
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Graph RAG: Efficient and Powerful
LLM Enhancement Systems

Shu Wang School of Data Science
The Chinese University of Hong Kong, Shenzhen

shuwang3@link.cuhk.edu.cn

Abstract—This paper proposes three novel Graph Retrieval-
Augmented Generation (GraphRAG) methods to address lim-
itations in traditional Retrieval-Augmented Generation (RAG)
systems. Specifically, we propose three methods: the Agent-
based method, the Document-based method, and the Global-
information-based method. The Agent-based method integrates
structured knowledge from knowledge graphs (KGs) and un-
structured text, leveraging large language models (LLMs) as
autonomous agents. The Document-based method, inspired by
hippocampal indexing theory, enhances knowledge integration by
simulating human memory processes. The Global-information-
based method utilizes global community perspectives to improve
performance on summary tasks. We evaluate these methods on
Knowledge Graph Question Answering (KGQA), Document QA,
and summarization tasks, demonstrating their effectiveness in
overcoming the challenges of traditional RAG approaches.

Index Terms—LLM, RAG, Graph RAG.

I. INTRODUCTION

Large Language Models (LLMs) have emerged as revo-
lutionary tools that show impressive performance in many
tasks [1]. With the growing size of LLMs, they can serve
standalone as very effective knowledge stores, with facts
encoded within their parameters [2]–[9] and models can be
further improved with fine-tuning on downstream tasks [10].
Nevertheless, even a large model does not contain sufficient
domain-specific knowledge for particular tasks, and the world
continues to change, invalidating facts in the LLM. More-
over, the knowledge embedded within LLMs is encoded in
their parameters, meaning that incorporating new knowledge
requires further fine-tuning, which is both time-consuming and
resource-intensive. Besides, LLMs have a tendency to gener-
ate hallucinations [11], [12], producing content that appears
plausible but lacks factual accuracy or support [13].

A popular approach to equip LLM with domain knowl-
edge and mitigate hallucination issues is Retrieval-Augmented
Generation (RAG). RAG framework answers a question in
four steps: the user proposes a query, the system retrieves the
relevant content from private knowledge bases, combines it
with the user query as context, and finally asks the LLM to
generate an answer. This is illustrated in Fig. 1 with a simple
example. VectorRAG (the traditional RAG technique that is
based on vector databases) focuses on improving Natural
Language Processing (NLP) tasks by retrieving relevant textual
information to support the generation tasks. VectorRAG excels
in situations where context from related textual documents is
crucial for generating meaningful and coherent responses.

Fig. 1. The workflow of Retrieval-Augmented Generation (RAG).

Although RAG has achieved impressive results and has been
widely applied across various domains, it faces limitations in
real-world scenarios: (1) Neglecting Relationships: In practice,
textual content is not isolated but interconnected. Traditional
RAG fails to capture significant structured relational knowl-
edge that cannot be represented through semantic similarity
alone. For instance, in a citation network where papers are
linked by citation relationships, traditional RAG methods focus
on finding the relevant papers based on the query but overlook
important citation relationships between papers. (2) Redundant
Information: RAG often recounts content in the form of
textual snippets when concatenated as prompts. This makes
the context become excessively lengthy, leading to the “lost
in the middle” dilemma [14]. (3) Lacking Global Information:
RAG can only retrieve a subset of documents, fails to grasp
global information comprehensively, and hence struggles with
tasks such as Query-Focused Summarization (QFS).

Graph Retrieval-Augmented Generation (GraphRAG) [15],
[16] emerges as an innovative solution to address these
challenges. Unlike traditional RAG, GraphRAG retrieves
graph elements containing relational knowledge pertinent to
a given query from a pre-constructed graph database, as
depicted in Fig. 2. These elements may include nodes,
triples, paths, or subgraphs, which are utilized to generate
responses. GraphRAG considers the interconnections between
texts, enabling a more accurate and comprehensive retrieval
of relational information. Additionally, graph data, such as
knowledge graphs, offer abstraction and summarization of
textual data, thereby significantly shortening the length of the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

Fig. 2. Comparision between Direct LLM, RAG, and GraphRAG.

input text and mitigating concerns of verbosity. By retrieving
subgraphs or graph communities, we can access comprehen-
sive information to effectively address the QFS challenge by
capturing the broader context and interconnections within the
graph structure.

Based on the above motivation, in this paper, we propose
three Graph RAG methods: the Agent-based method, the
Document-based method, and the Global-information-based
method. LLMs possess strong reasoning and analytical ca-
pabilities, making them effective as autonomous agents and
offering promising opportunities to enhance and replicate
human workflows. By leveraging the agent’s abilities alongside
knowledge graphs and document content, we introduce ToG-2,
an agent-based method that integrates both knowledge graphs
and documents. Furthermore, recognizing real-world entities’
diverse connections, we propose a Document-based method
inspired by the hippocampal indexing theory of human long-
term memory. Finally, we introduce the Global-information-
based method, which utilizes the global perspective provided
by communities, yielding better results in summary tasks.

The contributions of this paper are outlined as follows:

• Agent-based method. Leveraging the capabilities of
LLM agents, we propose a tight coupling hybrid
(KG×Text) RAG paradigm, which effectively integrates
unstructured knowledge from texts with structured in-
sights from KGs.

• Document-based method. We proposed a novel retrieval
framework inspired by the hippocampal indexing theory
of human long-term memory to enable deeper and more
efficient knowledge integration over new experiences.

• Global-information-based method. By incorporating
the global perspective of communities, our proposed

Graph RAG enables RAG systems to address global
questions that pertain to an entire text corpus.

• Experiments. We comprehensively tested the perfor-
mance of the three proposed methods on KGQA, Doc-
umentQA, and Summary tasks, providing an in-depth
analysis of the results.

•Organization. The remainder of this paper is organized
as follows: Section II provides a brief review of existing
works. Section III introduces the preliminary concepts related
to Graph RAG. In Section IV, we propose three types of Graph
RAG methods: the agent-based method, the document-based
method, and the global-information-based method. Section V
presents a comprehensive evaluation of the proposed methods.
Finally, Section VI concludes this paper.

II. RELATED WORK

• Retrieval-Augmented Generation (RAG). The concept
of Retrieval-Augmented Generation, initially proposed by
Lewis et al. [17], has gained increased attention for its ability
to mitigate the issue of hallucination within LLMs and enhance
trustworthiness and explainability [18]. Despite its success
in language-related tasks, the application of retrieval-based
approaches to general graph tasks remains largely unexplored.
Most existing work focuses primarily on the knowledge graph
[19]–[22].
• LLMs & KGs. Combining the strengths of language

models and knowledge graphs has been an active research
direction for many years, both for augmenting LLMs with a
KG in different ways [23]–[25] or augmenting KGs by either
distilling knowledge from an LLM’s parametric knowledge
[26], [27] or using them to parse text directly [28]–[30]. Chain-
of-Knowledge [31] is a hybrid RAG method that retrieves

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

knowledge from Wikipedia, Wikidata, and Wikitable to ground
LLMs’ outputs. HybridRAG [32] retrieves information from
both vector databases and KGs, achieving superior reasoning
performance compared to either text-based RAG or KG-
based RAG methods alone. In an exceptionally comprehensive
survey, Pan et al. [33] present a roadmap for this research
direction and highlight the importance of work that synergizes
these two important technologies [22], [34]–[36].

However, existing hybrid RAG approaches merely aggre-
gate information retrieved from KGs and texts but do not
improve the retrieval results on one knowledge source through
the other. In this work, ToG-2 aims to tightly couple KG-
based RAG and text-based RAG methods, enabling both in-
depth context retrieval and precise graph retrieval to enhance
complex reasoning performances of LLMs. Another of our
works, HippoRAG, exemplifies the synergy between these two
technologies. It combines the power of LLMs for knowledge
graph construction with the strengths of structured knowledge
and graph search, enhancing the augmentation of an LLM’s
capabilities.
• Long Context as Long-Term Memory. Context lengths

for both open and closed-source LLMs have increased dramat-
ically in the past year [37]–[41]. This scaling trend seems to
indicate that future LLMs could perform long-term memory
storage within massive context windows. However, the viabil-
ity of this future remains largely uncertain, given the many
engineering hurdles involved and the apparent limitations of
long-context LLMs, even within current context lengths [42]–
[44].

III. PRELIMINARY

A. LLM and language model techniques

Definition 1 (Life cycle of LLMs): Typically, the life cycle
of LLMs contains 4 steps: pre-training, supervised fine-tuning
(SFT), reinforcement learning from human feedback (RLHF),
and Inference.

1) In the pre-training phase, LLMs amass a vast amount of
knowledge from an enormous volume of training data,
which is then stored within their model parameters.

2) SFT (supervised fine-tuning) generally involves massive-
task instruction-following data, aiming at learning how
to interact with users

3) RLHF (reinforcement learning from human feedback)
not only closes the gap between machine-generated
content and human preference but also helps LLMs align
with desired criteria or goals.

