
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

SSD-enabled Graph Neural Network Training
on a Single Machine via In-memory Caching

Yuwei XU
yuweixu@link.cuhk.edu.cn

The Chinese University of Hong Kong, shenzhen

Abstract—Graph Neural Networks (GNNs) have emerged as a
powerful tool for various graph-structured inference tasks, but
their training scalability remains a significant challenge as graph
sizes continue to grow. Distributed training is a common solution,
scaling across multiple CPU nodes, but disk-based methods
for single-machine systems are less explored, despite offering a
cost-effective alternative. High-performance storage devices like
NVMe SSDs can be leveraged to improve single-node scalability,
though data movement between memory and disk presents a bot-
tleneck. Traditional GNN training pipelines often fail to address
this issue, leading to inefficiencies. In this work, we introduce
three methods that improve the SSD-based GNN training system
to process billion-scale graphs on a single machine. Inspired by
the inspector-executor execution model in compiler optimization,
Ginex restructures the GNN training pipeline by separating
sample and gather stages, therefore reducing I/O overhead using
Belady’s optimal caching algorithm. The experiments show that
Ginex achieves up to 2.67× higher throughput than existing SSD-
extended GNN systems. Building on Ginex, we present OUTRE
and TIGER. Although Ginex accomplishes larger percentages of
data requests through caches, the enormous overall requested
data volume is unchanged. To address this, we present OUTRE,
focusing on reducing the overall requested data volume. OUTRE
is an out-of-core GNN training framework that reduces redun-
dancy and minimizes memory usage by dynamically loading only
essential graph data. It efficiently manages graph storage on disk,
enabling scalable training on large graphs without overwhelming
system memory, and the training time is halved again compared
to the Ginex solution. Additionally, we introduce TIGER, a
GNN framework specifically designed for inductive learning on
large-scale knowledge graphs (KGs). TIGER employs a novel,
efficient streaming procedure that facilitates rapid subgraph
slicing and dynamic subgraph caching to minimize the cost of
subgraph extraction. We propose a novel two-stage algorithm
SiGMa to solve the optimal subgraph slicing problem practically.
By decoupling the complicated problem into two classical ones,
SiGMa simultaneously achieves low computational complexity
and high slice reuse. we demonstrate that TIGER significantly
reduces the running time of subgraph extraction, achieving up
to 7.9× speedup relative to the basic training procedure

Index Terms—Article submission, IEEE, IEEEtran, journal,
LATEX, paper, template, typesetting.

I. INTRODUCTION

RECENTLY, the success of Deep Neural Networks
(DNNs) has broadened their application beyond images

and texts to include graphs. Graph Neural Networks (GNNs),
a new class of DNNs, have emerged as a powerful alternative

This paper was produced by the IEEE Publication Technology Group. They
are in Piscataway, NJ.

Manuscript received April 19, 2021; revised August 16, 2021.

to traditional graph analytics for tasks [1]–[3] like node classi-
fication [4], recommendation [5], [6], and link prediction [7].
Leveraging their expressive power, GNNs effectively capture
the relational information among input nodes, enabling strong
generalization performance.

The GNN training process introduces unique challenges,
particularly in data preparation. Unlike traditional DNNs,
where data samples (e.g., images) are independent, nodes in a
graph are interconnected. For a single iteration of mini-batch
training, GNNs require feature vectors not just for target nodes
but also for their neighbors [4], [8]. This necessitates retrieving
the L-hop neighborhood of each node, where L corresponds
to the model depth, resulting in significant memory overhead
when dealing with large-scale graphs.

The size of graph datasets has recently surged to several
hundred GBs and even beyond one TB [9], [10]. While
sampling-based GNNs can reduce memory usage by adjusting
batch and sample sizes, fetching neighborhood information
still requires the entire graph to reside in memory. A com-
mon solution to address memory limitations is to distribute
graph storage across multiple machines and train GNNs in a
distributed manner. However, previous analysis [11] reveals
that the primary bottleneck in sampling-based GNN training
lies in the data preparation stage, which generates a high
volume of data requests. As shown in Fig. 1, subgraph
extraction for large-scale Knowledge Graphs can dominate
training time, accounting for 75% to 90% across three datasets.
For instance, a 3-hop subgraph can include up to one million
triples, leading to significant delays. Meanwhile, GPUs and
other computing devices often remain underutilized during
training, making multi-machine scaling inefficient. Moreover,
the additional communication overhead can further exacerbate
this underutilization problem.

With the rapid advancement of storage technologies, Solid
State Drives (SSDs) now offer sequential bandwidths in the
range of multiple GBs, and their prices have dropped signif-
icantly in recent years. As a result, researchers have started
exploring the potential of incorporating SSDs into sampling-
based GNN training. Disk-based GNN training presents a
promising alternative, as modern NVMe SSDs provide enough
capacity to store the entire input graph. However, SSDs
remain several orders of magnitude slower than host mem-
ory, particularly for random access operations. Consequently,
simply fetching L-hop neighborhoods from external storage
can exacerbate the already time-consuming data preparation
process, ultimately degrading training performance.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

((a)) ((b))

Fig. 1: (a)Training time breakdown on large graphs, (b)3-hop
subgraph size of central entities with different degrees.

Thus, we propose Ginex [12] (Graph inspector-executor),
the first GNN training system based on high-performance
NVMe SSDs. Ginex optimizes memory usage by implement-
ing an in-memory caching technique, particularly enhancing
the gather operation, which is the most I/O-intensive task in
GNN training. Inspired by the inspector-executor model in
compiler optimization [13], [14], Ginex divides the training
process into two phases: Inspector Phase: Samples a sufficient
number of batches to prepare an optimal caching mechanism
for gathering operations. Executor Phase: Completes batch
processing, utilizing the cache informed by the first phase.

However, the main focus of this dual-cache approach is
to explore how to accomplish more data requests through
the caches in host memory, while the overall requested data
volume is unchanged. How to reduce it remains to be explored.
Through quantitative analysis, we identify two redundancies in
out-of-core sampling for GNN training: Neighborhood Redun-
dancy and Temporal Redundancy. To address these, we pro-
pose OUTRE [15], an out-of-core de-redundancy framework
designed to minimize data requests. OUTRE incorporates
three innovations: 1) To reduce Neighborhood Redundancy,
we propose constructing training batches with min-cut graph
partitions [16] to decrease links between different batches’
training nodes. 2) Motivated by previous work [17], [18],
we approximate node embeddings with their histories to re-
duce Temporal Redundancy. 3) To alleviate exhausting tuning
efforts, we present an automatic cache space management
module to help OUTRE adapt to various configurations.

Moreover, these GNN training systems are unable to address
the efficiency challenges of subgraph extraction in large-
scale KGs [19]–[21]. Subgraph extraction in the large-scale
inductive KG reasoning system poses three challenges: Sub-
graph Data Completeness, Heterogeneous Graph Structure,
and SSD Storage and Access. They render other system-level
acceleration techniques nearly ineffective. To address these
challenges, we present TIGER [22], which supports efficiently
training state-of-the-art GNN-based reasoning models on a
single machine. Specifically, TIGER has four innovations.
1) To accelerate subgraph extraction while maintaining sub-
graph completeness, TIGER employs a novel ‘Slice & Cache’
procedure to precompute subgraphs in a streaming way. 2)
Considering the heterogeneous graph structure, we propose
a specific atom-based subgraph slicing problem. Regarding
slicing quality and reusability, we prove that the atom-based

Fig. 2: Example of graph with text

slicing problem is NP-hard. 3) We design a novel two-stage
subgraph slicing algorithm, SiGMa, to solve it.

This paper makes the following contributions:
• We propose Ginex [12] (Graph Inspector-Executor),

the first GNN training system that leverages high-
performance NVMe SSDs. We decompose the training
process into two stages to optimize data handling and
improve efficiency.

• We introduce OUTRE [15], an out-of-core de-redundancy
framework that analyzes the minimum cut graph and
employs point embedding approximation to reduce redun-
dancies in out-of-core sampling during GNN training.

• We present TIGER [22], a framework for heterogeneous
graph, especially KG reasoning tasks. We prove that the
cache slice strategy, which optimizes both quality and
reusability, is NP-hard. Then we propose the SiGMa
algorithm to efficiently address the problem.

