation and
the communication overheads can be overlapped. This
leads to a better performance for a redistribution.

To evaluate the performance of the basic-cycle calcula-
tion technique, we have implemented this technique on an
IBM SP2 parallel machine along with the PITFALLS method
[22] and the multiphase method [13]. The cost models for
these three methods are also presented. The experimental
results show that the basic-cycle calculation technique out-
performs the PITFALLS method and the multiphase
method for most test samples.

The paper is organized as follows. In Section 2, a brief
survey of related work will be presented. In Section 3, we
will introduce notations and terminology used in this pa-
per. Section 4 presents the algorithm of the basic-cycle cal-
culation technique in details. The cost models and experi-
mental results for these three methods will be presented in
Section 5. The conclusions and future work will be given in
Section 6.

2 RELATED WORK

Many methods for performing array redistribution have
been presented in the literature. These techniques can be
classified into multicomputer compiler techniques and
runtime support techniques. We briefly describe the related
research in these two approaches.

Gupta et al. [6] derived closed form expressions for de-
termining the send/receive processor/data sets for the
BLOCK to CYCLIC redistribution (or vice versa). They also
provided a virtual processor approach [7] to address the
problem of reference index-sets identification for array
statements with BLOCK-CYCLIC(c) distribution and formu-
lated active processor sets as closed forms. Their approaches

did not discover the repetitive patterns in communications
sets. Koelbel [16] derived techniques for compile-time ad-
dress and communication generation for array statements
with BLOCK and CYCLIC distributions.

A recent work [14] extended the virtual processor ap-
proach to address the problem of memory allocation and
index-sets identification. By using their method, closed
form expressions for index-sets of arrays that were mapped
to processors using one-level mapping can be translated to
closed form expressions for index-sets of arrays that were
mapped to processors using two-level mapping and vice
versa. In [17], a similar approach that addressed the prob-
lems of the index-sets and the communication sets identifi-
cation for array statements with BLOCK-CYCLIC(c) distri-
bution was presented. Lee and Chen [17] derived commu-
nication sets for statements of arrays that were distributed
in arbitrary BLOCK-CYCLIC(c) fashion. They also presented
closed form expressions of communication sets for re-
stricted block sizes.

In [9], an approach for generating communication sets
by computing the intersections of index-sets corresponding
to the LHS and RHS of array statements was presented. The
intersections were computed by a scanning approach that
exploited the repetitive pattern of the intersection of two
index-sets. Kennedy et al. [15] also presented algorithms to
compute the local memory access sequence for array state-
ments with BLOCK-CYCLIC(c) distribution. In [23], the
CYCLIC(k) distribution was viewed as a union of k CYCLIC
distribution. Since the communication sets for CYCLIC dis-
tribution is easy to determine, communication sets for
CYCLIC(k) distribution can be generated in terms of unions
and intersections of some CYCLIC distributions. This
method utilizes the repetitive pattern in communication
sets calculation. Thirumalai and Ramanujam [26] also dis-
cussed communication sets generation and optimization for
HPF array statements.

Chatterjee et al. [3] enumerated the local memory access
sequence of communication sets for array statements with
BLOCK-CYCLIC(c) distribution based on a finite-state ma-
chine (FSM). In this approach, the local memory access se-
quence can be characterized by an FSM at most c states.
Their approach can handle the two-level mapping with
hole compression. In [27], Thirumalai and Ramanujam rep-
resented the local memory access sequence as an integer
lattice. They also derived closed form expressions for the
basis vectors of integer lattices. Therefore, the basis vector
generation is needless at runtime.

In [21], [22], Ramaswamy et al. used a mathematical rep-
resentation, PITFALLS, for regular data redistribution. The
main idea of PITFALLS is to find all intersections between
source and target distributions. Based on the intersections,
the send/receive processor/data sets can be determined
and general redistribution algorithms can be devised. This
method utilizes the repetitive pattern in communication
sets calculation. The disadvantage of this approach is that,
when the number of processors is large, iterations of the
out-most loop in the FALLS intersection algorithm in-
creased as well. This leads to high indexing overheads and
degrades the performance of a redistribution algorithm.
However, since one of the main goal of the PITFALLS

CHUNG ET AL.: A BASIC-CYCLE CALCULATION TECHNIQUE FOR EFFICIENT DYNAMIC DATA REDISTRIBUTION 361

method is the handling of arbitrary source and target proc-
essor sets, this method does provide a total solution for a
general array redistribution, i.e., this method can handle all
the redistribution mechanisms that provided by HPF.

Prilli and Tourancheau [20] proposed a runtime scan algo-
rithm for BLOCK-CYCLIC array redistribution. Their ap-
proach is similar to that of [21], [22], but has simpler index-
ing calculation than that of [21], [22]. This method utilizes the
repetitive pattern in communication sets calculation.

Thakur et al. [24], [25] presented algorithms for run-time
array redistribution in HPF programs. For BLOCK-CYCLIC(kr)
to BLOCK-CYCLIC(r) redistribution (or vice versa), in most
cases, a processor scanned its local array elements once to
determine the destination (source) processor for each
block of array elements of size r in the local array. Based
on their BLOCK-CYCLIC(kr) to BLOCK-CYCLIC(r) and
BLOCK-CYCLIC(r) to BLOCK-CYCLIC(kr) redistribution al-
gorithms, they used a two-phase method to perform the
general BLOCK-CYCLIC(s) to BLOCK-CYCLIC(t) redistribu-
tion. Based on the work of [24], [25], Kaushik et al. [12], [13]
proposed a general two-phase redistribution approach for
BLOCK-CYCLIC(s) to BLOCK-CYCLIC(t) redistribution. The
main idea of two-phase redistribution is to perform a re-
distribution as a sequence of redistribution such that the
communication cost of data movement among processors
in the sequence is less than that of direct redistribution.
Based on the closed form representations, a cost model for
estimating the communication and the indexing overheads
for array distribution was developed. From the cost model,
algorithms for determining the sequence of intermediate
array distributions that minimizes the total redistribution
time were presented.

Instead of redistributing the entire array at one time, a
strip mining approach was presented in [31]. In this ap-
proach, portions of array elements were redistributed in se-
quence in order to overlap the communication and compu-
tation. In [32], a spiral mapping technique was proposed. The
main idea of this approach was to map formal processors
onto actual processors such that the global communication
can be translated to the local communication in a certain
processor group. Since the communication is local to a proc-
essor group, one can reduce communication conflicts when
performing a redistribution. Kalns and Ni [10], [11] proposed
a processor mapping technique to minimize the amount of
data exchange for BLOCK to BLOCK-CYCLIC(c) redistribution
and vice versa. Using the data to logical processors mapping,
they showed that the technique can achieve the maximum
ratio between data retained locally and the total amount of
data exchanged. In [18], a generalized circulant matrix for-
malism was proposed to reduce the communication over-
heads for BLOCK-CYCLIC(r) to BLOCK-CYCLIC(kr) redistri-
bution. Using the generalized circulant matrix formalism,
the authors derived direct, indirect, and hybrid communi-
cation schedules for the cyclic redistribution with the block
size changed by an integer factor k. This method utilizes the
repetitive pattern in communication sets calculation. They
also extended this technique to solve some multidimen-
sional redistribution problems [19].

Walker and Otto [30] used the standardized message pass-
ing interface, MPI, to express the redistribution operations.

They implemented the BLOCK-CYCLIC array redistribution
algorithms in both synchronous and asynchronous schemes.
Since the excessive synchronization overheads are incurred
from the synchronous scheme, they also presented the random
and optimal scheduling algorithms for BLOCK-CYCLIC array
redistribution. The experimental results showed that the per-
formance of the synchronous method with optimal scheduling
algorithm was comparable to that of the asynchronous
method. This method utilizes the repetitive pattern in commu-
nication sets calculation.

3 PRELIMINARIES

In this section, we will present the notations and terminology
used in this paper. To simplify the presentation, we use s Æ t
to represent the BLOCK-CYCLIC(s) to BLOCK-CYCLIC(t) re-
distribution for the rest of the paper.

DEFINITION 1. Given a BLOCK-CYCLIC(s) to BLOCK-CYCLIC(t)
redistribution, BLOCK-CYCLIC(s), BLOCK-CYCLIC(t), s,
and t are called the source distribution, the destination
distribution, the source distribution factor, and the
destination distribution factor of the redistribution, re-
spectively.

DEFINITION 2. Given an s Æ t redistribution on a one-
dimensional array A[1 : N] over M processors, the source
local array of processor Pi, denoted by SLAi[1 : N/M], is
defined as the set of array elements that are distributed to
processor Pi in the source distribution, where 0 £ i £ M - 1.
The destination local array of processor Pj, denoted by
DLAj[1 : N/M], is defined as the set of array elements that
are distributed to processor Pj in the destination distribu-
tion, where 0 £ j £ M - 1.

DEFINITION 3. Given an s Æ t redistribution on a one-dimensional
array A[1 : N] over M processors, the source processor of
an array element in A[1 : N] or DLAj[1 : N/M] is defined
as the processor that owns the array element in the source
distribution, where 0 £ j £ M - 1. The destination proc-
essor of an array element in A[1 : N] or SLAi[1 : N/M] is
defined as the processor that owns the array element in the
destination distribution, where 0 £ i £ M - 1.

DEFINITION 4. Given an s Æ t redistribution on a one-
dimensional array A[1 : N] over M processors, a basic-
cycle (BC) of the redistribution is defined as the quotient of
the least common multiple of s and t to the greatest com-
mon divisor of s and t, i.e., BC = lcm(s ,t)/gcd(s, t). We
define SLAi[1 : BC] (DLAj[1 : BC]) as the first basic-cycle
in the source (destination) local array of processor Pi (Pj),
SLAi[BC + 1 : 2 × BC] (DLAj[BC + 1 : 2 × BC]) as the
second basic-cycle in the source (destination) local array of
processor Pi (Pj), and so on.

