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Abstract—Serverless computing, a rapidly emerging cloud
paradigm, offers significant benefits in terms of resource effi-
ciency and on-demand scalability. However, it faces a critical
challenge in the form of cold starts, which introduce latency
and degrade the performance of function invocations. Addressing
this issue requires a delicate balance between minimizing cold
start latency and optimizing resource usage. This survey explores
three prominent approaches that aim to mitigate cold starts
while optimizing the performance-resource trade-off in serverless
environments: SPES, Hybrid, and Defuse. SPES proposes a
differentiated scheduling strategy that leverages predictable invo-
cation patterns to optimize function provisioning and significantly
reduces both cold start latency and wasted memory time. Hybrid
focuses on characterizing the FaaS workload and introduces a
resource management policy that reduces cold starts while min-
imizing resource consumption. Defuse, on the other hand, takes
a dependency-aware approach by mining function invocation
histories to identify dependencies between serverless functions,
thereby reducing cold starts through smarter scheduling. By
comparing and synthesizing these approaches, we highlight the
strengths and limitations of current solutions and provide insights
into potential future directions for optimizing performance and
resource utilization in serverless systems.

Index Terms—Cloud computing, serverless computing, cold
start, function categorization.

I. INTRODUCTION

Function-as-a-service (FaaS), the most prominent imple-
mentation pattern of serverless computing, has extensively
simplified developers’ access to cloud resources. Major cloud
vendors such as AWS Lambda, Google Cloud Functions, and
Azure Functions have supported FaaS-based web services [1],
[2], machine learning [3], [4], and other cloud applications [5],
[6]. FaaS shifts the burden of infrastructure management from
developers to cloud vendors, allowing developers to focus
on their application functionality [7]. The statelessness and
event-driven architecture of FaaS facilitate seamless updates
and flexible application deployment. Plus, FaaS applies a pay-
as-you-go billing model and dynamically allocates resources
based on demand [8], appealing to users via cost-saving
benefits. Figure 1 depicts a serverless application example.

Despite their benefits, cloud users on serverless platforms
suffer from the infamous cold-start problem, which causes
them to trade off performance latency and memory costs.
Serverless functions are spawned on instances and typically
have very short execution duration (orders of milliseconds
to seconds) [9]. However, booting a function from scratch
(i.e., cold start) incurs expensive latency in preparing the
execution environment [10], compared to running an warm
function whose instance is already loaded in the memory.
Cold-start latency can account for 80% of the total response

Weather info is
returned to user

Lambda runs code to
retrieve weather info

User clicks link to
get weather info

App makes REST API
call to the endpoint

™~

{REST AP}
. . Lambda get weather &—6
Web Appllcatlon info from Dynamo DB X 0]
=

Fig. 1. An weather inquiry website based on a serverless web application.

latency [11], leading to user dissatisfaction and eventually
causing user churn and economic loss. The pay-per-use model
of FaaS also motivates cloud vendors to avoid unbillable
set-up latency [12]. Meanwhile, keeping all functions warm
is infeasible due to two reasons. First, most functions are
invoked infrequently [13]. It is unacceptable to keep idle

(also unbillable) and infrequently used function instances in

memory, as it leads to unnecessary costs and wastes valuable

resources. Second, because of the infrequent invocation and
short execution, FaaS providers colocate thousands of function

instances on a single server to achieve full utilization [14].

Loading all functions can occupy hundreds of GBs of memory,

far beyond a server’s capacity [14]. Thus, reducing cold start

latency while minimizing memory waste has been a key

challenge [15], [3], [16].

Existing solutions generally fall into two categories [17],
[18]: accelerating the setup [19], [20], [21] or reducing cold
start occurrences [22], [13], [23]. This paper focuses on the
reduction of runtime cold start occurrence without renovat-
ing the underlying system-layer infrastructure. Previous such
efforts [22], [13], [23] either keep instances loaded for a
fixed period post-execution or manage instances based on
rudimentary inter-invocation intervals. However, they overlook
the intrinsic influence of triggering events on invocation pat-
terns, thus falling short in addressing infrequently invoked
functions. Hence, we intend to develop a more effective, non-
intrusive method that can load functions right before incoming
invocations and recycle idle instances with no potential near-
future invocations. The key is to predict invocations accurately.

We identify four challenges in developing such a method:
o Efficiency: A FaaS platform can receive thousands of func-

tion invocations every minute from millions of potential

functions [24]. Most functions have a very short execution

time, so the method must decide the provision within a

limited and unbillable time.

o Scalability: The method should be highly elastic, quickly
scaling up and down to meet invocation fluctuations
promptly, as the requests of FaaS functions are usually
bursty and dynamic [2].



e Imbalance: The distribution of function invocations can
be highly imbalanced, and most functions are rarely in-
voked [13]. This poses a challenge to approaches requiring
sufficient training data.

o Evolution: The lightweight nature of FaaS makes applica-
tions evolve faster than traditional software. Both short-term
factors (e.g., user activity variations) and long-term factors
(e.g., software updates) can cause concept shifts in function
invocations, thereby hindering predictive models.

In this article, we provide a comprehensive survey of
existing techniques for optimizing cold starts in serverless
functions. We present a detailed examination of three state-
of-the-art methods: Hybrid [13], Defuse [22], and SPES [25],
along with an analysis of their experimental results. We
believe that this survey will offer valuable insights for both
practitioners and researchers working on serverless function
optimization.

The article is structured as follows: Sections 2 and 3
review related work and provide the necessary background,
respectively. Sections 4 and 5 focus on surveying current
approaches for cold start optimization in serverless functions
and evaluating their performance. Finally, Section 6 concludes
the article by highlighting potential research directions based
on the findings of our survey.