II. BACKGROUND

A. Graph Tasks

Node Classification is one of the fundamental tasks in
Graph Neural Networks (GNNs), where the goal is to predict
a label for each node based on its features and the graph’s
structure. In node classification, nodes are typically associated
with a specific category or class, and the objective is to
learn a model that can predict these labels for unseen nodes.
This task is widely applicable in domains such as social
networks, where the goal might be to predict the interests
or demographics of users based on their connections and
interactions. In citation networks, node classification can be
used to categorize academic papers into different research
topics. GNNs excel at this task by effectively propagating
information from neighboring nodes through the graph, captur-
ing the structural dependencies between nodes and improving
classification accuracy by leveraging both node attributes and
graph connectivity.

Link Prediction is another crucial task for GNNs, focusing
on predicting the likelihood of an edge forming between two
nodes in a graph. This task is often framed as a binary clas-
sification problem, where the objective is to predict whether
a connection will appear between two nodes based on their
current interactions or features. Link prediction is particularly
useful in social network analysis, where it can be applied

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

((a)) ((b))

Fig. 3: (a) 2-layer GNN training on Node 1, (b) Sampling for a 2-layer GNN (sampling size = (3,2), batch size = 1).

to recommend new friendships or connections by identifying
potential links based on existing social interactions. Similarly,
in knowledge graph completion, link prediction is used to
infer missing relationships between entities, improving the
graph’s comprehensiveness. By learning latent patterns of node
connectivity and the structural properties of the graph, GNNs
can effectively predict missing links, making them a powerful
tool for dynamic graph analysis.

Graph Reasoning involves tasks that require deeper reason-
ing over the entire graph structure, often requiring the model to
infer latent relationships or perform logical operations over the
graph. This task is crucial in the context of knowledge graph
reasoning, where GNNs are applied to predict relationships
between entities or answer complex queries about a graph.
For instance, link prediction in knowledge graphs requires the
model to understand and infer logical relationships between
entities, such as “is-a” or “part-of” relationships. Inductive
graph reasoning, which focuses on reasoning about unseen
parts of the graph, is particularly important for real-world
applications such as question answering, where the graph
represents knowledge that must be inferred. GNNs enable ef-
ficient reasoning by propagating information across the graph,
enabling the model to generate logical inferences and extract
meaningful insights from large-scale graph-structured data.

B. Graph Neural Network
GNN Training operates on graph-structured data, where

each node has its own feature vector. GNNs aim to produce
a quality embedding for each node in the graph capturing its
neighborhood information on top of its own feature. These
embeddings may be used for various downstream tasks such
as node classification and link prediction. To obtain the embed-
ding of a node, GNN takes the feature vectors of not only the
target node for embedding computation, which is called seed
node, but also its L-hop in-neighbors as input. Each layer in
GNN is responsible for synthesizing feature information of the
nodes at each hop, which means that L-layer GNN is able to
reflect up to L-hop in-neighbors [4], [8].

Each layer of GNN consists of two main steps: Aggregate
and Combine. The embedding of node v after the ith layer,
denoted as hi

v , is computed as the following:

hi
v = Combine(Aggregate({hi−1

u |u ∈ N(v)}))

N(v) denotes the neighbor set of node v. In Aggregate step,
the features of the incoming nodes are aggregated into a single

vector. While popular options for aggregation functions are
simple operations like mean, max and sum, more sophisticated
aggregation functions are also drawing attention [41]. The
aggregated feature then goes through Combine step which
is essentially a fully connected (FC) layer with a non-linear
function. Fig.3(a) illustrates this process with an example of
a 2-layer GNN training on Node 1.

Neighborhood Sampling. The inter-node dependence of
training data poses a unique challenge to GNN training. Even
if we use a small batch size, the training cost for each batch can
still be quite high because collecting L-hop in-neighbors leads
to exponential growth of memory footprint. Neighborhood
sampling is a popular technique for this neighborhood explo-
sion problem. Instead of sampling L-hop in-neighbors of seed
nodes, sampling algorithms select only a subset of them. One
representative work is GraphSAGE, which randomly samples
only a predefined number of in-neighbors at each aggregation
step. Fig.3(b) shows an example with a 2-hop computational
graph for Node 1 being sampled. The sampling size in this
example is (3,2) which means that it selects (at most) three
among the neighbor nodes connected to the target node (Node
1) and (at most) two are selected for each of the previously
selected nodes. Its variants differ in several aspects of sampling
function design like the granularity of sampling operation or
the choice of probability distribution for sampling [23], [24].
In practice, it is not usual to go beyond three layers, and
popular choices of sampling size for GraphSAGE are (25, 10),
(10, 10, 10), and (15, 10, 5) [25].

C. GNN Training System

The state-of-the-art DNN frameworks [26], [27] employ
a mixed CPU-GPU training system, where CPU stores the
graph data and is in charge of data preparation, whereas
GPU executes the core GNN operations, i.e., aggregate and
combine. GPU memory capacity is often fairly limited to
store the graph data, while the massive parallelism of GPU
is key to accelerating GNN computations. Fig.4 visualizes a
typical process of mixed CPU-GPU training of GNN which
consists of four steps: (1) sample, (2) gather, (3) transfer, and
(4) compute. At every iteration, seed nodes for a single batch
as well as their neighbors are extracted by traversing the graph
structure (i.e., adjacency matrix) (sample). The adjacency
matrix is usually stored in the compressed sparse column
(CSC) format as it allows fast access to in-neighbors of each

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

Fig. 4: Overview of conventional GNN training system

Fig. 5: Ginex training pipeline overview

node. Then, the sparsely located feature vectors of the sampled
nodes are collected into a contiguous buffer (gather), which
is transferred to GPU over PCIe interface (transfer). Lastly,
GPU performs forward/backward propagation to compute gra-
dients and updates the parameters (compute). Since sampling
operation is often memory-intensive, it is common to spawn
multiple sub-processes to increase the sampling throughput.
Each sub-process performs a sampling job for a batch, and
puts the result into a shared queue. The main process fetches
the sampling result from the shared queue and executes the
remaining jobs, i.e., gather, transfer, and compute.

III. GINEX

A. Main Design

Ginex is a system for efficient training of a very large
GNN dataset by using SSD as a memory extension. Fig. 5
depicts a high-level overview of Ginex’s training pipeline.
After a short preprocessing procedure, Ginex starts training
by iterating the following four stages: superbatch sample,
changeset precomputation, feature cache initialization, and
main loop. In the superbatch sample stage, Ginex performs
sampling for a predefined number of batches, which we call
superbatch, all at once. With the sampling results, Ginex finds
all the information necessary to manage the feature cache for
the following gather operations in the changeset precompu-
tation stage. Specifically, in this stage, Ginex determines (i)
which feature vectors to prefetch into the feature cache at
initialization, and (ii) which feature vectors to insert and which
ones to evict from the feature cache at each iteration. After a
short transition stage for the feature cache initialization, Ginex
completes the remaining tasks including gather in the main
loop stage.

Fig. 6: Superbatch-level pipeline of Ginex

Fig. 7: (a) Ginex neighbor cache structure and (b) pseudo-code
for its operation

Inspector-Executor Execution Model. The inspector-
executor execution model [13], [14] is originally introduced
to enable runtime parallelization and scheduling optimization
of loops. An inspector procedure runs ahead of the executor
to collect information that is available only at runtime, such
as data dependencies among array elements. The executor is
an optimized version of the original application that utilizes
this runtime information to optimize data layout, iteration
schedule, and so on. Ginex embraces this execution paradigm
to improve the efficiency of in-memory caching for GNN
training. In particular, the first two runtime stages, superbatch
sample and changeset precomputation, correspond to the in-
spector, and the main loop stage to the executor. By running
ahead the sample operation for the entire superbatch, Ginex
collects complete information about the nodes to be accessed
later in the gather stage, thus enabling optimal management
of the feature cache.

Neighbor Cache Construction. Fig. 6 does not show
this process as unlike the feature cache which dynamically
manages its data, Ginex uses a static neighbor cache for
the whole training process. Therefore, Ginex constructs the
neighbor cache with a given size during offline preprocessing
time. To make the neighbor cache, Ginex examines the graph
structure (i.e., adjacency matrix) and picks out important nodes
whose list of in-neighbors would be cached. After finishing
this construction, Ginex saves the neighbor cache by dumping
it to SSD, which would be loaded at the beginning of each
of the following superbatch sample stages. This avoids the
repeated cost of constructing the neighbor cache, which may
include a large number of random reads of which sizes are
usually only a few tens or hundreds of bytes.

