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Abstract—Convolutional neural networks(CNNs) have achieved great success on Euclidean data. Inspired by CNNs, graph
convolutional networks(GCNs) were proposed to handle non-Euclidean data. As the scale of data continues to grow, the demand for
computing GCN inference at a faster speed is increasing. However, due to the inherent characteristics of GCN and graph data
structures, there is a huge challenge in computing acceleration on existing architectures, which leads to the necessity of designing
dedicated accelerators. According to the computational characteristics of GCN, hybrid architectures are considered a feasible and
efficient accelerator structure. In this work, we summarize several different hybrid GCN inference accelerators. We focus on their
hardware architecture and software design, respectively introducing their aggregation engine, combination engine, pipeline that links
the two engines, and software algorithms. Furthermore, based on experimental data, we compare the design features of each method
and their performance on different datasets, discuss the pros and cons of these designs, and propose some possible future research
directions.

✦

1 INTRODUCTION

O VER the past few years, neural network models have
witnessed rapid development. In domains such as

text and image processing, models represented by convo-
lutional neural networks(CNNs) have achieved remarkable
success[13]. However, these models are based on the Eu-
clidean structure of the data. In the real world, a con-
siderable amount of data is organized in non-Euclidean
forms, with graphs being a typical example. To address this
type of issue, graph neural networks(GNNs) have been put
forward[17]. Among numerous GNNs, graph convolutional
networks(GCNs)[9], [33] [22], [31], which drew inspira-
tion from the convolutional neural network model, have
garnered the attention of many researchers and promptly
emerged as one of the most prevalent approaches. GCNs
usually obtain the embedding vectors of vertices through
two phases, aggregation and combination[25], [7], [33]. In
the aggregation phase, each vertex fuses features from its
adjacent neighbors in a certain way, such as accumulation,
averaging, etc[9]. During this phase, the operations executed
by GCN are based on the graph structure. Unfortunately,
graph structures typically exhibit a high degree of ran-
domness and sparsity[10]. On the one hand, this results in
different numbers of neighbors for each vertex, leading to a
load imbalance. On the other hand, random memory access
makes it challenging to utilize the locality of memory, and
the computing performance will be significantly affected[1].
However, this situation is completely different in the com-
bination stage[19]. The combination stage is more akin to a
traditional neural network, where it employs a multi-layer
perceptron (MLP) to transform the feature vector of each
vertex into a new one.

Apart from the distinctions among the phases, the two
phases of GCN also differ from traditional graph analysis.
Firstly, in GCN, the feature attributes of vertices tend to be
several times more than those in traditional graph analysis.
Moreover, in traditional graph analysis, the length of the
vertex attribute vector is fixed, but in GCN, the length
of the attribute vector in each layer varies. Secondly, the
parameters of the traditional MLP-based neural network

are not shared, whereas in the combination phase of the
GCN, the weight parameters of the MLP are shared among
vertices, resulting in a considerable amount of reusable
data. Third, the two distinct phases in GCN are executed
alternately.

With the advancement of GCN, there are increasing
demands for accelerated inference. Nevertheless, due to
the aforementioned characteristics, the acceleration of GCN
inference confronts substantial challenges[23], [30]. Large
graphs with millions of vertices are not amenable to de-
signing efficient and compact GCN accelerators within the
confines of limited on-chip memory. The degree distribu-
tion of vertices is highly uneven since real-world graphs
typically follow a power-law distribution[4]. This leads to
extensive memory traffic, irregular memory access, and a
workload imbalance. In addition, irregular memory access
results in limited data reuse. Existing computing platforms
are incapable of effectively coping with these challenges. In
CPUs, despite the presence of complex multilevel caches
and data prefetching strategies, the unpredictability of
GCN’s random data access makes it arduous to apply the
existing cache strategies efficiently, leading to inefficient
data reuse[6]. Moreover, CPUs have difficulty leveraging
the inherent parallelism executed in the above two stages.
GPUs are designed to employ highly parallel computing
for regular data access and processing, which is contrary to
the inherent randomness of graph structures. Concurrently,
GPUs have difficulties handling the data reused among
vertices[26].

Based on the foregoing reasons, the accelerator structure
with two phases can be optimized in accordance with
different characteristics and is more appropriate for GCN
inference. In this work, we initially describe the workload
of GCN in the Intel Xeon CPU to elucidate the opera-
tional characteristics of GCN. Subsequently, we investigated
three distinct hybrid-structured GCN inference accelerators
and summarized their aggregation engines, combination
engines, cross-engine pipelines, and software algorithms.
HyGCN[27] exploits the parallelism within vertices to real-
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Figure 1: Illustration of the GCN model.

ize load balancing. The structural design based on down-
stream tasks[14] utilizes pre-trained models to generate
load-balanced subgraphs. GPGCN[18], on the contrary, is
based on the open-source RISC-V instruction set and takes
advantage of its flexibility to design a dedicated extension
instruction set for GCN inference, accelerating while main-
taining a certain degree of programmability. In conclusion,
we enumerate our contributions as follows:

1. We analyzed the disparities between GCN and tradi-
tional graph analysis as well as other neural networks with
Euclidean structures, and proposed the superiority of the
hybrid structure accelerators.

2. Summarized the three existing hybrid-structured GCN
inference accelerators, analyzed their design concepts and
pros and cons.

3. Put forward some open questions.
The rest of this paper is organized as follows. Section 2

discusses the related work on GCN inference acceleration
and RISC-V. In Section 3, we analyze the characteristics of
GCN and explain the motivation for the hybrid design.
Section 4 describes the detailed structure design. Section
5 introduces the experimental setup and results. Finally,
Section 6 concludes the paper.