4) In the inference stage, the LLM performs various tasks
based on the user’s needs.

Most RAG systems are involved in the inference stage
because the inference stage could be more cost-effective and
controllable. The life cycle of LLMs and RAG is shown in
Fig. 3

In the context of textual graphs, language models (LMs) are
essential for encoding the text attributes associated with nodes
and edges, thereby learning representations that capture their
semantic meaning.

Fig. 3. The life cycle of LLMs and RAG

Definition 2 (Language Models for Text Encoding [45]): For
a node n with text attributes xn ∈ DLn , an LM encodes these
attributes as:

zn = LM(xn) ∈ Rd (1)

where zn is the output of the LM, and d is the dimension of
the output vector.

LLMs have introduced a new paradigm for task adapta-
tion known as “pre-train, prompt, and predict,” replacing the
traditional “pre-train, fine-tune” paradigm. In this paradigm,
the LLM is first pre-trained on a large corpus of text data
to learn general language representations. Then, rather than
fine-tuning the model on task-specific labeled data, the model
is prompted with a textual prompt that specifies the task and
context. Subsequently, the model generates the output directly
based on the prompt and the input.

Definition 3 (Large Language Models and Prompt Tuning
[45]): The LLM, parameterized by weights θ, takes a sequence
of tokens X , and a prompt P as input, and generates a
sequence of tokens Y = y1, y2, ..., yr as output. Formally, the
probability distribution of the output sequence given the con-
catenated input sequence and prompt, i.e., [P ;X], is defined
as

pθ(Y |[P ;X]) =

r∏
i=1

pθ(yi|y<i, [P ;X]) (2)

Here, y<i represents the prefix of sequence y up to position
i − 1, and p(yi|y<i, [P ;X]) represents the probability of
generating token yi given y<i and [P ;X].

The semantic relevance between data has been mapped
into vector space by the language model. Therefore, we can
use ANN (Approximate Nearest Neighbor) to find the closest
neighbor data to a given query, which is essentially the concept
of NNS (Nearest Neighbor Search) and ANN.

Definition 4 (Nearest Neighbor Search (NNS) [46]): Given
a set P of n objects represented as points in a normed space
ldp, preprocess P so as to efficiently answer queries by finding
the point in P closest to a query point q.

The definition generalizes naturally to the case where we
want to return K > 1 points. Specifically, in the K-Nearest
Neighbors Search (K-NNS), we wish to return the K points
in the database that are closest to the query point. The
approximate version of the NNS problem is defined as follows:

Definition 5 (ϵ-Nearest Neighbor Search (ϵ-NNS)): Given a
set P of objects in a normed space ldp, preprocess P so as
to efficiently return a point p ∈ P for any given query point
q, such that d(q, p) ≤ (1 + ϵ)d(q, P), where d(q, P) is the
distance of q to its closest point in P .

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

Fig. 4. An Example of a Scholarly Community

B. Graph

When it comes to Graph RAG, graph data and other
relational data become key components of the RAG system.
Next, we introduce TAG and community structures.

Definition 6 (Text-Attributed Graph (TAG) [45]): Formally,
a Text-Attributed Graph (TAG) is a graph where nodes and
edges possess textual attributes. Formally, it can be defined as
G = (V,E, {xn}n∈V , {xe}e∈E), where V and E represent the
sets of nodes and edges, respectively. Additionally, xn ∈ DLn

and xe ∈ DLe denote sequential text associated with a node
n ∈ V or an edge e ∈ E, where D represents the vocabulary,
and Ln and Le signify the length of the text associated with
the respective node or edge.

A TAG incorporates external data to enhance LLM with
additional knowledge, forming the foundation for GraphRAG
tasks. In the real world, knowledge graphs (e.g., WikiData 1,
DBPeida 2, GeoNames 3) and document graphs are examples
of TAGs.

An important component of these graphs is the community.
Definition 7 (community [47]): Formally, a community is

a group of vertices which are densely connected internally.
We denote a community as C = {v1, v2, . . . , vn} , where the
community consists of n vertices.

Because a community covers the many nodes of the graph,
it can provide global information rather than a single node
with its own attributes. For example, Fig.4 is a community
consisting of many scholars in the fields of databases and data
mining extracted from an academic network.

IV. GRAPH RAG METHODS

In this section, we introduce three types of Graph RAG
methods: Agent-Based methods, Document-Based methods,
and Global-Information-Based methods.

A. Agent-Based Methods

LLMs have demonstrated the ability to act as agents and
search data in a human-like manner. Therefore, we propose

1https://www.wikidata.org/wiki
2https://www.dbpedia.org/
3https://www.geonames.org/

an agent-based RAG method, ToG-2, to harness these capa-
bilities for more effective data search and retrieval. Our ToG-2
framework is shown in Fig. 5.

The proposed method ToG-2 draws from the ToG approach
[22] in multi-hop searches within KGs, starting from key
entities identified in the query and exploring outward based
on entities and relationships with a prompt-driven inferential
process. ToG-2 combines the logical chain extensions based
on triples with unstructured contextual knowledge of relevant
entities by iteratively performing knowledge-guided context
retrieval and context-enhance graph retrieval, thus more effec-
tively integrating and utilizing heterogeneous external knowl-
edge.

Specifically, ToG-2 begins by extracting entities from the
given question as initial topic entities. It then performs an
iterative process of graph retrieval, context retrieval, and LLM
reasoning. At the start of each iteration, ToG-2 selectively
explores entities neighboring the current topic entities on the
KG, using the newly encountered entities to refine the retrieval
scope, thereby enhancing both efficiency and accuracy. Next,
ToG-2 ranks and selects entities based on the query and
the contextual knowledge retrieved from relevant documents,
reducing ambiguity and ensuring accurate exploration for the
next step. After, the LLM utilizes heterogeneous knowledge,
including triple paths and entity contexts, to either answer the
question or proceed with further rounds of retrieval if the
information gathered is insufficient. In this section, we will
explain each step in detail.

Next, we will provide a detailed introduction to how
ToG-2 iteratively utilizes both structured and unstructured
knowledge for reasoning. Formally, in the (i + 1)th itera-
tion, given the original question q, the clue queries from
the ith iteration Qi

c = {qi1, qi2, . . . , qiN}, the topic entities
Ei

topic = {e1, e2, . . . , eN} and their preceding triple paths
P i = {P i

1, P
i
2, . . . , P

i
N},P i

j = {pj0, p
j
1, . . . , p

j
i}, each iteration

includes three steps: relation prune (RP), entity prune (EP),
and examine and reasoning (ER). Note that i = 0 indicates
the initialization phase, and the P 0 is empty.
•Relation Prune (RP): Based on q and Qi

c, we prompt the
LLM to select the relations that are most likely to find entities
containing helpful context information for solving q and that
match the description of Qi

c. Unlike selecting relations for a
single topic entity at a time, we provide GPT-3.5 with all topic
entities within a single prompt. This approach not only reduces
the number of API calls, thereby accelerating inference time
but also enables the LLM to simultaneously consider the
interconnections between multiple reasoning paths, allowing
it to make selections from a more global perspective. The
selected relations for the topic entity ej are denoted as Rj =
{rj1, rj2, . . . , rjW }, where W denotes the hyper-parameter
width.
•Entity Prune (EP): Given a topic entity ej and one of the

selected relation rjk, ToG-2 will identify all interconnected
candidate entity nodes {ejkl} within the Wiki Knowledge
Graph (KG) and get their associated Wikipedia page docu-
ments Djkl through locally deployed service. The document
context of each candidate entity is initially segmented into
appropriately sized chunks {tjklm}. Subsequently, a two-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Fig. 5. An example illustrating the workflow of ToG-2.

stage search Fretr is employed, utilizing pre-trained language
models for all candidate entities’ chunks. Formally, sjklm =
Fretr([q, q

i
j , p

i
jkl], tjklm), denotes the relevance score of the

mth paragraph of the lth candidate, where pijkl is the triples
from which the current candidate entity is derived. Then, the
ranking score of a candidate entity ejkl is calculated as the
exponentially decayed weighted sum of scores of its chunks
that rank in top-K, and the weight for the ith ranked chunk
is calculated as w = e−α·i, where K and α are hyper-
parameters. Finally, top-W candidate entities are selected as
the new topic entities Ei+1

topic for the next iteration; meanwhile,
the corresponding preceding triple paths P i+1 will be updated.
•Examine and reasoning (ER): Following RP and EP,

we give LLM carefully aggregated references, including q,
Qi

c, P i+1 and the top L(L ≤ K) chunks. Then the LLM is
prompted to examine the logical coherence and the complete-
ness of factual evidence. If the LLM believes it can answer
the question, the iteration ends. If not, based on the question
and the collected contextual clues, a new clue query needs to
be generated for the next round.