B. Superbatch-level Process

Superbatch Sample. As shown in Fig. 6, superbatch sample
takes up the first stage of Ginex runtime. In this stage, Ginex
first loads the neighbor cache which has been constructed and
stored in SSD during preprocessing. Basically, all memory

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Fig. 8: Example of cache update followed by gather

space except the working buffer for sampling processes can be
used for the neighbor cache. After that, multiple sub-processes
are launched and sampling is started for as many batches as the
superbatch size, S. When accessing the neighbor information
during the sampling process, Ginex first looks up the cache
and only reads the data from SSD when it is not present
in the cache. The sampling results of a superbatch are then
written to SSD. Usually, a sampling for each batch results in
two types of data. One is ids which is an 1-D list of all the
sampled nodes’ IDs. The other is adj, a data structure that
describes the connectivity among the sampled nodes. Ginex
stores these two data in separate files annotated with the batch
index. In total, 2×S files (ids 0,ids 1, ... ,ids (S−1), adj 0,
adj 1, ... , adj (S − 1)) are generated. The size of each file
varies depending on the sampling size, the batch size, and the
characteristics of the dataset, but usually ranges from several
hundred KB to a few MB.

Changeset Precomputation. Changeset precomputation is
the second stage of Ginex runtime. Instead of computing a
changeset (i.e., which features to insert into and evict from
the feature cache) every time Ginex performs gather in main
loop stage, Ginex precomputes all the changesets beforehand
by examining the list of sampled nodes ids files). This is to
accelerate the changeset computation in batch on GPU. It is
difficult to allocate enough memory and computation resources
of GPU for the changeset computation in main loop stage as
it involves GPU computation. As the total size of ids files
may exceed the GPU memory capacity, each ids file is first
loaded on the CPU memory and then streamed into GPU
when needed. The results of the changeset precomputation are
sent back to CPU, and are stored in SSD also by streaming.
Besides the changesets, a list of the feature vectors to prefetch
into the cache at initialization is also obtained at this stage.
Specifically, S + 1 files are generated in this step including one
for cache initialization init and the others for cache update for
every S iterations (update 0, update 1, ... , update (S−1)).

Feature Cache Initialization. This process is performed
after superbatch sample and changeset calculations are com-
pleted. In this step, Ginex reads the previously created init
file from SSD and constructs the feature cache. This process
includes reading feature vectors of the nodes specified in init
file as well as building an address table that will be used for
cache look-up.

Main Loop. This stage is where all the remaining GNN
training operations for each batch (gather, transfer, and com-
pute) are performed iteratively. In addition, Ginex performs
one more operation, cache update, in between. At each itera-
tion, Ginex reads a set of ids, adj and update files from SSD
in the order of the batch index. Then, Ginex makes batch input
by gathering feature vectors according to the ids file from
either the cache or SSD, and updates the cache as indicated in
the update file. Lastly, the batch input and adj are transferred
to GPU in order to perform forward and backward pass as
well as model update in the same way as the conventional
GNN training system.

Superbatch-level Pipeline. While the four runtime stages
for the same superbatch should be serialized, the jobs from
different superbatches can be pipelined. Taking this opportu-
nity, Ginex performs the jobs for different superbatches in a
pipelined manner in order to improve end-to-end performance.
Specifically, changeset precomputation for each superbatch is
executed in parallel with the superbatch sample of the next
superbatch. superbatchsample runs on CPU, while change-
set precomputation mainly consumes GPU resources except
the I/O overhead of streaming ids files and the changeset
precomputation results. This makes these two stages apposite
candidates of parallel execution. Figure 9 visualizes Ginex’s
superbatch-level pipeline. While the storage overhead of run-
time files is doubled as a result of pipelining, it successfully
hides most of the changeset precomputation overhead.

Implications on Training Quality. The new training sched-
ule of Ginex has no impact on training quality, as it only
changes the execution order of operations which do not have
any dependence with each other. It does not require any change
in sampling algorithm or GNN model computation.

IV. OUTRE

A. Redundancy Analysis

In this section, we firstly propose a new metric to quantify
the overall requested data volume for out-of-core sampling-
based GNN training. Then, we conduct a quantitative analysis
and try to locate two kinds of data redundancies in out-of-core
sampling-based GNN training.

During Data Preparation, the training framework accesses
the adjacency and feature matrices from external storage. We

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

TABLE I: Training time decomposition on two OGB datasets
under out-of-core environments

TABLE II: Redundancy Ratio on two OGB datasets.

TABLE III: Redundancy Ratio reduction brought by partition-
based selection on two OGB datasets.

TABLE IV: Redundancy Ratio reduction brought by reusing
historical embeddings on two OGB datasets.

analyze the total data volume requested and introduce a new
metric, “Redundancy Ratio” (RR), defined as:

RR =
ΣB

b=1|Ñb|
ΣB

b=1|Nb|
.

Here, Ñb represents the collective L-hop neighborhood size,
and Nb is the training node set for the b-th batch. The sum
ΣB

b=1|Ñb| indicates the overall data volume requested during
preparation. Since out-of-core sampling-based GNN training
is limited by this phase (as shown in Table I), RR is a relevant
metric for assessing training performance. To illustrate RR’s
effectiveness, we train a GraphSAGE model and present the
results in Table II, which shows that the total collective L-hop
neighborhood sizes can exceed one hundred times the number
of training nodes and even surpass the graph size.

Neighborhood Redundancy. Most GNN training frame-
works create batches by randomly selecting training nodes
and sampling L-hop neighborhoods. This random selection
leads to the significant overlap in the sampled neighborhoods
across different batches, termed ”Neighborhood Redundancy”.
Reducing this overlap is crucial for minimizing redundancy,
which can be achieved by increasing the number of edges
among training nodes within each batch.

To validate this approach, we employ the min-cut graph par-
titioning algorithm METIS [28] to divide the graph into 10,000
parts, maximizing intra-partition edges. We then randomly
select partitions, shuffle nodes, and construct batches. By
shifting from random selection to partition-based selection, we
observe a reduction in Redundancy Ratio of over 25% across
both datasets, as shown in Table III. This significant decrease
indicates that enhancing intra-batch connectivity effectively
lowers the overall data volume requested, thereby accelerating
out-of-core sampling-based GNN training.

Temporal Redundancy. Existing research [17], [18], [29]
suggests that most node embeddings undergo only modest
changes across training iterations, leading to efforts to ap-
proximate them using historical data. This strategy leverages
the insensitivity of deep learning models to small errors. In
out-of-core settings, reusing historical embeddings reduces
both computational redundancy and ”Temporal Redundancy”,
which refers to unnecessary data requests from external stor-
age. By substituting current embeddings with historical ones,
we eliminate redundant data requests.

Given the limitations of host memory, we implement a cache
for historical embeddings, focusing on high-degree nodes for
reuse. Evaluation results in Table IV for a 3-layer GraphSAGE
model indicate a significant reduction in Redundancy Ratio
when 20% of nodes reuse their historical embeddings sug-
gesting improved performance in out-of-core sampling-based
GNN training.

B. OUTRE Design
In this section, we introduce our proposed out-of-core

sampling-based GNN training framework OUTRE in detail.
Firstly, we provide an overview of OUTRE, where we de-
scribe the modifications we make to the conventional four-
stage training pipeline. Then we introduce the three main de-
signs of OUTRE: partition-based batch construction, historical
embedding cache, and automatic cache space management,
respectively.

1) Training Pipeline Overview: Figure 9 illustrates the
workflow of our proposed framework, OUTRE, which is built
upon the existing dual-cache framework, incorporating both
a neighbor cache and a feature cache. OUTRE introduces
two key modifications to the conventional four-stage training
pipeline:

Pre-processing Stage Addition. OUTRE adds a pre-
processing stage before the conventional pipeline. In this stage,
it executes an out-of-core min-cut graph partitioning algorithm
to divide the graph into smaller parts, which are later utilized to
construct training batches. Following this, OUTRE conducts
a profiling epoch that includes only the Sample and Gather
stages. This profiling collects essential information for the
automatic cache space management module, enabling it to
determine the optimal memory allocation for different caches.