II. RELATED WORK

Numerous efforts [26], [27], [28], [13], [22], [29], [19],
[15], [30] have focused on minimizing cold starts and memory
overhead for FaaS platforms. Related studies [17], [21] classify
current methods into two categories: speeding up function
warming (involving renovations in the system layer) and
reducing occurrences of runtime cold starts (at the application
layer). Methods of these two categories are orthogonal, so they
can be combined for further cold start optimization.

This first category presents new systems to optimize in-
frastructure and resource management, employing techniques
like load balancing among worker nodes [26], [27], snap-
shotting [31], [14], sandbox (e.g., container) scheduling and
management [23], [28], [19], [32], [33], [34], [35]. One of the
most popular research directions is sandbox sharing, i.e., sand-
boxes of the previous execution are reused for new invocations
since reusing the idle sandbox incurs less delay than allocating
a new one [32]. A recent study, Pagurus [33], proposed a
container management scheme that allows one function’s idle
warm container to be forked by another function to alleviate
cold starts, showing promising results. However, implementing
these methods requires significant engineering efforts, system
expertise, and ongoing maintenance due to the underlying
platform and sandbox modifications, which pose challenges
in diverse infrastructures and platforms.

The second category mitigates cold-start occurrences [13],
[22], [15], [29], [23], [30] through a non-intrusive way. A
primary step of function scheduling is to decide when and
whether to pre-load/evict a function instance to reduce cold
starts. [13] utilizes a small histogram to monitor function inter-
invocation times, benefiting workloads with clear invocation
patterns by optimizing keep-alive and pre-warming. However,

it is fully data-driven and ignores the underlying invocation
patterns, leaving much room for domain-knowledge-involved
invocation prediction. Defuse [22] employs dependency min-
ing from function invocation histories to optimize the keep-
alive time and pre-warming. Yet, it relies on the statistical
histogram and turns to a fixed keep-alive policy for more
than 32% of the functions, delivering inadequate perfection
of effectiveness. LCS [30] selected the least recently warm
container to reduce cold starts by keeping the containers alive
for a longer period. FaaSCache [15] innovatively establishes
an equivalence between keeping functions alive and keeping
objects in a cache, thereby implementing function provision
based on Greedy-Dual-Size Frequency object caching. How-
ever, its fundamental idea is to use up the given resources
as much as possible until they are insufficient, then evict
containers to minimize cold starts. Thus, its way of optimizing
resources is rigid without any predictions, failing to smoothly
optimize cold starts and resource usage simultaneously. This
leads to a more significant waste of memory resources.

There is improvement space for these function provisioning
methods as they lack an understanding of invocation patterns
and fine-grained invocation prediction. Instead, SPES adopts
horses-for-courses rule-based strategies to enhance existing
approaches via accurate invocation prediction. SPES also
proposes adaptive designs and builds up inter-function corre-
lations, delivering better memory-economic cold-start reduc-
tion. Other efforts target a downstream task to determine a
suitable node for scheduling an individual function request.
FaaSRank [29] and ENSURE [23] attempt to pack load on
the adequate number of invokers, allowing the additional
unneeded invokers to idle, so as to reduce the completion time
and cold starts of functions. Our method can be combined with
these methods for finer-grained scheduling.

ITII. BACKGROUND
A. Serverless Computing

Serverless computing represents an emerging cloud pro-
gramming paradigm where cloud providers fully manage the
underlying infrastructure and allocate resources dynamically,
enabling developers to concentrate solely on their applica-
tion’s core logic. In FaaS, developers implement services
as stateless workloads, i.e. functions, designed to respond
to an individual event using pre-defined rules, called the
trigger [36]. Developers only pay for the actual computation
resources on a per-execution basis, making it cost-efficient and
scalable [37]. Besides, a could service-based application is
usually broken down into separate, independent functions in
practical implementation, where these functions are sometimes
explicitly chained together [38]. The adoption of serverless
computing has witnessed rapid growth, especially in web
services, machine learning training [39], etc. Notwithstanding
its advantages, serverless computing poses new challenges,
such as ensuring that a service adheres to quality of service
(QoS) demands related to response time or tail latency [40].

B. Cold Start Challenge

Figure 2 displays a serverless function’s lifecycle. A FaaS
provider first downloads the code of users and initiates the



execution environment (or sandbox) in the memory on cluster
machines, known as a cold start. A cold start involves retriev-
ing code from storage, container (or VM) initialization, load-
ing code into memory, and executing the function’s handler.
In contrast, a warm start jumps directly to execution, resulting
in a faster response. Upon serving a request, its environment
remains idle for a while without other invocations before
the orchestration system decommissions it [41]. Naturally,
the more reused environments, the less cold starts. There
exists a trade-off in keeping the instance alive: saving start-up
resources and speeding up subsequent requests but incurring
idle time costs. Such costs can be quantified by wasted memory
time (WMT), i.e., the time when the image of a function is kept
in memory, but the function is not actually invoked. WMT is
an important metric to measure resource waste in practice [13].
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Fig. 2. A serverless function’s lifecycle.

The cold start problem is critical because it significantly
increases runtime latency, yet serverless providers should meet
the QoS requirements and maintain an “always-ready” illusion
to users. On the one hand, cold starts can dominate the
overall execution time [21], [15], [42]. [19] shows that the
“Execution/Overall” latency ratio of most tested functions in
gVisor can not even achieve 30%. On the other hand, the
cold start happens very frequently [43], [18], [44]. Hence,
the additional latency incurred by cold starts is exceptionally
unbearable. Considering that memory is limited and expensive,
mitigating the cold start challenge aims to either load/unload
proper function instances or speed up cold start initiation.

Initiate a
new
environment

IV. ADVANCED METHODS

In this section, we introduce three advanced methods for
cold start optimization in serverless functions: Hybrid, Defuse,
and SPES.