B. Documents-Based Methods

Our proposed approach, HippoRAG, is closely inspired
by the Hippocampal Memory Indexing Theory, as shown in
Fig.6. Tasks that require knowledge integration are particularly
challenging for current RAG systems. In the above example,
we want to find a Stanford professor who does Alzheimer’s
research from a pool of passages describing potentially thou-
sands of Stanford professors and Alzheimer’s researchers.
Since current methods encode passages in isolation, they
would struggle to identify Prof. Thomas unless a passage
mentions both characteristics at once. In contrast, most people
familiar with this professor would remember him quickly
due to our brain’s associative memory capabilities, thought
to be driven by the index structure depicted in the C-shaped

hippocampus above (in blue). Inspired by this mechanism,
HippoRAG allows LLMs to build and leverage a similar graph
of associations to tackle knowledge integration tasks.
• Motivation of Hippocampal Memory Indexing Theory.

The hippocampal memory indexing theory [48] is a well-
established theory that provides a functional description of
the components and circuitry involved in human long-term
memory. In this theory, Teyler and Discenna [48] propose that
human long-term memory is composed of three components
that work together to accomplish two main objectives: pattern
separation, which ensures that the representations of distinct
perceptual experiences are unique, and pattern completion,
which enables the retrieval of complete memories from partial
stimuli [49], [50].

The theory suggests that pattern separation is primarily
accomplished in the memory encoding process, which starts
with the neocortex receiving and processing perceptual stimuli
into more easily manipulatable, likely higher-level, features,
which are then routed through the parahippocampal regions
(PHR) to be indexed by the hippocampus. When they reach the
hippocampus, salient signals are included in the hippocampal
index and associated with each other.

After the memory encoding process is completed, pattern
completion drives the memory retrieval process whenever
the hippocampus receives partial perceptual signals from the
PHR pipeline. The hippocampus then leverages its context-
dependent memory system, thought to be implemented through
a densely connected network of neurons in the CA3 sub-region
[49], to identify complete and relevant memories within the
hippocampal index and route them back through the PHR
for simulation in the neocortex. Thus, this complex process
allows for new information to be integrated by changing
only the hippocampal index instead of updating neocortical
representations.
• Offline Indexing. Our offline indexing phase, analogous

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

Fig. 6. Knowledge Integration & Hippocampal Memory Indexing Theory..

to memory encoding, starts by leveraging a strong instruction-
tuned LLM, our artificial neocortex, to extract knowledge
graph (KG) triples. The KG is schema-less, and this process
is known as open information extraction (OpenIE) [51]–
[54]. This process extracts salient signals from passages in
a retrieval corpus as discrete noun phrases rather than dense
vector representations, allowing for more fine-grained pattern
separation. It is, therefore, natural to define our artificial hip-
pocampal index as this open KG, which is built on the whole
retrieval corpus passage-by-passage. Finally, to connect both
components as is done by the parahippocampal regions, we use
off-the-shelf dense encoders fine-tuned for retrieval (retrieval
encoders). These retrieval encoders provide additional edges
between similar but not identical noun phrases within this KG
to aid in downstream pattern completion.

Next, we will introduce more details in offline indexing.
Our indexing process involves processing a set of passages
P using an instruction-tuned LLM L and a retrieval encoder
M . As seen in Fig.7, we first use L to extract a set of noun
phrase nodes N and relation edges E from each passage in P
via OpenIE. This process is done via 1-shot prompting of the
LLM. Specifically, we first extract a set of named entities from
each passage. We then add the named entities to the OpenIE
prompt to extract the final triples, which also contain concepts
(noun phrases) beyond named entities. We find that this two-
step prompt configuration leads to an appropriate balance
between generality and bias towards named entities. Finally,
we use M to add the extra set of synonymy relations E’
discussed above when the cosine similarity between two entity
representations in N is above a threshold τ . As stated above,
this introduces more edges to our hippocampal index and
allows for more effective pattern completion. This indexing
process defines a |N | × |P | matrix P , which contains the
number of times each noun phrase in the KG appears in each
original passage.

• Online Retrieval. These same three components are then

leveraged to perform online retrieval by mirroring the human
brain’s memory retrieval process. Just as the hippocampus
receives input processed through the neocortex and PHR,
our LLM-based neocortex extracts a set of salient named
entities from a query which we call query-named entities.
These named entities are then linked to nodes in our KG
based on the similarity determined by retrieval encoders; we
refer to these selected nodes as query nodes. Once the query
nodes are chosen, they become the partial cues from which
our synthetic hippocampus performs pattern completion. In
the hippocampus, neural pathways between elements of the
hippocampal index enable relevant neighborhoods to become
activated and recalled upstream. To imitate this efficient graph
search process, we leverage the Personalized PageRank (PPR)
algorithm [55], a version of PageRank that distributes proba-
bility across a graph only through a set of user-defined source
nodes. This constraint allows us to bias the PPR output only
towards the set of query nodes, just as the hippocampus
extracts associated signals from specific partial cues. Finally,
as is done when the hippocampal signal is sent upstream, we
aggregate the output PPR node probability over the previously
indexed passages and use that to rank them for retrieval.

During the retrieval process, we prompt L using a 1-shot
prompt to extract a set of named entities from a query q, our
previously defined query named entities Cq = {c1, . . . , cn}
(Stanford and Alzheimer’s in our Fig.7 example). These named
entities Cq from the query are then encoded by the same
retrieval encoder M . Then, the previously defined query nodes
are chosen as the set of nodes in N with the highest cosine
similarity to the query named entities Cq . More formally,
query nodes are defined as Rq = {r1, . . . , rn} such that ri =
ek where k = argmaxj cosine similarity(M(ci),M(ej)),
represented as the Stanford logo and the Alzheimer’s purple
ribbon symbol in Fig.7.

After the query nodes Rq are found, we run the PPR
algorithm over the hippocampal index, i.e., a KG with |N |

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

Fig. 7. Detailed HippoRAG Methodology.

nodes and |E|+|E′| edges (triple-based and synonymy-based),
using a personalized probability distribution −→n defined over
N , in which each query node has equal probability and all
other nodes have a probability of zero. This allows probability
mass to be distributed to nodes that are primarily in the (joint)
neighborhood of the query nodes, such as Professor Thomas,
and contribute to eventual retrieval. After running the PPR
algorithm, we obtain an updated probability distribution

−→
n′

over N . Finally, in order to obtain passage scores, we multiply−→
n′ with the previously defined P matrix to obtain −→p , a ranking
score for each passage, which we use for retrieval.

•Node Specificity. We introduce node specificity as a
neurobiologically plausible way to further improve retrieval.
It is well known that global signals for word importance, like
inverse document frequency (IDF), can improve information
retrieval. However, in order for our brain to leverage IDF for
retrieval, the number of total “passages” encoded would need
to be aggregated with all node activations before memory
retrieval is complete. While simple for normal computers,
this process would require activating connections between an
aggregator neuron and all nodes in the hippocampal index
every time retrieval occurs, likely introducing prohibitive
computational overhead. Given these constraints, we propose
node specificity as an alternative IDF signal that requires only
local signals and is thus more neurobiologically plausible.
We define the node specificity of node i as si = |Pi|−1,
where Pi is the set of passages in P from which node i
was extracted, information that is already available at each
node. Node specificity is used in retrieval by multiplying each
query node probability −→n with si before PPR; this allows us
to modulate each of their neighborhood’s probability as well
as their own. We illustrate node specificity in Fig. 7 through
relative symbol size: the Stanford logo grows larger than the
Alzheimer’s symbol since it appears in fewer documents.

C. Global-Information-Based Methods

Next, we introduce a global information-based method that
leverages the global perspective of communities to achieve
document summarization tasks.

GraphRAG consists of two stages: the indexing and query-
ing phases. In the indexing stage, a knowledge graph is
constructed from documents, and communities are formed
through clustering. During the querying phase, LLMs are
used to analyze the communities, ultimately generating a
global summary. The pipeline is shown in Fig. 8. Next,
we will describe the key design parameters, techniques, and
implementation details for each step.
•Source Documents → Text Chunks. A fundamental de-

sign decision is the granularity with which input texts extracted
from source documents should be split into text chunks for
processing. In the following step, each of these chunks will
be passed to a set of LLM prompts designed to extract the
various elements of a graph index. Longer text chunks require
fewer LLM calls for such extraction but suffer from the recall
degradation of longer LLM context windows [14], [56]. This
behavior can be observed in Figure 2 in the case of a single
extraction round (i.e., with zero gleanings): on a sample dataset
(HotPotQA, [57]), using a chunk size of 600 tokens extracted
almost twice as many entity references as when using a chunk
size of 2400. While more references are generally better, any
extraction process needs to balance recall and precision for
the target activity.
•Text Chunks → Element Instances. The baseline require-

ment for this step is to identify and extract instances of graph
nodes and edges from each chunk of source text. We do this
using a multipart LLM prompt that first identifies all entities
in the text, including their name, type, and description, before
identifying all relationships between clearly related entities,
including the source and target entities and a description of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Fig. 8. Detailed HippoRAG Methodology.

their relationship. Both kinds of element instances are output
in a single list of delimited tuples.