Decoupling of the Sample Stage. OUTRE decouples the
Sample stage from the subsequent three stages, as suggested
by Ginex [12]. In the conventional four-stage pipeline, all
stages are executed consecutively for each training batch,
requiring both the neighbor cache (needed for the Sample
stage) and the feature cache (needed for the Gather stage)
to reside in host memory simultaneously. By decoupling the
Sample stage, OUTRE allows these two caches to occupy host
memory exclusively at different times. This change enables a
larger amount of graph data to be cached, which can enhance
training performance. To implement this decoupling, OUTRE
writes the sampled collective L-hop neighborhoods back to
external storage after the Sample stage. Before the Gather
stage, OUTRE retrieves the sampled results for each training
batch from external storage and proceeds with the remaining
stages as in the conventional pipeline.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

Fig. 9: The workflow overview of OUTRE

2) Main Designs: OUTRE incorporates three main designs
that enhance its efficiency and performance in GNN training:
(1) partition-based batch construction, (2) historical embed-
ding cache, and (3) automatic cache space management. Each
of these designs addresses specific types of redundancy and
optimizes the overall training process.

Partition-Based Batch Construction. This design aims to
reduce Neighborhood Redundancy. In OUTRE, each training
batch is constructed from several randomly selected graph
partitions created by the min-cut graph partitioning algorithm
during the pre-processing stage. By increasing intra-batch
connections, the overlap in collective L-hop neighborhoods
among different training batches is significantly minimized.
This reduction leads to a considerable decrease in the overall
data volume requested during the Sample and Gather stages,
thereby accelerating out-of-core sampling-based GNN train-
ing.

Historical Embedding Cache. To mitigate Temporal Re-
dundancy, OUTRE implements a historical embedding cache
that is utilized during both the Sample and Compute stages.
During the Sample stage, this cache informs the main process
about which nodes can be skipped based on the states of the
encountered nodes. This selective sampling reduces unneces-
sary computations. In the Compute stage, the GPU retrieves
the relevant historical node embeddings from the cache and
updates them based on the information stored in the historical
embedding cache table. This dual-stage involvement of the
historical embedding cache enhances efficiency by leveraging
previously computed embeddings, thereby reducing redundant
calculations.

Automatic Cache Space Management. OUTRE features
an automatic cache space management system designed to
optimize the sizes of different caches dynamically. This mech-
anism enables OUTRE to maintain robust performance across
various datasets and hardware configurations without requiring
extensive manual tuning. Specifically, OUTRE employs the
data collected during the profiling epoch in the pre-processing
stage to automatically determine the optimal memory alloca-
tion for the feature cache and the historical embedding cache.
This low-cost approach ensures that resources are utilized

effectively, adapting to the specific needs of the training
process.

V. TIGER

To implement the Slice & Cache procedure for highly
efficient subgraph extraction, we design a novel training frame-
work, TIGER, tailored for large-scale inductive KG reasoning.
We first overview the TIGER training pipeline. Then we
describe two core components of TIGER, atom-level subgraph
slicing, and subgraph caching.

A. TIGER Training Pipeline

Fig10 illustrates the training pipeline of TIGER. Given the
KG triple data stored on the SSDs, TIGER initially undertakes
Atom Cache Construction, loading a portion of atom triples
(1-hop subgraphs) into the main memory to accelerate the
subsequent subgraph extraction. Following this, TIGER starts
model training by iterating the Super-batch Loop, which is
specifically designed to pre-compute input data of multiple
batches before mini-batch training, thus reducing repetitive
calculations and facilitating the upcoming cache mechanism.
A super-batch loop starts with three precomputation stages:
Query Sampling, Subgraph Slicing, and Subgraph Caching,
where all required subgraphs are reconstructed into uniformly
sized slices and stored in either the Slice Cache or SSDs.
Subsequently, the super-batch loop trains multiple batches
of sampled queries through continuous Mini-batch Loops,
leveraging the precomputed slices to minimize subgraph ex-
traction costs. As the super-batch loops progress, the pre-
computation time decreases due to the dwindling number of
unsliced subgraphs. Notably, such subgraph precomputation
ensures efficient training without affecting models, thus there
is no sacrifice for effectiveness.

AtomCache Construction. The Atom Cache, established
at the start and unchanging in subsequent super-batch loops,
aims to reduce the cost of reading atoms (e.g. 1-hop query
subgraphs) from SSDs. It contains two cache structures within
a predefined size: one as a 1-D array for storing neighbor entity
IDs and another for atom triples of high-degree entities. This

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Fig. 10: The training pipeline overview of TIGER

cache employs direct addressing, recording each entity’s array
index and data length to achieve swift O(1) cache lookups.

Query Sampling. Given the hyper-parameter
superbatch size determining the number of mini-batches,
this stage samples all batches of training queries together.
Unlike the basic pipeline samples within each mini-batch
loop, TIGER preemptively identifies the specific subgraphs
each batch will access prior to mini-batch training. This
foresight enables the implementation of an efficient caching
mechanism for subgraph extraction.

Subgraph Slicing. This stage is crucial for optimizing
subgraph extraction. It extracts unsliced subgraphs accelerated
by the Atom Cache, and segments each of them into uniformly
sized slices. The results are recorded in a mapping dictionary
that links query entity IDs to their corresponding slice IDs,
enabling direct retrieval from sequential slice data and signif-
icantly reducing random SSD access. To improve efficiency,
we introduce atom-level subgraph slicing, which transforms
subgraphs into disjoint atoms. This approach reduces both time
complexity and memory usage during the slicing process.

Subgraph Caching. After slicing, the next stage involves
storing the generated slices on SSDs. We propose an atom-
based slice structure that reduces SSD storage requirements
by a factor of three. To decrease SSD access frequency,
some slices are cached in main memory, referred to as the
Slice Cache, organized in a 2-D array using direct addressing.
Additionally, we implement a robust caching mechanism that
precomputes the next-access slices for each mini-batch, facil-
itating dynamic cache updates during mini-batch training and
enhancing slice data loading efficiency.

Mini-batch Loop. In this stage, given a batch of queries,
the associated slice IDs are retrieved from the slice mapping
dictionary. The corresponding slice data is first extracted
from the Slice Cache and then from the SSDs, which is
used to construct the batch subgraph. After that, the Slice
Cache is updated with the precomputed changeset for this
batch to enhance the cache hit ratio in subsequent mini-batch
loops. Finally, TIGER transfers batch queries and complete
subgraphs into the GPU to compute the GNN-based model.

B. Atom-Level Subgraph Slicing Problem

Problem Formulation. To minimize the time complexity
and memory usage of the subgraph slicing process, we trans-
form the triple-level subgraph slicing problem into an atom-
level representation. An atom-based subgraph is defined as
Gq = {(ea, wa)|ea ∈ NL−1

q , wa = |G1
Ea

|}, where |Gq| =
Σa∈Gq

wa and wa denotes the atom weight (i.e., the number of

atom triples). The formal definition of the atom-level subgraph
slicing problem is as follows:

Definition 1: (Atom-level Subgraph Slicing). Given a pre-
determined slice size h and a collection of query entities Q,
the corresponding atom-based subgraphs are G = Gq|q ∈ Q
and the collection of atoms appearing in G are denoted as
A = {a|wa < h}. The atom-level subgraph slicing problem is
to construct a collection of slices S satisfying that: each slice
Si ∈ S consists of multiple distinct atoms in A and the total
weight of atoms |Si| = Σa∈Siwa ≤ h; any subgraph Gq ∈ G
can be composed by a set of non-overlapping slices S−q ⊆ S,
i.e., Gq = ∪Sq .

Optimization Target. The optimization objective for atom-
level subgraph slicing is to load all subgraph triples while
minimizing the number of slices accessed. Given the sizes of
subgraphs and slices, the required number of slices depends
on two key factors: SliceRedundancy and SliceUtilization.
Thus, we define the optimization target, referred to as the
SlicingScore, as follows:

f(G,S, h) =
|S|∑

Gq∈G
⌈
|Gq|/h

⌉ =

∑
Gq∈G |Sq|∑

Gq∈G
⌈
|Gq|/h

⌉
Slice Redundancy Rate δR

×
|S|∑

Gq∈G |Sq|
Slice Utilization Rate δU

, (1)

where |Gq| and |Sq| represent the number of subgraph triples
and slices, respectively. The slicingscore is defined as the
ratio of distinct slices in S to the minimum number of slices
required for each subgraph, based on the goals of atom-level
slicing. According to Equation1, this score can be broken down
into two metrics: SliceRedundancyRate (δR) and **Slice
Utilization Rate** (δU). δR measures the ratio of actual loaded
slices to the minimum required, with lower values indicating
reduced redundancy. δU assesses slice reuse by comparing
the number of distinct slices to the total required. Therefore,
subgraph slicing is considered optimal when the slice set S
minimizes the slicing score, which is expressed as δR × δU .

THEOREM 1: Minimizing δR × δU to obtain an optimal
atom-based subgraph slicing is NP-hard.

