CSC4180 Assignment 4: Compiler Frontend for Oat v.1

Release Date: April 11, 2024
Due Date: May 1, 2024

1 Summary of Tasks to Complete [README!]

e [Basic Requirement (60%)]: Implement semantic analysis for 2-level scope, and do IR gen-
eration for highly limited instructions. Should pass testcases 0, 1, and 2.

e [Avanced Requirement (30%)]: Implement semantic analysis for multi-level scope (if-else,
for loop, while loop), and do IR generation for the three instructions. Should pass testcases 3,
4, and 5.

e [Report (10%)]: Submit a technical report for this assignment

2 Introduction

In Assignment 2 and 3, you have implemented scanner and LL(1) parser by hand, and finally outputs
the abstract syntax tree (AST) for Oat v.1 Language. However, the AST cannot be used to do IR
generation yet since there are still some information missing, such as the type for each literal or variable,
and the scope for each variable. Recall the overall structure of compiler, there are totally 4 stages in
front-end phase, and there are still 2 stages to go, which are semantic analysis and IR (Intermediate
Representation) generation. Semantic Analysis aims to fill the missing type and scope information as
we said, and produces an agumented AST, which is used to do IR generation.

—> Tokens
= st

semantic Analysis [———=) Augmented AST

Front-end Fhase

Intermediate Code

Generation :> IR
—» Optimized IR
t——>» Machine Code

Back-end Phase

Two- Pass Compiler

Figure 1: Overview of Compiler

3 Template Program [Not Necessary to Follow]

The template of this assignment has implemented various functionalities, and hopefully it can save
you some time of dirty and time-consuming works to focus on sementic analysis and IR generation.
You don’t need to modify the following things unless you are pretty clear about what you are doing.

Download template from GitHub Repository

3.1 Summary of Template Program

1. Flex scanner for Oat v.1 Language
2. Bison parser for Oat v.1 Language, which outputs AST as .dot file

Transfer from .dot file to Python TreeNode structure, and TreeNode Visualization

- w

Definitions of SymbolTable, NodeType, and DataType data structures in Python

o

Runtime.c file for Oat v.1’s Built-In Functions like (print_int)
6. Basic Framework and TODO instruction comments for semantic analysis and IR codegen
7. Semantic analysis handler and IR codegen handler function definitions for binary and unary

operators

3.2 File Structure of Template Program

csc4180—ad4—template

| ——— llvmlite—examples Sample Programs to Generate LLVM IR with llvmlite
| ——— testcases Directory of testcases —related materials

|——— | ast Directory to store AST—related materials

|-—— | testl—6.0at Six Testcase Programs in Oat.vl

| ——— main.cpp Program entrance of cpp—based scanner and parser
| ——— scanner.! Flex scanner

| ——— parser.y Bison parser

| ——— node.cpp Definition of ASTNode and util functions

| ——— node.hpp Definition of ASTNode and util functions

| ——— Makefile Build executable for cpp—based scanner and parser

| ——— get_input_ast.sh Script to get input AST .dot and png files

| ——— a4.py [TODO]: all the logics of semantic analysis and IR generation here
| ——— runtime.c Build—In Functions of Oat v.1 Language Implemented by C

| ——— runtime.ll Compiled LLVM IR file for runtime.c by Clang

| ——— verify.sh Script to execute the compiler frontend for testcases in batch

How to Compile and Execute Template

Simply execute bash ./verify.sh and you can successfully get the input AST for your work under
/testcases/ast.

bash ./ verify .sh

https://github.com/tonyyxliu/CSC4180-Compiler/tree/main/Assignment4

4 Details of Basic Requirement

4.1 Semantic Analysis Part

The AST you need to manipulate looks like the following. Every node has a token class, some of
them (ID, INTLITERAL, STRINGLITERAL) has lexeme indicating the identifier or value. However,
all nodes have type NONE, which means their types are unknown. Another challenging issue for the
following Oat program is that there are two variable x, one defined globally and other defined locally.
They must be distinguished by your semantic analyzer so that the global x equals to 5, and the local
x equals to 10 when printing them out.