A. Hybrid: Characterizing and Optimizing the Serverless
Workload at a Large Cloud Provider

We use insights from our characterization to design an
adaptive resource management policy, called hybrid histogram
policy. The goal is to reduce the number of cold start invoca-
tions with minimum resource waste. We refer to a policy as a
set of rules that govern two parameters for each application:
— Pre-warming window. The time the policy waits, since the
last execution, before it loads the application image expecting
the next invocation. A pre-warming window = 0 means that
the policy does not unload the application after one of its
functions executes. Aggressive pre-warming (a large window)
reduces resource usage but may also cause cold starts, in case
the next invocation occurs sooner than expected.

— Keep-alive window. The time during which an application’s
image is kept alive after (1) it has been loaded to memory
(pre-warming window > 0) or (2) a function execution (pre-
warming window = 0). (Note that our definition for this
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Fig. 3. Overview of the hybrid histogram policy.

window differs from the keep-alive parameter in fixed keep-
alive policies, which is the same for all applications and only
starts at the end of function executions.) Longer windows have
the potential to reduce cold starts by increasing the chances
of an invocation falling into this window. However, this may
also waste resources, i.e. leave them idle, in case the next
invocation does not happen soon after loading.

A no-unloading policy would keep every application image
loaded in memory all the time (i.e., infinite keep-alive window
and pre-warming window = 0). This policy would get no cold
starts but would be too expensive to operate.

1) Design Challenges: Designing a practical policy poses
several challenges:

e Hard-to-predict invocations: Many applications are trig-
gered by timers. A timer-aware policy could leverage this
information to pre-warm applications right before the next
invocation. However, predicting the next invocation is chal-
lenging for other triggers.

e Heterogeneous applications: The invocation frequency and
pattern vary substantially across applications. A one-size-
fits-all fixed policy is certain to be a poor choice for
many applications. A better policy should adapt to each
application dynamically.

o Applications with infrequent invocations: Some applications
are invoked very infrequently, so an adaptive policy would
take some time to learn their invocation patterns. The same
applies to applications that it sees for the first time.

o Tracking overhead: Adapting the policy to each application
means tracking each application individually. For this rea-
son, the cost to track the information for each application
should be small. For example, we need to consider the size
of the data structures that will keep this state.

e Execution overhead: Since function executions can be very
short (i.e., more than 50% of executions take less than 1
second), running the policy and updating its state need to be
fast. This is especially critical considering providers charge
users only during their function execution times (e.g., based
on CPU, memory). For instance, we cannot take 100 ms
to update a policy for each 10 ms-long execution. Due to
these overheads, expensive prediction techniques, such as
time-series analysis, cannot be used for all applications.

2) Hybrid Histogram Policy:

a) Overview: Our hybrid histogram policy addresses all
the above challenges. To address challenges #1 and #2, our
policy adjusts to the invocation frequencies and patterns of
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each individual application. It identifies the application’s invo-
cation pattern, removes/unloads the application right after each
function execution ends, reloads/pre-warms the application
right before a potential next invocation (after a “pre-warming
window” elapses), and keeps it alive for a period (until a
“keep-alive window” elapses). The pre-warming window starts
after each function execution, and the keep-alive window starts
after each pre-warming. If the pre-warming window is 0, we
do not unload the application after an execution, and the end of
the execution still starts a new keep-alive window. We explain
how exactly we compute the length of these windows below.

Figure 4 shows the pre-warming and keep-alive windows in
three scenarios. In the top scenario, the pre-warming window
is 0, and an invocation that happens before the keep-alive
window ends is a warm start. The end of the execution starts a
new keep-alive window. In the middle, the next invocation is a
warm start, as the application is re-loaded after a pre-warming
window. The end of the execution starts a new pre-warming
window. In the bottom scenario, there are two cold starts:
the first resulting from an invocation arriving before the pre-
warming window elapsed, and the second from an invocation
arriving after the keep-alive period elapsed.

The policy comprises three main components: (1) a range-
limited histogram for capturing each application’s “idle” times
(ITs); (2) a standard keep-alive approach for when the his-
togram is not representative, i.e. there are too few ITs or
the IT behavior is changing (again, note that this differs
from a fixed keep-alive policy); and (3) a time-series forecast
component for when the histogram does not capture most ITs.
Figure 3 overviews our policy and its components. Ultimately,
the policy defines the pre-warming and keep-alive windows for
each application. Next, we describe each component in turn.

b) Range-limited histogram: To address challenges #4
and #5, the centerpiece of our policy is a compact histogram
data structure that tracks the IT distribution for each applica-
tion. Each entry/bin of the histogram counts the number of
ITs of the corresponding length that have occurred. We use 1-
minute bins, which strikes a good balance between metadata
size and the resolution needed for policy actions. Keep-alive
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Fig. 5. Example application idle time (IT) distribution used to select pre-
warming times and keep-alive windows.

time scales are in orders of minutes for FaaS platforms. We
use the same scale for pre-warming. In addition, the histogram
tracks ITs of up to a configurable duration (e.g., 4 hours). Any
ITs longer than this are considered “out of bounds” (OOBs).

Given the ITs that are within bounds, our policy identifies
the head and tail of the IT distribution. We use the head to
select the pre-warming window for the application, and the tail
to select the keep-alive window. To exclude outliers, we set
the head and tail by default to the 5- and 99"-percentiles of
the IT distribution. (When one of these percentiles falls within
a bin, we “round” it to the next lower value for the head or
the next higher value for the tail.) These two configurable
thresholds strike a balance between managing cold starts and
resource costs. Figure 5 shows the histogram for a sample
application, and the head and tail markers. To give the policy a
little room for error, our implementation uses a 10% “margin”
by default, i.e. it reduces the pre-warming window by 10%
and increases the keep-alive window by 10%.