DEFINITION 5. Given an s Æ t redistribution, a basic-cycle BC of
a source (destination) local array can be divided into BC/s
(BC/t) blocks. We define SLAi[1 : s] (DLAj[1 : t]) as the
first source (destination) section of SLAi[1 : BC]
(DLAj[1 : BC]) of processor Pi (Pj), SLAi[s + 1 : 2 × s]
(DLAj[t + 1 : 2 × t]) as the second source (destination)
section of SLAi[1 : BC] (DLAj[1 : BC]) of processor Pi (Pj),
and so on.

362 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 4, APRIL 1998

DEFINITION 6. Given an s Æ t redistribution on a one-
dimensional array A[1 : N] over M processors, the source
distribution pattern position (SDPP) of an array ele-
ment A[k] is defined as

SDPP A k
k
s t

M s
s t([]) (,) , (,)=

L
MM

O
PP

-
¥F

HG
I
KJ

mod gcd gcd1 ,

where k = 1, ..., N. The destination distribution pattern
position (DDPP) of an array element A[k] is defined as

DDPP A k
k
s t

M t
s t([]) mod (,) , (,)=

L
MM

O
PP

-
¥F

HG
I
KJgcd gcd1 ,

where k = 1, ..., N.

Given a BLOCK-CYCLIC(s) to BLOCK-CYCLIC(t) redistri-
bution on a one-dimensional array A[1 : N] over M proces-
sors, if the source and the destination distribution pattern
positions of A[k] are x and y, respectively, then the source
and destination processors of A[k] are Pi and Pj, respec-
tively, where k = 1, ..., N, i = Îx/s˚, and j = Îy/t˚.

We now give examples to clarify the above definitions.
Fig. 2a shows a BLOCK-CYCLIC(3) to BLOCK-CYCLIC(2) re-
distribution on a one-dimensional array with N = 24 ele-
ments, A[1 : 24] over M = 2 processors. Fig. 2b gives the
corresponding source/destination pattern positions of
global array elements. In Fig. 2a, the local array indices are

represented as italic numbers, while the global array indi-
ces are represented as normal numbers. From Fig. 2a, we
know that the basic-cycle of the redistribution is six. For a
source processor, there are two source sections (size = 3) in
each basic-cycle. For a destination processor, there are three
destination sections (size = 2) in each basic-cycle. The first
basic-cycle of source processor P1 is SLA1[1 : 6]. The second
basic-cycle of source processor P1 is SLA1[7 : 12]. From
Fig. 2b, we know that the source and the destination distri-
bution pattern positions of SLA0[6] = A[9] are equal to two
and zero, respectively. The source and the destination dis-
tribution pattern positions of DLA1[6] = A[12] are equal to
five and three, respectively.

4 THE BASIC-CYCLE CALCULATION TECHNIQUE FOR
ARRAY REDISTRIBUTION

To perform a redistribution, we first need to determine the
send processor/data sets of source processors and the re-
ceive processor/data sets of destination processors. Then, a
physical data movement among processors can be carried
according to those sets. A naive way to get those sets is to
scan every array element once and to compute those sets.
Since a redistribution is performed at run-time, if an array
size is very large, the time to determine those sets by scan-
ning every array element once may greatly offset the per-
formance of a program by performing the redistribution.
Instead of scanning all array elements once, the main idea
of the basic-cycle calculation technique is that every proces-
sor determines the send/receive processor/data sets on the
first basic-cycle that it owns. According to the send/receive
processor/data sets of the first basic-cycle, one can perform
a redistribution very efficiently. We now give examples to
explain the basic-cycle calculation technique.

Given a one-dimensional array A[1 : 48] and M = 4 proc-
essors, Fig. 3 shows a BLOCK-CYCLIC(s = 3) to BLOCK-
CYCLIC(t = 2) redistribution on A over M processors. In Fig. 3,
the basic-cycle of the redistribution is equal to six. There are
two basic-cycles in each source/destination local array. For
each source (destination) local array, array elements in the
kth position of the first and the second basic-cycle have the
same destination (source) processor, i.e., both of them will
be sent to (received from) the same destination (source)
processor during the redistribution, where k = 1 to 6. This
observation shows that each basic-cycle of a local array has
the same communication pattern.

Another example of a BLOCK-CYCLIC(6) to BLOCK-
CYCLIC(4) redistribution on A[1 : 96] over M = 4 processors
is shown in Fig. 4a. The basic-cycle of the redistribution is
equal to six as well. However, the observation that we ob-
tained from Fig. 3 (each basic-cycle of a local array has the
same communication pattern) cannot be applied to the case
shown in Fig. 4a directly. For example, array elements
SLA0[1] and SLA0[7] are in the first position of the first and
the second basic-cycle of source processor P0, respectively.
The destination processors of these two array elements are
P0 and P2, respectively. Although they are in the same array
position in two different basic-cycles, they do not have the
same destination processor. The reason is that the value of
gcd(6, 4) is not equal to one. By grouping every gcd(6, 4)

(a)

(b)

Fig. 2. (a) A BLOCK-CYCLIC(3) to BLOCK-CYCLIC(2) redistribution
with M = 2 and N = 24. (b) The corresponding source/destination distri-
bution pattern positions of global array elements.

CHUNG ET AL.: A BASIC-CYCLE CALCULATION TECHNIQUE FOR EFFICIENT DYNAMIC DATA REDISTRIBUTION 363

global array indices of array A to a meta-index, array A[1 : N]
can be transformed to a meta-array B[1 : N/gcd(6, 4)],
where B[k] = {A[(k - 1) × gcd(6, 4) + 1], ..., A[k × gcd(6, 4)]}
and k = 1 to N/gcd(6, 4). Then, the observation that we ob-
tained from Fig. 3 can be held if we use array B for the re-
distribution. For example, if we use the meta-array B[1 : 48],
which is shown in Fig. 4b, for the redistribution, array ele-
ments SLA0[1] = {A[1], A[2]} and SLA0[7] = {A[49], A[50]}
are the first array element of the first and the second basic-
cycle of source processor P0, respectively. The destination
processors of these two meta-array elements are P0. It is
consistent to the observation obtained from Fig. 3. An ex-
ample of using meta-array for the array redistribution of
Fig. 4a is shown in Fig. 4b.

In the following discussion, we assume that an s Æ t re-
distribution on A[1 : N] over M processors is given. We also
assume that gcd(s, t) is equal to one. If gcd(s, t) is not equal
to one, we use s/gcd(s, t) and t/gcd(s, t) as the source
and destination distribution factors of the redistribu-
tion, respectively.

4.1 Send Phase
Given a source processor Pi and its corresponding source
local array SLAi, one can scan every array element SLAi[k]
in SLAi[1 : BC] once and compute its destination processor
by the following equation:

rank P
M

t
je j =

- =
-M

NM
P
QP

R
S|
T|

1 0
1

if

otherwise.

a
a (1)

The value of a is defined as follows:

a = ¥
-M

NM
P
QP

¥ - +
F
HG

I
KJ

+ ¥
F
HG

I
KJ

mod s
k

s M rank P k M ti

1
1a f c h , , (2)

where k = 1 to BC, rank(Pi) is the rank of a source processor

Pi, and rank(Pi) = 0 to M - 1. However, if the value of BC is
large, it may take a lot of time to compute the destination
processors of array elements in a basic-cycle using (1) and (2).
Since array elements in a source section have consecutive
global array indices, if we know the destination distribution
pattern position of the first array element of a source section,
we can easily determine the destination processors of array
elements in the source section according to Definition 6. For
example, in Fig. 2, there are two source sections in SLA1[1 : BC]

of a source processor P1. The destination distribution pattern

position of SLA1[1] = A[4] is equal to three. Since array ele-
ments in a source section have consecutive global array indi-
ces, from Definition 6, we can derive that DDPP(SLA1[2] =

A[5]) = 0 and DDPP(SLA1[3] = A[6]) = 1, respectively. The

corresponding destination processors of SLA1[1], SLA1[2],

and SLA1[3] are equal to DDPP SLA
t P([])1 1

1= ,

DDPP SLA
t P([])1 2

0= , and DDPP SLA
t P([])1 3

0= , respectively,

where t = 2. For a source processor Pi, there are t source

sections in SLAi[1 : BC]. From the above analysis, each

source processor Pi only needs to scan the first array ele-

ment of the t source sections in SLAi[1 : BC] and the desti-

nation processors of array elements in SLAi[1 : BC] can be
determined.

Given an s Æ t redistribution over M processors, for each
source processor Pi, the destination distribution pattern
position of SLAi[1] can be determined by the following
equation:

DDPP rank P s M ti= ¥ ¥mod c hd i, , (3)

where rank(Pi) is the rank of a source processor Pi, and
rank(Pi) = 0 to M - 1. The destination distribution pattern
position of the first array element SLAi[u] in the vth source
section of SLAi[1 : BC] can be determined by the following
equation:

DDPP SLA u DDPP v M tic h b g= + ¥ ¥mod b , , (4)

where v = 1 to BC/s, u = (v - 1) × s + 1, and b = mod(M × s, M × t).
By merging (3) and (4), we have the following equation:

DDPP SLA u v M rank P s M ti ic h a f c hd ie j= - ¥ + ¥ ¥mod 1 , . (5)

According to (5) and Definition 6, we can easily construct the
send processor/data sets of the first basic-cycle of source
processors. The send processor/data sets of the first basic-
cycle of source processors in Fig. 2 are shown in Fig. 5.