PROOF 1: We establish the NP-hardness of our target prob-
lem, atom-based subgraph slicing, by reducing the classical
Bin Packing problem to it. Given multiple items/atoms with
different weights, Bin Packing is to assign each atom to a bin
of size h such that the total number of bins used is minimized.
It is clear that this Bin Packing problem is equivalent to the
special case of our target problem where we are slicing only
one query subgraph Gq . In this case, the slice utilization rate
δU is fixed at 1 and the optimization target transforms to
minimizing the slice redundancy rate δR. If a polynomial-
time algorithm solves our problem, it implies one exists for
the NP-hard Bin Packing problem. Consequently, atom-based
subgraph slicing must also be NP-hard.

THEOREM 2: Given the subgraph set G and atom set A,
the metric δR of a slicing result S has a lower bound:

δR

⌈
(
∑

a∈A
wa)/h

⌉ /
(δU ·

∑
Gq∈G

⌈|Gq|/h⌉) (2)

PROOF 2: According to the definition of the slicing score,
δR×δU = f(G,S, h) = |S|/(

∑
Gq∈G ⌈|Gq|/h⌉). Meanwhile,

the total slice number |S|
⌈
(
∑

a∈A wa)/h
⌉
. Because δU1 and

the other terms are constants, the lower bound holds.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

C. Subgraph Slicing Algorithm

To address slice redundancy and utilization, we propose a
two-stage algorithm, SiGMa, for atom-based subgraph slicing.
The algorithm first reuses existing slices and then assigns
unmatched atoms into multiple slices. We note the complex
relationship between slice quality and the functions for slice
generation and matching. The slice-generating process directly
influences the redundancy rate δR, while slice matching affects
the reuse of existing slices (δU). Additionally, generated slices
impact reuse frequency, and effective matching can improve
δR by avoiding high-redundancy slices. Thus, we develop two
specific algorithms for slice generation and matching, focusing
on both δR and δU while ensuring efficiency.

Slice Generating Algorithm. The goal of slice generation
is to create a few h-length slices Sgen that together form the
input atom set G′

q = {a1, a2, · · · , am} (where m = |G′
q|).

These atoms are sourced from the same atom-based subgraph
Gq , with each atom’s weight wa not exceeding h. According
to Theorem 2, to minimize δR while reducing δU , the payload
of each slice should be as close to h as possible, thereby
minimizing the number of slices |Sgen|. This minimization
is akin to the NP-Hard Bin Packing problem, where items of
varying sizes must fit into the fewest bins of fixed capacity. We
will first explore feasible solutions to this classical problem:
Here, we first list some feasible solutions to this classical
problem: leftmargin=0.3cm

• Naive Solution (Next-Fit Algorithm, NF)
• Greedy Solution (First-Fit Decreasing Algorithm, FFD)
• Optimal Solution

Although NF and FFD algorithms can produce good so-
lutions in a reasonable timeframe, they do not consider the
optimization of the slice utilization rate δU . A clique in which
atoms are connected densely with others usually appears in
more subgraphs than a random combination of atoms. To this
end, we design a slice-generating algorithm that indirectly
controls the slice utilization by adjusting the atom processing
order, as shown in Algorithm 1. Specifically, different from
the FFD algorithm uses the decreasing order of atom weights,
we visit the atom list with the Postorder Depth-First Search
thereby decreasing the distances among atoms in a local
window. Because the input atom list G′

q is usually not a
complete subgraph, starting from only one atom may not cover
the whole list. Therefore, we traverse the k-hop neighbors of q
in G′

q as multiple root nodes (Line 2). For each neighbor atom
u, the algorithm checks if u is in G′

q , pushing u onto the atom
stack Lstack (Lines 3-5). While Lstack is not empty, it retrieves
the top atom a. If a is unvisited, mark it as visited, gather its
unvisited neighbors, sort by atom weights, and finally push
them onto the stack (Lines 6-11). If a is visited, it is popped
from Lstack and inserted into one slice in Snew via the FFD
algorithm (Lines 12-14). On Lines 15-16, after searching the
whole branch of one neighbor, the generated slices are filtered
by the capacity threshold alpha to ensure a low δR. The atoms
in low-capacity slices would be re-packed in the next iteration.
Finally, on Line 17, the rest atoms would be packed via the
FFD algorithm.

Slice Matching Algorithm. Slice matching aims to align
an atom-based subgraph Gq with existing slices from the
slice data S. The goal is to select disjoint slices Smat ⊆ S
that are proper subsets of Gq while maximizing their union.
This problem resembles the NP-hard Set Cover problem but
requires each selected slice to be non-overlapping, minimizing
the Slice Redundancy Rate (δR). Although fuzzy matching
can improve slice utilization, it increases computation and
introduces redundant triples.

The slice matching algorithm consists of two stages. In the
first stage, we gather the k-hop neighbors Nk

q of query q and
collect slices SN relevant to these neighbors. These slices are
sorted by historical utilization and matched preferentially. This
approach significantly reduces the size of the atom set G′

q . In
the second stage, we match slices containing atoms from the
remaining G′

q , excluding those that intersect with it. We sort
candidate slices by capacity, matching those with more atoms
first and ensuring that slices with a payload below a threshold
α are removed. The ratio of slice matching |G′

q|/|Gq| is
influenced by various factors, but the total capacity of matched
slices is guaranteed to be at least α.

VI. EXPERIMENT
A. Experimental Setup

System Configurations. All the methods discussed in this
article utilize caching to enhance GNN training, resulting in
minimal performance disparity between the CPU and GPU
used. Each method is compared against a baseline in the ex-
periments. Notably, the CPUs employed in the three methods
all feature a minimum of 16 cores. For GPU resources, both
Ginex and OUTRE utilize NVIDIA V100 GPUs, with Ginex
equipped with 16GB of video memory and OUTRE with
32GB. Additionally, both OUTRE and TIGER allocate 64GB

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

TABLE V: Summary of Datasets

Dataset Nodes Edges Dataset Size
ogbn-papers100M 444.24M 14.24B 569GB
ogbn-products 220.41M 20.24B 388GB
com-friendster 262.43M 15.48B 393GB
twitter-2010 208.26M 14.05B 326GB
mag240M-cite 121.75M 2.60B 385GB
IGB-medium 10.00M 120.08M 40.8GB
IGB-large 100.00M 1.22B 401.8GB
Knowledge Dataset Nodes Edges Relations
OgblKG2 2.50M 17.13M 535
FB5M 3.98M 17.87M 7523
ConceptNet 28.37M 34.07M 50
Freebase 86.05M 338.67M 14851

of memory. All three methods leverage SSDs with substantial
storage capacity.

Datasets. This survey evaluates several key datasets used
for large-scale graph neural networks (GNNs) and knowledge
graph (KG) reasoning, and the statistics of these datasets are
given in Table2.: Graph Datasets: ogbn-papers100M(papers)
[30], ogbn-products(products) [30], com-friendster [31], and
twitter-2010(Twitter) [31] are scaled following the method-
ology in [32]. Specifically, we use a graph expansion tech-
nique, which adapts Kronecker graph theory [33] to pre-
serve innate distributions of recipe graphs like power-law de-
gree distribution and community structure. Ogbn-papers100M
and mag240M-cite are from Open Graph Benchmark(OGB)
[30].Mag240M-cite is a homogeneous graph containing only
“paper” nodes and “paper-cite-paper” edges of the original
mag240M graph. Knowledge Graph Datasets: IGB-medium
and IGB-large are from Illinois Graph Benchmark(IGB) [10].
The two IGB datasets have significantly larger training sets
than the two OGB datasets. For Knowledge Graph, Ogbl-
wikiKG2 is derived from Wikidata [30], while FB5M is a
Freebase subset [34].

Models In the evaluation of Ginex, a 3-layer GraphSAGE
[35] and a 2-layer GCN [36] are employed, both configured
with a hidden dimension of 256, and the sampling size for
GraphSAGE is set to (10, 10, 10). For OUTRE, a 3-layer
GraphSAGE [35] serves as the primary comparison model,
also with a hidden size and sampling size of 256 and (10, 10,
10), respectively, while the default batch size is set to 1,000.
This method further extends its comparisons to include 2-layer
and 3-layer GAT and GCN models in the main experiment.
TIGER utilizes six recent GNN-based models for inductive
KG reasoning, specifically REDGNN [37], NBFNet [38],
AdaProp [39], A*Net [40], GraPE [41], and RUNGNN [42],
with default settings of a hidden dimension of 32, a layer
number L of 3, and a batch size of 16. The models are trained
by minimizing multi-class cross-entropy loss, and the triples in
the graph G are augmented with reverse and identity relations,
employing two evaluation metrics for the KG reasoning task.