The primary opportunity to tailor this prompt to the domain
of the document corpus lies in the choice of few-shot examples
provided to the LLM for in-context learning [58]. For example,
while our default prompt extracting the broad class of “named
entities” like people, places, and organizations is generally
applicable, domains with specialized knowledge (e.g., science,
medicine, law) will benefit from few-shot examples specialized
to those domains. We also support a secondary extraction
prompt for any additional covariates we would like to associate
with the extracted node instances. Our default covariate prompt
aims to extract claims linked to detected entities, including the
subject, object, type, description, source text span, and start
and end dates.

To balance the needs of efficiency and quality, we use
multiple rounds of “gleanings” up to a specified maximum
to encourage the LLM to detect any additional entities it may
have missed on prior extraction rounds. This is a multi-stage
process in which we first ask the LLM to assess whether all
entities were extracted, using a logit bias of 100 to force
a yes/no decision. If the LLM responds that entities were
missed, then a continuation indicating that “MANY entities
were missed in the last extraction” encourages the LLM to
glean these missing entities. This approach allows us to use
larger chunk sizes without a drop in quality or the forced
introduction of noise.

•Element Instances → Element Summaries. The use of
an LLM to “extract” descriptions of entities, relationships,
and claims represented in source texts is already a form
of abstractive summarization, relying on the LLM to create
independently meaningful summaries of concepts that may be
implied but not stated by the text itself (e.g., the presence
of implied relationships). Converting all such instance-level
summaries into single blocks of descriptive text for each
graph element (i.e., entity node, relationship edge, and claim
covariate) requires a further round of LLM summarization over
matching groups of instances.

A potential concern at this stage is that the LLM may
not consistently extract references to the same entity in the
same text format, resulting in duplicate entity elements and,
thus, duplicate nodes in the entity graph. However, since all
closely related “communities” of entities will be detected
and summarized in the following step, and given that LLMs
can understand the common entity behind multiple name
variations, our overall approach is resilient to such variations,
provided there is sufficient connectivity from all variations to
a shared set of closely-related entities.

Overall, our use of rich descriptive text for homogeneous
nodes in a potentially noisy graph structure is aligned with
both the capabilities of LLMs and the needs of global, query-
focused summarization. These qualities also differentiate our
graph index from typical knowledge graphs, which rely on
concise and consistent knowledge triples (subject, predicate,
object) for downstream reasoning tasks.
•Element Summaries → Graph Communities. The index

created in the previous step can be modeled as a homogeneous
undirected weighted graph in which entity nodes are connected
by relationship edges, with edge weights representing the
normalized counts of detected relationship instances. Given
such a graph, a variety of community detection algorithms
may be used to partition the graph into communities of nodes
with stronger connections to one another than to the other
nodes in the graph (e.g., see the surveys by [59] and [60]).
In our pipeline, we use Leiden [61] because of its ability to
recover the hierarchical community structure of large-scale
graphs efficiently. Each level of this hierarchy provides a
community partition that covers the nodes of the graph in a
mutually exclusive, collective-exhaustive way, enabling divide-
and-conquer global summarization. Fig.9 shows an example of
graph communities detected using the Leiden algorithm.
•Graph Communities → Community Summaries. The

next step is to create report-like summaries of each community
in the Leiden hierarchy, using a method designed to scale to
very large datasets. These summaries are independently useful
in their own right as a way to understand the global structure

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

Fig. 9. An example of graph communities detected using the Leiden algorithm.

and semantics of the dataset and may themselves be used to
make sense of a corpus in the absence of a question. For
example, a user may scan through community summaries at
one level looking for general themes of interest, then follow
links to the reports at the lower level that provide more details
for each of the subtopics. Here, however, we focus on their
utility as part of a graph-based index used for answering global
queries.

Community summaries are generated in the following way:

• Leaf-level communities. The element summaries of a leaf-
level community (nodes, edges, covariates) are prioritized
and then iteratively added to the LLM context window
until the token limit is reached. The prioritization is as
follows: for each community edge in decreasing order
of combined source and target node degree (i.e., overall
prominence), add descriptions of the source node, target
node, linked covariates, and the edge itself.

• Higher-level communities. If all element summaries fit
within the token limit of the context window, proceed
as for leaf-level communities and summarize all element
summaries within the community. Otherwise, rank sub-
communities in decreasing order of element summary to-
kens and iteratively substitute sub-community summaries
(shorter) for their associated element summaries (longer)
until fit within the context window is achieved.

•Community Summaries → Community Answers →
Global Answer. Given a user query, the community sum-
maries generated in the previous step can be used to generate
a final answer in a multi-stage process. The hierarchical
nature of the community structure also means that questions
can be answered using community summaries from different
levels, raising the question of whether a particular level in
the hierarchical community structure offers the best balance of
summary detail and scope for general sense-making questions.

For a given community level, the global answer to any user
query is generated as follows:

• Prepare community summaries. Community summaries
are randomly shuffled and divided into chunks of pre-
specified token size. This ensures relevant information is
distributed across chunks rather than concentrated (and
potentially lost) in a single context window.

• Map community answers. Generate intermediate answers
in parallel, one for each chunk. The LLM is also asked to
generate a score between 0-100, indicating how helpful
the generated answer is in answering the target question.
Answers with a score of 0 are filtered out.

• Reduce to global answer. Intermediate community an-
swers are sorted in descending order of helpfulness score
and iteratively added into a new context window until
the token limit is reached. This final context is used to
generate the global answer returned to the user.

V. EXPERIMENTS

We now present the experimental results. Section V-A
discusses the RAG tasks, datasets, and evaluate matrices. We
discuss the experimental results in Section V-B.

A. RAG tasks and evaluations.

GraphRAG is applied to various downstream tasks (es-
pecially in NLP tasks), including question answering (QA),
information extraction, and others [62]. Among these, QA is
the primary evaluation metric, as it provides a large dataset
of question-answer pairs. Additionally, for global information,
we also evaluate the summary generation capability of RAG.
•KGQA. For ToG-2, We evaluated our method on differ-

ent knowledge-intensive reasoning benchmark datasets (i.e.,
KGQA, Knowledge graph question answering), including two
multi-hop KBQA datasets WebQSP [63] and QALD10-en

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

Dataset Example activity framing and generation of global sense-making questions

Podcast
transcripts

User: A tech journalist looking for insights and trends in the tech industry.
Task: Understanding how tech leaders view the role of policy and regulation.
Questions:
1. Which episodes deal primarily with tech policy and government regulation?
2. How do guests perceive the impact of privacy laws on technology development?
3. Do any guests discuss the balance between innovation and ethical considerations?
4. What are the suggested changes to current policies mentioned by the guests?
5. Are collaborations between tech companies and governments discussed, and how?

News
articles

User: Educator incorporating current affairs into curricula
Task: Teaching about health and wellness
Questions:
1. What current topics in health can be integrated into health education curricula?
2. How do news articles address the concepts of preventive medicine and wellness?
3. Are there examples of health articles that contradict each other, and if so, why?
4. What insights can be gleaned about public health priorities based on news coverage?
5. How can educators use the dataset to highlight the importance of health literacy?

TABLE I
EXAMPLES OF POTENTIAL USERS, TASKS, AND QUESTIONS GENERATED BY THE LLM BASED ON SHORT DESCRIPTIONS OF THE TARGET DATASETS.

QUESTIONS TARGET GLOBAL UNDERSTANDING RATHER THAN SPECIFIC DETAILS.

[64], a multi-hop complex document QA dataset AdvHot-
potQA [65] which is a challenging subset of HotpotQA [57], a
slot filling dataset Zero-Shot RE [2], and two fact verification
dataset FEVER [66] and Creak [67]. The evaluation metric for
FEVER and Creak is Accuracy (Acc.), while the metric for
other datasets is Exact Match (EM). Recall and F1 scores are
not used since knowledge sources are not limited to document
databases. Following previous work [31], full Wikipedia and
WikiData are used as unstructured and structured knowledge
sources for all of these datasets. Compared to the distractor
setting, this full Wiki setting makes the retrieval process more
challenging and can better evaluate the effectiveness of various
methods on knowledge reasoning tasks.

We compare ToG-2 with both widely-used baselines and
state-of-the-art methods to provide a more comprehensive
overview: 1) LLM-only methods without external knowledge,
including Direct Reasoning, Chain-of-Thought [68] (CoT),
Self-Consistency [69] (CoT-SG); 2) Vanilla RAG, indicating
the text-based RAG method that directly retrieves from entity
documents and answers the question; 3) KG-based RAG
method: Think-on-Graph [22](ToG), a KG-based RAG method
that searches useful KG triples for reasoning; 4) Chain-of-
Knowledge [31] (CoK), a hybrid RAG method retrieving
knowledge from Wikipedia, Wikidata, and Wikitable. For a
fair comparison, all baselines are used with GPT-3.5-turbo and
evaluated under an unsupervised setting.