2 RELATED WORK

2.1 Graph Convolutional Network
Fig. 1 illustrates the execution stages of the GCN model.
GCN follow a neighborhood aggregation scheme[33], [8],
[24], where the feature vector of each vertex is computed by
recursively aggregating and transforming the representation
vectors of its neighbor vertices. The notations used in GCNs
are listed in Table 1

Simply, the Aggregate function aggregates multiple fea-
ture vectors from source neighbors to one single feature
vector and the Combine function transforms the feature
vector of each vertex to another feature vector using an MLP
neural network. Note that the MLP parameters are shared
between vertices. Each GCN layer can be foromulated as
follows:

αl
v = Aggregate(hl−1

u : u ∈ N(v) ∪ {v}) (1)

hl
v = Combine(αl

v) (2)

where hl
v is the embedding vector of vertex v in the layer l.

Typically, given adjacent matrix A and feature matrix X,
the detailed graph convolution operation can be generalized
as follows:

X l+1 = σ(D̃− 1
2 ÃD̃− 1

2X lW l) (3)

Notation Description Notation Description
G Input graph Dv Degree of node v
V Nodes of G A Adjacent matrix
vi The ith node hv Feature vector of node v
E Edges set of G X Feature matrix

e(ij) Edge from vi to vj W Shared weight matrix
N Number of nodes f Length of feature vector

N(v) Neighbor set of node v L Number of GCN layers
av Aggregation feature of v

Table 1: Notation and description table

where Ã = A+ I is the adjacent matrix with self-loop, Dii =∑
j Ãij is Laplacian matrix. σ(·) is the activation function.
To reduce the computational complexity and increase

the scalability of GCN, some models apply a sampling
function before applying the aggregation function to reduce
the number of computed neighbors[8]. Sometimes, the Pool
function[28] follows the Combine function to transform the
original graph into a smaller graph. For the graph classi-
fication, a Readout function[3] is used to obtain the entire
graph’s representation vector.

2.2 RISC-V Instruction Set Architecture
The open-source RISC-V[21] ISA is based on the RISC
philosophy. Its architecture is a basic integer ISA plus a
set of optional standard and non-standard extensions to
customize and specialize the final instruction set. There
are two main base integer ISAs, RV32I and RV64I, which
respectively establish the user address space as 32-bit or 64-
bit.

The standard supports extending the RISC-V ISA with
special extensions to allow for custom accelerators. Non-
standard extensions can be added to the code space by
utilizing the four main opcode prefixes reserved for custom
extensions: custom0, custom1, custom2, and custom3, as
shown in Fig. 2.

Figure 2: The custom instruction encoding space of RISC-V.

3 MOTIVATION

In this section, we quantitatively analyzed the execution
patterns of the two phases of GCN and explained the
motivation behind the hybrid design.
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Figure 3: Architecture overview of HyGCN

3.1 Characteristics of GCN
We use the most advanced GCN software framework Py-
Torch Geometric (PyG)[7] for quantitative representation on
Intel Xeon CPU.

The aggregation phase is highly reliant on the inherent
random and sparse graph structure, which gives rise to a
considerable amount of dynamic computation and irregular
access. Meanwhile, the combination phase incurs significant
overhead in data reuse and synchronization. As shown in
Table 2, each operation in the aggregation phase demands
much more data to be accessed from DRAM than the combi-
nation phase, resulting in higher DRAM access energy. Fur-
thermore, the extremely high numbers of misses per kilo-
instruction (MPKI) of L2 and L3 caches in the aggregation
phase are triggered by the high randomness of neighbor in-
dices of each vertex. Additionally, the indirect and irregular
accesses render data prefetching in the aggregation phase
ineffective, as it is challenging to predict the data addresses
without knowing the indices of neighbors in advance. This
leads to numerous ineffective memory accesses for prefetch-
ing data.In combination phase, the replication of shared data
and thread synchronization accounted for up to 36% of the
execution time.

Aggregation Combination
DRAM Byte per Ops 11.6 0.06

DRAM Access Energy per Ops 170nJ 0.5nJ
L2 Cache MPKI 11 1.5
L3 Cache MPKI 10 0.9

Ratio of Synchronization Time - 36%

Table 2: Quantitative characterization on CPU

Based on the above analysis, we summarize the char-
acteristics of the two phases in Table 3 and compare their
differences. The aggregation phase exhibits a dynamic and
irregular execution pattern that is bounded by memory,
whereas the combination phase is static and regular, being
bounded by computation.

Aggregation Combination
Access Pattern Indirect Indirect & Irregular Direct & Regular

Data Reusability Low High
Computation Pattern Dynamic & Irregular Static & Regular

Computation Intensity Low High
Execution Bound Memory Compute

Table 3: Different execution patterns of two phases.

Figure 4: Vertex-concentrated mode workload distribution
strategy

3.2 The Inefficiency of Existing Architecture
For the CPU, the irregularity of the aggregation phase
makes the existing cache strategies not be effectively uti-
lized. Meanwhile, the data and instruction optimization
techniques based on prefetching are not applicable to the
discrete and distributed graph data. GPUs are inherently op-
timized for compute-intensive workloads featuring regular
execution patterns, such as neural networks[12]. However,
handling the aggregation phase involving irregular memory
accesses suffers from low efficiency. Besides, the processing
of the combination phase with strong parameter sharing
requires costly data copy and thread synchronization. Both
CPUs and GPUs fail to have inter-phase optimization for
GCN execution due to phase-by-phase execution.