Comparison Baselines. In evaluating Ginex, we compare
it with two baselines: PyG+ and Ali+PG. PyG+ is a modified
PyG [26] framework that supports disk-based GNN training
using a memory-mapped graph dataset, created with NumPy’s
memmap function for efficient I/O operations. Ali+PG en-
hances PyG+ with an in-memory caching mechanism, utilizing
Aligraph-style [43] and PaGraph-style caches for neighbor

Fig. 11: Normalized training time breakdown of PyG+,
Ali+PG, and Ginex. Smaller is better.

Fig. 12: Normalized training time breakdown of Ginex-PG and
Ginex

and feature caching, respectively. For OUTRE, we compare
PyG+mmap and Ginex, with the former allowing the reading
of memory-mapped adjacency matrices and node features.
We also introduce ”Ginexmod,” which caches graph data
and enables GPU access to cached node features in host
memory via UVA. In the TIGER evaluation, we compare with
three baselines: Basic, Atom, and Ginex. The Basic baseline
represents the standard training pipeline for inductive GNN
models, while Atom uses AtomCache to load subgraph atoms,
addressing the bottleneck of SSD random access. Ginex, noted
for its robust caching mechanism, divides subgraph triples
into equal-length slices without reuse, which can create a
bottleneck due to the volume of slices. Our focus is specifically
on optimizing the subgraph extraction process, excluding other
aspects of GNN training from our experiments.

B. Overall Performance

Ginex. We measure the training time breakdown of PyG+,
Ali+PG, and Ginex across four datasets. For GraphSAGE, the
Ginex superbatch sizes are set to 3300, 2100, 3600, and 6400
for papers, products, Friendster, and Twitter, respectively.
For GCN, the superbatch sizes are 2500, 300, 900, and 900.
These values are derived from the offline profiling heuristic in
Section 3.5. The actual size of the runtime files is within 3%
of the 100 GB target.

Fig. 11 shows the results. Training time for PyG+ and
Ali+PG is broken down into data preparation, transfer, and
compute. Data preparation time is the CUDA stall time caused
by sample or gather. Ginex’s training time, on the other hand,
includes additional components: inspect, switch, and cache

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

TABLE VI: Overall training performance comparison on four datasets.

update. Inspect time corresponds to the pipelined execution of
superbatch sampling and changeset precomputation, where the
changeset time is hidden by superbatch sampling. Switch time
refers to the initialization of the feature cache, and Ginex’s
data preparation time includes gather and runtime file loading,
excluding sample time.

Ginex outperforms all other workloads. For GraphSAGE,
speedups range from 1.86× to 2.50× over PyG+ and 1.23× to
1.47× over Ali+PG. For GCN, speedups range from 1.83× to
2.67× over PyG+ and 1.28× to 1.57× over Ali+PG. These gains
result from the efficient caching scheme for gather, which
outweighs its cost, while the overhead of sample and gather
serialization is minimal. The switch and cache update times
contribute less than 10% to the total. The moderate storage
cost of about 145 GB (including runtime files and neighbor
cache) is less than half the size of the smallest dataset.

In Fig. 12, we compare Ginex with a PaGraph-based cache
policy (Ginex-PG) to isolate the impact of Ginex’s feature
cache. Ginex consistently shows a lower cache miss ratio,
leading to reduced data preparation time. While the optimal
cache introduces a slight increase in inspect time due to disk
I/O during changeset precomputation, this increase is limited
to under 20%, which is small relative to the reduction in data
preparation time.

OUTRE. We report the per-epoch time for the four com-
pared frameworks across four datasets in Table VI. The evalu-
ation includes training 2-layer and 3-layer GraphSAGE, GAT,
and GCN. The per-epoch time is broken down into four stages:
Sa (Sample), Ga (Gather), Tr (Transfer), and Co (Compute).
The Gather stage is pipelined with the later training stages
in Ginex, Ginexmod, and OUTRE, which results in a per-
epoch time lower than the sum of all four stages. Ginex and
Ginexmod’s pre-computation time for the optimal cache policy
is included in their Gather times since it accelerates the Gather
stage.

Table 6 shows that OUTRE consistently outperforms all
baselines across different model configurations and datasets.
With techniques that improve data transfer efficiency, Ginex-
mod outperforms Ginex on all evaluation workloads. We ob-
serve that the choice of GNN model has little effect on overall

training performance, confirming that out-of-core sampling-
based GNN training is often bounded by data preparation.
Intuitively, the number of model layers is positively correlated
with data redundancy. Evaluation results reveal that OUTRE
demonstrates larger average speedups over Ginex for 3-layer
workloads (2.45×) compared to 2-layer workloads (1.78×).

It is important to note that Ginex shows larger per-epoch
times than PyG+mmap on training 2-layer GNNs on ogbn-
papers100M due to overhead. We also find that PyG+mmap
achieves the highest sampling performance among all frame-
works, despite not caching important neighbor lists. This is
likely because the other three frameworks must write sam-
pling results to external storage, which slows down sampling
execution.

This improved performance in OUTRE can be attributed
to its efficient handling of data transfer and the optimized
cache policy, which reduces redundant data processing during
training, similar to the gains observed with Ginex in terms of
caching and gather stage efficiency.

TIGER. We present the end-to-end running time for a
single training epoch of six GNN-based models in Figure
13. These models are trained using both TIGER (Our) and
three baselines. The total running time is divided into three
components: subgraph slicing, subgraph extraction, and model
computation. The slicing time, which includes storage, is
significant only during the initial training epoch. In subsequent
epochs, the model can directly extract subgraph slices. As
a result, we observe that TIGER, without subgraph slicing,
significantly outperforms the Basic pipeline, with speedups
ranging from 1.9× to 7.9×. The reduction in time becomes
more pronounced as the number of epochs increases, due to
the elimination of redundant extraction operations.

The Atom baseline outperforms the Basic pipeline due to
preloaded atom-based subgraphs; however, extracting atoms
via SSD random access still consumes considerable time. In
contrast, the lower extraction time in both Ginex and TIGER
highlights the effectiveness of slice-based subgraph extraction,
which benefits from more efficient SSD sequential access.
Notably, the subgraph slicing time in TIGER is less than
65% of that required by the Ginex baseline. While Ginex’s

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

Fig. 13: Comparison of running time (s) for one training epoch on three large-scale KG datasets.

sequential slicing is more efficient than SiGMa, it results in
a larger number of slices being stored, which impacts overall
performance.

In comparing the six GNN models, GraPE stands out
due to its notable speedup, which can be attributed to its
efficient model computation achieved through path prun-
ing. Overall, speedup correlates with the duration of the
GNN model computation. Models like AdaProp and A*Net,
which use path pruning techniques, show higher speedups in
TIGER compared to REDGNN and NBFNet. Among these,
RUNGNN—an enhanced version of REDGNN—emerges as
the slowest, demonstrating the benefits of optimization strate-
gies like path pruning in reducing computation time.

The performance gains observed in TIGER, particularly in
subgraph extraction, can be attributed to its efficient slicing
and sequential access, similar to the optimizations seen in
Ginex. Both systems minimize redundant operations, though
TIGER further optimizes this by reducing subgraph slicing
time and improving data retrieval efficiency.

VII. RELATED WORK
Scalable Graph Neural Networks. To the best of our

knowledge, Ginex is the first to leverage SSDs for scaling
GNN training. GLIST [44] also uses SSDs to scale GNNs
but focuses on inference and requires specialized hardware.
In contrast, most large-scale GNN training methods adopt
scale-out approaches. ROC [45] and NeuGraph [46] propose
multi-GPU training systems for GNNs; however, they rely on
full-batch training, which eventually hits the GPU memory
capacity wall when training on very large graphs. Distributed
systems utilizing multiple CPU nodes for graph storage offer
more scalable solutions [43], [47]–[49]. These systems parti-
tion the graph dataset and store it in memory across a cluster,
but their high system cost limits their cost-effectiveness.