•DocQA. We evaluate our method’s retrieval capabilities
primarily on two challenging multi-hop QA benchmarks,
MuSiQue (answerable) [70] and 2WikiMultiHopQA [71]. For
completeness, we also include the HotpotQA [57] dataset, even
though it has been found to be a much weaker test for multi-
hop reasoning due to many spurious signals [70]. To limit
the experimental cost, we extract 1,000 questions from each
validation set as done in previous work [72], [73]. In order
to create a more realistic retrieval setting, we follow IRCoT
[73] and collect all candidate passages (including supporting
and distractor passages) from our selected questions and form
a retrieval corpus for each dataset. We report retrieval and

QA performance on the datasets above using recall@2 and
recall@5 (R@2 and R@5 below) for retrieval and exact match
(EM) and F1 scores for QA performance.

We compare against several strong and widely used re-
trieval methods: BM25 [41], Contriever [74], GTR [75] and
ColBERTv2 [76]. Additionally, we compare against two re-
cent LLM-augmented baselines: Propositionizer [77], which
rewrites passages into propositions, and RAPTOR [1], which
constructs summary nodes to ease retrieval from long docu-
ments. In addition to the single-step retrieval methods above,
we also include the multi-step retrieval method IRCoT [73] as
a baseline.
• Summary tasks. Many benchmark datasets for open-

domain question answering exist, including HotPotQA [57],
MultiHop-RAG [78], and MT-Bench [79]. However, the as-
sociated question sets target explicit fact retrieval rather than
summarization for the purpose of data sense-making, i.e., the
process through which people inspect, engage with and contex-
tualize data within the broader scope of real-world activities
[80]. Similarly, methods for extracting latent summarization
queries from source texts also exist [81], but such extracted
questions can target details that betray prior knowledge of the
texts.

To evaluate the effectiveness of RAG systems for more
global sense-making tasks, we need questions that convey only
a high-level understanding of dataset contents and not the
details of specific texts. We used an activity-centered approach
to automate the generation of such questions: given a short
description of a dataset, we asked the LLM to identify N
potential users and N tasks per user, then for each (user, task)
combination, we asked the LLM to generate N questions that
require understanding of the entire corpus. For our evaluation,
a value of N = 5 resulted in 125 test questions per dataset. Ta-
ble 1 shows example questions for each of the two evaluation
datasets.

We compare six different conditions in our analysis, includ-
ing Graph RAG using four levels of graph communities (C0,
C1, C2, C3), a text summarization method applying our map-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

Baseline Type Method
Datasets

WebQSP AdvHotpotQA QALD-10-en FEVER Creak Zero-Shot RE
(EM) (EM) (EM) (Acc.) (Acc.) (EM)

LLM-only
Direct 65.9 23.1 42.0 51.8 89.7 27.7
CoT 59.9 30.8 42.9 57.8 90.1 28.8
CoT-SC 61.1 34.4 45.3 59.9 90.8 45.4

Text-based RAG Vanilla RAG 67.9 23.7 42.4 53.8 89.7 29.5

KG-based RAG ToG 76.2 26.3 50.2 52.7 93.8 88.0

Hybrid RAG CoK 77.6 35.4 47.1 63.5 90.4 75.5

Proposed ToG-2 81.1 42.9 54.1 63.1 93.5 91.0

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT METHODS ACROSS VARIOUS DATASETS IN KGQA. THE BEST AND SECOND-BEST RESULTS ARE MARKED IN

BOLD AND UNDERLINED RESPECTIVELY.

Datasets Llama-3-8B Qwen2-7B GPT-3.5-turbo GPT-4o

Direct ToG-2 Direct ToG-2 Direct ToG-2 Direct ToG-2

AdvHotpotQA 20.8 34.7 (66.8% ↑) 17.9 30.8 (72.1% ↑) 23.1 42.9 (85.7% ↑) 47.7 53.3 (11.3% ↑)
FEVER 35.5 52.9 (49.0% ↑) 38.6 53.1 (38.1% ↑) 51.8 63.1 (21.8% ↑) 66.2 70.1 (5.9% ↑)

TABLE III
PERFORMANCE COMPARISON OF DIRECT REASONING AND TOG-2 WITH DIFFERENT BACKBONE MODELS.

reduce approach directly to source texts (TS), and a naive
“semantic search” RAG approach (SS):

• CO. Uses root-level community summaries (fewest in
number) to answer user queries.

• C1. Uses high-level community summaries to answer
queries. These are sub-communities of C0; if present.
Otherwise, C0 communities projected down.

• C2. Uses intermediate-level community summaries to
answer queries. These are subcommunities of C1, if
present. Otherwise, C1 communities are projected down.

• C3. Uses low-level community summaries (greatest in
number) to answer queries. These are sub-communities
of C2, if present, otherwise C2 communities projected
down.

• TS. The same method as in subsection 2.6, except source
texts (rather than community summaries) are shuffled and
chunked for the map-reduce summarization stages.

• SS. An implementation of naive RAG in which text
chunks are retrieved and added to the available context
window until the specified token limit is reached.

The size of the context window and the prompts used
for answer generation are the same across all six conditions
(except for minor modifications to reference styles to match
the types of context information used). Conditions only differ
in how the contents of the context window are created.

LLMs have been shown to be good evaluators of natural
language generation, achieving state-of-the-art or competitive
results compared to human judgments [79], [82]. While this
approach can generate reference-based metrics when gold
standard answers are known, it is also capable of measuring
the qualities of generated texts (e.g., fluency) in a reference-
free style [82] as well as in head-to-head comparison of
competing outputs (LLMas-a-judge, [79]). LLMs have also

shown promise at evaluating the performance of conventional
RAG systems, automatically evaluating qualities like context
relevance, faithfulness, and answer relevance (RAGAS, [83]).

Given the multi-stage nature of our Graph RAG mechanism,
the multiple conditions we wanted to compare, and the lack
of gold standard answers to our activity-based sense-making
questions, we decided to adopt a head-to-head comparison
approach using an LLM evaluator. We selected three target
metrics capturing qualities that are desirable for sense-making
activities, as well as a control metric (directness) used as
an indicator of validity. Since directness is effectively in
opposition to comprehensiveness and diversity, we would not
expect any method to win across all four metrics.

Our head-to-head measures computed using an LLM eval-
uator are as follows:

• Comprehensiveness. How much detail does the answer
provide to cover all aspects and details of the question?

• Diversity. How varied and rich is the answer in providing
different perspectives and insights on the question?

• Empowerment. How well does the answer help the reader
understand and make informed judgments about the
topic?

• Directness. How specifically and clearly does the answer
address the question?

B. Main results.

•KGQA Experimental result. The main results of several
open-source datasets are shown in TABLE II. We note that
ToG-2 outperforms other baselines on WebQSP, AdvHot-
potQA, QALD-10-en, and Zero-Shot RE. Notably, WebQSP,
AdvHotpotQA, and QALD-10-en are multi-hop reasoning
datasets. On Fever, ToG-2 has a competitive performance to
CoK since the fact statements in Fever mainly are about

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

Method MuSiQue 2Wiki HotpotQA Average

R@2 R@5 R@2 R@5 R@2 R@5 R@2 R@5

BM25 32.3 41.2 51.8 61.9 55.4 72.2 46.5 58.4
Contriever 34.8 46.6 46.6 57.5 57.2 75.5 46.2 59.9
GTR 37.4 49.1 60.2 67.9 59.4 73.3 52.3 63.4
ColBERTv2 37.9 49.2 59.2 68.2 64.7 79.3 53.9 65.6
RAPTOR 5.7 45.3 46.3 53.8 58.1 71.2 46.7 56.8
Proposition 37.6 49.3 56.4 63.1 58.7 71.1 50.9 61.2

HippoRAG (Contriever) 41.0 52.1 71.5 89.5 59.0 76.2 57.2 72.6
HippoRAG (ColBERTv2) 40.9 51.9 70.7 89.1 60.5 77.7 57.4 72.9

TABLE IV
SINGLE-STEP RETRIEVAL PERFORMANCE. THE BEST AND SECOND-BEST RESULTS ARE MARKED IN BOLD AND UNDERLINED, RESPECTIVELY.

