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Abstract—Recently, Graph Neural Networks(GNNs) have suc-
ceeded greatly in many applications and domains. Despite its
effectiveness, it is still challenging for GNNs to efficiently scale
to giant graphs. Mini-batch training has become a de facto way
to train GNNs on large graphs. Some sample-based methods are
proposed. This paper will introduce two kinds of strategies to
optimize the mini-batch training process. They are cached-based
methods and UVA-based methods. For cache-based methods,
single-cache GNNLab and dual-cache DUCATI will be shown.
GNNLab designs a pre-sampling caching policy and uses a
factored design to optimize mini-batch training. DUCATI designs
two caches, named Adj-cache and Nfeat-cache, respectively,
to achieve better trade-offs than baselines. For UVA-based
methods, a GPU-oriented data communication approach will be
introduced. It achieves high host memory access efficiency by
maximizing PCIe packet efficiency and overlaps data transfer
with a well-designed asynchronous zero-copy access. Besides that,
their experimental results will be compared; it is found that
DUCATI performs better than the other two methods.

Index Terms—Graph neural network, Mini-batch training,
Data management system

I. INTRODUCTION

GRAPH Neural Networks are powerful tools to handle
problems modeled by the graph and have been uti-

lized widely in various applications, such as social network
analysis [1], bio-informatics(e.g., protein interface prediction)
diction [2], recommendation [3], and others. GNNs are
inclined to integrate the information of graph structure into
deep learning model so that they can achieve significantly
better results than traditional machine learning and data mining
methods.

A GNN model generally contains multi-graph convolutional
layers, where each vertex aggregates the latest states of its
neighbors, updates the state of the vertex, and applies a neural
network to the updated state of the vertex. Taking the tradi-
tional graph convolutional network (GCN) [4] as an example,
in each layer, a vertex uses a sum function to aggregate the
neighbor states and its own state, then applies a single-layer
Multi-layer Perceptron (MLP) to transform the new state. Such
procedures are repeated L times if the number of layers is L.
The vertex states generated in the L-th layer are used by the
downstream tasks, such as node classification, link prediction,
and so on. In the past, many research works have made
remarkable progress in the design of GNN models. Prominent
models include GCN [4], GraphSAGE [5], GAT [6], GIN [7],
and many other application-specific GNN models [3] [8]. On
the other hand, to efficiently develop different GNN models,
many GNN-oriented frameworks have been proposed based on

various deep learning libraries [9]. However, these methods
focus on training with a single machine, while the input
graphs are very large for these downstream tasks. For example,
the Ogbn-Papers100M [10] dataset contains over 111 million
nodes and 1.6 billion edges.

As a result, mini-batch training has become the de-facto
way to train GNNs on giant graphs. Given a large graph and
corresponding node features, we sample the input graph to get
a subgraph and then select the corresponding node features
for this subgraph. From the perspective of the underlying
data structure, sampling is conducted on the adjacency matrix
and perform selection on the node features. The subgraph,
together with its node features, forms a mini-batch which will
be transferred to the GPU for training.

However, the preparation of such mini-batches is notori-
ously expensive. For example, when training GraphSAGE [5]
on the Ogbn-Papers100M, the time for preparation for one
mini-batch, which includes the time of generating the mini-
batch and transferring it from CPU to GPU, is 240ms, far
exceeding the actual computation time (about 10ms) for for-
ward computation, backward propagation, and weights update
[11].

To reduce the long preparation time of mini-batches, quite
amount of efforts have been devoted to accelerating sample
subgraphs and select node features. One line of the works
propose to adopt the unified virtual addressing technique [12],
which is called UVA method. Such technique can improve
the efficiency of utilizing PCIe bandwidth when transferring
graph data to the GPU. Moreover, UVA allows us to store
the large graph data in the host memory while harnessing the
GPU to select node features and sample subgraphs. Another
line of works are cache-based systems which accelerate the
preparation of mini-batches by leveraging the locality of graph
data and the under-utilized GPU memory. On the one hand,
the access to graph data during training exhibits a strong
locality. For example, when training GraphSAGE on the Ogbn-
Papers100M dataset containing over 53 GB of node features,
95% of node feature accesses during training occur in the
most frequently accessed 2 GB of node features. On the other
hand, up to 90% of the GPU memory would be left unused
during training [13]. Based on these two lines of works, three
methods will be introduced in the methods section.

The first introduced work is a single cache method, named
GNNLab [14]. It is a facored system for sample-based GNN
training in a single machine multi-GPU setup. On one hand,
GNNLab adopts a space sharing design for multiple GPUs,
i.e., one GPU loads either graph topological data or cached
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features in its memory, and only conducts either graph sam-
pling or model training based on its stored data. It eliminates
GPU memory contention by leaving more GPU memory for
both graph topological data and cached features. In this way,
graph sampling and model training can be accelerated at the
same time. However, this factored design may suffer from
imbalanced loads between GPUs for graph sampling and
model training. To solve this problem, GNNLab divides the
GNN training pipeline into two kinds of executors, namely
Sampler and Trainer, and bridges two kinds of executors
asynchronously. A simple yet effective method is proposed
to adaptively determine the appropriate GPU numbers for
Samplers and Trainers. GNNLab further leverages dynamic
switching from Samplers to Trainers to avoid idle waiting
on GPUs if needed. On the other hand, to enhance the
efficiency of GPU-based caching policies for various sampling
algorithms and GNN datasets, we propose a universal caching
strategy. This strategy is defined by two parameters: a hotness
metric that estimates the frequency of vertex sampling during
the graph sampling phase, and a cache ratio that determines
the number of vertices that can be cached on GPUs. Exist-
ing caching policies can be naturally incorporated into this
scheme. However, the hotness metrics used in previous studies,
such as vertex out-degree, do not effectively capture the
diversity of sampling algorithms and GNN datasets. To tackle
this issue, we introduce a pre-sampling-based caching policy
(PreSC), which is motivated by the observation that the most
frequently sampled vertices exhibit significant overlap across
different epochs. PreSC performs several sampling phases and
uses the average visit count as the vertex hotness metric. We
have found that PreSC achieves a high cache hit rate even
with a small cache ratio and is resilient to diverse sampling
algorithms and GNN datasets.

The second introduced work is a dual cache method
named DUCATI [11]. It designs two caches to adapt to
different workloads. This paper proposes that these single
cache systems follow two assumptions: (1) node features
selection(Nfeat-Selecting) consumes more time than adjacency
matrix selection(Adj-Sampling). (2) Nfeat-cache can make full
use of the spare GPU memory. However, these assumptions
may not always hold in practice. Single-Cache systems cannot
adapt to such diverse workloads since they unquestioningly
optimize Nfeat-Selecting even when Adj-Sampling is more
expensive. In addition, the Single-Cache systems may not fully
utilize the GPU memory. They can waste up to several giga-
bytes of the GPU memory. Based on these findings and anal-
ysis, in addition to traditional Nfeat-cache, DUCATI further
exploits the locality of the adjacency matrix by introducing a
new Adj-Cache to accelerate Adj-Sampling. DUCATI devises
a new cache structure for Adj-Cache, which fits the Adj-
Sampling workflow and the adjacency matrix’s characteristics.
Besides that, DUCATI develops a workload-aware Dual-Cache
Allocator, which adaptively finds the best allocation plan for
Adj-Cache and Nfeat-Cache to minimize the total execution
time.

The third work is a UVA-based method [12]. It demonstrates
that traditional data access patterns make the traditional block
data transfer method ineffective. Because each node can be

Fig. 1. Comparison of UVA-based method, single cache method, and dual
cache method(DUCATI) on performing Adj-Sampling and Nfeat-Selecting on
giant graphs.

connected to thousands of nodes in real-world graphs, we may
need to access thousands of scattered locations in memory to
collect relational information from those neighboring nodes.
Therefore, a processor-oriented, software-defined data com-
munication architecture is proposed to rely on DMA engines;
GPU cores are programmed to access host memory directly
using zero-copy memory access. This approach empowers
application developers to direct GPU cores to the precise
locations where the required computation data is stored.
To optimize PCIe packet efficiency with zero-copy memory
access, an automatic data access alignment optimization is
introduced in the GPU data indexing kernel. This optimization
enables zero-copy PCIe bandwidth to reach up to 93% of the
block transfer PCIe bandwidth. A novel CUDA multi-process
service (MPS) based resource provisioning optimization is
proposed to minimize GPU resource consumption for zero-
copy memory accesses. By examining the PCIe protocol and
GPU architecture, it is determined that PCIe can be saturated
even with a few GPU cores generating zero-copy accesses.
Therefore, this optimization allocates only a tiny portion of
GPU resources for zero-copy accesses, leaving the rest for
computationally intensive workloads. Finally, an end-to-end
zero-copy GCN training flow is implemented in PyTorch. To
enable zero-copy memory access, a new class of tensors called
“unified tensor” is introduced. This tensor provides an address
mapping of host memory for GPUs, allowing them to access
host memory directly with zero-copy accesses. The proposed
GCN training flow supports zero-copy access in multi-GPU
training environments by declaring multiple unified tensor
instances for various GPUs.

This report introduces three methods that focus on the
optimization of mini-batch training. Figure 1 shows the
differences between these methods.

In summary, the main content of this paper is as follows:

• 3 methods are introduced to optimize the mini-batch
training.

• The experimental results of these works are shown. It is
found that the DUCATI performs better than the other
introduced methods.
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II. BACKGROUND

In this section, I briefly review the background of GNNs, the
mini-batch training and two kinds of optimization methods.