4.1.1 Input AST for test0.oat before semantic analysis

global x = 5;

int main() {
print_int (x);
var x = 10;
print_int (x);
return x;

PROGRAM
type: NONE
GLOBAL_DECL FUNC_DECL
type: NONE type: NONE
b INTLITERAL TINT e ARGS STMTS
type: NONE type: NONE type: NONE type: NONE type: NONE type: NONE
FUNC_CALL VAR_DECL FUNC_CALL RETURN
type: NONE type: NONE type: NONE type: NONE
D D INTLITERAL D D
print_int S NE x 10 print_int oS NE x
type: NONE ype: type: NONE type: NONE type: NONE ype: type: NONE

D D
x x
type: NONE type: NONE

Figure 2: Input AST without Semantic Analysis for the above Oat program

4.1.2 Output AST for testl.oat after semantic analysis

The output AST should be something like the following, with types for necessary nodes, and rename
the node as lexeme-scope_id so that it is pretty clear where the variable is declared and defined.

4.1.3 What You Need to Do
1. Understand the SymbolTable data structure defined in the template, or create one by yourself

2. Analyze each type of node (FUNC_DECL, VAR DECL, ...) about its children

3. Write handler functions for each type of node, and set data type to it

4.1.4 Notices (README!)

e In this part, you only need to manipulate at most 2 scopes at a time, one global
scope and the other local scope for each function declaration.

PROGRAM
type: NONE
GLOBAL_DECL FUNC_DECL
type: NONE type: NONE
D INTLITERAL D ARGS
x-1 5 main-1 type: VOID
type: INT type: INT type: INT ype:
FUNC_CALL VAR DECL FUNC_CALL RETURN
type: NONE type: NONE type: NONE type: INT
D D INTLITERAL D D
print_int-1 i x2 10 print_int-1 s et x2
type: VOID ype: type: INT type: INT type: VOID ype: type: INT

D D
x1 x-2
type: INT type: INT

Figure 3: Output AST with Semantic Analysis for the above Oat Program

4.2 IR Generation Part

You used to implement simple LLVM IR generation for Micro Language, but at that time, you simply
generate them as strings. This method works only for very simple language, and it becomes nearly
impossible when it comes to Oat v.1. Therefore, in this assignment, you need to learn a powerful tool
called llvmlite, which is a lightweight LLVM-Python binding for writing JIT (Just-in-time) compilers.
Using it can make our life easier compared to working with LLVM C API directly.

4.2.1 What You Need to Do

1. Have a look at the sample programs of LLVMlite to briefly understand how program should be
implemented to generate the LLVM IR you want.

Some important concepts include: module, IRBuilder, basic block
2. Analyze each type of node (FUNC_DECL, VAR DECL, ...) about its children
3. Write handler functions for each type of node to generate corresponding IR

4. There are

4.2.2 Notices (README!)

e In this part, you only need to support literal data types in LLVM IR, that is, int,
bool, and string. Reference or even nested reference types are for Bonus part.

e In this part, you only need to deal with basic alloca-load-store within one single
basic block. No need to consider conditional branch and multiple basic blocks inside
one function.

5 Details of Advanced Requirement

Conditional branches and loops are commonly used in most programs. To make your compiler more
powerful, in this part, you are required to extend the capability of your compiler to these features.
Works need to be done in both semantic analysis and IR generation.

5.1 Semantic Analysis Part

You need to consider cases where there are more than 2 scopes in the stack at a time, since if-else
statement and for / while loops create new scopes on top of the function declaration. A even more
challenging issue is that nested scope may exist, and you need to smartly use recursion to solve that.

5.2 IR Codegen Part

Implementing IR code generation for if-else, for and while loops need some extra efforts because there
can be more than 1 basic blocks inside a function, and program may jump to other basic blocks by
some conditions. Refer to the example llvmlite programs to see how to generate such IR codes.