Method MuSiQue 2Wiki HotpotQA Average

EM F1 EM F1 EM F1 EM F1

None 12.5 24.1 31.0 39.6 30.4 42.8 24.6 35.5
ColBERTv2 15.5 26.4 33.4 43.3 43.4 57.7 30.8 42.5
HippoRAG (ColBERTv2) 19.2 29.8 46.6 59.5 41.8 55.0 35.9 48.1

IRCoT (ColBERTv2) 19.1 30.5 35.4 45.1 45.5 58.4 33.3 44.7
IRCoT + HippoRAG (ColBERTv2) 21.9 33.3 47.7 62.7 45.7 59.2 38.4 51.7

TABLE V
DOCUMENT QA PERFORMANCE. THE BEST AND SECOND-BEST RESULTS ARE MARKED IN BOLD AND UNDERLINED, RESPECTIVELY.

single-hop relations and thus do not need in-depth information
retrieval. In another fact verification dataset, Creak, all fact
statements can be verified based on Wikidata. Thus, ToG-2
and ToG have similar performances on Creak. Meanwhile,
compared to the original ToG, ToG-2 achieved a substantial
improvement on AdvHotpotQA (16.6%) and also demon-
strated notable enhancements on other datasets (4.93% on
WebQSP, 3.85% on QALD-10-en, 3% on Zero-Shot RE, and
10.4% on FEVER). This demonstrates the advantages of our
KG×Text RAG framework in addressing complex problems.

To explore the benefits of LLMs with varying capabilities
for ToG-2, we analyzed its performance enhancement under
different LLM backbone selections through experiments on
AdvHotpotQA and FEVER. The experimental results are
shown in Table III. We observe that ToG-2 can elevate the rea-
soning capability of weaker LLMs, e.g., Llama-3-8B, Qwen2-
7B to the level of direct reasoning by more powerful LLMs,
e.g., GPT-3.5-turbo, which supports our intuition that ToG-2
helps LLMs with knowledge and comprehension bottlenecks.
On the other hand, powerful LLMs, e.g., GPT-3.5-turbo and
GPT-4o, can still benefit from ToG-2 to improve their own per-
formances on complex knowledge reasoning tasks, indicating
that ToG-2 may achieve even higher performance with stronger
LLMs. On AdvHotpotQA and FEVER, which use Wikipedia
as knowledge sources, the most powerful LLMs among all
backbone LLMs, GPT-4o experiences the least improvement
since GPT-4o has a better memory for knowledge related
to Wikipedia than other backbone LLMs, making its direct
reasoning performance on these datasets already desirable.

•DocQA experimental result. As seen in TABLE IV, Hip-
poRAG outperforms all other methods, including recent LLM-
augmented baselines such as Propositionizer and RAPTOR, on
our main datasets, MuSiQue and 2WikiMultiHopQA, while

achieving competitive performance on HotpotQA. We notice
an impressive improvement of 11 and 20% for R@2 and
R@5 on 2WikiMultiHopQA and around 3% on MuSiQue.
This difference can be partially explained by 2WikiMulti-
HopQA’s entity-centric design, which is particularly well-
suited for HippoRAG. Our lower performance on HotpotQA
is mainly due to its lower knowledge integration requirements.
More specifically, the distribution of the distractor scores in
HotpotQA is much closer to the lower bound of the support
passage scores than the other two datasets.

In terms of Question Answering Results, we report QA
results for HippoRAG, the strongest retrieval baselines, Col-
BERTv2 and IRCoT, as well as IRCoT using HippoRAG
as a retriever in TABLE V. As expected, improved retrieval
performance in both single and multi-step settings leads to
great overall improvements of up to 3%, 17%, and 1%
F1 scores on MuSiQue, 2WikiMultiHopQA, and HotpotQA
respectively using the same QA reader.
•Summary task results. Global approaches vs. naive RAG.

As shown in Fig.10, global approaches consistently outper-
formed the naive RAG (SS) approach in both comprehensive-
ness and diversity metrics across datasets. Specifically, global
approaches achieved comprehensiveness win rates between 72-
83% for Podcast transcripts and 72-80% for News articles,
while diversity win rates ranged from 75-82% and 62-71%,
respectively. Our use of directness as a validity test also
achieved the expected results, i.e., that naive RAG produces
the most direct responses across all comparisons.

Community summaries vs. source texts. When comparing
community summaries to source texts using Graph RAG,
community summaries generally provided a small but consis-
tent improvement in answer comprehensiveness and diversity,
except for root-level summaries. Intermediate-level summaries

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

Fig. 10. Head-to-head win rate percentages of (row condition) over (column condition) across two datasets, four metrics, and 125 questions per comparison
(each repeated five times and averaged).

Podcast Transcripts News Articles

CO C1 C2 C3 TS CO C1 C2 C3 TS

Units 34 367 969 1310 1669 55 555 1797 2142 3197
Tokens 26657 225756 565720 746100 1014611 39770 352641 980898 1140266 1707694
% Max 2.6 22.2 55.8 73.5 100 2.3 20.7 57.4 66.8 100

TABLE VI
DOCUMENT QA PERFORMANCE. THE BEST AND SECOND-BEST RESULTS ARE MARKED IN BOLD AND UNDERLINED, RESPECTIVELY.

in the Podcast dataset and low-level community summaries in
the News dataset achieved comprehensiveness win rates of
57% and 64%, respectively. Diversity win rates were 57%
for Podcast intermediate-level summaries and 60% for News
low-level community summaries. Table 3 also illustrates the
scalability advantages of Graph RAG compared to source
text summarization: for low-level community summaries (C3),
Graph RAG required 26-33% fewer context tokens, while for
root-level community summaries (C0), it required over 97%
fewer tokens. For a modest drop in performance compared
with other global methods, root-level Graph RAG offers a
highly efficient method for the iterative question answering
that characterizes sense-making activity while retaining ad-
vantages in comprehensiveness (72% win rate) and diversity
(62% win rate) over naive RAG.

Empowerment. Empowerment comparisons showed mixed
results for both global approaches versus naive RAG (SS)
and Graph RAG approaches versus source text summarization
(TS). Ad-hoc LLM used to analyze LLM reasoning for this
measure indicated that the ability to provide specific examples,
quotes, and citations was judged to be key to helping users
reach an informed understanding. Tuning element extraction
prompts may help to retain more of these details in the Graph

RAG index.
The indexing process resulted in a graph consisting of 8564

nodes and 20691 edges for the Podcast dataset and a larger
graph of 15754 nodes and 19520 edges for the News dataset.
TABLE.VI shows the number of community summaries at
different levels of each graph community hierarchy.

VI. CONCLUSION

Graph RAG represents an advanced approach to enhancing
knowledge retrieval in language models, addressing the limi-
tations of existing systems based solely on KGs or text. Tradi-
tional RAG systems often struggle to retrieve deep knowledge
for complex reasoning tasks, as they rely heavily on either KGs
or text, without fully exploiting the synergy between both.

To overcome this challenge, we introduce the KG×Text
RAG paradigm, which tightly integrates KG-based and
text-based RAG systems. This hybrid approach allows for
knowledge-guided context retrieval through KGs while lever-
aging textual information to improve graph-based retrieval.
The ToG-2 framework, built upon this hybrid paradigm,
enables a more reliable and comprehensive graph retrieval
process. It performs iterative, cooperative retrieval between the
KG and text, resulting in deeper, more accurate knowledge

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

extraction for LLM reasoning. This ensures that complex
knowledge retrieval tasks can be addressed with greater depth
and faithfulness.

Additionally, HippoRAG offers a promising alternative, im-
proving the efficiency of traditional RAG systems by overcom-
ing their limitations. It integrates knowledge more effectively,
especially in path-following multi-hop QA tasks, and provides
significant efficiency gains. Its dynamic updating mechanism
positions it as a robust solution for long-term memory in
LLMs, balancing the advantages of parametric memory and
standard RAG methods.

Furthermore, GraphRAG provides a global approach by
combining knowledge graph generation, RAG, and query-
focused summarization (QFS). This allows it to support hu-
man sense-making over entire corpora, offering significant
improvements in data indexing. Summaries of root-level com-
munities in the entity-based graph index outperform naive
RAG methods and achieve competitive performance with other
global methods, all while dramatically reducing token costs.

In summary, Graph RAG advances the field by enabling
in-depth knowledge retrieval, enhancing the interpretability
of responses, and improving efficiency, making it a powerful
framework for next-generation LLM reasoning.

REFERENCES

[1] P. Sarthi, S. Abdullah, A. Tuli, S. Khanna, A. Goldie, and C. D.
Manning, “Raptor: Recursive abstractive processing for tree-organized
retrieval,” arXiv preprint arXiv:2401.18059, 2024.

[2] F. Petroni, A. Piktus, A. Fan, P. Lewis, M. Yazdani, N. De Cao,
J. Thorne, Y. Jernite, V. Karpukhin, J. Maillard et al., “Kilt: a
benchmark for knowledge intensive language tasks,” arXiv preprint
arXiv:2009.02252, 2020.

[3] Z. Jiang, F. F. Xu, J. Araki, and G. Neubig, “How can we know
what language models know?” Transactions of the Association for
Computational Linguistics, vol. 8, pp. 423–438, 2020.

[4] A. Talmor, Y. Elazar, Y. Goldberg, and J. Berant, “olmpics-on what
language model pre-training captures,” Transactions of the Association
for Computational Linguistics, vol. 8, pp. 743–758, 2020.

[5] J. W. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoffmann, F. Song,
J. Aslanides, S. Henderson, R. Ring, S. Young et al., “Scaling language
models: Methods, analysis & insights from training gopher,” arXiv
preprint arXiv:2112.11446, 2021.