4.2 Receive Phase
Given a destination processor Pj and its corresponding
destination local array DLAj, one can scan every array ele-
ment DLAj[k] in DLAj[1 : BC] once and compute its source
processor by the following equation:

Fig. 3. A BLOCK-CYCLIC(3) to BLOCK-CYCLIC(2) redistribution with
M = 4 and N = 48.

364 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 4, APRIL 1998

rank P
M

s
ic h =

- =
-M

NM
P
QP

R
S|

T|

1 0
1

if

otherwise.

g
g (6)

The value of g is defined as follows:

g = ¥
-M

NM
P
QP

¥ - +
F
HG

I
KJ

+ ¥
F
HG

I
KJ

mod t
k

t M rank P k M sj

1
1a f e j , , (7)

where k = 1 to BC, rank(Pj) is the rank of a destination proc-

essor Pj, and rank(Pj) = 0 to M - 1. However, if the value of
BC is large, it may take a lot of time to compute the source
processors of array elements in a basic-cycle by using (6)
and (7). Since array elements in a destination section have
consecutive global array indices, if we know the source

distribution pattern position of the first array element of a
destination section, we can easily determine the source
processors of array elements in the destination section ac-
cording to Definition 6. For example, in Fig. 2, there are
three destination sections in DLA1[1 : BC] of a destination

processor P1. The source distribution pattern position of

DLA1[1] = A[3] is equal to two. Since array elements in a
destination section have consecutive global array indi-
ces, from Definition 6, we can derive that SDPP(DLA1[2]
= A[4]) = 3. The corresponding source processors of

DLA1[1] and DLA1[2] are equal to SDPP DLA
s P([])1 1

0= and

SDPP DLA
s P([])1 2

1= , respectively, where s = 3. From the

(a)

(b)

Fig. 4. (a) A BLOCK-CYCLIC(6) to BLOCK-CYCLIC(4) redistribution with M = 4 and N = 96. (b) An example of grouping source/destination local
arrays to metasource/destination local arrays for the redistribution in (a).

CHUNG ET AL.: A BASIC-CYCLE CALCULATION TECHNIQUE FOR EFFICIENT DYNAMIC DATA REDISTRIBUTION 365

above analysis, each destination processor Pj only needs to
scan the first array element of the s destination sections in

DLAi[1 : BC] and the source processors of array elements in

DLAi[1 : BC] can be determined.
Given an s Æ t redistribution over M processors, for each

destination processor Pj, the source distribution pattern
position of DLAj[1] can be determined by the following
equation:

SDPP rank P t M sj= ¥ ¥mod e je j, , (8)

where rank(Pj) is the rank of a destination processor Pj, and
rank(Pj) = 0 to M - 1. The source distribution pattern posi-
tion of the first array element DLAj[z] in the wth destination
section of DLAj[1 : BC], can be determined by the following
equation:

SDPP DLA z SDPP w M sje j a f= + ¥ ¥mod e , , (9)

where w = 1 to BC/t, z = (w - 1) × t + 1, and e = mod(M × t,
M × s). By merging (8) and (9), we have the following
equation:

SDPP DLA z w M rank P t M sj je j a f e je j= - ¥ + ¥ ¥F
H

I
Kmod 1 , . (10)

According to (10) and Definition 6, we can easily construct
the receive processor/data sets of the first basic-cycles of
destination processors. The receive processor/data sets of
the first basic-cycle of destination processors in Fig. 2 are
shown in Fig. 6.

The algorithm of the basic-cycle calculation algorithm
technique is given as follows.

Algorithm basic_cycle_calculation (s, t, M)
1. i = get_my_rank (); x = lcm(s, t); y = gcd(s, t);
2. BC = x/y; s = s/y; t = t/y;
/* Send phase */
3. max_local_index = the length of the source local array

of processor Pi;
/* Construct the send processor/data set of the first basic

cycle */
4. DDPA_length = M × t; k = 0; stcj = 0, where j = 0, ..., M - 1;
5. while (k < BC)

6. { DDPP = mod(((k/s) × M + i) × s, DDPA_length);
7. for (l = 1; l <= s; l++)
8. {j = ÎDDPP/t˚;
9. stcj ++;
10. s_template[j + 1, stcj] = k × y; k++; DDPP++;
11. if (DDPP = DDPA_length) DDPP = 0; }}
/* Packing and Send data sets */
12. for (j = i, z=0 ; z < M ; j++, z++)
13. {j = mod(j, M);
14. if (stcj <> 0)
15. { length = 1;
16. for (sbase = 1; sbase <= max_local_index; sbase + = x)
17. { for (k = 1; k <= stcj; k++)
18. { index = sbase + s_templete[j + 1, k];
19. for (l = 0; l < y; l++)
20. { out_buffer[length] = SLAi[index];
21. length++; index++; } } }
22. Send out_buffer to processor Pj;
23. }
24. }
/* Receive phase */
/* Construct the receive processor/data set of the first basic
cycle */
25. SDPA_length = M × s; k = 0; rtcj = 0, where j = 0, ..., M - 1;
26. while (k < BC)
27. { SDPP = mod(((k/t) × M + i) × t, SDPA_length);
28. for (l = 1; l <= t; l++)
29. { j = ÎSDPA/s˚;
30. rtcj++;
31. r_template[j + 1, rtcj] = k × y; k++; SDPP++;
32. if (SDPP = SDPA_length) SDPP = 0; }}
33. for (ri = j = 0; j < M; j++)
34. if (rtcj <> 0) ri++;
35. while (ri > 0)
36. { Receive data sets in_buffer from any source processor

 Pj.
37. max_local_index = the length of the destination local

array of processor Pi;
/* Unpacking data sets */
38. length = 1;
39. for (rbase = 1; rbase <= max_local_index; rbase += x)
40. { for (k = 1; k <= rtcj; k++)

Fig. 5. The send processor/data sets of the first basic-cycle for a BLOCK-
CYCLIC(3) to BLOCK-CYCLIC(2) redistribution over two processors.

Fig. 6. The receive processor/data sets of the first basic-cycle for a BLOCK-
CYCLIC(3) to BLOCK-CYCLIC(2) redistribution over two processors.

366 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 4, APRIL 1998

41. { index = rbase + r_templete[j + 1, k];
42. for (l = 0; l < y; l++)
43. { DLAi[index] = in_buffer[length];
44. length++; index++; } } }
45. ri--;
46. }
end_of_basic_cycle_calculation

5 PERFORMANCE EVALUATION AND EXPERIMENTAL
RESULTS

To evaluate the performance of the basic-cycle calculation
technique, we compare the proposed approach with the
multiphase method [12], [13], [24], [25] and the PITFALLS
method [21], [22]. Both theoretical and experimental per-
formance evaluation are conducted. We first develop cost
models for these three methods and analyze their perform-
ance in terms of the computation and the communication
overheads. The cost models developed for the multiphase
method and the PITFALLS method are based on algorithms
proposed in [25] and [21], respectively. We then execute
these three methods on an IBM SP2 parallel machine and
use the cost models to analyze the experimental results.

5.1 Cost Models
Given an s Æ t redistribution on a one-dimensional array A[1
: N] over M processors, the time for an algorithm to perform
the redistribution, in general, can be modeled as follows:

T T Tcomp comm= + , (11)

where Tcomp is the time for an algorithm to compute the
source/destination processors of local array elements, pack
source local array elements that have the same destination
processors to the same message, and unpack array elements
in messages that received from source processors to their
corresponding destination local array positions; and Tcomm
is the time for an algorithm to send and receive data among
processors. We said that Tcomp and Tcomm are the computa-
tion and communication time of an algorithm to perform a
redistribution, respectively.

For the basic-cycle calculation technique, according to
(11), the time to perform an s Æ t redistribution on a one-
dimensional array A[1 : N] over M processors can be mod-
eled as follows:

T BCC T BCC T N M Tcomp s da f a f c h= + ¥ + ¥d , (12)

where Tcomp(BCC) is the computation time of the basic-cycle
calculation technique to perform a redistribution, d is the
maximum number of processors that a source processor
needs to send data to, Ts is the startup time of the intercon-
nection network of a parallel machine, and Td is the data
transmission time of the interconnection network of a par-
allel machine. The value of d can be determined by the fol-
lowing equation:

d =
L
M
MM

O
P
PP

¥
¥F

HG
I
KJ

min
max
min

gcd
max

M
s t
s t

BC s t
s t

,
,
,

,
,

a f
a f

a f
a f . (13)

For the multiphase method, an s Æ t redistribution may be
decomposed into several phases, i.e., BLOCK-CYCLIC(s0 = s) to

BLOCK-CYCLIC(s1), BLOCK-CYCLIC(s1) to BLOCK-CYCLIC(s2),
..., BLOCK-CYCLIC(sn-1) to BLOCK-CYCLIC(sn = t), where si-1 =
c1si or si = c2si-1, for some integers c1 > 0, c2 > 0, and i = 1, ..., n.
Therefore, according to (11), for the multiphase method, the
time to perform an s Æ t redistribution on a one-
dimensional array A[1 : N] over M processors through n
phases can be modeled as follows:

T MP T MP k T N M Tcomp i
i

n

i s d
i

n

a f a f c hd i= + ¥ + ¥
= =
Â Â

1 1

, (14)

where Tcomp(MP)i is the computation time of the multiphase
method to perform a BLOCK-CYCLIC(si-1) to BLOCK-

CYCLIC(si) redistribution and ki = min(M, max(si-1, si)/
min(si-1, si)), for i = 1, ..., n; and Ts and Td are the same as
those in (12).