Figure 6 shows nine real IT distributions over a week. The
three histograms in the left column show cases where both
head and tail cutoffs are easy to identify. These distributions
produce the ideal situation: long pre-warm windows and short
keep-alive windows. The center cases show no head cutoff
as the head marker rounded down to 0. In these cases, the
pre-warming window is 0 and the policy does not kill the
application after a function execution.
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Fig. 6. Nine normalized IT distributions from real FaaS workloads over a
week.



c) Standard keep-alive when the pattern is uncertain:
The histogram might not be representative of an application’s
behavior when (1) it has not observed enough ITs for the
application, or (2) when the application is transitioning to a
different IT regime (e.g., change from a consistent pattern to
an entirely new one). When the histogram is not representative,
we revert to a standard keep-alive approach: pre-warming win-
dow = 0 and keep-alive window = range of the histogram (e.g.,
4 hours). This conservative choice of keep-alive window seeks
to minimize the number of cold starts while the histogram is
learning a new pattern. Our policy reverts back to using the
histogram when it becomes representative (again).

We decide whether a histogram is representative by com-
puting the CV of its bin counts. A histogram that has a single
bin with a high count and all others O would have a high CV,
whereas a histogram where all bins have the same value would
have CV = 0. The histogram is most effective in the former
case, where there is a large concentration of ITs (left and
center of Figure 6). It is not as effective when ITs are spread
widely (right of Figure 6). Thus, if the CV is lower than a
threshold, we use the standard keep-alive approach. To track
the CV efficiently, we use Welford’s online algorithm [45].

d) Time-series analysis when histogram is not large
enough: A compact histogram cannot represent ITs larger than
its range. Thus, applications with very infrequent invocations
(challenge #3) may exhibit many out-of-bounds ITs. For these
applications, our policy uses time-series analysis to predict the
next IT. Specifically, we use ARIMA modeling [46].

With an IT prediction, our policy sets the pre-warm window
to elapse just before the next invocation and a short keep-
alive window. In more detail, we used the auto_arima
implementation from the pmdarima package [47], which
automatically searches for the ARIMA parameters (p,d,q)
that produce the best fit. As applications using ARIMA are
invoked very infrequently, we update the model for each of
them after every invocation. To give the prediction some room
more inaccuracy, we include a (configurable) margin of 15%.
For example, if the predicted IT is 5 hours, we set the pre-
warming window to 4.25 hours (5 hours minus 15%) and the
keep-alive window to 1.5 hours (15% of 5 hours in each side
of the IT prediction).

e) Justification: Like other FaaS cold start policies, our
policy eagerly frees up memory when it is not needed. An al-
ternative would have been to leverage standard (lazy) caching
policies, which free up cache space only on-demand. Section II
explains the differences between these types of policies that
justify our approach. Our policy uses a standard keep-alive
with a long window, when it does not have accurate IT data
about the application, to conservatively prevent cold starts. A
shorter window would lower cost but would incur more cold
starts. We prefer our approach because it often quickly reduces
memory usage greatly, after the histogram becomes active for
the application. Instead of using a histogram, we could attempt
to predict the next invocation or idle time using time-series
analysis or other prediction models. We experimented with
some models, including ARIMA, but found them to be inac-
curate or excessively expensive for the bulk of invocations. The
histogram is accurate, compact, and fast to update. So, we rely
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on ARIMA only for the applications that cannot be represented
with a compact histogram. Producing an ARIMA model is
expensive, but can be off the critical path. Moreover, these
applications involve only a small percentage of invocations,
so computation needs are kept small. Nevertheless, we can
easily replace ARIMA with another model.

Distributed
Database

3) Implementation in Apache OpenWhisk: We implement
our policy in Apache OpenWhisk [48], which is the open-
source FaaS platform that powers IBM’s Cloud Functions [49].
It is written in Scala.

a) OpenWhisk architecture: Figure 7 shows the archi-
tecture of OpenWhisk [48]. It exposes a REST interface
(implemented using Nginx) for users to interact with the
FaaS platform. A user can create new functions (actions in
OpenWhisk terminology), submit new invocations (activations
in OpenWhisk terminology), or query their status. Here, we
focus on function invocation and container management. In-
vocation requests are forwarded to the Controller component,
who decides which Invoker should execute each function in-
stance. This logic is implemented in the Load Balancer, which
considers the health and available capacity of the Invokers,
as well as the history of prior executions. The Controller
sends the function invocation request to the selected Invoker
via the distributed messaging component (implemented using
Kafka). The Invoker receives the invocation request, starts
the function in a Docker container, and manages its runtime
(including when to stop the container). By default, each
Invoker implements a fixed 10-minute keep-alive policy, and
informs the Controller when it unloads a container.

b) Implementing our policy: We modify the following
OpenWhisk components to implement the hybrid policy:

1) Controller: Since all invocations pass through the Load
Balancer, it is the ideal place to manage histograms and other
metadata required for the hybrid policy. We add new logic
to the Load Balancer to implement the hybrid policy and
to update the keep-alive and pre-warm parameters after each
invocation. We also modify the Load Balancer to publish the
pre-warming messages.

2) API: We send the latest keep-alive parameter for a function
to the corresponding Invoker alongside the invocation request.
To do this, we add a field to the ActivationMessage API,



specifying the keep-alive duration in minutes.

3) Invoker: The Invoker unloads Docker containers that have
timed-out in the ContainerProxy module. We modify this
module to unload containers based on the keep-alive parameter
received from ActivationMessage.

B. Defuse: A Dependency-Guided Function Scheduler to Mit-
igate Cold Starts on FaaS Platforms

This section introduces the design of Defuse. We will first
demonstrate the workflow of Defuse. Then we will present
each step in detail, i.e., dependency mining, dependency set
generation, and scheduling.

1) Overview: There are three steps of Defuse, dependency
mining, dependency set generation, and scheduling. First,
Defuse takes the invocation histories of serverless functions as
the input and conducts dependency mining on these invocation
records. The dependencies are divided into two categories,
i.e. strong dependencies and weak dependencies. A function
dependency graph is constructed based on the mined de-
pendencies. Then we generate dependency sets of serverless
functions according to the graph. All these dependency sets are
the input of the dependencyguided scheduling policy, in which
all serverless functions in a dependency set are scheduled as a
whole. FaaS platforms can decide when to load a dependency
set and how long to keep it in the memory based on the
scheduling policy.