6 Useful Materials

6.1 Learning Materials

Semantic Analysis Handout Notes from Stanford University, CS143, Summer 2012
[Recommended]| Semantic Analysis: Implementation, slides from University of Waterloo
LLVMlite Official Documentation

[Highly Recommended] LLVMlite Sample Programs of IR Generation

What is Static Single Assignment (SSA), Wikipedia

LLVM IR Tutorial by Vince Bridgers et.al from LLVM Developers Conference, Brussels 2019

6.2 VSCode Extensions for Development
e LLVM: Syntax highlighter for LLVM IR (Extension ID: RReverser.llvin)

e Oat Intellisens: Syntax highligher for Oat Language (Extension ID: tlcyr4.oat)

e Yash: Syntax highlighter for flex/bison (Extension ID: daohong-emilio.yash)

7 Bonus: (Extra Credits 10%)

If you want to challenge yourself and do something harder, here are some alternatives for you:

7.1 Integrate Your Scanner and Parser Implemented in A2 and A3

The template uses flex/bison to do scanning and parsing, but you can also replace them with your
own implementation in A2 and A3.

7.2 Make Your Compiler More Powerful
e Support reference(array) or even nested reference data types in IR code generation.
e Support NEW instructions with size initialization and value initialization

e Support error handling and report for semantic analyzer

Support type check for function arguments types for semantic analyzer

Any other features or instructions. . .

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/180%20Semantic%20Analysis.pdf
https://student.cs.uwaterloo.ca/~cs241/slides/sylvie/Sylvie-L18.pdf
https://llvmlite.readthedocs.io/en/latest/index.html
https://github.com/numba/llvmlite/tree/main/examples
https://en.wikipedia.org/wiki/Static_single-assignment_form
https://llvm.org/devmtg/2019-04/slides/Tutorial-Bridgers-LLVM_IR_tutorial.pdf

Extra Credit Policy

The extra credits are not going to be added to your final grade since this is an elective course and many
of you are interested in compiler and want to do some advanced work. In other words, the extra credits
you earn cannot be added to the grade of any programming assignment to make it higher. However,
these credits can serve as a proof of your interest and hard work for this course, and I will try my best
to offer as high A- rate as I can, probably higher than 40%, by consulting with Prof. CHUNG.

Submission & Evaluation

7.3 Grading Scheme

e Basic Requirement: 60%

As long as you can pass testcase 0, 1, and 2.oat

e Advanced Requirement: 30%

As long as you can pass testcase 3, 4, and 5.0at

e Technical Report: 10%

The report doesn’t need to be very long, and you don’t need to answer any questions. Just write
down your thoughts and feelings when implementing this assignment. You can also include what
you have tried and learned during this process.

e Bonus: 10%

Refer to section bonus for more details. The grading of this part will be very flexible and highly
depend on the TA’s judgement. Please specify clearly what you have done for the bonus part so
that he do not miss anything.

Policy of Late Submission

e Late submission within 10 minutes after then DDL is tolerated for possible network issues during
submission.

e 10 Points deducted for each day after the DDL (11 minutes late will be considered as one day,
so be careful)

e Zero point if you submitted your project late for more than two days

	Introduction
	Summary of Tasks to Complete [README!]
	Template Program [Not Necessary to Follow]
	Summary of Template Program
	File Structure of Template Program

	Details of Basic Requirement
	Semantic Analysis Part
	Input AST for test0.oat before semantic analysis
	Output AST for test1.oat after semantic analysis
	What You Need to Do
	Notices (README!)

	IR Generation Part
	What You Need to Do
	Notices (README!)

	Details of Advanced Requirement
	Semantic Analysis Part
	IR Codegen Part

	Useful Materials
	Learning Materials
	VSCode Extensions for Development

	Bonus: (Extra Credits 10%)
	Integrate Your Scanner and Parser Implemented in A2 and A3
	Make Your Compiler More Powerful
	Grading Scheme