Although specialized accelerators designed for graph
analysis or neural networks have achieved significant ac-
celeration and energy savings compared to general-purpose
processors[32], [16], their single-format design makes them
unsuitable for GCN inference. In addition, the longer and
variable length of feature vectors in GCN and the more
reusable data also make traditional graph analysis accelera-
tors inefficient in handling GCN tasks.

4 ARCHITECTURE DESIGN

In this section, based on the above analysis, we describe
three different hybrid GCN inference accelerator designs
from both hardware and software perspectives.

Figure 5: Vertex-disperse mode workload distribution
strategy
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Figure 6: Graph partition, window sliding and window shrinking

4.1 HyGCN
Fig. 3 depicts the architecture of HyGCN which includes
two engines (Aggregation Engine and Combination Engine)
and one memory access handler. A communication interface
(Coordinator) is introduced to bridge these two engines.

4.1.1 Aggregation Engine
In the aggregation engine, each SIMD core is an aggregation
processing element(APE). We have two ways to utilize these
SIMD cores for parallel edge computation. The first one is
vertex-concentrated. As Fig. 4 shown, the edges incident to
a vertex are successively passed into the APE, and each
APE performs a single feature aggregation computation
for a single vertex at the same time. This pattern can
generate vertex aggregation features in burst mode, i.e.
periodically processing a group of vertices. However, the
processing delay of a single vertex (called vertex delay) is
very long, and fast vertices must wait for slow vertices,
leading to an imbalance in the workload. Furthermore, it
loses the parallelism that can be executed in parallel for
each element’s aggregation (i.e. vertex-level parallelism).
The second approach is the Vertex-Disperse mode, in which
we effectively utilize the inherent parallelism in the node
internal aggregation process. The workload in this mode
is shown in Fig. 5, where we assign the elements within
the vertex feature vector of each vertex to all cores. If a
vertex cannot occupy all the cores, idle cores can be assigned
to other vertices. Therefore, all cores are always busy, and
there is no workload imbalance. Furthermore, since we
utilize the intrinsic parallelism within a vertex, the vertex
delay per vertex is smaller than that of processing multiple
vertices together. Additionally, it can immediately process
each vertex in the following combination engine.

In addition to load balancing, data reuse is also very
important during the aggregation phase. Because the fea-
ture vectors at each vertex are usually very large, we use
block-wise computation to increase locality of features. As
exampled in Fig. 6(a), the vertices are divided into several
intervals and edges are organized as shards. We group
the vertices within the same interval together (e.g. Ii), and
then process the aggregation of their source neighbors also
interval by interval(i.e. traverse Ij) as shown in Fig. 6(b). In
this way, we can increase the reuse of feature vectors and
intermediate results.

However, merely through the aforementioned ap-
proaches, we still have not addressed the issue of sparsity.
Subsequently, through a window sliding method, we have
mitigated the sparsity.

As shown in Fig. 6(c), we create a window of interval
size and slide it downwards until the first row with a
border appears. After the window sliding optimization,
although we have eliminated most of the sparsity at the
top, the sparsity at the bottom is still retained. To further
optimize this part of the sparsity, we further use the window
shrinking method as shown in Fig. 6(d). Specifically, after
the window sliding, we fix the top of the window, and then
move the bottom of the window upwards until there is at
least one border at the bottom. In this way, only the feature
data of remaining neighbor vertices when performing the
aggregation operation for each interval are loaded, which
eliminates plenty of redundant accesses.

4.1.2 Combination Engine
In the combination engine, our design is based on the well-
known systolic array. Corresponding to the two modes of
the aggregation engine, the composition engine possesses
two execution modes, namely the independent mode and
the cooperative mode.

In the independent mode, each systolic module operates
independently. As depicted in Fig. 7(a), under such circum-
stances, each module processes a small group of vertices.
While in cooperative mode, these systolic modules can be
further assembled together to simultaneously process more
vertices, as shown in 7(b).

Besides, in independent mode, the weight parameters
for each module in this case are directly accessed from the
weight buffer and just reused within module(see Fig. 8(a)).
The advantage of this mode is the lower vertex latency
because we can process the combination operations of this
small group of vertices immediately once their aggregated
features are ready, without waiting for more vertices. This

Figure 7: Different use of the systolic arrays



5

Figure 8: Combination engine design

Figure 9: Timing illustration of different pipeline modes

mode matches well with the vertex-disperse processing
mode of aggregation engine, where the aggregated features
are produced quickly but sequentially.

Different from the immediate processing of vertices, co-
operative mode requires to assemble the aggregated features
of a large group of vertices together before performing their
combination operations. The advantage is that, the weight
parameters can flow from the weight buffer to the down-
stream systolic modules and then gradually to the upstream
ones which are greatly reused by all systolic arrays(as Fig.
8(b) show). This helps reduce the energy consumption.

4.1.3 Inter-Engine Optimization
To efficiently fuse the phase-by-phase execution a coordina-
tor is designed and provide two pipeline modes, latency-
aware and energy-aware.

In Latency-Aware Pipeline, the combination engine
works in independent mode. The aggregated features are
produced vertex by vertex in the aggregation engine. The
following combination will be processed immediately once
the aggregated features of a small group of vertices are
ready like Fig. 9(a) shows.

The Energy-Aware Pipeline use cooperative mode in
the combination engine. The vertex-by-vertex processing
changes to a burst mode, where a large group of vertices
will be processed like Fig. 9(b) shows.