2) Dependency Mining: The first challenge to solve is how
to discover the dependencies among serverless functions. We
will start by defining the dependency we want to find and
the intuition behind it. Then we will present how to acquire
the dependencies from the invocation histories of serverless
functions and how to generate dependency sets.

a) Definition of the Dependency: Two aspects need to be
considered when defining the dependencies among serverless
functions. The first is how to precisely describe the depen-
dencies demonstrated in Section III. There are two properties
of the dependencies. First, dependent functions are likely to
be invoked together. Second, dependencies only exist among
serverless functions of the same client because the dependen-
cies result from the usage pattern of the clients. Typically,
clients only have access to their own serverless functions. It
would be meaningless to define dependencies across clients.

The second aspect is the cold starts incurred by the
unpredictable functions. If these ubiquitous unpredictable
functions cannot be properly dealt with, the latency of
FaaS platforms will degenerate greatly. The dependencies
between predictable and unpredictable functions could be
leveraged to solve the problem. Here is a motivating ex-
ample. In serverless-trainticket, users may book tickets at
any time. This will lead to the unpredictable invocation
of the function preserve-ticket. During the execution
of preserve-ticket, it will invoke dispatch-seat,
which is a common service that is invoked frequently and
is predictable. The above dependencies help us relate unpre-
dictable functions with predictable ones. The unpredictable
functions could be scheduled according to the invocation
patterns of predictable ones, which will reduce the cold starts.

Therefore, we define the strong dependencies and weak
dependencies among serverless functions.

o Strong Dependency: Function fa and function fb have strong
dependency iff. 1) they belong to the same client and
2) there is high probability of them being simultaneously
invoked in a small time window. It is a bidirectional
relationship (f, < fp).

e Weak Dependency: Function fa have weak dependency on
function f; iff. 1) they belong to the same client and 2) there
is high probability that f, is invoked under the condition
that fb is invoked. It is a single-directional relationship
(f a — f b)-

Both strong and weak dependencies should satisfy two
conditions, i.e., (1) the ownership condition, and (2) the
probability condition. The strong dependencies describe the
relationship between globally frequently invoked functions,
which are likely to be predictable. The weak dependencies de-
scribe the relationship between unpredictable and predictable
functions.

b) Strong Dependency Mining: : The purpose of strong
dependency mining is to find the relationships among func-
tions that are frequent and predictable. We need to find com-
binations of a client’s functions that have a high probability of
being invoked together. Frequent pattern mining [50] naturally
fits this requirement. Given a set of transactions, frequent
pattern mining can find all the itemsets with frequency greater
than a given threshold. Hence, Defuse adopts frequent pattern
mining to uncover the strong dependencies among serverless
functions.

Specifically, for each client, the invocation records of all her
functions can be represented as a set R = r;|i = 1,2,...,m,
where m is the number of functions of the client, r; =
(t1,t2,...,t,) is the invocation records of function f;, and
t; is the timestamp of its jth invocation. Defuse first divides
the period where the records are sampled into small non-
overlapping time windows and counts the number of invo-
cations of each function in the time window. Then we get the
invocation matrix I for the client, where I; ; is the number
of invocations of function ¢ in time window j. After that,
for each column of I, Defuse gathers all the functions with
non-zero invocation count into a single transaction and gets
all the transactions of the client. Finally, Defuse employs
FP-Growth [51] to conduct frequent pattern mining on the
generated transactions. The outputs of frequent pattern mining
are frequent itemsets. All functions in a frequent itemset
have a high probability of being invoked in the given small
time window, which satisfies the probability condition. Addi-
tionally, since Defuse conducts frequent pattern mining only
on functions that belong to the same client, the ownership
condition is satisfied as well. The strong dependencies of all
serverless functions in FaaS platforms can be retrieved by
repeating the above steps to each client on the platform.

¢) Weak Dependency Mining: The goal of weak depen-
dency mining is to find the dependencies between unpre-
dictable and predictable functions. Since the coefficient of
variations (CV) of idle time (IT) histograms of unpredictable
functions are small. Defuse distinguishes unpredictable func-
tions with predictable ones with the CV of function IT
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CDF of idle time between function invocations.

histograms. Particularly, Defuse generates the IT histogram of
each function from its corresponding vector in the invocation
matrix I. Then Defuse calculates the CV for each function
and discriminates them by a threshold.

Defuse mines weak dependencies by positive point-wise
mutual information (PPMI) [52]. Suppose the possibilities of
an unpredictable function f, and a predictable function f,
being invoked individually are P, and P,, respectively. Let
P, indicate the probability of them being invoked together.
The PPMI of the invocation of f, and f, can be represented
as:

PPMI (fu. f,) = max (0, PMI (fu, f,)) (1

Where PMI (f,, fp) is the point-wise mutual information
(PMI) [53] between f, and f,. It can be represented as:

P,
o )
Intuitively, if f, and f, are dependent, the probability of
them being invoked together will be higher than they are
each invoked independently. As a result, P, ;, will be greater
than P, - P,, which means PMI will be positive. The
higher the PM1I (f., f,) the stronger the dependency. Since
PPMI (fy, fp) is the maximum of PMI (f,, f,) and O , it
is also positively related to the degree of dependency.

To get PPMIs, Defuse first constructs a co-occurrence ma-
trix C' based on the function invocation matrix of predictable
and unpredictable functions. Each row of C' represents an
unpredictable function and each column of C' represents a
predictable one. C; ; represents the number of co-invocations
of function f; and f; in a small time window. Then we es-
timate the probability by invocation frequencies and calculate
PPMTI based on C. For each unpredictable function f,,,
a vector vy, = (PPMI(fu,, fp.),---s PPMI(fu,, fp,)) is
generated by Defuse. After sorting each vector in descending
order, Defuse assigns the top k predictable functions to be
weakly dependent on the unpredictable function f,,,, where k
can be defined by users.