Reusing Historical Node Embeddings. Reusing historical
node embeddings was first proposed by [50] and later gen-
eralized by GAS [18]. GraphFM [51] introduces the Feature
Momentum technique, applying momentum steps to historical
embeddings, outperforming GAS. These methods store histor-
ical embeddings for all nodes and model layers, resulting in

high memory costs. ReFresh [52] proposes metrics based on
staleness and gradients to control both the size and quality of
historical embeddings. OUTRE’s historical embedding cache
largely follows ReFresh’s design but introduces key modifi-
cations to better suit out-of-core environments. Specifically,
we cache only second-layer node embeddings to achieve
a better performance-cost ratio. Additionally, we pre-define
cache candidates to strictly control cache size and introduce
a new node importance metric for cache candidate selection,
reflecting real-world training performance.

Large-scale KGE Training Systems. To address the effi-
ciency and scalability challenges with large graphs, there are
some well-engineered systems for accelerating KGE training,
such as DGL-KE [21], HET-KG [53], and SMORE [20].
However, these graph embedding systems mainly focus on
distributed parallelism and embedding storage, which cannot
be directly used for large-scale inductive KG reasoning due
to the more complex nature of the GNN models [54]–[57].
Notably, many scalable frameworks work on large-scale GNN
training, but they do not specifically address the issue of
subgraph extraction [58]–[60]. NeuGraph [61] harmoniously
combines graph computation optimizations with aspects like
data partitioning, scheduling, and parallelism, within dataflow-
oriented deep learning frameworks. AliGraph [?] refines sam-
pling operators for distributed GNN training, and minimizes
network communication by caching nodes on local systems.
DistDGL [62], a distributed GNN training framework, dis-
tributes the graph and its related vector data among machines.
Despite their efficiencies, the graph partitioning algorithms
frequently used in these distributed GNN training systems tend
to obstruct subgraph completeness. Therefore, additional data
communication becomes unavoidable to compile the entire
subgraph information. To address the subgraph extraction
issue, some recent GNN training systems, like AliGraph [?]
and Ginex [12], cache the neighbor information for a few
central nodes.

VIII. CONCLUSION
In this paper, we propose three novel systems—Ginex,

OUTRE, and TIGER—to address the challenges of scalable

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

GNN training with caching. Ginex leverages SSDs to support
billion-scale graph datasets on a single machine, optimizing
feature caching to alleviate the I/O bottleneck. This results
in significant speedups, enabling GNN training on datasets
far larger than what a single machine’s CPU memory could
handle. OUTRE introduces an out-of-core sampling-based
framework that focuses on reducing overall data volume
requests for external storage, rather than just minimizing the
percentage of data attempts. By identifying and addressing
data redundancies, OUTRE incorporates partition-based batch
construction, historical embedding caching, and automatic
cache space management. Finally, TIGER enhances inductive
KG reasoning by accelerating subgraph extraction through
a Slice&Cache procedure, which improves SSD sequential
access. The SiGMa slicing algorithm balances redundancy and
efficiency, offering significant computational savings. Overall,
Ginex, OUTRE, and TIGER push the boundaries of scalable
GNN training by optimizing data access and memory usage,
setting the stage for even more efficient large-scale graph
learning systems.

REFERENCES

[1] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, no. 1, p. 4–24, Jan
2021.

[2] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,”
IEEE Transactions on Knowledge & Data Engineering, vol. 34, no. 01,
pp. 249–270, jan 2022.

[3] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
2021.

[4] M. S. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in The Semantic Web - 15th International Conference, ESWC
2018, Heraklion, Crete, Greece, June 3-7, 2018, Proceedings, ser.
Lecture Notes in Computer Science, vol. 10843. Springer, 2018, pp.
593–607.

[5] A. Pal, C. Eksombatchai, Y. Zhou, B. Zhao, C. Rosenberg, and
J. Leskovec, PinnerSage: Multi-Modal User Embedding Framework
for Recommendations at Pinterest. New York, NY, USA: Association
for Computing Machinery, 2020, p. 2311–2320. [Online]. Available:
https://doi.org/10.1145/3394486.3403280

[6] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, ser. KDD
’18, 2018.

[7] M. Zhang and Y. Chen, “Link prediction based on graph neural net-
works,” in Proceedings of the 32nd International Conference on Neural
Information Processing Systems, ser. NIPS’18, 2018.

[8] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proceedings
of the 30th International Conference on Neural Information Processing
Systems, ser. NIPS’16. Red Hook, NY, USA: Curran Associates Inc.,
2016, p. 3844–3852.

[9] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning
on graphs,” 2021. [Online]. Available: https://arxiv.org/abs/2005.00687

[10] A. Khatua, V. S. Mailthody, B. Taleka, T. Ma, X. Song, and W.-m. Hwu,
“Igb: Addressing the gaps in labeling, features, heterogeneity, and size
of public graph datasets for deep learning research,” in Proceedings of
the 29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, ser. KDD ’23. ACM, Aug. 2023, p. 4284–4295. [Online].
Available: http://dx.doi.org/10.1145/3580305.3599843

[11] Z. Lin, C. Li, Y. Miao, Y. Liu, and Y. Xu, “Pagraph: Scaling gnn
training on large graphs via computation-aware caching,” Proceedings
of the 11th ACM Symposium on Cloud Computing, 2020. [Online].
Available: https://api.semanticscholar.org/CorpusID:222296394

[12] Y. Park, S. Min, and J. W. Lee, “Ginex: Ssd-enabled billion-scale graph
neural network training on a single machine via provably optimal in-
memory caching,” Proc. VLDB Endow., vol. 15, no. 11, pp. 2626–2639,
2022.

[13] R. Mirchandaney, J. Saltz, and R. Crowley, “Run-time parallelization
and scheduling of loops,” IEEE Transactions on Computers, vol. 40,
no. 05, pp. 603–612, may 1991.

[14] M. M. Strout, M. Hall, and C. Olschanowsky, “The sparse polyhedral
framework: Composing compiler-generated inspector-executor code,”
Proceedings of the IEEE, vol. 106, no. 11, pp. 1921–1934, 2018.

[15] Z. Sheng, W. Zhang, Y. Tao, and B. Cui, “Outre: An out-of-core de-
redundancy gnn training framework for massive graphs within a single
machine,” Proc. VLDB Endow., vol. 17, no. 11, p. 2960–2973, Aug.
2024. [Online]. Available: https://doi.org/10.14778/3681954.3681976

[16] C. E. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnović,
“Fennel: streaming graph partitioning for massive scale graphs,”
Proceedings of the 7th ACM international conference on Web search
and data mining, 2014. [Online]. Available: https://api.semanticscholar.
org/CorpusID:9590483

[17] K. Huang, H. Jiang, M. Wang, G. Xiao, D. Wipf, X. Song, Q. Gan,
Z. Huang, J. Zhai, and Z. Zhang, “Freshgnn: Reducing memory access
via stable historical embeddings for graph neural network training,”
2024. [Online]. Available: https://arxiv.org/abs/2301.07482

[18] M. Fey, J. E. Lenssen, F. Weichert, and J. Leskovec, “Gnnautoscale:
Scalable and expressive graph neural networks via historical embed-
dings,” 2021. [Online]. Available: https://arxiv.org/abs/2106.05609

[19] A. Kochsiek and R. Gemulla, “Parallel training of knowledge graph
embedding models: A comparison of techniques,” Proc. VLDB Endow.,
vol. 15, no. 3, pp. 633–645, 2021.

[20] H. Ren, H. Dai, B. Dai, X. Chen, D. Zhou, J. Leskovec, and D. Schuur-
mans, “SMORE: knowledge graph completion and multi-hop reasoning
in massive knowledge graphs,” in KDD ’22: The 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Washington, DC,
USA, August 14 - 18, 2022. ACM, 2022, pp. 1472–1482.

[21] D. Zheng, X. Song, C. Ma, Z. Tan, Z. Ye, J. Dong, H. Xiong, Z. Zhang,
and G. Karypis, “DGL-KE: training knowledge graph embeddings at
scale,” in Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval, SIGIR 2020,
Virtual Event, China, July 25-30, 2020, 2020, pp. 739–748.

[22] K. Wang, Y. Xu, and S. Luo, “Tiger: Training inductive graph neural
network for large-scale knowledge graph reasoning,” Proc. VLDB
Endow., vol. 17, no. 10, p. 2459–2472, Aug. 2024. [Online]. Available:
https://doi.org/10.14778/3675034.3675039

[23] Y. Hu, A. Levi, I. Kumar, Y. Zhang, and M. Coates, “On batch-size
selection for stochastic training for graph neural networks,” 2021.
[Online]. Available: https://openreview.net/forum?id=HeEzgm-f4g1

[24] J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast learning with graph convo-
lutional networks via importance sampling,” in International Conference
on Learning Representations, 2018.