[6] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai,
E. Rutherford, D. d. L. Casas, L. A. Hendricks, J. Welbl, A. Clark
et al., “Training compute-optimal large language models,” arXiv preprint
arXiv:2203.15556, 2022.

[7] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann et al., “Palm: Scal-
ing language modeling with pathways,” Journal of Machine Learning
Research, vol. 24, no. 240, pp. 1–113, 2023.

[8] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Ka-
mar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg et al., “Sparks of artificial
general intelligence: Early experiments with gpt-4,” arXiv preprint
arXiv:2303.12712, 2023.

[9] N. Kandpal, H. Deng, A. Roberts, E. Wallace, and C. Raffel, “Large
language models struggle to learn long-tail knowledge,” in International
Conference on Machine Learning. PMLR, 2023, pp. 15 696–15 707.

[10] A. Roberts, C. Raffel, and N. Shazeer, “How much knowledge can
you pack into the parameters of a language model?” arXiv preprint
arXiv:2002.08910, 2020.

[11] Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su, B. Wilie, H. Lovenia,
Z. Ji, T. Yu, W. Chung et al., “A multitask, multilingual, multimodal
evaluation of chatgpt on reasoning, hallucination, and interactivity,”
arXiv preprint arXiv:2302.04023, 2023.

[12] N. M. Guerreiro, D. M. Alves, J. Waldendorf, B. Haddow, A. Birch,
P. Colombo, and A. F. Martins, “Hallucinations in large multilingual
translation models,” Transactions of the Association for Computational
Linguistics, vol. 11, pp. 1500–1517, 2023.

[13] L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen,
W. Peng, X. Feng, B. Qin et al., “A survey on hallucination in large
language models: Principles, taxonomy, challenges, and open questions,”
ACM Transactions on Information Systems, 2023.

[14] N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and
P. Liang, “Lost in the middle: How language models use long contexts,”
Transactions of the Association for Computational Linguistics, vol. 12,
pp. 157–173, 2024.

[15] C. Mavromatis and G. Karypis, “Gnn-rag: Graph neural retrieval for
large language model reasoning,” arXiv preprint arXiv:2405.20139,
2024.

[16] Y. Hu, Z. Lei, Z. Zhang, B. Pan, C. Ling, and L. Zhao, “Grag: Graph
retrieval-augmented generation,” arXiv preprint arXiv:2405.16506,
2024.

[17] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel et al., “Retrieval-
augmented generation for knowledge-intensive nlp tasks,” Advances in
Neural Information Processing Systems, vol. 33, pp. 9459–9474, 2020.

[18] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, and
H. Wang, “Retrieval-augmented generation for large language models:
A survey,” arXiv preprint arXiv:2312.10997, 2023.

[19] J. Baek, A. F. Aji, and A. Saffari, “Knowledge-augmented language
model prompting for zero-shot knowledge graph question answering,”
arXiv preprint arXiv:2306.04136, 2023.

[20] M. Kang, J. M. Kwak, J. Baek, and S. J. Hwang, “Knowledge graph-
augmented language models for knowledge-grounded dialogue genera-
tion,” arXiv preprint arXiv:2305.18846, 2023.

[21] P. Sen, S. Mavadia, and A. Saffari, “Knowledge graph-augmented
language models for complex question answering,” in Proceedings
of the 1st Workshop on Natural Language Reasoning and Structured
Explanations (NLRSE), 2023, pp. 1–8.

[22] J. Sun, C. Xu, L. Tang, S. Wang, C. Lin, Y. Gong, H.-Y. Shum, and
J. Guo, “Think-on-graph: Deep and responsible reasoning of large lan-
guage model with knowledge graph,” arXiv preprint arXiv:2307.07697,
2023.

[23] L. Luo, Y.-F. Li, G. Haffari, and S. Pan, “Reasoning on graphs: Faith-
ful and interpretable large language model reasoning,” arXiv preprint
arXiv:2310.01061, 2023.

[24] J. Wang, Q. Sun, X. Li, and M. Gao, “Boosting language mod-
els reasoning with chain-of-knowledge prompting,” arXiv preprint
arXiv:2306.06427, 2023.

[25] Y. Wen, Z. Wang, and J. Sun, “Mindmap: Knowledge graph prompting
sparks graph of thoughts in large language models,” arXiv preprint
arXiv:2308.09729, 2023.

[26] P. West, C. Bhagavatula, J. Hessel, J. D. Hwang, L. Jiang, R. L. Bras,
X. Lu, S. Welleck, and Y. Choi, “Symbolic knowledge distillation:
from general language models to commonsense models,” arXiv preprint
arXiv:2110.07178, 2021.

[27] A. Bosselut, H. Rashkin, M. Sap, C. Malaviya, A. Celikyilmaz, and
Y. Choi, “Comet: Commonsense transformers for automatic knowledge
graph construction,” arXiv preprint arXiv:1906.05317, 2019.

[28] B. Chen and A. L. Bertozzi, “Autokg: Efficient automated knowledge
graph generation for language models,” in 2023 IEEE International
Conference on Big Data (BigData). IEEE, 2023, pp. 3117–3126.

[29] J. Han, N. Collier, W. Buntine, and E. Shareghi, “Pive: Prompting
with iterative verification improving graph-based generative capability
of llms,” arXiv preprint arXiv:2305.12392, 2023.

[30] K. Zhang, B. J. Gutiérrez, and Y. Su, “Aligning instruction tasks unlocks
large language models as zero-shot relation extractors,” arXiv preprint
arXiv:2305.11159, 2023.

[31] X. Li, R. Zhao, Y. K. Chia, B. Ding, S. Joty, S. Poria, and
L. Bing, “Chain-of-knowledge: Grounding large language models
via dynamic knowledge adapting over heterogeneous sources,” arXiv
preprint arXiv:2305.13269, 2023.

[32] B. Sarmah, D. Mehta, B. Hall, R. Rao, S. Patel, and S. Pasquali, “Hy-
bridrag: Integrating knowledge graphs and vector retrieval augmented
generation for efficient information extraction,” in Proceedings of the
5th ACM International Conference on AI in Finance, 2024, pp. 608–
616.

[33] S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, and X. Wu, “Unifying
large language models and knowledge graphs: A roadmap,” IEEE
Transactions on Knowledge and Data Engineering, 2024.

[34] J. Jiang, K. Zhou, Z. Dong, K. Ye, W. X. Zhao, and J.-R. Wen,
“Structgpt: A general framework for large language model to reason
over structured data,” arXiv preprint arXiv:2305.09645, 2023.

[35] M. Yasunaga, A. Bosselut, H. Ren, X. Zhang, C. D. Manning,
P. S. Liang, and J. Leskovec, “Deep bidirectional language-knowledge

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

graph pretraining,” Advances in Neural Information Processing Systems,
vol. 35, pp. 37 309–37 323, 2022.

[36] H. Zhu, H. Peng, Z. Lyu, L. Hou, J. Li, and J. Xiao, “Pre-training
language model incorporating domain-specific heterogeneous knowledge
into a unified representation,” Expert Systems with Applications, vol.
215, p. 119369, 2023.

[37] Y. Chen, S. Qian, H. Tang, X. Lai, Z. Liu, S. Han, and J. Jia, “Longlora:
Efficient fine-tuning of long-context large language models,” arXiv
preprint arXiv:2309.12307, 2023.

[38] Y. Ding, L. L. Zhang, C. Zhang, Y. Xu, N. Shang, J. Xu, F. Yang, and
M. Yang, “Longrope: Extending llm context window beyond 2 million
tokens,” arXiv preprint arXiv:2402.13753, 2024.

[39] Y. Fu, R. Panda, X. Niu, X. Yue, H. Hajishirzi, Y. Kim, and H. Peng,
“Data engineering for scaling language models to 128k context,” arXiv
preprint arXiv:2402.10171, 2024.

[40] B. Peng, J. Quesnelle, H. Fan, and E. Shippole, “Yarn: Efficient
context window extension of large language models,” arXiv preprint
arXiv:2309.00071, 2023.

[41] S. E. Robertson and S. Walker, “Some simple effective approximations
to the 2-poisson model for probabilistic weighted retrieval,” in SIGIR’94:
Proceedings of the Seventeenth Annual International ACM-SIGIR Con-
ference on Research and Development in Information Retrieval, organ-
ised by Dublin City University. Springer, 1994, pp. 232–241.

[42] M. Levy, A. Jacoby, and Y. Goldberg, “Same task, more tokens: the
impact of input length on the reasoning performance of large language
models,” arXiv preprint arXiv:2402.14848, 2024.

[43] T. Li, G. Zhang, Q. D. Do, X. Yue, and W. Chen, “Long-
context llms struggle with long in-context learning,” arXiv preprint
arXiv:2404.02060, 2024.