A. Graph Neural Networks

Graph neural networks (GNNs) are a family of machine
learning algorithms that apply neural network (NN) operations
on graph-structured data. Initially, each vertex in a graph is
associated with a high-dimensional feature vector. The goal
of a GNN model is to learn a low-dimensional feature repre-
sentation for each vertex, which can be further fed into various
downstream tasks, e.g., node classification, link prediction and
node clustering.

Similar to traditional neural networks, a GNN model stacks
multiple GNN layers to update the vertex features iteratively,
in which each successive layer uses the outputs of its previous
layer as inputs. Here both the inputs and outputs of a layer
contain the features of all vertices. In each GNN layer, the new
feature of each vertex is computed by aggregating the features
of its “neighbors” from the previous layer. Given a graph G
with raw input features X∗ for the vertices in G (e.g., word
embeddings in the Reddit dataset), the computation within the
k-th GNN layer can be expressed as follows:

a(k)v = AGGREGATE(k)(h(k−1)
u |u ∈ N(v)), (1)

h(k)
v = UPDATE(k)(h(k−1)

v , a(k)v ), (2)

where AGGREGATE(k) and UPDATE(k) are two opera-
tions conducted during the k-th GNN layer for k ¿ 1, h(k)

v and
a
(k)
v denote the feature vector and neighborhood representation

of vertex v at the k-th layer, respectively, and N(v) denotes
the “neighbors” of v.

The operation AGGREGATE(k) is also referred to as
neighborhood aggregation at layer k. Intuitively, it gathers the
features of v’s “neighbors” using accumulation functions to
produce neighborhood representation a

(k)
v . This is followed

by the invocation of UPDATE(k), which computes the new
feature h

(k)
v by combining v’s previous feature h

(k−1)
v and the

newly computed a
(k)
v . Note that AGGREGATE(k) involves

both graph propagation, i.e., features are propagated from the
“neighbors” to v, and NN operations, while UPDATE(k)

only includes NN perations.

B. Mini-batch Training of Graph Neural Networks

Graph Neural Networks can effectively model the graph
data through iterative aggregation and transformation of node
features on the graph topology. However, early GNNs such
as GCN [4] are proposed with a full-batch training scheme,
which means that we need to maintain the adjacency matrix,
node features, and hidden representations in the memory of
GPU(s). The core idea of GCN is to create node embed-
dings by iteratively aggregating neighboring nodes’ attributes
using neural networks. Due to its neighboring node’s attribute
lookup, training GCN requires accessing multiple scattered
locations in memory. In Figure 2 (a), we show a simple
example of GCN training. To generate the embedding of node
4, we traverse the input graph and aggregate node 4’s features
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Fig. 2. (a) A simple example of GCN training on single node. (b) An
illustration of node features in memory. The neighboring nodes’ features are
scattered in memory.

alongside the features of all neighboring nodes in the node
feature tensor. The example that we show here is only a toy
example.

It can be concluded that all graph topological data and
features are kept in the host memory. For each mini-batch,
graph sampling and feature extracting are performed on CPUs
or GPUs sequentially; then the sampled vertices and their
features are transferred to GPU memory for model training.
Further, GNNs use data parallelism by default to enable multi-
ple GPUs, as they commonly employ simple models with only
2 or 3 layers. Each GPU trains mini-batches independently and
exchanges gradients among GPUs to update model parameters
synchronously or asynchronously.

C. UVA-based Methods

To accelerate the preparation of mini-batches, some
works [12] proposed the unified virtual addressing (UVA)
technique for fast accessing and processing of irregular graph
data. Specifically, [12] applied the UVA technique to Nfeat-
Selecting.

Conventionally, the Direct Memory Access (DMA) engine
is employed for data transfers from the host memory to the
GPU. This engine is fine-tuned for moving large, contiguous
blocks of data. Initiating a DMA transfer is costly, and
the expense can only be justified when moving substantial
amounts of data. Unfortunately, the indices of nodes in a
sampled subgraph are typically random, leading to the data
of a mini-batch being dispersed across many fragments. It
is impractical to initiate a DMA call for each fragment due
to the high cost. Consequently, the scattered data must first
be aggregated by the CPU before transfer. This aggregation
is both time-consuming and resource-intensive, as previous
studies have shown. In contrast, the UVA technique is more
suitable for transferring scattered data fragments from the host
memory to the GPU. Specifically, the UVA technique moves
the original adjacency matrix or node features to the page-
locked host memory. Then, the UVA technique registers the
page-locked memory with internal CUDA utilities, allowing
the GPU to directly access the data stored in the page-locked
memory. The GPU can then issue numerous CUDA threads to
access the scattered data fragments in the page-locked memory
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in parallel, which is much faster than the conventional DMA
method. With the UVA technique, we can better utilize the
PCIe bandwidth and save the time required to transfer the
irregular data of the mini-batch from the host memory to the
GPU. Additionally, since the GPU can directly access the large
graph data stored in the host memory with the UVA technique,
we can launch CUDA kernels on the GPU to perform fast
Adj-Sampling and Nfeat-Selecting, bypassing the slow CPU
execution. However, the UVA technique fails to leverage the
locality of graph data.

D. Cache-based Methods

Cache-based approaches accelerate the preparation of mini-
batches by exploiting the spatial proximity of node attributes
and the underutilized GPU memory. These techniques suggest
storing frequently accessed node attributes in the unused
GPU memory to diminish the duration of Nfeat-Selection.
Specifically, following the node IDs obtained from Adj-
Sampling, Nfeat-Selection involves choosing the pertinent
node attributes for the selected nodes. Cache-based methods
detect a significant spatial proximity of the accessed node
attributes across various mini-batches. Therefore, these meth-
ods propose retaining frequently accessed node attributes in
the GPU to prevent redundant data transfer. These cache-
based methods necessitate some preprocessing before the
training commences. Initially, these methods identify the hot
node attributes using diverse metrics. Then, these methods
ascertain the available cache budget through several offline
runs. Ultimately, these methods construct a Nfeat-Cache on
the GPU encompassing the hottest node attributes given the
cache budget. A corresponding lookup table is also constructed
to indicate whether a specific node attribute is stored in the
CPU or the GPU and the address to locate the node attribute.
Once the training starts, these methods will also check the
location of each selected node attribute during Nfeat-Selection.
If Nfeat-Cache hits for a given node attribute, these methods
directly fetch it on the GPU and omit the transfer from
the CPU. If Nfeat-Cache misses, these methods fetch the
corresponding node attributes from the CPU as before. Due
to the spatial proximity of graph data, a significant portion
of data transfer from the CPU to the GPU is saved. Hence,
these methods can expedite Nfeat-Selection of the mini-batch
preparation. Regarding Adj-Sampling, while some previous
works proposed to accelerate Adj-Sampling with GPUs, their
applicability is limited as they require maintaining the entire
adjacency matrix in the GPU memory.

III. RELATED WORK

A. Whole-graph GNN training.

To retain scalability, wholegraph GNN training divides a
large graph into multiple partitions, and trains GNN mod-
els simultaneously on all vertices/edges with multiple ma-
chines/GPUs. Typical GNN systems that fall into this category
include NeuGraph [15], ROC [16], FlexGraph [17] and
Dorylus [18]. In whole-graph training, each vertex needs
to consider its all neighbors while different vertices may
have different neighbor sizes. Thus, it is hard to use dense

Fig. 3. An example of the factored design for sample-based GNN training
over 8 GPUs and two 8-core CPUs.

tensor operations to express neighborhood feature aggregation
since dense tensor operations require a regular input form.
To address this problem, existing systems proposed different
techniques, e.g., kernel fusion in DGL [19], sparse tensor
operations in PyG [20] and hybrid aggregation in FlexGraph
[17], to efficiently perform neighborhood feature aggregation
operations.

B. GPU-based graph sampling

Graph sampling also takes a substantial portion of the end-
to-end GNN training time [21]. Thus, leveraging GPUs to
accelerate graph sampling has appeared in both academic and
open-sourced projects, like NextDoor [21] and DGL [22].
The graph topological data is first loaded into GPU memory
and then sampled on the GPU for each mini-batch. Next, the
samples are returned to CPUs for extracting the features of
sampled vertices to GPU memory. Finally, the GPU trains
a GNN model with the sampled vertices and their features.
Generally, the graph topological data is preloaded and kept in
the GPU memory if possible [22].

C. GPU acceleration in GNN training

GPUs have been adopted to improve both whole-graph
GNN training and sample-based training. For whole-graph
training, GPUs have mostly been applied to accelerate the
NN and graphrelated operations. For sample-based training,
GPUs have been adopted to improve sampling, extracting, and
training process. For the sampling, GPUs are applied to accel-
erate graph sampling due to their much higher parallelism and
memory access bandwidth than CPUs. Typical work includes
NextDoor [21], C-SAW [23] and DGL [22]. While PaGraph
[13] adopts a degree-based caching policy to accelerate feature
extraction, DGL [22] uses GPUs in the extracting process only
if all feature data can be loaded in GPUs. For the training,
PyG [20] and DGL [22] implement highly optimized GNN
runtimes on GPUs.