4.2 Downstream Task Based Design
This work propose another framework to achieve efficient
GCN inference acceleration which based on the downstream
task. The overview of the system hardware architecture is
shown in Fig. 10. Similar to HyGCN, it has an aggregation
engine, a combination engine, and a buffer connecting the
two engines. The difference is that before computing the
GCN, the AM-based graph sparsification approach is first
adopted to balance the degree distribution of the original
graph and compress the GCN model at the algorithm level.

Figure 10: Overview of downstream task based design
system hardware architecture.

4.2.1 Attention-Mechanism Based Graph Sparsification

Despite the extreme sparsity of graph, there are still many
redundant edges in the graph structure. These redundant
edges are irrelevant to the downstream task and harm the
model performance in turn. From hardware perspective,
more edges require more memory access. This inspired us
to propose graph sparsification as preprocessing in the GCN
inference.

The key idea of the attention-mechanism based graph
sparsification is to take the attention coefficients as the
importance indicator for the down-stream task. The atten-
tion coefficients can be calculated similar to graph atten-
tion network (GAT)[20], [5], and be utilized to determine
whether that edge shall be used for neighbor aggregation
through a predefined threshold. The attention coefficients of
all the neighbors of the target node are normalized using
the Softmax function, which can be employed to represent
the relative significance of the neighboring nodes. Conse-
quently, the edges corresponding to the top k attention
coefficients can be retained from the input graph, while the
remaining edges are eliminated, thereby obtaining a sparse
k-neighbor subgraph. The advantage of this approach is
twofold: firstly, from an algorithmic perspective, the number
of edges relevant to the task in the graph can be adjusted
by optimizing the hyperparameter k, and different k values
can be chosen to best fit graphs with different features and
downstream tasks. Secondly, from a hardware perspective,
the k-neighbor subgraph is very friendly to parallel comput-

Figure 11: Workload of k-neighbor subgraph
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Figure 12: A toy example of graph sparsification and node
reordering without self-loop.

ing during inference. Since each node has the same number
of neighbors, it is possible to effectively avoid workload
imbalance in the hardware architecture, providing conve-
nience for improving computational parallelism(like Fig. 11
shows).

4.2.2 Node Reorder

Due to the random node layout, there will be a lot of
memory accesses during the GCN inference process, which
limits the data reuse[29]. In this design, we reorder the
nodes and obtain a new adjacency matrix, where the non-
zero elements tend to be more compact near the diagonal.
Fig. 12(b)(c) graphically describe our graph sparsification
and node reordering. By the above processing, we can fur-
ther improve the data locality by grouping adjacent nodes,
thereby reducing external memory accesses and improving
data reuse.

4.2.3 Aggregation Engine

For a large graph it is difficult to implement the entire graph
onto the chip. We use common approach to split the graph
into partitions, which fit to limited on-chip resources and
can be computed separately, this also improve data reuse.

Fig. 13 shows the overview of the architecture. We store
adjacent matrix in CSR format. Each edge is stored as a
three element tuple src, dst, val representing the source
indices, destination pointers, and edge values respectively.
So we design 3 buffer to cache them, indice buffer, indptr
buffer and value buffer. The control unit transmits a data
loading command to the buffer, loading the adjacency ma-
trix in CSR format into the buffer and loading the feature
vectors from DRAM into the feature buffer. Subsequently,
the decoder generates the destination address to index
the corresponding node feature vectors. Then, the indexed
feature vectors are transferred from the feature buffer to
the APEs, and the corresponding edge weights are passed
from the value buffer to the APEs to conduct multiplication
and accumulation operations in parallel. Subsequently, the
aggregated results are written to the aggregation buffer. A
double-buffering strategy is applied within the aggregation
engine to conceal the data loading latency.

Figure 13: Overview and data flow of aggregation engine.

4.2.4 Combination Engine
Well-known one-dimensional systolic arrays are employed
as the core architecture to carry out the multiplication be-
tween a batch of feature vector blocks and a weight matrix.

All the on-chip buffers in the combination engine, in-
cluding the weight buffer and output buffer, are double-
buffered to conceal the data transmission latency. The ag-
gregation and weight buffers supply the systolic arrays, and
the output of the systolic arrays is sent to the activation unit;
the results are written into the output buffer. The results in
the output buffer can either be written back to the DRAM or
be reused, as this buffer is capable of caching partial results,
which will be utilized for accumulation.

4.3 GPGCN
Different from the two aforementioned methods, GPGCN is
dedicated to designing a more programmable architecture
and optimizing it based on the computational characteristics
of GCN while maintaining the software’s degree of freedom.
GPGCN compresses the encoding of macro instruction with
many operations into RISC-V instruction, which has only
32 bits of encoding space. The architecture registers of
the vector/matrix are divided into source register (or rs
register) and destination register (or rd register), and the
rs register corresponds to the rd register one-to-one and is
used together; that is to say, as long as the index of the rd
register is specified in the instruction, the rs register index is
also specified.

4.3.1 Custom CSR
Owing to the two difficulties in designing macro instruc-
tions, namely encoding the numerous instruction operation
information necessary in the limited RISC instruction en-
coding space and guaranteeing the degree of programming
freedom. The first issue is addressed by customizing the
CSR (Current Status Register) register to provide some
common auxiliary information among instructions, thereby
reducing the instruction encoding pressure.

4.3.2 Register Extension
The GPGCN instruction set architecture contains two types
of register group: the vector register group and the matrix
register group. The ninth custom CSR register specifies the
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Figure 14: The custom vector registers file.

Figure 15: The custom matrix registers file.

number of vector register pairs in the vector register group.
Each pair of vector registers contains one vector rs register
and one vector rd register, and each vector register contains
16 32-bit single-precision floating-point elements, as shown
in Fig. 14.