[44] X. Zhang, Y. Chen, S. Hu, Z. Xu, J. Chen, M. Hao, X. Han, Z. Thai,
S. Wang, Z. Liu et al., “Bench: Extending long context evaluation
beyond 100k tokens,” in Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
2024, pp. 15 262–15 277.

[45] X. He, Y. Tian, Y. Sun, N. V. Chawla, T. Laurent, Y. LeCun, X. Bres-
son, and B. Hooi, “G-retriever: Retrieval-augmented generation for
textual graph understanding and question answering,” arXiv preprint
arXiv:2402.07630, 2024.

[46] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high
dimensions via hashing,” in Vldb, vol. 99, no. 6, 1999, pp. 518–529.

[47] Y. Fang, X. Huang, L. Qin, Y. Zhang, W. Zhang, R. Cheng, and X. Lin,
“A survey of community search over big graphs,” The VLDB Journal,
vol. 29, pp. 353–392, 2020.

[48] T. J. Teyler and P. DiScenna, “The hippocampal memory indexing
theory.” Behavioral neuroscience, vol. 100, no. 2, p. 147, 1986.

[49] T. J. Teyler and J. W. Rudy, “The hippocampal indexing theory and
episodic memory: updating the index,” Hippocampus, vol. 17, no. 12,
pp. 1158–1169, 2007.

[50] H. Eichenbaum, “A cortical–hippocampal system for declarative mem-
ory,” Nature reviews neuroscience, vol. 1, no. 1, pp. 41–50, 2000.

[51] G. Angeli, M. J. J. Premkumar, and C. D. Manning, “Leveraging
linguistic structure for open domain information extraction,” in Proceed-
ings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), 2015, pp. 344–354.

[52] O. Etzioni, M. Banko, S. Soderland, and D. S. Weld, “Open information
extraction from the web,” Communications of the ACM, vol. 51, no. 12,
pp. 68–74, 2008.

[53] K. Pei, I. Jindal, K. C.-C. Chang, C. Zhai, and Y. Li, “When to use
what: An in-depth comparative empirical analysis of openie systems for
downstream applications,” arXiv preprint arXiv:2211.08228, 2022.

[54] S. Zhou, B. Yu, A. Sun, C. Long, J. Li, H. Yu, J. Sun, and Y. Li, “A
survey on neural open information extraction: Current status and future
directions,” arXiv preprint arXiv:2205.11725, 2022.

[55] T. H. Haveliwala, “Topic-sensitive pagerank,” in Proceedings of the 11th
international conference on World Wide Web, 2002, pp. 517–526.

[56] Y. Kuratov, A. Bulatov, P. Anokhin, D. Sorokin, A. Sorokin, and
M. Burtsev, “In search of needles in a 10m haystack: Recurrent memory
finds what llms miss,” arXiv preprint arXiv:2402.10790, 2024.

[57] Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov, and
C. D. Manning, “Hotpotqa: A dataset for diverse, explainable multi-hop
question answering,” arXiv preprint arXiv:1809.09600, 2018.

[58] T. B. Brown, “Language models are few-shot learners,” arXiv preprint
arXiv:2005.14165, 2020.

[59] S. Fortunato, “Community detection in graphs,” Physics reports, vol.
486, no. 3-5, pp. 75–174, 2010.

[60] D. Jin, Z. Yu, P. Jiao, S. Pan, D. He, J. Wu, S. Y. Philip, and W. Zhang,
“A survey of community detection approaches: From statistical mod-
eling to deep learning,” IEEE Transactions on Knowledge and Data
Engineering, vol. 35, no. 2, pp. 1149–1170, 2021.

[61] V. A. Traag, L. Waltman, and N. J. Van Eck, “From louvain to leiden:
guaranteeing well-connected communities,” Scientific reports, vol. 9,
no. 1, pp. 1–12, 2019.

[62] B. Peng, Y. Zhu, Y. Liu, X. Bo, H. Shi, C. Hong, Y. Zhang, and
S. Tang, “Graph retrieval-augmented generation: A survey,” arXiv
preprint arXiv:2408.08921, 2024.

[63] W.-t. Yih, M. Richardson, C. Meek, M.-W. Chang, and J. Suh, “The
value of semantic parse labeling for knowledge base question answer-
ing,” in Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), 2016, pp. 201–206.

[64] R. Usbeck, X. Yan, A. Perevalov, L. Jiang, J. Schulz, A. Kraft, C. Möller,
J. Huang, J. Reineke, A.-C. Ngonga Ngomo et al., “Qald-10–the 10th
challenge on question answering over linked data,” Semantic Web, no.
Preprint, pp. 1–15, 2023.

[65] X. Ye and G. Durrett, “The unreliability of explanations in few-
shot prompting for textual reasoning,” Advances in neural information
processing systems, vol. 35, pp. 30 378–30 392, 2022.

[66] J. Thorne, A. Vlachos, C. Christodoulopoulos, and A. Mittal, “Fever:
a large-scale dataset for fact extraction and verification,” arXiv preprint
arXiv:1803.05355, 2018.

[67] Y. Onoe, M. J. Zhang, E. Choi, and G. Durrett, “Creak: A dataset
for commonsense reasoning over entity knowledge,” arXiv preprint
arXiv:2109.01653, 2021.

[68] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824–24 837, 2022.

[69] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdh-
ery, and D. Zhou, “Self-consistency improves chain of thought reasoning
in language models,” arXiv preprint arXiv:2203.11171, 2022.

[70] H. Trivedi, N. Balasubramanian, T. Khot, and A. Sabharwal, “Musique:
Multihop questions via single-hop question composition,” Transactions
of the Association for Computational Linguistics, vol. 10, pp. 539–554,
2022.

[71] X. Ho, A.-K. D. Nguyen, S. Sugawara, and A. Aizawa, “Constructing a
multi-hop qa dataset for comprehensive evaluation of reasoning steps,”
arXiv preprint arXiv:2011.01060, 2020.

[72] O. Press, M. Zhang, S. Min, L. Schmidt, N. A. Smith, and M. Lewis,
“Measuring and narrowing the compositionality gap in language mod-
els,” arXiv preprint arXiv:2210.03350, 2022.

[73] H. Trivedi, N. Balasubramanian, T. Khot, and A. Sabharwal, “Interleav-
ing retrieval with chain-of-thought reasoning for knowledge-intensive
multi-step questions,” arXiv preprint arXiv:2212.10509, 2022.

[74] G. Izacard, M. Caron, L. Hosseini, S. Riedel, P. Bojanowski, A. Joulin,
and E. Grave, “Unsupervised dense information retrieval with contrastive
learning,” arXiv preprint arXiv:2112.09118, 2021.

[75] J. Ni, C. Qu, J. Lu, Z. Dai, G. H. Ábrego, J. Ma, V. Y. Zhao, Y. Luan,
K. B. Hall, M.-W. Chang et al., “Large dual encoders are generalizable
retrievers,” arXiv preprint arXiv:2112.07899, 2021.

[76] K. Santhanam, O. Khattab, J. Saad-Falcon, C. Potts, and M. Zaharia,
“Colbertv2: Effective and efficient retrieval via lightweight late interac-
tion,” arXiv preprint arXiv:2112.01488, 2021.

[77] T. Chen, H. Wang, S. Chen, W. Yu, K. Ma, X. Zhao, H. Zhang, and
D. Yu, “Dense x retrieval: What retrieval granularity should we use?”
arXiv preprint arXiv:2312.06648, 2023.

[78] Y. Tang and Y. Yang, “Multihop-rag: Benchmarking retrieval-augmented
generation for multi-hop queries,” arXiv preprint arXiv:2401.15391,
2024.

[79] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin,
Z. Li, D. Li, E. Xing et al., “Judging llm-as-a-judge with mt-bench
and chatbot arena,” Advances in Neural Information Processing Systems,
vol. 36, pp. 46 595–46 623, 2023.

[80] L. Koesten, K. Gregory, P. Groth, and E. Simperl, “Talking datasets–
understanding data sensemaking behaviours,” International journal of
human-computer studies, vol. 146, p. 102562, 2021.

[81] Y. Xu and M. Lapata, “Text summarization with latent queries,” arXiv
preprint arXiv:2106.00104, 2021.

[82] J. Wang, Y. Liang, F. Meng, Z. Sun, H. Shi, Z. Li, J. Xu, J. Qu, and
J. Zhou, “Is chatgpt a good nlg evaluator? a preliminary study,” arXiv
preprint arXiv:2303.04048, 2023.

[83] S. Es, J. James, L. Espinosa-Anke, and S. Schockaert, “Ragas: Au-
tomated evaluation of retrieval augmented generation,” arXiv preprint
arXiv:2309.15217, 2023.

	Introduction
	related work
	Preliminary
	LLM and language model techniques
	Graph

	Graph RAG methods
	Agent-Based Methods
	Documents-Based Methods
	Global-Information-Based Methods

	Experiments
	RAG tasks and evaluations.
	Main results.

	Conclusion
	References