D. Other Graph-Related Workload Acceleration on GPU.

There are several works which try to utilize GPUs in graph
traversal workloads like PageRank [24] with large datasets.
Due to the usage of sparse matrix format for the representation
of graph structure, traversing graphs results in generating very
irregular memory accesses. Considering that large graphs such
as WDC14 [25] has about 64 billions edges, the graphs cannot
be placed in GPU memory and therefore the graph traversal
workloads face the similar issue in this paper. EMOGI [26]
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Fig. 4. Workload comparison between DMA-based method and the proposed
zero-copy-based method.

utilizes zero-copy accesses to enable fine-grained host memory
access during several graph traversal workloads. Halo [27]
tries to ensure the spatial locality of graph nodes in the mem-
ory as well through extensive pre-processing. However, the
effectiveness of this method is completely random depending
on the shape of the input graph. Subway [28] uses a method
very similar to the DMA-based method used in this work,
which tries to utilize CPU as much as possible to gather
scattered data for more efficient DMA.

IV. UVA-BASED METHOD

I take the work [12] as an example and introduce its design
and experimental results.

V. UVA-BASED METHOD

Due to the wide spread use of DMA-based data com-
munication architecture, there are some number of system-
level modifications that must to be established to support our
GPU-oriented data communication architecture in the higher-
level programming models. It first describes how to enable
zero-copy accesses in PyTorch and then it discusses some
of the technical aspects of zero-copy access to identify its
weaknesses and how to overcome them. Finally, this method
describes the end-to-end GCN training flow using zero-copy
accesses.

A. Motivations

Conventional wisdom may still argue that since the node
feature data is in host memory, CPU has significant bandwidth
advantage over GPUs and therefore DMA should be a better
option because CPU can quickly gather the sparse features
on the fly. However, recent work has shown that the ability

to issue a massive number of concurrent memory accesses
enables GPUs to tolerate latency effectively when accessing
complicated data structures like graphs that reside in host
memory [26]. Therefore, in GCN training, if GPUs can make
targeted fine-grain host memory accesses for sparse features
while fully utilizing system interconnect (e.g., PCIe) band-
width, the proposed approach can offer significant advantage
over the DMA approach. The removal of CPU gathering
stage not only shortens data access latency for GPUs, but
also greatly reduces the CPU and host memory utilization
(Figure 4). Offloading CPU workloads to GPUs also helps on
training GCN with multiple GPUs as we can prevent the CPU
becoming the bottleneck with increasing number of workers.

In order to propose the GPU-oriented data communication
architecture for GCN training, three major questions are ad-
dressed in this work. First, can zero-copy memory access fully
utilize PCIe bandwidth while training GCN considering the
long latency for accessing host memory? Second, what would
be the price of consuming GPU cores for zero-copy memory
access? Finally, after resolving the above two questions, can
we show real end-to-end application performance benefit from
our method?

In this work, it answers all three questions.

B. Designs

In this section, I will show how this UVA-based method
answers the three questions.

1) Improving Zero-Copy Efficiency Over PCIe.: For GCN
training, we use PyTorch which is one of the most popular
python-based ML frameworks. However, including PyTorch,
there are no python-based ML libraries which naturally sup-
port zero-copy access for GPUs. To overcome such issue, it
creates an extension of the existing PyTorch implementation
with several modifications in its source code. In our design,
we aim to aggressively avoid the implicit DMA data copy
performed by PyTorch. It gives GPUs direct access to tensor
data in the host memory by mapping the host-memory data
pointers into the GPU address space. To achieve ourthe goal,
it creates a new class of tensor with a new ”unified” context. A
tensor with this new context can be declared from any existing
CPU tensors. One of the common misconceptions of zero-
copy access is its low data transfer efficiency compared to the
DMA-based methods. The misconception is mainly coming
from the fact that the users are treating the zero-copy without
any specific care. However, as the zero-copy access requests
are made over PCIe, it is important to understand how the
zero-copy accesses interact with PCIe. In this section, it takes
a deep-dive into the technical aspect of PCIe protocol and its
interaction with GPUs. This work then presents two important
techniques for maximizing the zero-copy efficiency during
GCN training.

Aligned Memory Access Even though our purpose of using
zero-copy is to make fine-grained memory accesses to the
host memory, it is still desirable to make coarser-grained
PCIe memory requests whenever possible for a couple of
reasons. First, each PCIe packet has 12–16 bytes of header
overhead. Therefore, to compensate the overhead, it is better
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to increase the payload size by requesting a larger memory
request. Second, PCIe devices have a hard limit on the number
of outstanding requests they can create. Since the PCIe round
trip time (RTT) is very long (1–5us, variable), it is necessary
to submit multiple read requests in a pipelined fashion to fully
occupy the interconnect. However, if we squander the capacity
by generating too many small read requests, it becomes diffi-
cult to fully tolerate the latency and utilize the PCIe bandwidth.
The numbers of maximum outstanding read requests for PCIe
3.0 and PCIe 4.0 are 256 and 768, respectively.

Now, with all that in mind, how do we generate coarser-
grained PCIe requests? According to Min et al. [26], to make
PCIe read requests more efficient, the same technique used for
the GPU memory coalescing [29] can be used. In Figure 5, it
explains two cases where (a) memory accesses from a warp
are contiguous and aligned with the GPU cacheline, and (b)
memory accesses from a warp are contiguous but misaligned
with the GPU cacheline. In case of (a), the accesses from the
threads in a warp are perfectly coalesced and the coalesced
requests becomes a single 128B PCIe read request. In case
of (b), the accesses from a warp are scattered over two GPU
cachelines and they result in generating two separate PCIe read
requests. The possible memory access granularities are 32B,
64B, 96B, and 128B, while 32B is a single sector size of GPU
cacheline. Each GPU cacheline is composed of four sectors.

Of course, we would not need to worry about the misaligned
accesses if the node feature objects always start at 128B
boundaries and the sizes of node features are always multiples
of 128B, but it is very unlikely to be so in reality. For
example, if a certain dataset’s node feature size is 480B,
accessing the second node feature will start from accessing
480th byte in memory address. In this case, we are off by
32B from the closest 128B boundary (512B). To automatically
resolve such issue, it adds a circular shift stage in the PyTorch
indexing CUDA kernel. The shifting stage is aware of the
GPU cacheline size and shifts the memory access indices
by calculating the offset between the nearest 128B aligned
location and the current indexing location. The visualization
of our circular shift mechanism is shown in Figure 6. In this
example, we want to access the second node feature with zero-
copy access where each node feature size is 480B. Without
the optimization, each warp start reading from misaligned
locations and end up generating 8 PCIe requests. However,
once its optimization is applied, the warps adjust their indexing
locations and try to generate aligned memory accesses as much
as possible. In this example, the total number of PCIe read
requests is reduced to 5.

It does not apply the circular shift stage if the node feature
size is less than the GPU cacheline size or if it is already a
multiple of the GPU cacheline size. All these adjustments are
transparent to the high-level programmers as a result of its
modifications to PyTorch source code.

C. Asynchronous Operations and Resource Provisioning.

One important distinction of our design is that zero-copy
accesses are done by GPU kernels. In other words, the other
following GPU kernels need to wait until the zero-copy kernel

TABLE I
NVIDIA RTX 3090 SPECIFICATIONS.

Category Specification

PCIe Generation 4.0

Max # of Outstanding PCIe 4.0 Read Requests 768

# of Multiprocessors 82

# of Threads per Multiprocessor 1536

# of Threads per Warp 32

is finished even if all it’s doing is simply reading the host
memory. However, like in many other ML algorithms, GCN
can also greatly benefit from overlapping data communication
time and training time, which naturally happens in DMA-based
methods. To achieve the best training performance, we must
devise a way to overlap the training GPU kernels and the
zero-copy GPU kernels in our design.

There is a hard limit on the number of outstanding PCIe read
requests that PCIe devices can generate at a given moment.
Therefore, if we can prove that we only need small amount of
GPU resources to fully saturate the limit, it is worthwhile to
seek for a way to achieve the concurrency. In Table I, it lists
the specifications of NVIDIA RTX 3090 GPU which we use
for our evaluations. At any given moment, the GPU cannot
generate more than 768 outstanding PCIe read requests. To
identify the portion of GPU resource it needs to generate
768 outstanding PCIe read requests, this work performs the
following calculation. First, lets assume each warp’s memory
requests are coalesced to a single PCIe read request, and lets
ignore the payload size for now. In this case, we need 768
warps available to the scheduler to reach the PCIe 4.0 limit.
Since each streaming multiprocessor (physical processor) can
hold up to 1,536 threads at a given moment, each multiproces-
sor can sustain up to 1,536 / 32 = 48 outstanding PCIe read
requests. Now, we have 82 multiprocessors in RTX 3090, so
the amount of GPU resource that we need to reserve for the
zero-copy GPU kernel is about 16 / 82 = 19.5%. However, this
is the upper bound for the extreme case. If we assume we can
always generate 128B PCIe read requests, we can saturate the
PCIe 4.0 bandwidth with much fewer outstanding requests.
For example, the measured maximum PCIe bandwidth with
cudaMemcpy() in RTX 3090 is 25.8GB/s and if we assume
RTT (Round-Trip-Time) of PCIe is 1.5us [30], the number of
outstanding requests that we need to sustain is (25.8GB/s) /
(128B) × 1.5us = 324.6. That is, assuming all PCIe requests
are 128B in size, we need to reserve only 8.2% of the total
GPU resource for the zero-copy GPU kernel. In reality, since
some of the requests will be smaller, this number is a lower
bound and the actual number will be somewhat higher. In
short, even if we try to maximize the zero-copy GPU kernel
efficiency, there is at least 80% and up to 91.8% of the GPU
resources available for other workloads.