The 10th custom CSR register specifies the number of
matrix registers in the matrix register group. Each pair of
matrix registers contains two vector rs registers, one matrix
rs register, and one matrix rd register, as shown in Fig. 15.
The vector rs register contains 8 32-bit single-precision float
point elements. The matrix rs/rd register contains 8 × 8
32-bit single-precision float point elements to support outer
product operations.

Eight vector rs/rd registers can be combined into a ma-
trix rs/rd register, so that vector and matrix operations can
reuse register resources and improve hardware utilization
efficiency.

4.3.3 Basic Vector Instructions
The basic vector instruction is similar to the traditional
SIMD instruction, and defines some basic vector load, store,
add, and mov operations. We take load vector instruction as
an example, The hardware will calculate the final memory
access address through custom CSR1 (base address of fea-
ture matrix) and custom CSR2 (feature vector length) using
the formula:

load/store address =

base address(CSR1) + idx× vector length(CSR2)
(4)

Thus, a basic vector load/store instruction is equivalent
to a combination of three traditional scalar instructions and
one traditional SIMD instruction, as shown in Fig. 16.

Figure 16: The basic vector load/store instructions
equivalent.

4.3.4 Fixed-Rd Vector Instructions

The fixed-rd and fixed-rs instructions are designed accord-
ing to GCNs network aggregation calculation characteris-
tics. They complete the primary process of aggregation cal-
culation in the GCNs network and provide a certain degree
of programming freedom for different software algorithms.

The fixed vector rd calculation mode represents the
aggregation calculation process of the feature vectors of all
the neighbors of a vertex, as shown in Fig. 17. Because it will
always reuse a vector rd to store the intermediate results of
the aggregation calculation, it needs to continuously load
the feature vectors of different neighbors to the correspond-
ing vector rs for accumulation until the final aggregation
result of this vertex is calculated. Hence, the fixed vector rd
is for multiplexing data (aggregated intermediate results) in
vector rd. In the fixed-rd calculation mode, the data in the
vector rd register are multiplexed. In contrast, the data in
the vector rs register are not multiplexed, each time we just
need to load data to rs register. This saves encoding space
to fuse the loadvec instruction and the addvec instruction
making the vector instruction of GPGCN more macro and
increasing the instruction information density, and the in-
struction bandwidth is improved.

As shown in Fig. 18 the operations performed by the
load-rs-add-rd-vec8/16 instruction include the following:
calculate the address of the specified feature vector accord-
ing to the index, then load the feature vector from memory
to the corresponding vector rs according to this address,
and then sum vector rd and vector rs and store the result
into vector rd.

Also since there is no need to specify the index of the
vector rs register, we bind rd to rs as described before,
there is additional free coding space available, so this coding
space can be used as the index of another integer register,
which stores the row index of another feature vector so

Figure 17: The computation process of fixed-rd mode.
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Figure 18: The load-rs-add-rd-vec8/16 instruction
equivalent.

Figure 19: Another load-rs-add-rd-vec8/16 instruction
equivalent.

that a load-rs-add-rd-vec8/16 instruction can calculate the
aggregation process of two feature vectors, and further
increase instruction density(like Fig. 19 shows).

4.3.5 Fixed-Rs Vector Instructions
The fixed-rs vector instruction represents the calculation
mode of fixed vector rs in the aggregation calculation.
Because a vertex may be a neighbor of multiple vertices,
the feature vector of this vertex will be shared by the
aggregation calculation of these neighbors, as shown in Fig.
20. Therefore, the feature vector of this vertex is reusable
in the aggregation calculation of different neighbors. The
instruction is shown in Fig. 21.

4.3.6 Matrix Instruction Extension
The design of matrix-type instructions is based on the stor-
age format of the matrix referred to previously. As shown
in Fig. 22, the input and output matrices are divided into
blocks in the combination operation of the GCNs. The block

Figure 20: The computation process of fixed-rs mode.

Figure 21: The load-rd-add-rs-store-rd-vec8/16 instruction
equivalent.

Figure 22: The computation process of matrix mode.

is indexed according to the index number. For input matrix,
the size of a block is 8 × Da elements where Da is specified
by custom CSR7; for output matrix is 8 × 8.

In order to further increase the instruction density of the
matrix instructions, the matrix multiplication operation of
8 × Da × Da × 8 = 8 × 8 Therefore, the instrction can be
designed as:

The (idx1) and (idx2) of this instruction specify the block
index of the feature matrix and weight matrix, respectively,
which are used to calculate the starting address of the block
data to be accessed by hardware using Formulas.

The load-outerproduct-add-8*8 matrix rd (idx1) (idx2)
instruction is split into Da times as Fig. 23. Load one
column of the feature matrix block (eight elements), load
the corresponding row of the weight matrix block (eight
elements), and then perform the outer product of 8×1×1×8
to obtain the 8 × 8 result matrix, sum with matrix rd, and
then store them in matrix rd.

4.3.7 Memory Access Extension

There are three memory-related operation instructions as
auxiliary instructions:

The preload instruction preloads the feature matrix or
weight matrix we want to access to the corresponding
storage block of the scratchpad memory in advance.

Figure 23: The matrix instruction equivalent.
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Figure 24: The hardware architecture of GPGCN.

The sync-preload instruction is used to indicate that the
data in a block of scratchpad memory are no longer used
and can be replaced.

The storescmback instruction is used to write a block of
scratchpad memory back to the main memory. For example,
after the fixed-rs instructions calculate the final result, the
final result in scratchpad memory is written back to the
main memory.