3) Dependency Set Generation: The second step of Defuse
is to generate dependency sets based on the mined dependen-
cies. As mentioned in Section II a scheduler needs to decide
the granularity of scheduling and how long a function should
stay in memory. However, the mined dependencies are rela-
tionships among serverless functions, which cannot be directly
exploited. To facilitate the scheduling step, Defuse conducts
dependency set generation to convert the relationships into

PMI (fu, fp) = log,
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Fig. 9. The Dependency Graph and Dependency Sets of Serverless Functions.

function sets. First, Defuse constructs a function dependency
graph as shown in Figure 9. Each vertex in the graph is
a serverless function and each edge represents either strong
or weak dependency. The dependency sets are defined as
connected components on the graph. Then Defuse uses union-
find to extract all these connected components and group them
as dependency sets. Implied by the definition of dependencies,
functions connected with each other have a high probability of
being jointly invoked. Scheduling functions in a dependency
set together reduces the occurrences of cold starts.

4) Scheduling: The last step of Defuse is to schedule
serverless functions based on the generated dependency sets.
As discussed in Section II, for each dependency set, the
scheduler needs to decide 1) when to pre-warm it by loading
it into the memory (pre-warm time) and 2) how long to keep
it in memory after it is invoked (keep-alive time). As the IT
histogram is proved to be effective in scheduling functions
in [13], we adopt the same policy to determine the pre-warm
time and keepalive time of each dependency set. Figure 8b
illustrates the cumulative distribution function (CDF) of an
IT histogram of a dependency set. We set the 5'h percentile
of the IT histogram as the pre-warm time and load the set
of functions into the memory this period after its invocation.
Then we set the time between the 5'h and 95'h percentile as
the keep-alive time, which means a dependency set will be
reserved in the memory without being invoked for this period.

Besides, there exist some dependency sets without clear
invocation patterns. We distinguish dependency sets as pre-
dictable sets and unpredictable sets based on their CVs. The
scheduling policy is shown in Figure 8a. For predictable
sets, Defuse decides the pre-warm time and keep-alive time
based on their IT histograms. For unpredictable sets, Defuse
steps back to a fixed-timeout policy. Since the granularity
of scheduling is finer, Defuse can employ more aggressive



timeout settings and further reduce the negative effect brought
about by these unpredictable sets.

C. SPES: Towards Optimizing Performance-Resource Trade-
Off for Serverless Functions

This section introduces the design of SPES. An ideal sched-
uler should decide to load a function exactly before its invoca-
tion and evict it from memory after the execution if no more
invocations are imminent. The decision-making relies on fine-
grained invocation prediction. To this end, we propose SPES,
whose overview is presented in Figure 10. SPES consists of
four parts: deterministic function categorization, indeterminate
function assignment, adaptive strategy application, and func-
tion provision based on invocation prediction. Specifically,
we first summarize typical invocation patterns, which result
from pre-defined triggers [54] and the combinatorial methods
of function calling (in common application scenarios [55])
and then formulate their corresponding definitions. If a func-
tion satisfies the definitions, it is categorized; Otherwise, the
indeterminate functions are assigned to three supplementary
types. We also design two extra adaptive strategies to handle
the concept shifts as FaaS evolves. Finally, SPES provisions
functions according to rule-based invocation prediction, where
each type follows its own predicting rule.

Note that different triggers can exhibit the same timing
feature in invocations. For example, the service bus trigger
and the event gird trigger both can handle moving datagrams
(though focusing on different message types). It is neither
necessary nor desirable to correspond each trigger to a function
type in the context of the cold start problem.

Let us start with three definitions:

o Waiting time (WT): the length of successive idle time.
Take an invocation sequence (28,0,12,1,0,0,0,7) as an
example, where each value denotes the invocation count
at each sampling slot, derived to a sequence of WTs
{WT} = (1,3), as no invocation exists at the 2nd slot or in
slots 5-8. If we foreknow the next WT, for example, at the
4th slot, we know no invocations will arrive in slots 5-8, then
we can easily make a perfect decision: evict the function
now and re-load it at the end of slot 9. Hence, we can
transform invocation prediction to WT prediction. Different
from a previously proposed inter-arrival time (IAT) [13],
WT depicts the slot-grained interval between two successive
invocation sequences, from the last’s end to the next’s start.
WT is also different from idle time (IT). IT is the time
without invocations or subsequent function executions, so IT
exists after any single execution. WT, instead, only appears
when a successive series of invocations ends, and the end
of a single execution does not necessarily incur a WT.

o Active time (AT): the length of successive time with invo-
cations. The above-mentioned invocation sequence delivers
an AT sequence {AT} = (1,2,1) because the function is
invoked in slots 1, 3—4, and 9.

o Active number (AN): a descendable definition, the number
of successive invocations during AT. Again, the above
sequence delivers { AN} = (28,13, 7).

1) Deterministic Function Categorization: This section de-
fines five invocation types based on typical invocation pat-
terns and categorizes functions accordingly. Table I shows an
overview of the five types. The guiding principle for definition
is from easy to difficult, also serving as the categorization
priority: if a function fits a former type, it will not fit any
latter type. Our introduction follows this order.

a) Always warm: This type describes consistently active
functions, such as long-running operations and hyperfrequent
calls, which usually involve durable or timer-triggered func-
tions (whose interval is small enough). For example, functions
in continuous integration/deployment (CI/CD) pipelines are
consistently invoked to automate code building, testing, and
deployment. A function is defined as “always warm” if 1)
it is invoked at every sampling time or 2) the sum of inter-
invocation time is < one-thousandth the observing time. Such
functions are undoubtedly always loaded.

b) Regular: Regular task processing, usually using timer-
triggered functions, is a basic functionality (e.g., polling). Yet,
their actual invocations may not be strictly periodic (with a
constant WT) since there are undesired fluctuations: 1) The
exact first/last WTs during an observing period are almost
impossible to record. 2) Periodically generated events can
be blocked or delayed by contingencies such as concurrency
limits, network connectivity issues, etc. 3) Other events can
invoke a mostly regularly invoked function occasionally.