Now, finally, since we realized how much of GPU resource
should be allocated for the zero-copy kernel, we explore
the method to enforce the limitation in practice. Fortunately,
NVIDIA GPUs already provide support for limited execution
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Fig. 5. (a) A perfectly coalesced 128-byte access from a warp. (b) A warp
accessing a misaligned data needs to generate multiple PCIe requests.

resource provisioning through CUDA multiprocessing service
(MPS) [31]. MPS is originally designed to improve quality
of service (QoS) between different clients’ workloads, but
we utilize this service to control the resource utilization
of the zero-copy GPU kernel. To assign different resource
limitations to different kernels, the kernels must be running
in different processes. Since PyTorch already supports mul-
tiprocessing programming model, it is simple to launch the
zero-copy GPU kernel and the training GPU kernel in two
separate processes. Before we launch the zero-copy GPU
kernel, we modify the GPU resource limitation to X% with
the nvidia-cuda-mps-control utility. Next, before it
launches the training GPU kernel, it also modifies the resource
limitation to (100 − X)%. In its PyTorch code, the whole
process is scripted for an easier use. It would be more elegant
if the resource limitation can be configured in the user CUDA
code instead of the MPS utility, but currently CUDA does
not support such functionality. Another side benefit of the
multiprocessing approach is that the different GPU kernels
running in different processes are not affected by the other
processes’ blocking CUDA API calls. With its approach, zero-
copy accesses can saturate the PCIe bandwidth while leaving
majority of GPU resources opened for other computationally
intensive workloads.

With this optimization, it can basically transform the GPU
cores into an intelligent DMA engine which can asyn-
chronously perform complex data accesses such as data de-
pendant index calculations and fine-grained host memory
accesses. This optimization can be also useful for some of the
workloads which utilize peer-to-peer GPU memory accesses
with zero-copy accesses.

1) Workload Scheduling: In Figure 7 (a), it shows the initial
tensor allocations during the initialization step. First, it maps
the whole node feature tensor into the GPU address space by
using the unified tensor. This unified tensor holds a memory
pointer which GPU can use in its kernel to generate zero-copy
accesses to the node feature tensor. Next, it creates two sets
of ping pong buffers for interprocess communications. The
goal of using ping pong buffers is to remove the usage of
locking mechanisms between two different processes sharing
data and to allow them to start working for the next minibatch
immediately after finishing their current works. In its design,

Feature 
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Boundary

WARP WARP WARP WARP

32 96 32 96 32 96 32 648 PCIe Requests
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12832 128128 64
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Fig. 6. Circular shift optimization explained. Circular shift transforms
memory requests into a GPU cacheline-friendly way.

each process needs to be synchronized just once per minibatch.
After the initialization, the training pipeline begins from

the sampler process randomly selecting nodes and collecting
their neighbors’ node indices (Figure 7 (b)). Once all the
node indices are identified, the combined list is transferred
to the producer process running on GPU for the zero-copy
accesses. The list of node indices is transferred over DMA
as it is contiguous and small. Once the node features are
all gathered into one of the ping pong buffers, the producer
notifies the consumer to train on the new minibatch data as
soon as it is ready. Since the GPU ping pong buffers are
located in the same GPU memory, it naturally makes sense
for the consumer to directly access the buffer owned by the
producer instead of copying it to its own space. To achieve
this, yhis UVA-based method utilizes CUDA interprocess
communication (IPC) APIs. With the CUDA IPC APIs, two
different GPU kernels running on different processes can share
the same GPU memory space without data copies in between.
This specific GPU pointer sharing procedure is implemented in
the PyTorch Queue class and we utilize it for our application.
The ping pong buffers are statically located for the entire
training process and therefore the pointer sharing needs to be
done only once at the beginning of the producer process.

From the user’s point of view, the training process is
pipelined in a sampler → producer → consumer order
(Figure 7 (c)). Except the unified tensor declaration, the rest
of its end-to-end GCN training implementations is developed
with the existing PyTorch functionalities, and this makes the
method more accessible for the existing users. Its modifica-
tions are isolated into the data transfer portion of the GCN
training and the algorithm remains unaffected.

To conclude, this methods show the contributions as follow:

• As opposed to the traditional DMA-based data communi-
cation architecture, it proposes GPU-oriented, software-
defined data communication architecture with zero-copy
memory accesses for efficient sparse accesses to graph
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Fig. 7. GCN training flow with zero-copy accesses. Only the operations related to data accesses are shown. (a) This method setups unified tensor and the
returned pointer is passed to GPU for zero-copy accesses. (b) The sampler generates node IDs used by the producer and the producer gathers scattered node
features in the host memory. The consumer uses the gathered node features for training. (c) A visualization of processing pipeline.

node features in GCN training.
• To improve the efficiency of zero-copy memory access,

it proposes automatic data alignment and a novel CUDA
MPS based resource provisioning optimizations.

• It seamlessly integrate their modifications with the exist-
ing PyTorch framework for easier programming and show
65-92% of end-to-end training performance gain.

D. Experiments
This section evaluates the impact of its proposed design

on GCN training. This work first takes a closer look at the
improvements made by its optimizations one by one and then
shows the overall training time reduction achieved.

1) Methodology: Evaluation System For evaluation, it
uses the system described in Table II. The host system can
hold two RTX 3090 GPUs, and both are operating in PCIe 4.0
mode. With PCIe 4.0 interconnects, both GPUs can achieve
about 25.8GB/s of host to GPU DMA bandwidth in our
microbenchmark. The measured aggregated bandwidth of the
two GPUs performing DMA on host memory at the same time
is about 51.7GB/s.

Application The unified tensor implementation and the
indexing kernel modification are based on PyTorch 1.8.0-
nightly version. For the GCN training, we use the Graph-
SAGE [5] implementation of DGL. It only modifies the data
communication portion of the implementation. The sampling
mechanism and the training algorithm remain unmodified.

(a) CPU-Only implementation only uses CPU for training
GCN. In this case; there is no need for data transfer over PCIe
since GPUs are not involved in the training.

(b) DMA-based implementation uses CPU to gather node
features into a contiguous buffer. The gathered node features
are transferred to GPUs by using DMA.

(c) NaÏ’ve Zero-Copy uses zero-copy as a main data trans-
fer method but does not include any optimizations discussed in
this paper. Unified tensors are used to allow GPUs to perform
zero-copy accesses on host memory.

(c) Zero-Copy implementation enables zero-copy accesses
and includes all optimizations we discussed in this paper.

TABLE II
EVALUATION SYSTEM CONFIGURATION.

Category Specification

CPU AMD Ryzen Threadripper 3960x 24C/48T

Memory DDR4 3200 MHz 256GB in Quad Channel

GPU 2x NVIDIA Ampere RTX 3090 24GB

OS Ubuntu 20.04.1 & Linux Kernel 5.8.0

S/W CUDA 11.2 & PyTorch 1.8.0-nightly

(d) All-in-GPU implementation allocates the entire node
feature array into each GPU memory before the training
begins. This implementation is used to show the rough up-
per bound of the performance improvement we can achieve
through the data transfer optimization. Due to the limited
GPU memory capacity, we do not evaluate all datasets with
this implementation. It explicitly denotes as ”out-of-memory
(OOM)” for such cases.

Dataset In Table III, we show the datasets we used for the
evaluation. wikipedia [?] network consists of the wikilinks
of Wikipedia in English. Nodes are Wikipedia articles, and
directed edges are Wikilinks. amazon [?] dataset is based on
the Amazon product network connected by ”also viewed” and
”also bought” links. ogbn-papers100M dataset is a directed
citation graph of 111 million papers indexed by MAG [?].
The above datasets are used for basic performance evalua-
tions. ogbn-products [?] dataset is based on Amazon co-
purchasing network [?] where nodes represent products sold
in Amazon, and edges between two products indicate that the
products are purchased together. ogbn-products is only
used for the training time vs. node feature size sensitivity
analysis.

E. Bandwidth Analysis

In Figure 8, it shows the comparison of the effective
bandwidths we measured during the wikipedia dataset training.
To observe the impact of the misaligned node feature access
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TABLE III
EVALUATION DATASET.

Name #Feature #Node #Edge Size

ogbn-products 128 - 4096 2.4M 61.9M -
wikipedia 315 13.6M 437.2M 17.1GB
amazon 578 14.7M 64.0M 34.0GB

ogbn-papers100M 128 111.1M 1.6B 56.9GB

0

5

10

15

20

25

30

1024 (+0) 1024 (+4) 1024 (+8) 1024 (+12) 1024 (+16) 1024 (+20)

E
ff

e
c
ti
v
e

 B
a

n
d

w
id

th
 (

G
B

/s
)

Feature Size (byte)

DMA-based Zero-Copy Naïve Zero-Copy + Circular Shift

Peak cudaMemcpy() bandwidth = 25.8 GB/s

Fig. 8. Effective data transfer bandwidth measured during the wikipedia
dataset training. We sweep feature size to observe the impact of misaligned
zero-copy accesses over PCIe.

on the PCIe bandwidth, it sweeps the node feature size from
1024B to 1044B in this experiment. Zero-copy naı̈ve approach
does not implement the circular shift optimization. Throughout
the experiment, the effective bandwidth of the DMA-based
approach is only about half of the zero-copy approaches as it
requires a long CPU gathering process.