For the PITFALLS method, according to (11), the time to
perform an s Æ t redistribution on a one-dimensional array
A[1 : N] over M processors can be modeled as follows:

T PITFALLS T PITFALLS T N M Tcomp s da f a f c h= + ¥ + ¥d , (15)

where Tcomp(PITFALLS) is the computation time of the PIT-
FALLS method to perform a redistribution, and d, Ts, and Td
are the same as those in (12).

To analyze the computation and the communication costs
for these three methods, we have the following assumptions:

1) For the multiphase method presented in [12], in gen-
eral, the two-stage multiphase (2P) method outper-
forms three or more stage multiphase methods.
Therefore, for the multiphase method, we only con-
sider the two-stage (2P) multiphase method in our
analysis.

2) In our analysis, we use the synchronous communication
scheme to analyze the communication costs for these
three methods. In real situations, the basic-cycle calcula-
tion technique, the PITFALLS method, and the multi-
phase method use some sort of asynchronous communi-
cation schemes to overlap the computation and the
communication overheads. Since the communication
and the computation overheads cannot be overlapped in
the synchronous communication scheme, the commu-
nication costs presented in this section provide upper
bounds for the actual communication costs of these
three methods.

5.1.1 Analysis of Computation Costs
The computation overheads consist of the indexing cost
and the packing/unpacking cost. The indexing cost is
the time to construct the send/receive processor/data
sets for a redistribution. The packing/unpacking cost is
the time to gather array elements that have the same
destination processors into a message in the send phase
and put array elements from the received messages into
their corresponding destination local array positions in
the receive phase.

For the two-stage multiphase method, according to the
algorithms proposed in [25], the indexing cost of a proces-
sor to perform the ith redistribution phase can be modeled
as follows:

CHUNG ET AL.: A BASIC-CYCLE CALCULATION TECHNIQUE FOR EFFICIENT DYNAMIC DATA REDISTRIBUTION 367

T MPcomp ia f =

O
N c

M s c if s c s c M M c

O
N c

M s
N

M s s c s

O
N c
M s c s c s

i

i
i i i i i i

i

i i
i i i

i

i
i i i i

¥
¥ +

F
HG

I
KJ = £ =

¥
¥ + ¥

F
HG

I
KJ =

¥
¥ +

F
HG

I
KJ =

R

S

|
|
||

T

|
|
||

-
-

-
-

-

1
1

1
1

1

0& , mod ,

,

c hd i

 (16)

where i = 1 to 2. The packing/unpacking cost of the two-
stage multiphase method is 2 × O(N/M).

For the PITFALLS method, the indexing cost of a proces-
sor to perform the efficient FALLS intersection algorithm
[21] in the send phase is

O M
lcm s t

s
lcm s t s

t
lcm s t

t¥ ¥
+ ¥

¥
L
M
M
M

O
P
P
P

-
F
H
GG

I
K
JJ

F

H
GG

F

H
GG -

, ,
,

,a f a fc h a f
min

1
2 1

max 0 2,
,lcm s t s t

t
a f ¥ +

¥
L
M
MM

O
P
PP

F
HG

I
KJ
I
K
JJ
I

K
JJ . (17)

The value of (17) is approximate to O M s t
s t¥ -

¥2 gcd(,)e j . Since the

indexing costs in the send phase and the receive phase are the

same, the total indexing cost is O M s t
s t¥ -

gcd(,)e j. The pack-

ing/unpacking cost of the PITFALLS method is O(N/M).
For the basic-cycle calculation technique, according to

the algorithm presented in Section 4, the indexing cost is

O lcm s t
s t

(,)
(,)gcde j. The packing/unpacking cost of the basic-cycle

calculation technique is O(N/M).
From the above analysis, we observe that the indexing

cost of the multiphase method depends on array size (N)
and the number of processors (M). The indexing cost of the
PITFALLS method depends on the number of processors
(M). However, the indexing cost of the basic-cycle calcula-
tion technique is independent of the array size and the
number of processors. The packing/unpacking costs of the
basic-cycle calculation technique and the PITFALLS method
are similar and are less than that of the two-stage multi-
phase method.

5.1.2 Analysis of Communication Costs
According to (12) and (15), the communication costs for the
two single-phase methods, the basic-cycle calculation tech-
nique, and the PITFALLS method are the same. To simplify
the analysis, we use the basic-cycle calculation to represent
the single-phase method in the following discussion.

Given an s Æ t redistribution on a one-dimensional ar-
ray A[1 : N] over M processors, the relationship of s and t
can be classified into the following three cases:

Case 1 : s is not divisible by t (or vice versa), the value of
gcd(s, t) is equal to one.
Case 2 : s is not divisible by t (or vice versa), the value of
gcd(s, t) is not equal to one.
Case 3 : s is divisible by t (or vice versa), i.e., s = kt or t =
ks, for some integer k.

For Case 1, according to (12), the communication time for the
basic-cycle calculation technique to perform this redistribution
is Tcomm(BCC) = d × Ts + (N/M) × Td. For the two-stage mul-
tiphase method, according to [13], a BLOCK-CYCLIC(s) to
BLOCK-CYCLIC(lcm(s, t)) redistribution followed by a
BLOCK-CYCLIC(lcm(s, t)) to a BLOCK-CYCLIC(t) redistribu-
tion will produce the best performance for the two- stage
multiphase method in this redistribution. The communica-
tion time for the two-stage multiphase method to perform
this redistribution through a BLOCK-CYCLIC(s) to BLOCK-
CYCLIC(lcm(s, t)) redistribution followed by a BLOCK-
CYCLIC(lcm(s, t)) to a BLOCK-CYCLIC(t) redistribution is
Tcomm(MP) = (min(M, t) + min(M, s)) × Ts + 2 × (N/M) × Td. We
have the following lemma.

LEMMA 1. Given an s Æ t redistribution on a one-dimensional
array A[1 : N] over M processors, where s is not divisible
by t, t is not divisible by s, and the value of gcd(s, t) is
equal to one, the communication time for the two-stage
multiphase method to perform this redistribution is always
greater than that of the basic-cycle calculation technique.

PROOF. The communication time for the basic-cycle calcu-
lation technique and the two-stage multiphase
method to perform this redistribution are Tcomm(BCC)
= d × Ts + (N/M) × Td and Tcomm(MP) = (min(M, t) +
min(M, s)) × Ts + 2 × (N/M) × Td, respectively. Since

d =
L
M
MM

O
P
PP

¥
F
HG

I
KJ

£ +min ,
max ,
min , max ,

, , ,M
s t
s t

BC
s t

M t M s
a f
a f a f a f a fmin min

we have Tcomm(BCC) < Tcomm(MP). o

For Case 2, according to (12), the communication time for
the basic-cycle calculation technique to perform this redistri-
bution is Tcomm(BCC) = d × Ts + (N/M) × Td. For the two-stage
multiphase method, it chooses BLOCK-CYCLIC(lcm(s, t)) as
the intermediate distribution of the redistribution. The
communication time for the two-stage multiphase method
to perform this redistribution is Tcomm(MP) = (min(M, t/gcd(s, t))
+ min(M, s/gcd(s, t))) × Ts + 2 × (N/M) × Td. We have the
following lemma:

LEMMA 2. Given an s Æ t redistribution on a one-dimensional
array A[1 : N] over M processors, where s is not divisible
by t, t is not divisible by s, and the value of gcd(s, t) is not
equal to one, the communication time for the two-stage
multiphase method to perform this redistribution is always
greater than that of the basic-cycle calculation technique.

PROOF. The communication time for the basic-cycle calcu-
lation technique and the two-stage multiphase
method to perform this redistribution are Tcomm(BCC)
= d × Ts + (N/M) × Td and Tcomm(MP) = (min(M,
t/gcd(s, t)) + min(M, s/gcd(s, t))) × Ts + 2 × (N/M) ×
Td, respectively. Since

d =
L
M
MM

O
P
PP

¥
¥F

HG
I
KJ

£ +

min
max
min

gcd
max

min gcd min gcd

M
s t
s t

BC s t
s t

M t s t M s s t

,
,
,

,
,

, , , , ,

a f
a f

a f
a f

a fc h a fc h
we have Tcomm(BCC) < Tcomm(MP). o

368 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 4, APRIL 1998

For Case 3, according to (12), the communication time
for the basic-cycle calculation technique to perform this
redistribution is Tcomm(BCC) = d × Ts + (N/M) × Td. For the
multiphase method, it can use one-stage or two-stage ap-
proaches to perform the redistribution. According to (14),
the communication time for the one-stage method to per-
form this redistribution is Tcomm(MP) = min(M, max(s,
t)/min(s, t)) × Ts + (N/M) × Td. We have the following
lemma.

LEMMA 3. Given an s Æ t redistribution on a one-dimensional
array A[1 : N] over M processors, where s is divisible by t
or t is divisible by s, the communication time for the one-
stage multiphase method to perform this redistribution is
the same as that of the basic-cycle calculation technique.

PROOF. The communication time for the basic-cycle calcu-
lation technique and the one-stage multiphase
method to perform this redistribution isTcomm(BCC) =
d × Ts + (N/M) × Td and Tcomm(MP) = min(M, max(s,
t)/min(s, t)) × Ts + (N/M) × Td, respectively. Since

d =
L
M
MM

O
P
PP

¥
¥F

HG
I
KJ

=

min
max
min

gcd
max

min max min

M
s t
s t

BC s t
s t

M s t s t

,
,
,

,
,

, , , ,

a f
a f

a f
a f

a f a fc h
we have Tcomm(BCC) = Tcomm(MP). o

The communication time for the two-stage multiphase
method to perform this redistribution is Tcomm(MP) = k × Ts
+ 2 × (N/M) × Td, where k = k1 + k2. The communication
time of the basic-cycle calculation technique is less than
that of the two-stage multiphase method if and only if (18)
is true.