Here comes the slacked definition: A “regular” function
satisfies either 1) the difference between the 5th and 95th
percentile of its WT sequence is < 1 or 2) the coefficient
of variation of WTs is close to zero (< 0.01 in practice).
Otherwise, we remove the first and last WTs and re-check if
the function follows the definition. If the answer is still no, we
apply another slacking rule by merging adjacent small WTs.
In particular, for each WT closely valued to the WT mode,
its adjacent small WTs are gradually merged until reaching
(D the sequence’s end or (2) another WT close to the mode
or (3 an already merged WT. In this way, a WT sequence
valued by (1439,1438,1,1439,1438,1) is processed to be
(1439, 1439,1439,1439), and then it seems “regular”. With
a processed WT sequence satisfying the above definition, the
function belongs to the “regular” type. We partially eliminate
accidental factors by processing WTs with slacking rules and
modeling essential invocation behaviors. Finally, we record
the median of WTs as the predictive value for invocation
prediction, leveraged in Section IV-C4.

c) Approximatively regular: This is the derived type
from “regular”. A regular function may experience invocation
variance and long-term disturbance. For example, a data-
processing function is expected to receive updates from a data
station every three minutes (IoT Hub trigger functions). Yet,
limited by the data transmission capability, the function is
actually invoked every 3-5 minutes. We define such functions
as “approximatively (appro-)regular”. Particularly, a function
is “appro-regular” if the occurring count of the first n fre-
quently appearing values (modes) of WTs is > a large percent
(90% practically) of the WT sequence’s length. n is a pre-
defined integer. The predictive values for these “appro-regular”
functions are the first n modes.
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TABLE 1
A BRIEF OVERVIEW OF THE WELL-DEFINED FUNCTION TYPES.

Characteristics Definition Predictive values

Type name

Almost invoked all the time . In\{okeq at every umf.: . —
Inter-invocation time < observing time%o

(Processed) Pos({WT}) — Ps({WT}) <1
CV of {WT} < 0.01

(Processed) the count of Mode, ({WT}) >
0.9x sequence length

Pyo({WT}) < a small constant
min({AT}) > 71 min({AN}) > 72

Always warm

Regular Almost invoked periodically Median of WTs

Appro-regular  Invoked quasi-periodically Mode, ({WT})

Dense Frequently invoked [min, max] of Mode, ({WT})

Successive Successively invoked

71 <72

d) Dense: This characterizes irregular but frequent invo-
cations with intermittent idle durations. “Dense” functions can
involve several triggers: queues (or service bus using the queue
flavor) for frequent messages in asynchronous processing,
influenced by variations in message arrival times; Cosmon DB
triggers for frequent real-time data processing; HTTP triggers
for processing frequent HTTP requests. Functions with a 90"
percentile of the WTs < a small constant are defined as
“dense.” The range of the first k¥ modes derives predictive
values, i.e. [min(Modey(WTs)), max(Mode);(WTs)], where
k is an empirical integer. Such a function should be unloaded
only if its idle time is larger than the constant.

e) Successive: This describes inactive functions experi-
encing consecutive invocations in a short timeframe (temporal
locality) before returning to an inactive state. It can involve
HTTP trigger functions (e.g., bursty social media trends),
storage trigger functions (e.g., uploading files to Blob Storage),
etc. In practice, feedback loops engaged functions, caching
mechanism implementations, and load balancing-involved ap-
plications can also exhibit such behavior. We define this as
min({AT}) > v or {AN} > 72, where 1 < 72 and they
are pre-defined lower bounds. Predicting the start of such
an invocation wave is highly difficult. Nevertheless, we can
tolerate the first invocation and keep the function alive until the

wave ends. With limited cold starts, we save lots of memory.

2) Indeterminate Function Assignment: This section han-
dles functions that do not satisfy the above five definitions
using two strategies: (1) “forgetting” previous records to re-
check whether the not-too-long history invocations satisfy the
five definitions, and (2) assigning the remaining functions with
three extra types.

a) Forgetting: As discussed in §??, function invocations
experience concept shifts. For example, a regular invoked
function can be categorized as “always warm” if the interval
is adjusted to be smaller than the recording unit. Therefore,
the near-the-present records should be given priority. We slice
out the sequential invocation observations in days, from the
beginning to the half. Then, we gradually remove the older
observations from the original d-day observations and check
whether invocations in 2nd-dth days conform to existing
definitions. If not, we check the invocations in 3rd—dth days,
and so on, until the |d/2|th day.

b) Assigning: The remaining indeterminate functions are
assigned to three types according to the validation results:
DI1. Pulsed describes functions showing less obvious temporal

locality in invocations than “successive” ones. Similarly,

we allow a cold start at the first invocation time and
keep the function warm until its ideal time reaches a pre-
defined threshold.



D2. Correlated invocations are predicted based on other func-
tions. Functions usually work in a logic workflow topol-
ogy, interacting with other functions. This is present in
several common application patterns, including function
chaining (where a sequence of functions executes in a
specific order), fan-out (where a function calls multiple
functions in parallel), and fan-in (where a function waits
for multiple functions to finish) [55]. We define such
functions using T'-lagged co-occurrence rate (7-COR),
derived from COR in §??. T-COR is the COR between
the target invocation sequence and an 7-time-lagged
invocation sequence of its candidate functions (those
sharing an application/user). The lagged COR can better
reflect how the invocation of candidate functions indicates
near-future invocations of the target function. If the 7T'-
COR reaches a threshold (practically 0.5, T < 10), the
candidate invocation is an important predictive indicator,
and these two functions are linked. A function can
have multiple linkages with different functions, including
categorized and uncategorized ones.