When the node feature size is 1024B, regardless of the circu-
lar shift optimization existence, the zero-copy implementations
show the best effective bandwidth numbers. Because the GPU
cacheline size is 128B, in this case accessing any node features
results in generating perfectly coalesced accesses. Considering
that the best cudaMemcpy() bandwidth it achieved is about
25.8GB/s, it can roughly estimate the upper bound efficiency
of zero-copy access is about 95.1%. With more misaligned
accesses, the efficiency of the naı̈ve zero-copy implementation
drops to 78-82% while the optimized zero-copy implementa-
tion can achieve 88-93% of efficiency.

In general, the results re-emphasize the importance of
making cacheline-aligned accesses whenever using zero-copy
accesses. For savvy programmers, it expects them to under-
stand the underlying hardware mechanism and to consider
padding the input data if the overhead is not too big. However,
even if they fail to do so, our optimizations would still reduce
the performance penalty for them.

1) Overall Comparison: In Figure 9, we show the overall
training performance comparison. Throughout the entire com-
parison, the CPU-only case shows the worst performance. By
limiting the computation unit to CPU, there is no need to worry
about efficient data transfers over PCIe but at the same time the
computation power is severely limited. In general, the CPU-
only method is 2.3–3.1× slower than the DMA-based method.
This performance difference is an important motivation for
moving the training into GPUs.
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Fig. 9. GCN training time comparison. OOM denotes out-of-memory.

For the DMA-based method, doubling the number of GPUs
does help reduce the overall training time. Still, additional
GPU results in only 21-27% performance improvement across
different datasets. Because the DMA-based method makes
poor use of CPU resources and host memory bandwidth,
increasing the number of workers quickly makes the entire
training process throttled by them at this point, all GPUs are
experiencing data starvation and have low utilizations.

For the naÏ’ve zero-copy method, we observe 2–17% of
performance degradation compared to the DMA-based method
in a single-GPU setup.This result also gives us an idea how
the programmers can make a premature conclusion not further
to investigate the usage of zero-copy accesses.

With two GPUs, the naı̈ve zero-copy method shows much
better performance as well as performance scalability than the
DMA-based method. In a dual-GPU setup, the naı̈ve zero-
copy method becomes 30–41% faster than the DMA-based
method. This is because, even without the optimizations, the
zero-copy method by default much more efficiently uses the
CPU resource and host memory bandwidth than the DMA-
based method. However, this benefit is not visible until the
number of GPUs increases.

Finally, with our zero-copy optimizations, we can now
clearly see the benefit of zero-copy in all cases in a single-GPU
setup; the optimized zero-copy method is 16–44% faster than
the DMA-based method, and in a dual-GPU setup, it is 65–
92% faster. More surprisingly, with all optimizations included,
the performance of the zero-copy method matches with the all-
in-GPU method for the wikipedia dataset training. Since
the training process completely hides the data communication
time in this case, there is no disadvantage compared to the all-
in-GPU method. Overall, it observes a very significant benefit
of using zero-copy accesses for GCN training.

VI. GNNLAB

GNNLab aims to design a SOTA system to accelerate the
GNN mini-batch training process. It proposes 2 challeneges:

• The first challenge is how to eliminate contention on
GPU memory between different stages of the SET model
(Figure 10).
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Fig. 10. An example of the SET model for sample-based training in a 2-layer
GNN on V7.

Fig. 11. A breakdown of memory usage and data similarity for different stages
of the SET model when training OGB-Papers over multiple GPUs (G0, G1,
...) with 16GB of memory each.

• The second challenge is how to achieve optimal cache
efficiency for diverse GNN datasets and sampling algo-
rithms.

A. Motivations
GNNLab is motivated by an attractive observation that dif-

ferent training epochs in the same stage share a large amount
or even all of the data, which means that sample-based GNN
training has extremely good inter-task data locality. As shown
in Figure 11, graph topology and feature cache, occupying
more than 64% of the total 16GB GPU memory, are fully
shared by the Sample and Extract stages in different epochs,
respectively. This means that leveraging space sharing in the
stage level, as shown vertically in Figure 11, can significantly
reduce the cost of data transfer, which is the major obstacle
to optimizing sample-based GNN training over GPUs.

B. Design of GNNLab
1) A Factored Design: GNNLab is based on the facored

operating systems. Inspired by the factored operating system

Fig. 12. The execution flow of GNNLab. This shows a simple working flow
of GNNLab with sampler and trainer.

(fos), the key idea behind GNNLab is to perform each stage
of the SET model (e.g., Sample) on dedicated processors
(GPUs and/or CPUs) for different minibatches. GNNLab is
a new factored system for sample-based GNN training over
GPUs, in which space sharing replaces time sharing to improve
performance significantly. Figure 3 illustrates a brief example
of GNNLab that conducts two samplers, six extractors and six
trainers on a machine with 8 GPUs and two 8-core CPUs.

2) GNNLab Architecture: To adapt to diverse workloads,
GNNLab flexibly assigns GPUs to different stages and runs
them in parallel. We observe that the Sample and Extract
stages only share a small amount of data (i.e., samples).
Thus GNNLab divides the training pipeline of the SET model
into two kinds of individual executors, named Sampler and
Trainer respectively, as shown in Figure 12. GNNLab uses
a global queue in the host memory to link two kinds of
executors asynchronously, which is flexible in supporting
different numbers of executors. The concurrent queue would
not be the bottleneck since the updates are infrequent. Fig-
ure 14 outlines the implementation of executors in GNNLab.
GNNLab binds each Sampler to a GPU, and it will load graph
topological data into GPU memory. The Sampler iteratively
generates the samples for each mini-batch following a certain
graph sampling scheme (e.g., k-hop random neighborhood
sampling). To accelerate the pace of feature extraction, the
sampled vertices will be deduplicated and reassigned with
consecutive IDs (starting from 0). Finally, the samples will
be sent to the Trainer asynchronously via a global queue. For
multiple Samplers, a global scheduler assigns tasks (i.e., mini-
batches) dynamically across them in order to achieve load
balance without synchronization. For larger graphs that cannot
fit in GPU memory, a simple approach is to divide the whole
graph into multiple partitions and iteratively load a partition
to the GPU memory for graph sampling.

On the other hand, GNNLab binds each Trainer to a GPU
and several CPU cores. The Trainer sequentially executes the
Extract and Train stages for each mini-batch. After receiving
samples of a mini-batch, the Trainer will simultaneously
extract their features from host memory and the feature cache
in GPU memory (if any). Note that GNNLab adopts a static
caching scheme, so each sampled vertex can be marked
in the Sample stage whether its feature is cached in GPU
memory or not (see §6 for more details). The Trainer then
runs a forward pass that computes the output based on a
certain GNN model (e.g., GCN), followed by a backward
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TABLE IV
THE SIMILARITY (IN PERCENTAGE) OF ACCESS FOOTPRINT BETWEEN
TWO EPOCHS FOR VARIOUS DATASETS AND SAMPLING ALGORITHMS.

Sampling algorithms PR TW PA UK

3-hop random 73.97 78.89 91.29 77.46

Random walks 78.16 72.68 87.14 64.40

3-hop weighted 77.69 66.64 89.57 72.96

pass that uses a loss function to compute parameter updates.
Moreover, GNNLab employs a simple pipelining mechanism
in the Trainer to overlap the Extract and Train stages. Note
that existing GNN systems (e.g., DGL) already leverage the
pipelining mechanism during model training, which is also
enabled within the Train stage of GNNLab. For multiple
Trainers, they do not interact with each other except for
exchanging locally produced gradients to update GNN model
parameters. To support pipelining, GNNLab updates model
gradients with bounded staleness, which effectively mitigates
the convergence problem.

3) A Pre-sampling Based Caching Policy: The existing
degree-based caching policy only works well under certain
assumptions. Thus a caching policy that is efficient and robust
to diverse GNN datasets and sampling algorithms is highly
favored.

GNNLab proposes a presampling-based feature caching
policy (PreSC). Given a graph G, a sampling algorithm A and
a training set T , PreSC conducts K sampling stages, starting
from the vertices in T . Here K is a user-defined parameter.
It records the visit count of the sampled vertices and uses the
average count as the hotness metric hv . We use PreSC#K to
denote the variant of PreSC that conducts K sampling stages.

Cache ratio. The cache ratio α determines how many
vertices can be cached in GPUs. Observe that a larger α
usually implies a higher cache hit rate. However, due to the
limited GPU memory, it is unfeasible to cache all vertex
features. We also need to reserve enough memory for GNN
model training. In general, the value of α for a given training
task can be determined by two factors, the available GPU
memory amount for feature cache and the vertex feature
dimension. To determine GPU memory capacity for feature
cache, we adopt the method proposed in PaGraph [13], where
we simulate one-time model training for a mini-batch and
record the peak memory usage for model training. Then the
rest of the available GPU memory is allocated for feature
cache.

Following this general scheme, GNNLab provides a builtin
procedure load cache(hotness map,α) to enable GPU-based
feature cache. Here hotness map is a data structure that stores
the hotness value of each vertex, and α is the cache ratio which
can either be specified by users manually or determined as we
have discussed above. The procedure identifies and loads the
features of the top-ranked α|V | vertices w.r.t. hv into GPUs.
It also builds a hash table to indicate the location in feature
cache of a given vertex. We can easily implement existing
caching policies in GNNLab with this caching scheme. For

Fig. 13. Comparison of normalized time between Adj-Sampling and Nfeat-
Selecting under different settings (datasets+fanouts). PA represents Ogbn-
Papers100M and TW represents Twitter. (batch size=8000; nfeat dimen-
sion=128).