4.3.8 Hardware Architecture
The GPGCN hardware accelerator is coupled with the boom
RISC-V cpu core through the rocc interface.

As shown in Fig. 24, the hardware micro architecture
of the GPGCN accelerator consists of two parts: fused
VPU (vector process unit) and configurable VMU (vector
memory unit). The fused VPU combines the execution units
of vector instructions with the execution units of matrix
instruction, that is, the execution unit array in the VPU
can be configured as N SIMD8 vector pipelines to execute
vector instructions or can be configured as M 88 array
to calculate the matrix instructions, which improves the
utilization efficiency of the execution units.

The VMU can be configured into three different modes
according to the execution of different instruction streams:
the matrix mode, which supports the memory access mode
of matrix instructions, the fixed-rd mode that supports the
memory access mode of fixed-rd instructions in vector in-
structions, and the fixed-rs mode that supports the memory
access mode of fixed-rs instructions.

4.3.9 Redundant Computation Reduction
There are many hidden redundant calculations in the aggre-
gation calculation process of the GCNs. Different vertices

may need to accumulate the same feature vectors. In fact,
these redundant accumulation calculations only need to
be calculated once. In this design, we simply precompute
the sum of the feature vectors of two consecutive rows in
the feature matrix and store to the pre-add feature matrix
address space (address space specified by custom CSR3).

We use the hardware logic named converter in hardware
architecture to identify the fixed-rd vector instruction: load-
rs-add-rd-vec8/16 vector rd (idx1) (idx2) (CSR1,CSR2).
When the converter recognizes this instruction and judges
that idx2 = idx1+1 the converter will convert load-rs-add-
rd-vec8/16 vector rd (idx1) (idx2) (CSR1,CSR2) instruction
to load-rs-add-rd-vec8/16 vector rd (idx) (CSR3,CSR2) in-
struction.

4.3.10 Memory Access Optimization
In the fixed-rd mode, different vector lane pipelines load
feature vectors from the feature matrix, and may load the
same feature vector simultaneously. There may be data
locality between load requests of different vector lane
pipelines. The load accumulate buffer uses a certain mem-
ory access delay in exchange for the overall memory access
bandwidth.

The buffer contains four queues, each of which corre-
sponds to the read port of the corresponding bank of the
SCM block. The eight load requests from the eight vector
lane pipelines enter different queues for temporary storage
according to the least significant 2-bit addresses. Each queue
judges whether the memory access addresses of up to n load
requests at the head of the queue are equal, and merges load
requests.

5 PERFORMANCE EVALUATION AND EX-
PERIMENTAL RESULTS
In this section, we first introduce the experimental setup and
present the evaluation results of the three methods. We com-
pare the optimization effects of these three methods relative
to traditional architectures and compare their advantages
and disadvantages on different models and datasets.

5.1 Experimental Setup
For HyGCN[27], to compare the performance and energy
consumption of HyGCN with state-of-the-art works, we
evaluate PyTorch Geometric (PyG)[7] on a Linux worksta-
tion equipped with two Intel Xeon E5-2680 v3 CPUs and 378
GB DDR4 memory and on an NVIDIA V100 GPU, denoted
as PyG-CPU and PyG-GPU, respectively. HyGCN run in
a GHz compute unit with 32 SIMD16 cores and 8 systolic
modules (each with 4 ×128 arrays).

For downstream task based design, we implemented
a prototype on the Xilinx Alveo U200 platform using the
Verilog-HDL and Vivado 2019.2 was used for synthesis.
The platform had 64 GB off-chip DRAM (77 GB/s peak
bandwidth) and 35 MB on-chip SRAM and ran at 250 MHz.

GPGCN hardware accelerator is designed and imple-
mented using chisel language under the chipyard[2] soc in-
tegration framework, and all performance data are obtained
by Verilog simulation accurate to the clock cycle, in which
the behavior of DDR is simulated using the dramsim2[15]
model and Micron’s DDR3 timing model.



10

Dataset #Vertex Feature Length #Edge
IMDB-BIN (IB) 2,647 136 28,624
Cora (CR) 2,708 1,433 10,556
Citeseer (CS) 3,327 3,703 9,104
COLLAB (CL) 12,087 492 1,446,010
Pubmed (PB) 19,717 500 88,648
Reddit (RD) 232,965 602 114,615,892
Flickr (FI) 89,250 500 899,756
Yelp (YL) 716,847 300 6,977,410

Table 4: Dataset Characteristics

Figure 25: Speedup of HyGCN.

Benchmark Graph Datasets and GCN Models Table 4
presents the information of the dataset employed. All GCNs
use a two-layer structure, the feature vector length of the
hidden layer is set to 128, and the forward calculation of
all GCNs uses the calculation order of combination first
and then aggregation. The software adaptation method of
the GCNs network under the GPGCN accelerator is that
each SIMD vector lane calculates a corresponding vertex
aggregation.

5.2 Results of HyGCN
• Speedup. Fig. 25 depicts that HyGCN achieves average

1509× and 6.5× speedup compared with PyG-CPU and
PyG-GPU, respectively. The performance improvement
comes from the individual optimizations in Aggrega-
tion Engine & Combination Engine, and the inter-engine
pipeline & coordination. First, the parallel processing in
SIMD cores and systolic arrays speed up the computa-
tions. Second, the graph partition and sparsity elimination
increase the feature reuse and decrease redundant ac-
cesses in Aggregation Engine, which saves DRAM band-
width. Third, the weight parameters are reused efficiently
in Combination Engine, which also helps better utilize
the bandwidth. Finally, the inter-engine pipeline further
optimizes the parallelism and the off-chip memory access
coordination improves the DRAM access efficiency.