T BCC T MP
N
M

k T
Tcomm comm

s

d
a f a f b g

< ¤ >
-d

. (18)

Table 1 summarizes the computation and the communi-
cation costs of these three methods to perform an s Æ t re-
distribution on a one-dimensional array A[1 : N] over M
processors.

5.2 Experimental Results
To verify the performance analysis presented in Section 5.1,
we have implemented these three methods on an IBM SP2

parallel machine. All algorithms were written in the single
program multiple data (SPMD) programming paradigm
with C+MPI codes. For each case, we selected two different
redistribution as test samples. They are given as follows.

Case 1 :

case 1-1 BLOCK-CYCLIC(5) to BLOCK-CYCLIC(8)
case 1-2 BLOCK-CYCLIC(100) to BLOCK-CYCLIC(3)

Case 2 :

case 2-1 BLOCK-CYCLIC(40) to BLOCK-CYCLIC(300)
case 2-2 BLOCK-CYCLIC(300) to BLOCK-CYCLIC(200)

Case 3 :

case 3-1 BLOCK-CYCLIC(60) to BLOCK-CYCLIC(3)
case 3-2 BLOCK-CYCLIC(10) to BLOCK-CYCLIC(500)

To get the experimental results, each test sample with a
particular array size N was executed 10 times by each algo-
rithm on M processors, where N Œ {360K, 720K, 1.08M,
1.44M, 1.8M} and M Œ {10, 20, 30, 40, 50, 60, 72}. The mean
time of these 10 tests that were executed by an algorithm
was used as the time to perform a redistribution with a
particular array size N on M processors of that algorithm.
The single-precision array was used for the test. From the
experimental results, we plotted the performance of these
three methods for a redistribution on a fixed array size over
different numbers of processors to a figure. We found that
the figures for array size N = 360K, N = 720K, N = 1.08M,
N = 1.44M, and N = 1.8M on different number of processors
demonstrate similar characteristics. Therefore, in the fol-
lowing subsections, we only show the performance of these
three methods for a redistribution on array size N = 1.8M
over different numbers of processors M and the perform-
ance of these three methods for a redistribution on various
array size N over M = 72 processors.

5.2.1 Experimental Results for Case 1
Case 1-1 BLOCK-CYCLIC(5) to BLOCK-CYCLIC(8). The per-
formance of these three algorithms to execute a BLOCK-
CYCLIC(5) to BLOCK-CYCLIC(8) redistribution with array
size N = 1.8M on different numbers of processors is shown
in Fig. 7a. To perform this redistribution, the two-stage
multiphase method chooses BLOCK-CYCLIC(40) as the inter-
mediate distribution. In Fig. 7a, for the same test sample, the

TABLE 1
THE COMPUTATION AND COMMUNICATION COSTS REQUIRED BY DIFFERENT METHODS FOR AN s Æ t REDISTRIBUTION

ON A ONE-DIMENSIONAL ARRAY A[1 : N] OVER M PROCESSORS

CHUNG ET AL.: A BASIC-CYCLE CALCULATION TECHNIQUE FOR EFFICIENT DYNAMIC DATA REDISTRIBUTION 369

execution time of these three algorithms has the order T(BCC)
£ T(PITFALLS) < T(MP). When the number of processors is less
than a threshold, the execution time of the basic-cycle calcu-
lation technique is similar to that of the PITFALLS method.
However, when the number of processors is over the thresh-
old, the execute time of the basic-cycle calculation technique
is less than that of the PITFALLS method.

Fig. 7b shows the indexing time, the packing/unpacking
time, and the communication time for test samples shown
in Fig. 7a. From Fig. 7b, we can see that the indexing time of
the basic-cycle calculation technique is independent of the
number of processors. The indexing time of the PITFALLS
method depends on the number of processors. When the
number of processors increases, the indexing time of the
PITFALLS method increases as well. The indexing time of
the two-stage multiphase method decreases when the
number of processors increases. These phenomena match
the performance analysis shown in Table 1. For the same
test sample, the indexing time of these three algorithms has
the order Tindexing(BCC) < Tindexing(PITFALLS) < Tindexing(MP).

For the same test sample, the two-stage multiphase
method has higher packing/unpacking time than that of
the basic-cycle calculation technique and the PITFALLS
method. The packing/unpacking time of the basic-cycle
calculation technique is similar to that of the PITFALLS

method. These phenomena also match the performance
analysis shown in Table 1.

When performing a redistribution, both the basic-cycle
calculation technique and the PITFALLS method use asyn-
chronous communication schemes. However, the basic-
cycle calculation technique unpacks any received messages
in the receive phase while the PITFALLS method unpacks
messages in a specific order. Therefore, in general, we can
expect that the communication time of the basic-cycle calcu-
lation technique is less than or equal to that of the PITFALLS
method. To perform the redistribution shown in this case, the
two-stage multiphase method needs to execute two redistri-
bution, BLOCK-CYCLIC(5) to BLOCK-CYCLIC(40) and BLOCK-
CYCLIC(40) to BLOCK-CYCLIC(8). In BLOCK-CYCLIC(5) to
BLOCK-CYCLIC(40) redistribution (r Æ kr), the two-stage
multiphase method uses the same asynchronous communi-
cation scheme that used in the basic-cycle calculation tech-
nique. In BLOCK-CYCLIC(40) to BLOCK-CYCLIC(8) redistri-
bution (kr Æ r), the two-stage multiphase method uses a
synchronous communication scheme. Therefore, the two-
stage multiphase has higher message startup costs and
transmission costs than those of the basic-cycle calculation
technique and the PITFALLS method in this case. From Fig. 7b,
for the same test sample, the communication time of
these three algorithms has the order Tcomm(BCC) £
Tcomm(PITFALLS) < Tcomm(MP).

Fig. 8a shows the performance of these three algorithms
to execute a BLOCK-CYCLIC(5) to BLOCK-CYCLIC(8) redis-
tribution with various array size on 72 processors. To per-
form this redistribution, the two-stage multiphase method
chooses BLOCK-CYCLIC(40) as the intermediate distribution.
For the basic-cycle calculation technique and the PITFALLS
method, each source processor needs to send total N/72
array elements to 10 destination processors according to
(13). The basic-cycle calculation technique and the PITFALLS
method take T(BCC) = Tcomp(BCC) + 10Ts + 4 × (N/72) × Td
and T(PITFALLS) = Tcomp(PITFALLS) + 10Ts + 4 × (N/72) ×
Td time to perform this redistribution, respectively. For the
two-stage multiphase method, each source processor needs
to send total N/36 array elements to 8 + 5 = 13 destination
processors according to (14). The time for the two-stage
multiphase method to perform this redistribution is

T MP T MP T N Tcomp i s d
i

a f a f c h= + + ¥ ¥
=
Â 13 4 36

1

2

.

Fig. 8b shows the indexing time, the packing/unpacking
time, and the communication time for test samples shown
in Fig. 8a. From Fig. 8b, we can see that the indexing costs
of the basic-cycle calculation technique and the PITFALLS
method are independent of the array size. The indexing
time of the two-stage multiphase method increases when
the array size increases. These phenomena match the per-
formance analysis shown in Table 1. For the same test sam-
ple, the indexing time of these three algorithms has the or-
der Tindexing(BCC) < Tindexing(PITFALLS) < Tindexing(MP).

The packing/unpacking costs of the basic-cycle calcula-
tion technique and the PITFALLS method are similar and
are less than that of the two-stage multiphase method.
These results match the performance analysis shown in
Table 1.

(a)

(b)

Fig. 7. (a) Performance of different algorithms to perform a BLOCK-
CYCLIC(5) to BLOCK-CYCLIC(8) redistribution on different number of
processors with fixed array size N = 1.8M. (b) The indexing time, the
packing/unpacking time, and the communication time for (a).

370 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 4, APRIL 1998

For the communication overheads, since the two-stage
multiphase method needs more message startup costs and
transmission costs than those of the basic-cycle calculation
technique and the PITFALLS method, the communication
cost of the two-stage multiphase method is greater than those
of the basic-cycle calculation technique and the PITFALLS
method. For the basic-cycle calculation technique and the
PITFALLS method, the basic-cycle calculation technique
unpacks any received messages in the receive phase while
the PITFALLS method unpacks messages in a specific order.
Therefore, the communication time of the basic-cycle cal-
culation technique is less than or equal to that of the PIT-
FALLS method.

Case 1-2 BLOCK-CYCLIC(100) to BLOCK-CYCLIC(3). The per-
formance of these three algorithms to execute a BLOCK-
CYCLIC(100) to BLOCK-CYCLIC(3) redistribution with array
size N = 1.8M on different numbers of processors is shown in
Fig. 9a. The two-stage multiphase method chooses BLOCK-
CYCLIC(300) as the intermediate distribution. In Fig. 9a, for
the same test sample, the execution time of these three al-
gorithms has the order T(BCC) < T(PITFALLS) < T(MP).

Fig. 9b shows the indexing time, the packing/unpacking
time, and the communication time for test samples shown
in Fig. 9a. From Fig. 9b, we have similar observations as
those obtained from Fig. 7b.