Fig. 14. Two kinds of executors in GNNLab.

example, to implement the degreebased caching policy adopted
by PaGraph [13] in GNNLab, it suffices to compute the out-
degree of each vertex v as hv and construct the data structure
hotness map.

GNNLab finds that a small number of sampling stages, i.e.,
K ≤ 2, already produce a decent hotness estimation and suffice
for most training tasks. Thus it is feasible to compute the hv

’s of PreSC online, since (i) GPU-based graph pre-sampling
is lightweight, e.g., on average it only takes 1.4× time of one
epoch, and (ii) a typical GNN training pipeline usually has
over 100 epochs. Specifically, we run the first K epochs of an
end-to-end training pipeline for pre-sampling without features
cache and determine which vertices should be cached. Then
features of selected vertices are loaded into GPUs, and the rest
of epochs can benefit from reduced data movement to GPUs.
This presampling process can also be dealt with in an offline
manner. In general, the benefits of pre-sampling based caching
policy are two-fold: efficiency and robustness.

Efficiency. PreSC is very efficient in terms of cache hit
rate. This is because the ideal hotness estimation metric E[ĥv]
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Fig. 15. The comparison among different caching policies for (a) Twitter
with weighted sampling, (b) OGB-Papers with 3-hop neighborhood, and (c)
OGB-Papers with the increase of feature dimensions. PreSC#K conducts K
sampling stages.

captures the sampled frequency of a vertex in all epochs, and
the hotness metric hv of PreSC provides a good approximation
of E[ĥv]. As shown in Figure 16, fixing cache ratio α = 10%,
the cache hit rate of PreSC is almost as good as the Optimal
policy, and is on average 1.5× (up to 2.2×) higher than that of
the Degree policy. Recall that the Optimal policy defines an
upper bound of cache hit rate for an fixed cache ratio, since it
assumes that we can cache the actual most frequently sampled
vertices in all epochs in advance.

Robustness. PreSC is robust to diverse datasets and sam-
pling algorithms. As shown in Figure 16, on four GNN
datasets and three sampling algorithms, PreSC constantly beats
other baselines, including the Random policy and Degree
policy adopted by PaGraph [13]. This is because, as oppose
to prior work, the hotness metric hv of PreSC is computed
by simultaneously taking the input graph G, the training set T
and the sampling algorithm A into account. Observe that the
performance of Degree policy is unstable. For example, for the
3-hop random neighborhood and random walks, the Degree
policy has a similar cache hit rate as PreSC on the power-
law graph TW . However, if we either use a non-power-law
graph, e.g., PA, or use the weighted sampling, the cache hit
rate of Degree drops very quickly, i.e., on average below 51%
Instead, the performance of PreSC is stable and very close to
Optimal in all 12 cases. These verify the robustness of PreSC.

The high efficiency and robustness of PreSC bring sub-
stantial advantages in processing large-scale graphs and high-
dimensional features. To see this, in Figure 15(b) gnnlab first
plots the cache hit rate to the cache ratio α on OGBPapers
dataset with 3-hop random neighborhood sampling.

The cache hit rate of PreSC increases fast and reaches 96%
when α = 5%. This verifies the effectiveness of PreSC to
process large-scale graphs, i.e., PreSC is able to achieve a
decent cache hit rate even with a very small α. In contrast,
the cache hit rates of Random and Degree policies are below
5% and 29% when α = 5%, respectively. They increase much
slower than PreSC. Observe that the hotness metric of PreSC
takes the training set T into account, while the Random and
Degree policies overlook the impact of T . For example, the
Degree policy uses the static vertex out-degree as the hotness
metric, which essentially assumes that the sampling operations
are started from all vertices in the dataset. This largely reduces
the cache utilization since some high degree vertices may
never be sampled from a givenT. Fixing 5GB cache size,
Figure 15(c) further shows the size of data moved to the
GPU memory in one mini-batch as the feature dimension

Fig. 16. Two kinds of executors in GNNLab.

increases. We can see that as the dimension increases from
100 to 900, the transferred data size of PreSC increases much
slower than Random and Degree policies. The transferred data
size of PreSC is less than 500MB when the dimension is 900.
Instead, Degree and Random need to move nearly 2GB data,
which is 4× of that of PreSC.

To summarize, GNNLab presents the contributions as fol-
lows:

• A new factored space sharing design for sample-based
GNN training that eliminates intra-task resource con-
tention and unleashes inter-task data locality, and solu-
tions to tackling the imbalanced load issues introduced
by the factored design.

• A general GPU-based feature caching scheme, as well as
a caching policy based on pre-sampling that is robust to
diverse sampling algorithms and GNN datasets.

• An evaluation with various GNN datasets and models that
shows the advantage and efficacy of GNNLab.

C. Experiments

The experiments were conducted on a GPU server that
consists of two Intel Xeon Platinum 8163 CPUs (total 2 ×24
cores), 512GB RAM, and eight NVIDIA Tesla V100 (16GB
memory, SXM2) GPUs. The software environment of the
server was configured with Python v3.8, PyTorch v1.7, CUDA
v10.1, DGL v0.7.1, and PyG v2.0.1.

Datasets. GNNLab used four datasets as listed in TableV for
evaluation, including a social graph Twitter (TW), a web graph
UK-2006 (UK), and two GNN datasets from Open Graph
Benchmark (OGB) — a co-purchasing network OGB-Products
(PR) and a citation network OGB-Papers (PA). Similar to prior
work, GNNLab generated random features and labels for TW
and UK since they originally had no features and labels. Both
PR and PA from OGB provide an official training set. For
TW and UK, which do not provide a training set, we followed
a common practice that randomly selects a small portion of
vertices as the training set. Note that the training set is selected
offline once and shared across each run. The overhead to select
the training set is trivial, e.g., less than 150 ms for the largest
graph (UK).

Baselines. We compared GNNLab with PyG [20], DGL and
TSOTA, a state-of-the-art GNN system based on the conven-
tional design, which extends DGL with a static GPUbased
cache and a fast GPU-based sampler from scratch. As shown in
Table V, PyG conducts graph sampling on CPUs, while DGL
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TABLE V
DATASETS AND GNN SYSTEMS USED IN EVALUATION. #TS DENOTES

THE SIZE OF TRAINING SET. V olG (RESP. V olF ) IS THE DATA VOLUME OF
GRAPH TOPOLOGICAL (RESP. FEATURE) DATA IN HOST MEMORY. N/A

REPRESENTS THE GPU IS ONLY USED BY A SINGLE STAGE (I.E., TRAIN)

Dataset #Vertex #Edge Dim. #TS VolG VolF
PR 2.4M 124M 100 197K 481MB 934MB
TW 41.7M 1.5B 256 417K 5.6GB 40GB
PA 111M 1.6B 128 1.2M 6.4GB 53GB
UK 77.7M 3.0B 256 1.0M 11.3GB 74GB
System Design Sample Extract Train
PyG N/A CPU No cache GPU
DGL Time S. GPU No cache GPU
TSOTA Time S. GPU w/ Opt. Cache w/ Degree GPU
GNNLab Space S. GPU w/ Opt. Cache w/ PreSC GPU

enables GPU-based sampling to accelerate graph sampling.
TSOTA is built upon the same codebase of GNNLab, and
supports both GPUbased graph sampling and feature caching.
Different from GNNLab, TSOTA follows a time sharing de-
sign, i.e., each GPU conducts both graph sampling and model
training, and adopts the degree-based caching policy. DGL also
uses time sharing, but has no caching mechanism. Since DGL
only supports synchronous gradient updates, for fair com-
parisons, GNNLab and other baselines employ synchronous
gradient updates unless otherwise specified. All results were
computed by calculating the averages over 10 epochs

1) Overall Performance: Table V reports the end-to-end
training time of one training epoch for each GNN system.
The number of GPUs allocated to Samplers (nS) is determined
by the factored design. Note that for an 8-GPU machine,
our flexible scheduling scheme already provides optimal GPU
allocations for Samplers. Therefore, dynamic switching does
not happen in this evaluation. It is mainly found that: (1)
Overall, GNNLab outperforms DGL and PyG by up to 9.1×
(from 2.4×) and 74.3× (from 10.2×), respectively. For systems
using GPUs for graph sampling, only GNNLab can process
the UK dataset in all cases, while other systems run out of
memory (OOM) due to GPU memory contention. Note that
PyG performs the worst in all experiments due to the high
cost of graph sampling on CPUs and transferring features
to GPUs. Due to space limitations, we do not report its
experimental results in the rest of our evaluation. In general,
the performance gain of GNNLab over its competitors mainly
comes from three aspects: (A1) a new space-sharing design
that unleashes the power of GPU-based sampling and caching,
(A2) an efficient and robust caching policy (PreSC) and (A3)
an efficient implementation of GPUbased graph sampling. (2)
Compared with TSOTA, GNNLab benefits from (A1) and
(A2). Indeed, TSOTA suffers from GPU memory contention
and its inefficient degree-based caching policy. Specifically,
TSOTA needs to load graph topological data into each GPU,
leaving only limited memory for the feature cache. As shown
in Figure 15, PreSC is more efficient than the degree-based
policy, especially when the cache ratio is small. Note that
TSOTA performs slightly better than GNNLab on PR. This
is because all topological and feature data of PR can be
loaded into a single GPU. Therefore, (A1) and (A2) cannot
improve that case, while our factored design introduces little

overhead in the Sample stage. Note that TSOTA is built upon
the same codebase of GNNLab. (3) The performance gain
of GNNLab over DGL comes from (A1)(̃A3). DGL stores
all feature data in the host memory and has no GPU-based
caching mechanism. Thus, it transfers much more data to
GPUs than TSOTA and GNNLab. In addition, DGL only uses
CPUs to extract features of sampled vertices, which also incurs
a large number of random memory accesses. Therefore, apart
from the more severe GPU memory contention problem, the
limited memory access bandwidth shared by CPUs is another
major bottleneck.