• Energy Consumption. As Fig. 26 shows, HyGCN con-
sumes only 0.04% and 10% energy on average compared

Figure 26: Normalized energy over PyG-CPU.

Dataset Baseline
GCN model

Sparsified
GCN model Edge removed

PubMed 0.792± 0.004 0.795± 0.001 33.7%
Flickr 0.503± 0.001 0.504± 0.003 40.6%
Reddit 0.945± 0.002 0.945± 0.003 65.8%

Yelp 0.378± 0.001 0.377± 0.002 67.7%

Table 5: Node classification performance.

Figure 27: Memory traffic reduction on three large datasets.

to PyG-CPU and PyG-GPU, respectively. The energy con-
sumption of all platforms includes the off-chip memory.
Note that, although the results of PyG-CPU and PyG-GPU
do not include the overhead of the Sampling operation,
they are still costly. For example, the Sampling energy of
GSC is 2715J on the RD dataset. In contrast, our work
consumes only 1.79J compared to the total 2716J in PyG-
GPU.

• DRAM Access. Although the 16MB on-chip memory is
much smaller than the 60MB L3 cache on CPU and 34MB
on GPU, HyGCN accesses only 21% and 33% of off-chip
data compared with PyG-CPU and PyG-GPU on average,
respectively. This benefits from our data reuse optimiza-
tions, sparsity elimination, and the immediate process-
ing between two engines. On the CL dataset for GCN,
GSC[8], and GIN[24], multiple graphs are assembled to
form a larger one before being processed, which results
in intensive sparsity. HyGCN can efficiently eliminate the
sparsity via window sliding and shrinking, thus avoiding
unnecessary data accesses.

5.3 Results of Downstream Task Based Design

• Evaluation for Graph Sparsification. We implemented
the proposed graph sparsification algorithm in PyG
framework for efficient GPU computation. Cross-entropy
was employed to formulate the loss function, and Adam
optimizer was applied for the training. The initial learning
rate of the optimizer was set to be 0.01. Based on the
original graph, pretraining models were obtained on all
datasets, as the baseline GCN models. For PubMed, Flickr,
Reddit and Yelp, hyperparameter k was set to be 7, 7,
40 and 10, respectively. From Table 5, it can be seen
that compared with the baseline GCN model, the pro-
posed AM-based graph sparsification approach consis-
tently achieved comparable or superior performance. The
proposed sparsification approach could effectively filter
the most important edges by leveraging the guidance
from downstream tasks.
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PubMed Flickr Reddit Yelp DSP Frequency
PyG-CPU 229 ms 3.3 s 81 s 56 s – –
PyG-GPU 3.4 ms 337 ms OoM* OoM* – –
ASAP2020 9.5 ms 48.7 ms 598.7 ms 306.3 ms 5312 250 MHz
HyGCN 0.64 ms N/A* 289 ms N/A* N/A* 1 GHz
BoostGCN 1.14 ms 20.1 ms 98.1 ms 193 ms 3840 250 MHz
AWB-GCN 0.23 ms N/A* 49.7 N/A* 4096 330 MHz
LW-GCN 8.56 ms N/A* N/A* N/A* 512 250 MHz
DTB-GCN 2.18 ms 13.1 ms 42.26 ms 81.56 ms 2304 250 MHz

Table 6: Performance comparison of various models across datasets. *OoM indicates Out of Memory; N/A indicates data
not available.

GCN Cycles Boom[31] Cpu Boom with Hawacha[11] Boom with GPGCN HYGCN
209,380,505 cycles/comb1 57,996,022 cycles/comb1 293,060 cycles/comb1
395,401,881 cycles/agg1 101,583,962 cycles/agg1 229,414 cycles/agg1

Cora 1,395,689 cycles/comb2 799,722 cycles/comb2 138,711 cycles/comb2 21,000 cycles/total
197,663,198 cycles/agg2 53,797,383 cycles/agg2 141,820 cycles/agg2
803,841,273 cycles/total 214,177,089 cycles/total 803,005 cycles/total

928,041,011 cycles/comb1 203,898,801 cycles/comb1 621,287 cycles/comb1
832,942,404 cycles/agg1 196,764,007 cycles/agg1 204,178 cycles/agg1

Citeseer 2,393,692 cycles/comb2 1,269,727 cycles/comb2 174,775 cycles/comb2 300,000 cycles/total
416,406,467 cycles/agg2 106,222,113 cycles/agg2 124,801 cycles/agg2

2,179,783,574 cycles/total 508,154,648 cycles/total 1,125,041 cycles/total

Table 7: The GCN execution latency of different hardware with different datasets.

GAT Cycles Boom Cpu Boom with Hawacha Boom with GPGCN HYGCN
268,836,121 cycles/comb1 64,912,288 cycles/comb1 310,857 cycles/comb1
611,028,937 cycles/agg1 129,569,840 cycles/agg1 254,199 cycles/agg1

Cora 2,028,210 cycles/comb2 1,142,922 cycles/comb2 141,559 cycles/comb2 Not Support
287,572,614 cycles/agg2 69,073,928 cycles/agg2 165,580 cycles/agg2

1,169,465,882 cycles/total 264,698,978 cycles/total 872,195 cycles/total
920,576,720 cycles/comb1 188,827,953 cycles/comb1 620,022 cycles/comb1
997,887,623 cycles/agg1 199,138,394 cycles/agg1 219,149 cycles/agg1

Citeseer 2,313,190 cycles/comb2 1,222,387 cycles/comb2 180,613 cycles/comb2 Not Support
474,441,246 cycles/agg2 105,822,637 cycles/agg2 142,387 cycles/agg2

2,395,218,779 cycles/total 495,011,371 cycles/total 1,162,171 cycles/total

Table 8: The GAT execution latency of different hardware with different datasets.