Fig. 10a shows the performance of these three algo-
rithms to execute a BLOCK-CYCLIC(100) to BLOCK-CYCLIC(3)
redistribution with various array size on 72 processors. The
two-stage multiphase method chooses BLOCK-CYCLIC(300)
as the intermediate distribution. For the basic-cycle calcula-
tion technique and the PITFALLS method, each source
processor needs to send total N/72 array elements to 72
destination processors according to (13). The basic-cycle
calculation technique and the PITFALLS method take
T(BCC) = Tcomp(BCC) + 72Ts + 4 × (N/72) × Td and
T(PITFALLS) = Tcomp(PITFALLS) + 72Ts + 4 × (N/72) × Td
time to perform this redistribution, respectively. For the
two-stage multiphase method, each source processor needs
to send total N/36 array elements to 3 + 72 = 75 destination
processors according to (14). The time for the two-stage
multiphase method to perform this redistribution is

T MP T MP T N Tcomp i s d
i

a f a f c h= + + ¥ ¥
=
Â 75 4 36

1

2

.

Fig. 10b shows the indexing time, the packing/unpacking
time, and the communication time for test samples shown in
Fig. 10a. From Fig. 10b, we have similar observations as those
obtained from Fig. 8b.

(a)

(b)

Fig. 8. (a) Performance of different algorithms to execute a BLOCK-
CYCLIC(5) to BLOCK-CYCLIC(8) redistribution with various array size
on 72-node SP2. (b) The indexing time, the packing/unpacking time,
and the communication time for (a).

(a)

(b)

Fig. 9. (a) Performance of different algorithms to execute a BLOCK-
CYCLIC(100) to BLOCK-CYCLIC(3) redistribution on different number
of processors with fixed array size N = 1.8M. (b) The indexing time, the
packing/unpacking time, and the communication time for (a).

CHUNG ET AL.: A BASIC-CYCLE CALCULATION TECHNIQUE FOR EFFICIENT DYNAMIC DATA REDISTRIBUTION 371

5.2.2 Experimental Results for Case 2
Case 2-1 BLOCK-CYCLIC(40) to BLOCK-CYCLIC(300). The
performance of these three algorithms to execute a
BLOCK-CYCLIC(40) to BLOCK-CYCLIC(300) redistribution
with array size N = 1.8M on different numbers of proces-
sors is shown in Fig. 11a. To perform this redistribution, the
two-stage multiphase method chooses BLOCK-CYCLIC(600)
as the intermediate distribution. In Fig. 11a, for the same
test sample, the execution time of these three algorithms
has the order T(BCC) < T(PITFALLS) < T(MP).

Fig. 11b shows the indexing time, the pack-
ing/unpacking time, and the communication time for test
samples shown in Fig. 11a. From Fig. 11b, we have similar
observations as those obtained from Fig. 7b.

Fig. 12a shows the performance of these three algorithms
to execute a BLOCK-CYCLIC(40) to BLOCK-CYCLIC(300) re-
distribution with various array size on 72 processors. To
perform this redistribution, the two-stage multiphase
method chooses BLOCK-CYCLIC(600) as the intermediate
distribution. For the basic-cycle calculation technique and
the PITFALLS method, each source processor needs to send
total N/72 array elements to 16 destination processors ac-
cording to (13). The time for BCC and PITFALLS to perform
this redistribution are T(BCC) = Tcomp(BCC) + 16Ts + 4 ×
(N/72) × Td and T(PITFALLS) = Tcomp(PITFALLS) + 16Ts + 4
× (N/72) × Td, respectively. For the two-stage multiphase
method, each source processor needs to send total N/36

array elements to 15 + 2 = 17 destination processors ac-
cording to (14). The time for the two-stage multiphase
method to perform this redistribution is

T MP T MP T N Tcomp i s d
i

a f a f c h= + + ¥ ¥
=
Â 17 4 36

1

2

.

Fig. 12b shows the indexing time, the pack-
ing/unpacking time, and the communication time for test
samples shown in Fig. 12a. From Fig. 12b, we have similar
observations as those obtained from Fig. 8b.

Case 2-2 BLOCK-CYCLIC(300) to BLOCK-CYCLIC(200). The
performance of these three algorithms to execute a BLOCK-
CYCLIC(300) to BLOCK-CYCLIC(200) redistribution with
array size N = 1.8M on different numbers of processors is
shown in Fig. 13a. To perform this redistribution, the two-
stage multiphase method chooses BLOCK-CYCLIC(600) as
the intermediate distribution. In Fig. 13a, for the same test
sample, the execution time of these three algorithms has the
order T(BCC) < T(PITFALLS) < T(MP).

Fig. 13b shows the indexing time, the pack-
ing/unpacking time, and the communication time for test
samples shown in Fig. 13a. From Fig. 13b, we have similar
observations as those obtained from Fig. 7b.

Fig. 14a shows the performance of these three algorithms
to execute a BLOCK-CYCLIC(300) to BLOCK-CYCLIC(200)

(a)

(b)

Fig. 10. (a) Performance of different algorithms to execute a BLOCK-
CYCLIC(100) to BLOCK-CYCLIC(3) redistribution with various array
size on a 72-node SP2. (b) The indexing time, the packing/unpacking
time, and the communication time for (a).

(a)

(b)

Fig. 11. (a) Performance of different algorithms to execute a BLOCK-
CYCLIC(40) to BLOCK-CYCLIC(300) redistribution on different number
of processors with fixed array size N = 1.8M. (b) The indexing time, the
packing/unpacking time, and the communication time for (a).

372 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 4, APRIL 1998

redistribution with various array size on 72 processors. To
perform this redistribution, the two-stage multiphase
method chooses BLOCK-CYCLIC(600) as the intermediate
distribution. For the basic-cycle calculation technique and
the PITFALLS method, each source processor needs to send
total N/72 array elements to four destination processors
according to (13). The time for BCC and PITFALLS to per-
form this redistribution are T(BCC) = Tcomp(BCC) + 4Ts + 4 ×
(N/72) × Td and T(PITFALLS) = Tcomp(PITFALLS) + 4Ts + 4 ×
(N/72) × Td, respectively. For the two-stage multiphase
method, each source processor needs to send total N/36
array elements to 2 + 3 = 5 destination processors according
to (14). The time for the two-stage multiphase method to
perform this redistribution is

T MP T MP T N Tcomp i s d
i

a f a f c h= + + ¥ ¥
=
Â 5 4 36

1

2

.

Fig. 14b shows the indexing time, the pack-
ing/unpacking time, and the communication time for test
samples shown in Fig. 14a. From Fig. 14b, we have similar
observations as those obtained from Fig. 8b.

5.2.3 Experimental Results for Case 3
Since the redistribution in Case 3 can be performed by the
one-stage (1P) method [25] directly, we also include the
performance of the one-stage method for cases presented in
this section.

Case 3-1 BLOCK-CYCLIC(60) to BLOCK-CYCLIC(3). The per-
formance of these four algorithms to execute a BLOCK-
CYCLIC(60) to BLOCK-CYCLIC(3) redistribution with array
size N = 1.8M on different numbers of processors is shown
in Fig. 15a. To perform this redistribution, the two-stage
(2P) multiphase method selects BLOCK-CYCLIC(15) as the
intermediate distribution. In Fig. 15a, for the same test
sample, the execution time of these four algorithms has the
order T(BCC) < T(PITFALLS) < T(1P) < T(2P).

Fig. 15b shows the indexing time, the pack-
ing/unpacking time, and the communication time for test
samples shown in Fig. 15a. In Fig. 15b, for the same test
sample, the indexing time of these four algorithms has the
order Tindexing(BCC) < Tindexing(PITFALLS) < Tindexing(1P) <
Tindexing(2P). The packing/unpacking costs of the basic-cycle
calculation technique, the PITFALLS method, and the one-
stage method are similar and are less than that of the two-
stage multiphase method.

For the basic-cycle calculation technique, the PITFALLS
method, and the two-stage multiphase method, we have
similar observations as those obtained from Fig. 7b for the
communication overheads. In this case, the one-stage method
uses a synchronous communication scheme while the ba-
sic-cycle calculation technique and the PITFALLS method
use asynchronous communication schemes. Therefore, the

(a)

(b)

Fig. 12. (a) Performance of different algorithms to execute a BLOCK-
CYCLIC(40) to BLOCK-CYCLIC(300) redistribution with various array
size on a 72-node SP2. (b) The indexing time, the packing/unpacking
time, and the communication time for (a).

(a)

(b)

Fig. 13. (a) Performance of different algorithms to execute a BLOCK-
CYCLIC(300) to BLOCK-CYCLIC(200) redistribution on different num-
ber of processors with fixed array size N = 1.8M. (b) The indexing time,
the packing/unpacking time, and the communication time for (a).

CHUNG ET AL.: A BASIC-CYCLE CALCULATION TECHNIQUE FOR EFFICIENT DYNAMIC DATA REDISTRIBUTION 373

communication overheads of the basic-cycle calculation
technique and the PITFALLS method are less than that of
the one-stage method. In Fig. 15a, for the same test sample,
we have Tcomm(BCC) £ Tcomm(PITFALLS) < Tcomm(1P) <
Tcomm(2P).

Fig. 16a shows the performance of these four algorithms
to execute a BLOCK-CYCLIC(60) to BLOCK-CYCLIC(3) redis-
tribution with various array size on 72 processors. To per-
form this redistribution, the two-stage (2P) multiphase
method selects BLOCK-CYCLIC(15) as the intermediate distri-
bution. For the basic-cycle calculation technique, the PIT-
FALLS method, and the one-stage method, each source
processor needs to send total N/72 array elements to 20
destination processors according to (13). The basic-cycle
calculation technique, the PITFALLS method, and the one-
stage method take T(BCC) = Tcomp(BCC) + 20Ts + 4 × (N/72)
× Td, T(PITFALLS) = Tcomp(PITFALLS) + 20Ts + 4 × (N/72) ×
Td, and T(1P) = Tcomp(MP) + 20Ts + 4 × (N/72) × Td time to
perform this redistribution, respectively. For the two-stage
multiphase method, each source processor needs to send
total N/36 array elements to 4 + 5 = 9 destination proces-
sors according to (14). The time for the two-stage multi-
phase method to perform this redistribution is

T MP T MP T N Tcomp i s d
i

a f a f c h= + + ¥ ¥
=
Â 9 4 36

1

2

.