2) Performance Breakdown: A stage-level time breakdown
analysis was conducted for the SET model on DGL, TSOTA,
and GNNLab with two GPUs (1S1T for GNNLab). The results
are reported in Table VI. We mainly find the following.

(1) For the Sample stage (S), GNNLab and TSOTA beat
DGL on three models. We find that DGL adopts the Reservoir
algorithm [32] for k-hop random neighborhood sampling on
GPUs. The sampling complexity of each vertex is positively
correlated with its in-degree, resulting in an unbalanced
workload on GPU threads. Instead, GNNLab and TSOTA

implement a variant of the Fisher–Yates algorithm [33], which
is GPU-friendly since the workload is more balanced for each
vertex. Note that the performance gain of GNNLab and TSOTA

over DGL are larger on PinSAGE [34] than on GCN [4]
and GraphSAGE [5]. After profiling, we find that invoking
CUDA code from Python code in DGL incurs considerable
runtime overheads. Meanwhile, compared with k-hop random
neighborhood sampling, random walks has more complex
vertex access patterns, making the runtime overheads more
significant. Furthermore, compared to TSOTA, GNNLab incurs
additional overheads (less than 0.1 ms on average) for copying
samples to a global queue in the host memory.

(2) For the Extract stage (E), the performance largely de-
pends on cache size and caching policy. The former determines
the cache ratio of features (R%), and the latter determines
the cache hit rate (H%). Without caching, DGL must transfer
all features of sampled vertices from host memory to GPU
memory, which accounts for up to 85.0% (from 38.8%) of
end-to-end time. By enabling GPU-based caching and the
degree-based policy, TSOTA performs much better, especially
for small datasets (e.g., PR). However, the time sharing design
greatly limits the available memory capacity for the feature
cache, resulting in relatively low cache ratios for large graphs
(e.g., only 1% for GCN on TW). Further, the degree-based
caching policy is still far from efficient for many graphs and
sampling algorithms. For example, the cache hit rate for GCN
on PA is only 37%, when caching 7% of features. In contrast,
GNNLab never gets bogged down by extracting features in
all experiments, thanks to our space sharing design and pre-
sampling based caching policy (PreSC). First, the cache ratio
is significantly improved in GNNLab, e.g., from 1% to 25%
for GCN on TW. Second, PreSC demonstrates surprising
efficiency. For example, on PA, caching less than 25% of
features reduces data movement by more than 97%. However,
compared to TSOTA, GNNLab incurs additional overheads
(less than 0.1 ms on average) for loading samples into GPU
memory from the global queue. Overall, GNNLab outperforms
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TABLE VI
THE RUNTIME BREAKDOWN (IN SECONDS) OF ONE EPOCH FOR DGL, TSOTA AND GNNLAB. S, E, AND T REPRESENT SAMPLE, EXTRACT, AND TRAIN
STAGES. G, M, AND C REPRESENT GRAPH SAMPLING, MARKING CACHED VERTICES, AND COPYING SAMPLES TO THE HOST MEMORY IN THE SAMPLE

STAGE, RESPECTIVELY. R% AND H% REPRESENT THE CACHE RATIO OF FEATURES AND THE CACHE HIT RATE. GSG AND PSG ARE SHORT FOR
GRAPHSAGE AND PINSAGE.

TSOTA by 4.2× on average in the Extract stage (except for
PR), due to fetching over 84% of required features directly
from the GPU cache.

(3) For the Train stage (T), GNNLab, TSOTA and DGL have
similar performance, as all three systems employ the same
GNN execution runtime (i.e., DGL) in this stage. For flexible
scheduling, in most cases, the training time is used to calculate
the number of GPUs allocated to Sampler (Ns). For GCN
and GraphSAGE on UK, the extracting time dominates the
processing time of Trainer (Tt ), so that it replaces the training
time to calculate Ns.

VII. DUCATI

DUCATI is a workload-aware cache-based system tailored
for the mini-batch training of GNNs on giant graphs. DUCATI
leverages the spare GPU memory to cache frequently accessed
parts of the graph data. Compared with existing Single-
Cache systems, which only employ Nfeat-Cache, DUCATI is a
Dual-Cache system that considers both Adj-Cache and Nfeat-
Cache. The additionally introduced Adj-Cache can accelerate
the time-consuming Adj-Sampling workload and mitigate the
marginal effects of Nfeat-Cache. DUCATI also includes a
workload-aware Dual-Cache Allocator to adapt to diverse
settings. Given the current setting, our Dual-Cache Allocator
will find the most prominent workload inside the mini-batch
generation (Adj-Sampling or Nfeat-Selecting), and allocate
more budget to the corresponding cache (Adj-Cache or Nfeat-
Cache). Overall speaking, DUCATI will adaptively find the
best plan to allocate the spare GPU memory to Adj-Cache
and Nfeat-Cache so as to achieve the fastest training speed.

The overview of DUCATI is shown in Figure 17. DUCATI
first extract essential information from the input using the
Input Inspector. Then, with the extracted information, the
Dual-Cache Allocator will determine the best allocation plan
based on current workloads so as to achieve the fastest speed.
Next, DUCATI construct Adj-Cache and Nfeat-Cache with the

Fig. 17. Overview of DUCATI. It has 4 modules, named Input Inspector,
Dual-Cache Allocator, Cache Constructor, Trainer respectively

Cache Constructor. Finally, DUCATI perform the mini-batch
training with the constructed two caches.

A. Motivations

In this section, some provide empirical results are provided
to illustrate the limitations of the existing Single-Cache sys-
tems and observations that are motivated to build a Dual-Cache
system.

1) The data access to the adjacency matrix also has local-
ity.: It is found that the data access to the adjacency matrix
also exhibits locality like the node features. For example, when
training GraphSAGE on the Ogbn-Papers100M dataset, 0.7
GB entries in the 12.9 GB of the adjacency matrix account
for more than 98% of the total adjacency accesses.

2) Adj-Sampling can be more time-consuming than Nfeat-
Selecting.: Depending on the input settings, the workloads
of Adj-Sampling and Nfeat-Selecting are diverse as shown
in Figure 13. According to the Amdahl’s law, the overall
speedup of existing Single-Cache systems is limited since they
only optimize Nfeat-Selecting even when Adj-Sampling takes
more time than Nfeat-Selecting.

3) Nfeat-Cache cannot utilize all spare GPU memory.: As
illustrated in Figure 4, it is found that Nfeat-Cache exhibits the
marginal effect as the cache size increases. Many real-world
graphs follow a power law, and only a small fraction of node
features are frequently accessed. This implies that DUCATI
can get most of the benefit from Nfeat-Cache with only a
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small cache budget. As observed in Figure 18, Nfeat-Cache
can hardly benefit from more than 2.5 GB cache budget. Thus
the leftover spare GPU memory is not utilized properly.

4) Opportunities.: Nfeat-Cache cannot exploit all spare
GPU memory, and the time-consuming Adj-Sampling can
be accelerated by introducing Adj-Cache. Inspired by these
observations, DUCATI is proposed by combining Adj-Cache
and Nfeat-Cache.

B. Design of DUCATI

1) Input Inspector: The Input Inspector will extract two
pieces of crucial information from the input with offline
sample runs. First, the access frequency of each entry is
calculated. Such frequency is an estimation of the real access
probability of each entry. Intuitively, entries with high access
probability and low cost (small size) is inclined to be cached.
Second, the workload information of Adj-Sampling and Nfeat-
Selecting with profiling is collected. Also, statistics on how
these two workloads benefit from the GPU cache is collected.
Such workload information to build the workload-aware Dual-
Cache Allocator will be used.

Information of entries’ access frequency. The access
frequency of each entry during several offline sample runs
is calculated. DUCATI uses the access frequency to estimate
the real access probability of each entry.

Information of workload profiling. Different inputs usu-
ally lead to different workloads of Adj-Sampling and Nfeat-
Selecting. The same cache budget also leads to different
improvements when allocated to Adj-Cache or Nfeat-Cache
with different ratios. Such uncertainty makes it hard to solve
the cache allocation problem. Such uncertainty is addressed by
profiling in advance how Adj-Sampling and Nfeat-Selecting
benefit from the GPU-based cache given the current input.
Concretely, DUCATI will construct several Adj-Cache with
randomly chosen entries and profile the corresponding running
time of Adj-Sampling. DUCATI does the same with Nfeat-
Selecting and Nfeat-Cache. Finally, DUCATI obtains data
points in the format of (cached entries, running time).