[25] S. W. Min, K. Wu, S. Huang, M. Hidayetoğlu, J. Xiong, E. Ebrahimi,
D. Chen, and W.-m. Hwu, “Large graph convolutional network train-
ing with gpu-oriented data communication architecture,” Proc. VLDB
Endow., 2021.

[26] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[27] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,
L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep
graph library: A graph-centric, highly-performant package for graph
neural networks,” arXiv preprint arXiv:1909.01315, 2019.

[28] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20,
pp. 359–392, 1998. [Online]. Available: https://api.semanticscholar.org/
CorpusID:3628209

[29] W. Cong, R. Forsati, M. Kandemir, and M. Mahdavi, “Minimal variance
sampling with provable guarantees for fast training of graph neural
networks,” 2021. [Online]. Available: https://arxiv.org/abs/2006.13866

[30] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning
on graphs,” in Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[31] J. Leskovec and A. Krevl, “Snap datasets: Stanford large network dataset
collection,” 2014.

[32] Y. Lee, Y. Kwon, and M. Rhu, “Understanding the implication of non-
volatile memory for large-scale graph neural network training,” IEEE
Computer Architecture Letters, vol. 20, no. 2, pp. 118–121, 2021.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

[33] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahra-
mani, “Kronecker graphs: an approach to modeling networks.” Journal
of Machine Learning Research, vol. 11, no. 2, 2010.

[34] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Free-
base: a collaboratively created graph database for structuring human
knowledge,” in Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, 2008, pp. 1247–1250.

[35] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., 2017.

[36] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net, 2017.

[37] Y. Zhang and Q. Yao, “Knowledge graph reasoning with relational
digraph,” in WWW ’22: The ACM Web Conference 2022, Virtual Event,
Lyon, France, April 25 - 29, 2022. ACM, 2022, pp. 912–924.

[38] Z. Zhu, Z. Zhang, L. A. C. Xhonneux, and J. Tang, “Neural bellman-
ford networks: A general graph neural network framework for link
prediction,” in Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, 2021, pp. 29 476–29 490.

[39] Y. Zhang, Z. Zhou, Q. Yao, X. Chu, and B. Han, “Learning
adaptive propagation for knowledge graph reasoning,” CoRR, vol.
abs/2205.15319, 2022.

[40] Z. Zhu, X. Yuan, M. Galkin, S. Xhonneux, M. Zhang, M. Gazeau,
and J. Tang, “A*net: A scalable path-based reasoning approach for
knowledge graphs,” 2023.

[41] K. Wang, S. Luo, and D. Lin, “River of no return: Graph percolation
embeddings for efficient knowledge graph reasoning,” arXiv preprint
arXiv:2305.09974, 2023.

[42] S. Wu, H. Wan, W. Chen, Y. Wu, J. Shen, and Y. Lin, “Towards
enhancing relational rules for knowledge graph link prediction,” arXiv
preprint arXiv:2310.13411, 2023.

[43] H. Yang, “Aligraph: A comprehensive graph neural network platform,”
in Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, ser. KDD ’19. New York, NY,
USA: Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3292500.3340404

[44] C. Li, Y. Wang, C. Liu, S. Liang, H. Li, and X. Li, “GLIST: Towards
in-storage graph learning,” in Proceedings of the 2021 USENIX Annual
Technical Conference. USENIX Association, Jul. 2021, pp. 225–238.

[45] Z. Jia, S. Lin, M. Gao, M. Zaharia, and A. Aiken, “Improving
the accuracy, scalability, and performance of graph neural networks
with roc,” in Proceedings of Machine Learning and Systems,
I. Dhillon, D. Papailiopoulos, and V. Sze, Eds., vol. 2, 2020, pp.
187–198. [Online]. Available: https://proceedings.mlsys.org/paper/2020/
file/fe9fc289c3ff0af142b6d3bead98a923-Paper.pdf

[46] L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou, and Y. Dai,
“NeuGraph: Parallel deep neural network computation on large graphs,”
in Proceedings of the 2019 USENIX Annual Technical Conference.
USENIX Association, Jul. 2019, pp. 443–458.

[47] D. Zhang, X. Huang, Z. Liu, J. Zhou, Z. Hu, X. Song, Z. Ge, L. Wang,
Z. Zhang, and Y. Qi, “Agl: A scalable system for industrial-purpose
graph machine learning,” Proc. VLDB Endow., 2020.

[48] G. Zhao, T. Zhou, and L. Gao, “Cm-gcn: A distributed framework for
graph convolutional networks using cohesive mini-batches,” in 2021
IEEE International Conference on Big Data (Big Data), 2021, pp. 153–
163.

[49] D. Zheng, C. Ma, M. Wang, J. Zhou, Q. Su, X. Song, Q. Gan, Z. Zhang,
and G. Karypis, “Distdgl: Distributed graph neural network training for
billion-scale graphs,” 2021.

[50] J. Chen, J. Zhu, and L. Song, “Stochastic training of graph
convolutional networks with variance reduction,” 2018. [Online].
Available: https://arxiv.org/abs/1710.10568

[51] H. Yu, L. Wang, B. Wang, M. Liu, T. Yang, and S. Ji, “Graphfm:
Improving large-scale gnn training via feature momentum,” 2022.
[Online]. Available: https://arxiv.org/abs/2206.07161

[52] K. Huang, H. Jiang, M. Wang, G. Xiao, D. Wipf, X. Song, Q. Gan,
Z. Huang, J. Zhai, and Z. Zhang, “Freshgnn: Reducing memory access
via stable historical embeddings for graph neural network training,”
2024. [Online]. Available: https://arxiv.org/abs/2301.07482

[53] S. Dong, X. Miao, P. Liu, X. Wang, B. Cui, and J. Li, “HET-
KG: communication-efficient knowledge graph embedding training via
hotness-aware cache,” in 38th IEEE International Conference on Data

Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9-12, 2022.
IEEE, 2022, pp. 1754–1766.

[54] Z. Zhu, S. Xu, J. Tang, and M. Qu, “Graphvite: A high-performance
CPU-GPU hybrid system for node embedding,” in The World Wide Web
Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019.
ACM, 2019, pp. 2494–2504.

[55] A. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt, A. Bose, and
A. Peysakhovich, “Pytorch-biggraph: A large scale graph embedding
system,” in Proceedings of Machine Learning and Systems 2019, MLSys
2019, Stanford, CA, USA, March 31 - April 2, 2019. mlsys.org, 2019.

[56] J. Mohoney, R. Waleffe, H. Xu, T. Rekatsinas, and S. Venkataraman,
“Marius: Learning massive graph embeddings on a single machine,” in
15th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2021, July 14-16, 2021, 2021, pp. 533–549.

[57] P. Fang, A. Khan, S. Luo, F. Wang, D. Feng, Z. Li, W. Yin, and Y. Cao,
“Distributed graph embedding with information-oriented random walks,”
Proc. VLDB Endow., vol. 16, no. 7, pp. 1643–1656, 2023.

[58] S. Gandhi and A. P. Iyer, “P3: distributed deep graph learning at
scale,” in 15th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2021, July 14-16, 2021. USENIX Association,
2021, pp. 551–568.

[59] Z. Cai, X. Yan, Y. Wu, K. Ma, J. Cheng, and F. Yu, “DGCL: an efficient
communication library for distributed GNN training,” in EuroSys ’21:
Sixteenth European Conference on Computer Systems, Online Event,
United Kingdom, April 26-28, 2021. ACM, 2021, pp. 130–144.

[60] S. Min, K. Wu, S. Huang, M. Hidayetoglu, J. Xiong, E. Ebrahimi,
D. Chen, and W. W. Hwu, “Large graph convolutional network train-
ing with gpu-oriented data communication architecture,” Proc. VLDB
Endow., vol. 14, no. 11, pp. 2087–2100, 2021.

[61] L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou, and Y. Dai,
“Neugraph: Parallel deep neural network computation on large graphs,”
in 2019 USENIX Annual Technical Conference, USENIX ATC 2019,
Renton, WA, USA, July 10-12, 2019. USENIX Association, 2019, pp.
443–458.

[62] D. Zheng, C. Ma, M. Wang, J. Zhou, Q. Su, X. Song, Q. Gan, Z. Zhang,
and G. Karypis, “Distdgl: Distributed graph neural network training
for billion-scale graphs,” in 10th IEEE/ACM Workshop on Irregular
Applications: Architectures and Algorithms, IA3 2020, Atlanta, GA,
USA, November 11, 2020. IEEE, 2020, pp. 36–44.