Fig. 16b shows the indexing time, the pack-
ing/unpacking time, and the communication time for test
samples shown in Fig. 16a. In Fig. 16b, for the same test
sample, the indexing time of these four algorithms has the
order Tindexing(BCC) < Tindexing(PITFALLS) < Tindexing(1P) <
Tindexing(2P). The packing/unpacking costs of the basic-cycle
calculation technique, the PITFALLS method, and the one-
stage method are similar and are less than that of the two-
stage multiphase method.

For the communication overheads, we have three observa-
tions. First, although the two-stage multiphase method re-
duces the message startup costs (it needs nine while others
need 20 in this case), the communication overheads are still
greater than those of the basic-cycle calculation technique, the
PITFALLS method, and the one-stage method. This is because
the extra data transmission costs offset the reduced startup
costs. This result can be verified by (18). Second, compared to
the PITFALLS method and the basic-cycle calculation tech-
nique, the one-stage method also has more communication
overheads. The reason is that the one-stage method uses a syn-
chronous communication scheme while the basic-cycle calcu-
lation technique and the PITFALLS method use asynchronous
communication schemes in this case. The communication and
computation overheads can not be overlapped in the one-stage
method. Therefore, the one-stage method has more communi-
cation overheads than those of the basic-cycle calculation tech-
nique and the PITFALLS method. Third, the communication
time of the basic-cycle calculation technique is less than or

(a)

(b)

Fig. 14. (a) Performance of different algorithms to execute a BLOCK-
CYCLIC(300) to BLOCK-CYCLIC(200) redistribution with various array
size on a 72-node SP2. (b) The indexing time, the packing/unpacking
time, and the communication time for (a).

(a)

(b)

Fig. 15. (a) Performance of different algorithms to execute a BLOCK-
CYCLIC(60) to BLOCK-CYCLIC(3) redistribution on different number of
processors with fixed array size N = 1.8M. (b) The indexing time, the
packing/unpacking time, and the communication time for (a).

374 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 4, APRIL 1998

equal to that of the PITFALLS method. The reason is the same
as that described for Fig. 8b.
Case 3-2 BLOCK-CYCLIC(10) to BLOCK-CYCLIC(500). The
performance of these four algorithms to execute a BLOCK-
CYCLIC(10) to BLOCK-CYCLIC(500) redistribution with ar-
ray size N = 1.8M on different numbers of processors is
shown in Fig. 17a. To perform this redistribution, the two-
stage multiphase method selects BLOCK-CYCLIC(50) as the
intermediate distribution. In Fig. 17a, for the same test
sample, the execution time of these four algorithms has the
order T(BCC) < T(PITFALLS) < T(1P) < T(2P).

Fig. 17b shows the indexing time, the pack-
ing/unpacking time, and the communication time for test
samples shown in Fig. 17a. From Fig. 17b, we have similar
observations as those obtained from Fig. 15b.

Fig. 18a shows the performance of these four algorithms
to execute a BLOCK-CYCLIC(10) to BLOCK-CYCLIC(500) re-
distribution with various array size on 72 processors. To
perform this redistribution, the two-stage multiphase
method selects BLOCK-CYCLIC(50) as the intermediate dis-
tribution. For the basic-cycle calculation technique, the
PITFALLS method, and the one-stage method, each source
processor needs to send total N/72 array elements to 50
destination processors according to (13). The basic-cycle
calculation technique, the PITFALLS method and the one-
stage method take T(BCC) = Tcomp(BCC) + 50Ts + 4 × (N/72)
× Td, T(PITFALLS) = Tcomp(PITFALLS) + 50Ts + 4 × (N/72) × Td,
and T(1P) = Tcomp(MP) + 50Ts + 4 × (N/72) × Td time to per-
form this redistribution, respectively. For the two-stage mul-

tiphase method, each source processor needs to send total
N/36 array elements to 5 + 10 = 15 destination processors
according to (14). The time for the two-stage multiphase
method to perform this redistribution is

T MP T MP T N Tcomp i s d
i

a f a f c h= + + ¥ ¥
=
Â 15 4 36

1

2

.

Fig. 18b shows the indexing time, the pack-
ing/unpacking time, and the communication time for test
samples shown in Fig. 18a. From Fig. 18b, we have similar
observations as those obtained from Fig. 16b except that

1) the indexing time of the one-stage method is less than
that of the PITFALLS method for the array size N =
360K and 720K; and

2) the communication cost of the two-stage multiphase
method is less than those of the basic-cycle calcula-
tion technique, the PITFALLS method, and the one-
stage method for the array size N = 360K and 720K.

The indexing time of the PITFALLS method depends on the
number of processors while the indexing time of the one-
stage method depends on the number of processors and the
array size. When the array size is fixed and the number of
processors is increasing, the number of array elements that
will be processed by the one-stage method is decreasing. In
this case, when the array size is N = 360K and the number of
processors is M = 72, the indexing costs of the one-stage
method and the PITFALLS method are O(2(N/M/gcd(10, 500))
and O(M((500 - 10)/gcd(10, 500)), respectively. Therefore, it
is possible that the indexing time of the one-stage method

(a)

(b)

Fig. 16. (a) Performance of different algorithms to execute a BLOCK-CYCLIC(60) to BLOCK-CYCLIC(3) redistribution with various array size on a
72-node SP2. (b) The indexing, packing/unpacking, and the communication time for (a).

CHUNG ET AL.: A BASIC-CYCLE CALCULATION TECHNIQUE FOR EFFICIENT DYNAMIC DATA REDISTRIBUTION 375

is less than that of the PITFALLS method if the array size is
small and the number of processors is large.

In this case, the communication cost of the two-stage
multiphase method is 15Ts + 4 × (N/36) × Td while others
are 50Ts + 4 × (N/72) × Td. When the array size is small, it is
possible that the communication costs of the two-stage
multiphase method is less than those of the basic-cycle cal-
culation technique, the PITFALLS method, and the one-
stage method.

5.2.4 Discussions
Given an s Æ t redistribution on a one-dimensional array
A[1 : N] over M processors, from the above performance
analysis and experimental results, we have the following
remarks.

REMARK 1. The indexing time of the basic-cycle calculation tech-
nique depends on the values of s and t and is independent of
the values of M and N. The indexing time of the PITFALLS
method depends on the values of s, t, and M; and is inde-
pendent of the value of N. The indexing time of the two-stage
multiphase method depends on the values of s, t, M, and N.

REMARK 2. The packing/unpacking costs of the basic-cycle cal-
culation technique and the PITFALLS method are similar
and are less than that of the two-stage multiphase method.

REMARK 3. Both the basic-cycle calculation technique and the
PITFALLS method use asynchronous communication

schemes. However, the basic-cycle calculation technique
unpacks any received messages in the receive phase while
the PITFALLS method unpacks messages in a specific or-
der. Therefore, in general, we can expect that the communi-
cation time of the basic-cycle calculation technique is less
than or equal to that of the PITFALLS method. For the two-
stage multiphase method, it uses the same asynchronous
communication scheme that is used in the basic-cycle cal-
culation technique for an r Æ kr redistribution and a syn-
chronous communication scheme for a kr Æ r redistribu-
tion. Therefore, in general, the two-stage multiphase has
higher communication cost than those of the basic-cycle
calculation technique and the PITFALLS method. However,
if the array size is small and the number of processors is
large, it is possible that the communication cost of the two-
stage multiphase method is less than those of the basic-cycle
calculation technique and the PITFALLS method for an r
Æ kr redistribution.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a basic-cycle calculation
technique to efficiently perform BLOCK-CYCLIC(s) to
BLOCK-CYCLIC(t) redistribution. The basic-cycle calculation
technique is a simple method to perform BLOCK-CYCLIC(s)
to BLOCK-CYCLIC(t) redistribution. The indexing overhead
of the basic-cycle calculation technique is independent of

(a)

(b)

Fig. 17. (a) Performance of different algorithms to execute a BLOCK-CYCLIC(10) to BLOCK-CYCLIC(500) redistribution on different number of
processors with fixed array size N = 1.8M. (b) The indexing, packing/unpacking, and the communication time for (a).

376 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 4, APRIL 1998

the number of processors and the array size involved in a
redistribution. It also uses an asynchronous communication
scheme to overlap the computation overhead and the
communication overhead. To evaluate the performance of
the basic-cycle calculation technique, we compare it with
the PITFALLS method and the two-stage multiphase
method. Both theoretical and experimental analysis were
conducted for these three methods. The experimental re-
sults demonstrate that the basic-cycle calculation technique
outperforms the multiphase method and the PITFALLS
method for most test samples.

Although, in this paper, we present this technique for
one-dimensional array redistribution, this technique can be
extended to multidimensional array redistribution as well.
Given a multidimensional array redistribution, one can use
this technique to determine the communication sets of ar-
ray elements in each dimension. By taking the Cartesian
product of communication sets in each dimension, we can
obtain the final communication sets. Some details, such as
the trade-off between indexing and packing/unpacking
overheads, how to minimize the communication over-
heads, etc., still need to be addressed. We will discuss these
issues in a future paper.