2) Dual-Cache Allocator: The target of the cache allocator
is to compare the benefit of caching each entry and select the
most beneficial ones among all the candidates. The benefit
of one entry is a measure of how much the caching of
this entry can reduce the system running time. Under the
single-cache setting, this task is easy since all the entries are
homogeneous, i.e., all entries have the same shape and the
same access pattern. Thus it is easy to compare the benefit
of caching different entries and select the most beneficial
ones. However, such a task is more challenging under the
dual-cache setting because heterogeneous entries need to be
considered. In DUCATI, both adjacency lists and node features
are cached. Both types of entries exhibit heterogeneity in both
the data characteristics and the access pattern. Specifically,
the adjacency lists have variable lengths, while all the node
features have the same length. And the access of adjacency
lists is scattered in fine-grained computation, while the access
of node features is a one-time effort inside one mini-batch.
Such heterogeneity makes it hard to compare the benefit of

Fig. 18. The trend of iteration time with respect to the increase of Nfeat-
Cache. DUCATI obtain the results on Ogbn-Papers100M dataset with Graph-
SAGE. (fanouts=15,10,5; batch size=8000; nfeat dimension=128)

caching different types of entries. In addition, many other
factors make the allocation problem hard to analyze. On the
hardware side, different utilization of the equipped PCIe lanes
lead to different data transfer speeds. On the software side,
diverse settings and inputs lead to dynamic workloads of
Adj-Sampling & Nfeat-Selecting. All of these factors lead
to different training efficiency even with the same amount of
cache, which makes it challenging to develop a closed-form
solution based on the known GNN training procedure and the
graph structure. In DUCATI, the allocation problem is solved
by introducing a benefit prediction model. Roughly, the benefit
prediction model can capture all influencing factors with
profiling and measure the benefit of caching different types
of entries. Then the benefits of all entries can be compared
and the most beneficial ones selected. With this model, the
dual-cache allocation problem is transformed into a variant of
the knapsack problem. Then an algorithm is proposed to solve
the dual-cache allocation problem.

The Benefit Prediction Model. In DUCATI, since DUCATI
has two different types of entries to be cached, it needs
to find a unified way to evaluate the benefit of caching
each entry. Specifically, DUCATI wants to build a predictive
model that maps the theoretical properties of one entry to the
empirical reduction of the system running time if DUCATI
caches the entry. It leverages one important observation that
helps us to build a simple yet effective predictive model. As
shown in Figure 19, DUCATI plots the running time of Adj-
Sampling/Nfeat-Selecting with respect to different sizes of
some randomly constructed Adj-Cache/Nfeat-Cache. DUCATI
finds that (1) the running time of each task is almost (inversely)
linearly related to the cache hit of the corresponding cache and
(2) the slope of each line, which represents the decreasing
speed of running time w.r.t. cache size, varies on different
tasks/datasets.

3) Cache Constructor: Adj-Cache. The design of Adj-
Cache is challenging due to: (1) the variable length of adja-
cency lists may require auxiliary data structure and procedures
for the storing and the lookup of Adj-Cache and (2) the special
workload of Adj-Sampling requires a lightweight cache lookup
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mechanism. The data access of adjacency lists is interleaved
with the fine-grained computation performed by CUDA ker-
nels. To avoid lagging the execution of the fine-grained compu-
tation, we need to make the cache lookup lightweight and fast.
These two challenges are addressed by adopting a CSC-like
format for Adj-Cache combined with graph reordering. Our
design requires no auxiliary data structure for Adj-Cache and
a very lightweight cache lookup mechanism. Firstly, a graph
reordering is performed so that these cached adjacency lists
are at the front of all adjacency lists. Then, these elements
are sliced at the front of three original CSC arrays and
form three cached CSC arrays, namely col index cached,
row index cache, values index cached

Nfeat-Cache. DUCATI constructs the same Nfeat-Cache as
previous works [14]. Specifically, given the node features to be
cached, DUCATI gathers these node features and store them as
a GPU tensor. DUCATI also prepares a lookup table that stores
the location information of all node features. During Nfeat-
Selecting, DUCATI first checks all queried node features with
the lookup table. When Nfeat-Cache hits, it fetches the data
from the GPU using the address returned by the lookup table.
Otherwise, Nfeat-Cache misses, and DUCATI fetches the data
from the host memory with the UVA technique.

4) Trainer: Similar to previous works [14], DUCATI makes
only minor changes to the programming interface of DGL.
After constructing Adj-Cache and Nfeat-Cache, DUCATI ab-
stracts the usage of two caches with two APIs, namely the
sample and the load.

To summarize, DUCATI present the following contribu-
tions:

• A novel Dual-Cache training system DUCATI is pro-
posed, which exploits the locality of the adjacency matrix
in addition to that of the node features and makes better
use of the GPU memory compared with existing Single-
Cache systems.

• A novel workload-aware Dual-Cache Allocator is pro-
posed which adaptively decides the best allocation plan
for Adj-Cache and Nfeat-Cache to maximize training
speed.

• The experimental results show that DUCATI is efficient
and scalable for training GNNs on giant graphs compared
with DGL and the state-of-the-art Single-Cache systems.
The proposed Dual-Cache Allocator can better utilize the
GPU memory with respect to diverse workloads.

C. Experiments

DUCATI was implemented on top of DGL v0.8 and Py-
Torch v1.9. The overall implementation consists of 1.6k lines
of Python codes and 422 lines of CUDA and C++ codes. The
experiments were run on a single machine with one NVIDIA
GeForce RTX 2080 Ti GPU (11GB of HBM memory) with
PCIe 3.0x16 and 256GB DDR4 memory and Intel(R) Xeon(R)
Gold 6240 CPU@2.60GHz.

1) Datasets: DUCATI uses four billion-scale datasets for
the evaluation of mini-batch training systems and two smaller
datasets for the evaluation of full-batch training systems
as listed in Table VII. Due to the worse scalability of

Fig. 19. System running time of Adj-Sampling and Nfeat-Selecting with
respect to the cache hit of Adj-Cache and Nfeat-Cache

full-batch systems, they encounter GPU OOM on billion-
scale graphs, thus DUCATI compares solution with full-batch
ones on the two smaller datasets. For billion-scale datasets,
DUCATI uses two web graphs: UK-2006-05 (UK) and UK-
Union (UU), a social graph: Twitter (TW), a citation graph
in Open Graph Benchmark (OGB) Ogbn-Papers100M (PA).
For smaller datasets, DUCATI uses a co-purchasing network
Ogbn-Products (PR) from OGB, and an online posts network
Reddit (RD). To test the scalability and adaptability on differ-
ent settings, DUCATI generates two commonly used feature
lengths (128 and 256) for each dataset. OGB provides an
official training set for PA. For the other three datasets which
do not provide a training set, it samples 1 percent of all vertices
as the training set. DUCATI notices that vertices in the training
set of PA have a higher average degree than that of all vertices,
and hence for the other three datasets, it samples the training
set with the normalized degree as the sampling probability. The
training set selection is performed offline and shared across all
experiments.

2) Baselines: DUCATI categorizes existing systems into
five types:

• Base System: PyG [20]. PyG is the base system that uses
the CPU for Adj-Sampling and Nfeat-Selecting.

• System with UVA: DGL [22]. The latest DGL v0.8
release supports the UVA technique. DGL has no cache
mechanism.

• System with Single-Cache: PaGraph [13] & GNNLab
[14]. PaGraph is built upon an older version (v0.4)
of DGL. PaGraph only supports CPU-based sampling
which is an order of magnitude slower than UVA-based
sampling. GNNLab will OOM on all datasets in Table VII
because it cannot scale to datasets with an adjacency
matrix larger than GPU memory.

• System with UVA and Single-Cache: SOTA. SOTA is a
synthetic system which is built with the same code base as
DUCATI. SOTA employs UVA for Adj-Sampling, UVA
for Nfeat-Selecting, and NfeatCache. SOTA constructs
the same Nfeat-Cache as GNNLab, which is better than
other NfeatCache.

• System with UVA and Dual-Cache: the DUCATI.
3) Evaluation of Overall Training Time: The overall train-

ing time per iteration of DUCATI and baselines are given in
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TABLE VII
DATASET STATISTICS.

Table VIII. On average, DUCATI can speed up the training
by 1.32 times compared with SOTA and 2.07 times compared
with DGL. The speedup can be observed under all settings,
which verifies the generalization ability of DUCATI.

(1) Compared with DGL, we can observe the benefit of
caching frequently access graph data in GPU. When the
fanouts and the node features dimension are small, the graph
data of a mini-batch is relatively small, which makes the
repeated transfer of graph data less obvious. Thus the speedups
of SOTA and DUCATI are relatively small in such cases.
However, under settings where the fanouts and the node
features dimension are large, the UVA-based DGL will be
dragged considerably by the repeated transfer of graph data.
In such cases, the caching mechanism of SOTA and DUCATI
can achieve more speedup than DGL.

(2) Compared with SOTA, we can observe the advantage of
Dual-Cache paradigm over SingleCache paradigm. DUCATI
uses the same amount of GPU cache as SOTA while achieving
faster training speed, which demonstrates that DUCATI can
make better use of spare GPU memory. The reasons behind
this are that Nfeat-Cache cannot utilize all spare GPU memory
and DUCATI’s Adj-Cache can accelerate the time-consuming
Adj-Sampling by leveraging the leftover space of GPU mem-
ory.

(3) By comparing three methods in the same setting, we
can find that DUCATI usually achieves higher speedup over
SOTA and DGL with the increase of the input size (fanouts
and node features dimension). In other words, if we compare
the performance of each method under increasingly larger
input settings, we can find that the training time of DUCATI
grows slower than that of SOTA and DGL. This observation
demonstrates the good scalability of DUCATI.

VIII. CONCLUSION

In this paper, 3 methods are introduced to tackle the problem
that it is time-consuming when scaling GNNs to large graph
with mini-batch training. The UVA-based method focuses on
1. The single cache method focuses on 2. The dual cache
method focuses on fully utilizing the spare GPU memory
and exhibiting poor adaptability to diverse workloads. The
experimental results show that dual-cache performs better.
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