• Memory Traffic of DRAM Access. Fig. 27 proves the
effectiveness of graph preprocessing in improving data
reuse and reducing memory traffic. Thanks to preprocess-
ing, external memory accesses for the three large datasets
were reduced by 30.6%, 36.1%, and 52.64% respectively
through graph sparsification. After integrating node re-
ordering, external memory accesses for the three datasets
were reduced by 35.9%, 54.9%, and 60.5% respectively.

• Speed Comparison. We compared our work with sev-
eral of the most advanced GCN acceleration frameworks
currently available, including HyGCN mentioned in this
paper. The inference times and DSP utilization rates on
four graph datasets are listed in Table 6. It can be seen
that DTB-GCN exhibits excellent performance on almost
all of the datasets. It is worth noting that our work shows
a performance drop for the PubMed dataset because the
node feature matrix in the graph is very sparse. Previous
works designed an additional sparse computation module
to handle sparse feature matrices. However, this superior
performance comes at the cost of logic resources and
control logic complexity on the chip. HyGCN is based on
advanced ASIC technology and operates at a frequency of
1 GHz. Although there are clock frequency differences,
our proposed framework achieves 6.8x acceleration on
the large Reddit dataset. The peak performance of the
HyGCN architecture is 4.6 TOPS, the peak performance

of the BoostGCN architecture is 0.89 TOPS; at the same
time, the peak performance of DTB-GCN is 1.136 TOPS.

Despite the fact that DTB-GCN shows better perfor-
mance than HyGCN, the design based on downstream
tasks limits its scalability. Compared to HyGCN, the ac-
celeration of the inference stage in DTB-GCN is partly
based on more complex training and preprocessing, which
is also a disadvantage.

5.4 Results of GPGCN
The execution latency of GCN and GATwith the Cora
dataset and Citeseer dataset under different hardware is
shown in Tables 7 and 8. All latencies are normalized to
cycles to remove the effects of different frequencies.

The evaluation reveals significant performance improve-
ments in both aggregation and combination stages, with
notable differences across datasets. For the Cora dataset, the
aggregation stage achieves an acceleration ratio exceeding
1300×, while for the Citeseer dataset, it surpasses 3300×,
demonstrating the ability of accelerators to exploit sparsity
during aggregation. In the combination stage, the first-layer
network shows acceleration ratios of approximately 700× for
the Cora dataset and 1500× for the Citeseer dataset. How-
ever, the second-layer combination stage exhibits relatively
smaller acceleration ratios due to the nature of its compu-
tation, which involves dense matrix multiplications where
sparsity cannot be utilized for significant acceleration.
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Overall, the total acceleration ratios reach about 1001×
for the Cora dataset and 1937× for the Citeseer dataset.
When comparing GPGCN with traditional vector expansion
methods, although GPGCN employs computing resources
four times greater than Hawacha, its acceleration ratio far
exceeds 4×, highlighting its efficient design.

Nonetheless, compared to dedicated accelerators such as
HyGCN, the acceleration efficiency of GPGCN is relatively
lower because HyGCN leverages significantly larger com-
putational resources (approximately 72×) and superior on-
chip cache and off-chip memory bandwidth (approximately
50×). However, HtGCN’s speedup ratio for the Citeseer
dataset is lower than that for the Cora dataset, indicating
its inability to fully exploit the dataset’s sparsity, as GPGCN
does. Moreover, GPGCN’s software programmability offers
additional flexibility, enabling it to accelerate architectures
like GAT networks, which HyGCN cannot support. These
findings underline the trade-offs between efficiency, adapt-
ability, and hardware resource utilization in GCN accelera-
tor designs.

6 CONCLUSIONS

In this work, we presented an analysis of hybrid accelerator
architectures designed for efficient Graph Convolutional
Network (GCN) inference. Through our evaluation of three
distinct designs—HyGCN, Downstream Task-Based Design
(DTB-GCN), and GPGCN—we highlighted their unique
architectural features, strengths, and limitations across dif-
ferent datasets and workloads. The hybrid design approach,
which tailors the aggregation and combination phases to
their respective computational characteristics, demonstrates
significant performance improvements compared to tradi-
tional CPU- and GPU-based frameworks. By optimizing
each phase independently and coordinating their execu-
tion, hybrid architectures address the irregularity of the
aggregation phase and the computational intensity of the
combination phase.

HyGCN achieved exceptional acceleration ratios and
outstanding energy efficiency through parallelism, sparsity
elimination, and data reuse optimizations. DTB-GCN, with
its focus on graph sparsification and downstream task opti-
mization, achieved competitive performance while reducing
external memory traffic. However, its reliance on prepro-
cessing and training stages limits scalability. GPGCN, lever-
aging programmable RISC-V-based instructions, achieved
remarkable acceleration ratios in both aggregation and
combination stages. Its programmability makes it uniquely
capable of supporting diverse network architectures, in-
cluding GAT, which other accelerators like HyGCN cannot
support.

We contend that programmable accelerators represent
the future development trajectory, and GPGCN offers a
fundamental paradigm for this direction. Despite having
achieved a general GCN accelerator that fully exploits graph
sparsity, numerous characteristics of GCN have yet to be
effectively harnessed, such as two-stage collaboration, more
efficient aggregation approaches, and locality utilization,
among others. Striking a balance between acceleration and
generalization in these aspects awaits future exploration.
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