HPF supports array redistribution with arbitrary source
and destination processor sets. The technique developed in
this paper assumes that the source and the destination
processor sets are the same. In the future, we will study
efficient methods for array redistribution with arbitrary source
and destination processor sets. Also, since multidimensional

array redistribution is an important topic for data parallel
compilers, in the future, we will study how to extend this
technique for multidimensional array redistribution.

ACKNOWLEDGMENTS

The work of this paper was partially supported by the Na-
tional Science Council of the Republic of China under con-
tract NSC-87-2213-E035-011.

REFERENCES

[1] S. Benkner, “Handling BLOCK-CYCLIC Distribution Arrays in
Vienna Fortran 90,” Proc. Int’l. Conf. Parallel Architectures and Com-
pilation Techniques, Limassol, Cyprus, June 1995.

[2] B. Chapman, P. Mehrotra, H. Moritsch, and H. Zima, “Dynamic
Data Distribution in Vienna Fortran,” Proc. Supercomputing ’93,
pp. 284-293, Nov. 1993.

[3] S. Chatterjee, J.R. Gilbert, F.J.E. Long, R. Schreiber, and S.-H. Teng,
“Generating Local Address and Communication Sets for Data
Parallel Programs,” J. Parallel and Distributed Computing, vol. 26,
pp. 72-84, 1995.

[4] J.J. Dongarra, R. Van De Geijn, and D.W. Walker, “A Look at Scalable
Dense Linear Algebra Libraries,” Technical Report ORNL/TM-
12126, Oak Ridge Nat’l Laboratory, Apr. 1992.

[5] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C.-W.
Tseng, and M. Wu, “Fortran-D Language Specification,” Technical
Report TR-91-170, Dept. of Computer Science, Rice Univ., Dec.
1991.

[6] S.K.S. Gupta, S.D. Kaushik, C.-H. Huang, and P. Sadayappan, “On
the Generation of Efficient Data Communication for Distributed-
Memory Machines,” Proc. Int’l. Conf. Computing Symp., pp. 504-513,
Taiwan, 1992.

(a)

(b)

Fig. 18. (a) Performance of different algorithms to execute a BLOCK-CYCLIC(10) to BLOCK-CYCLIC(500) redistribution with various array size on
a 72-node SP2. (b) The indexing, packing/unpacking, and the communication time for (a).

CHUNG ET AL.: A BASIC-CYCLE CALCULATION TECHNIQUE FOR EFFICIENT DYNAMIC DATA REDISTRIBUTION 377

[7] S.K.S. Gupta, S.D. Kaushik, C.-H. Huang, and P. Sadayappan, “On
Compiling Array Expressions for Efficient Execution on Distrib-
uted-Memory Machines,” J. Parallel and Distributed Computing,
vol. 32, pp. 155-172, 1996.

[8] High Performance Fortran Forum, “High Performance Fortran
Language Specification (version 1.1),” Rice Univ., Nov. 1994.

[9] S. Hiranandani, K. Kennedy, J. Mellor-Crammey, and A. Sethi,
“Compilation Technique for BLOCK-CYCLIC Distribution,” Proc.
Supercomputing ’94, pp. 392-403, July 1994.

[10] E.T. Kalns, and L.M. Ni, “Processor Mapping Technique Toward
Efficient Data Redistribution,” IEEE Trans. Parallel and Distributed
Systems, vol. 6, no. 12, Dec. 1995.

[11] E.T. Kalns and L.M. Ni, “DaReL: A Portable Data Redistribution
Library for Distributed-Memory Machines,” Proc. 1994 Scalable
Parallel Libraries Conf. II, Oct. 1994.

[12] S.D. Kaushik, C.H. Huang, R.W. Johnson, and P. Sadayappan, “An
Approach to Communication Efficient Data Redistribution,” Proc.
Supercomputing ’94 , pp. 364-373, July 1994.

[13] S.D. Kaushik, C.H. Huang, J. Ramanujam, and P. Sadayappan,
“Multiphase Array Redistribution: Modeling and Evaluation,”
Proc. Int’l. Parallel Processing Symp., pp. 441-445, 1995.

[14] S.D. Kaushik, C.H. Huang, and P. Sadayappan, “Efficient Index
Set Generation for Compiling HPF Array Statements on Distrib-
uted-Memory Machines,” J. Parallel and Distributed Computing,
vol. 38, pp. 237-247, 1996.

[15] K. Kennedy, N. Nedeljkovic, and A. Sethi, “Efficient Address
Generation for BLOCK-CYCLIC Distribution,” Proc.
Supercomputing ’95, Barcelona, pp. 180-184, July 1995.

[16] C. Koelbel, “Compiler-Time Generation of Communication for
Scientific Programs,” Proc. Supercomputing ’91, pp. 101-110, Nov.
1991.

[17] P-Z. Lee and W.Y. Chen, “Compiler Techniques for Determining
Data Distribution and Generating Communication Sets on Dis-
tributed-Memory Multicomputers,” Proc. 29th Hawaii Int’l. Conf.
System Sciences, vol. 1, pp. 537-546, Jan. 1996.

[18] Y.W. Lim, P.B. Bhat, and V.K. Prasanna, “Efficient Algorithms for
BLOCK-CYCLIC Redistribution of Arrays,” Proc. Eighth Symp.
Parallel and Distributed Processing, pp. 74-83, 1996.

[19] Y.W. Lim, N. Park, and V.K. Prasanna, “Efficient Algorithms for
Multi-Dimensional Block-Cyclic Redistribution of Arrays,” Proc.
Int’l. Conf. Parallel Processing, pp. 234-241, 1997.

[20] L. Prylli and B. Touranchean, “Fast Runtime Block Cyclic Data
Redistribution on Multiprocessors,” J. Parallel and Distributed
Computing, vol. 45, pp. 63-72, Aug. 1997.

[21] S. Ramaswamy and P. Banerjee, “Automatic Generation of Effi-
cient Array Redistribution Routines for Distributed Memory
Multicomputers,” Proc. Frontier ’95: Fifth Symp. Frontiers of Mas-
sively Parallel Computation. pp. 342-349, McLean, Va., Feb. 1995.

[22] S. Ramaswamy, B. Simons, and P. Banerjee, “Optimization for Effi-
cient Array Redistribution on Distributed Memory Multicomput-
ers,” J. Parallel and Distributed Computing , vol. 38, pp. 217-228, 1996.

[23] J.M. Stichnoth, D. O'Hallaron, and T.R. Gross, “Generating Communi-
cation for Array Statements: Design, Implementation, and Evalua-
tion,” J. Parallel and Distributed Computing , vol. 21, pp. 150-159, 1994.

[24] R. Thakur, A. Choudhary, and G. Fox, “Runtime Array Redistri-
bution in HPF Programs,” Proc. 1994 Scalable High Performance
Computing Conf. , pp. 309-316, May 1994.

[25] R. Thakur, A. Choudhary, and J. Ramanujam, “Efficient Algo-
rithms for Array Redistribution,” IEEE Trans. Parallel and Distrib-
uted Systems, vol. 7, no. 6, pp. 587-594, June 1996.

[26] A. Thirumalai and J. Ramanujam, “HPF Array Statements: Com-
munication Generation and Optimization,” Proc. Third Workshop
Languages, Compilers and Run-Time System for Scalable Computers,
Troy, N.Y., May 1995.

[27] A. Thirumalai and J. Ramanujam, “Efficient Computation of Ad-
dress Sequences in Data Parallel Programs Using Closed Forms
for Basis Vectors,” J. Parallel and Distributed Computing , vol. 38,
pp. 188-203, 1996.

[28] V. Van Dongen, C. Bonello, and C. Freehill, “High Performance
C—Language Specification Version 0.8.9,” Technical Report
CRIM-EPPP-94/04-12, 1994.

[29] C. Van Loan, Computational Frameworks for the Fast Fourier Trans-
form. SIAM, 1992.

[30] D.W. Walker and S.W. Otto, “Redistribution of BLOCK-CYCLIC
Data Distributions Using MPI,” Concurrency: Practice and Experi-
ence, vol. 8, no. 9, pp. 707-728, Nov. 1996.

[31] A. Wakatani and M. Wolfe, “A New Approach to Array Redistri-
bution: Strip Mining Redistribution,” Proc. Parallel Architectures
and Languages Europe, July 1994.

[32] A.i Wakatani and M. Wolfe, “Optimization of Array Redistribu-
tion for Distributed Memory Multicomputers,” Parallel Comput-
ing, vol. 21, no. 9, 1995.

[33] H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald,
“Vienna Fortran—A Language Specification Version 1.1,” ICASE
Interim Report 21, ICASE NASA Langley Research Center,
Hampton, Va., Mar. 1992.

Yeh-Ching Chung received a BS degree in
computer science from Chung Yuan Christian
University in 1983, and MS and a PhD degrees
in computer and information science from Syra-
cuse University in 1988 and 1992, respectively.
Since 1992, he has been an associate professor
in the Department of Information Engineering at
Feng Chia University. His research interests
include parallel compilers, parallel programming
tools, mapping, scheduling, and load balancing.

Ching-Hsien Hsu received a BS degree in com-
puter science from Tung Hai University in 1995.
He is currently a PhD student in the Department
of Information Engineering at Feng Chia Univer-
sity. His research interests are in the areas of
parallel and distributed computing, parallel algo-
rithms, and high performance compilers for data
parallel programming languages.

Sheng-Wen Bai received a BS degree in infor-
mation engineering from Feng Chia University in
1996. He is currently a master’s student in the
Department of Information Engineering at Feng
Chia University. His research interests are in the
areas of parallel and distributed computing, per-
formance analysis, and high performance com-
pilers for data parallel programming languages.