D3. Possible functions are infrequently invoked but have at
least one mode of WTs (appears more than once). By
taking the modes as predictive values, it is possible to
predict invocations, though such prediction is deemed to
be insufficiently satisfactory.

If any of the three strategies yields both the least cold
starts and the minimum wasted memory during validation, the
indeterminate function is directly assigned accordingly. Other-
wise, the rate of rise is decided. Denote the cold starts of the
above three strategies as (cs1, csa, ¢s3) and the corresponding
wasted memory are wmy,wmse, wms. Assume definition D1
delivers the minimum cold starts while strategy D2 delivers
the minimum wasted memory. We compute the rise rates:
Acs = (csg — c¢s1)/cs1 and Awm = (wmy — wms)/wma.
If Acs x a < Awm, then the function is assigned to DI, i.e.
“plused”; otherwise, D2 prevails, where a € (0, 1) is a scaling
factor, and the smaller « € (0, 1), the more importance is put
on cold starts than wasted memory.

Most functions have been categorized so far, except those
that have never been invoked in the validation. We simply
leave them as “unknown” since they are likely very infre-
quently invoked and hardly have meaningful predictive indica-
tors. Some unknown functions may be categorized during the
online provision based on our adaptive strategies illustrated in
the next section (§IV-C3).

3) Adaptive Strategy Application: This section designs two
adaptive strategies to handle concept shifts during the online
provision: one adjusts the predictive values; the other is based
on inter-function correlation. These strategies can further ad-
dress some unknown or unseen functions (those that never
appear in the training data) with meaningful patterns during
the online provision. The application of these strategies is
also presented in Figure 10, where the invocation prediction
and the prediction values are adaptively updated upon online
invocations.

a) Adjusting: This adaptive strategy contains three steps:

S1. Record the WTs during the online provision. If there are
enough WTs, then initiate the adaptive updating.

S2. Update the predictive values if the corresponding values
computed from newly collected WTs change significantly
with the mean of the old and new ones.

S3. If the new WTs for an unknown or unseen function
conform to previous definitions with enough samples,
categorize the function as the corresponding type.

S2 requires more explanations. We record the predictive values

for four types: ‘regular”, “appro-regular”, “dense”, and “possi-

ble”. Their predictive values are the median, the first n modes,
the range of the first £ modes, and the WT values occurring
more than twice, respectively. Take “regular” as an example.

Suppose the absolute difference between the median of offline

WTs (i.e. the predictive value) and that of online WTs is larger

than the standard of offline WTs. The new predictive value is

updated by the mean of the old median and the new median.

Other types adopt a similar adjusting strategy.

b) Online correlation: This strategy correlates unseen
functions with known functions or appeared unseen functions,
as the “correlated” strategy does. To speed up the computation
and obtain informative indicators, we only consider candidate
functions sharing the same trigger with the target function
(aka. unseen function). Initially, if one of the candidates
is invoked, we also pre-load the target function. Afterward,
we gradually remove less correlated candidates. Again, we
adopt COR to measure the degree of correlation. We count
the pair-wise target-candidate COR at each slot and record
the maximum. If the difference between a COR and the
maximum is large enough, the corresponding candidate is
kicked out from consideration unless its COR returns close
to the maximum.

4) Next Invocation Prediction and Provision: This section
predicts invocations and pre-loads functions based on the
predictive values or indicators. “(Appro-)regular” functions
have discrete predictive values and ‘“dense” functions use
continuous ones. In terms of “possible” functions, if the range
of predictive values is larger than a threshold, the values
are regarded as discrete; otherwise, we consider continuous
integers inside the range of predictive values. The predicted
invocation times are naturally the last invoked time added by
each of the predictive values.

For the online provision, if one of the predicted invocation
times falls in [t — Oprewarm, t + Oprewarm) With a pre-defined
parameter 0p,carm at the time of ¢, the function will be pre-
loaded. If a loaded function’s current WT is > Ogiyenup, the
function will be evicted from the memory, where the parameter
Ogivenup differs among function types. Algorithm 1 shows
our provision optimization, which is rule-based with good
scalability and implements our defined strategies faithfully.
Every time the algorithm returns the updated MemSet, based
on which we load function instances.

V. EVALUATION

We evaluate Hybrid, Defuse and SPES by answering four

research questions:

« RQ1: How effectively does these methods decrease cold
starts?

« RQ2: How much memory waste and computation overhead
does these methods incur?



Algorithm 1: The provision algorithm of SPES.

Input: FList: hash ids for all functions; FState: recording the
necessary information about all functions, such as the
current WT, history WTs, predictive values, the time
of the last invocation, etc; Invo™®: invocation
numbers of each function at the time of ¢; MemSet:
hash ids of loaded functions; UCorr: the correlations
of unseen functions.

Output: The updated MemSet, FState and UCorr

1 Function Provision (FList, FState, Invo'"), MemSert,
UCorr) :

2 for f € FList do
3 if Invo(t)[f] > 0 then
4 FState[ f].1ast_invoked < t;
5 FState[ f].update_ WTs(FState[ f].current_WT);
6 FState[ f].current_WT <« O;
7 /I Adaptively adjusting predictive values.
8 FState[ f].update_predictive_values(t);
9 if f ¢ MemSet then
10 FState[ f].cold_start_record(t);
11 MemSet.add(f);
12 end
13 else
14 FState[ f].current_WT += 1;
15 pre_load_flag <
FState[ f].pre_load(FState[ f1.0prewarm);
16 if pre_load_flag is False AND
FState[ f ].current_WT > FState[ f].0givenup
then
17 | MemSet.remove(f);
18 else if pre_load_flag is True then
19 | MemSet.add(f); // Pre-loading.
20 end
21 /I Adaptively processing unseen functions.
22 UCorr.update();
23 end
24 return MemSet, FState, UCorr
25 End

¢« RQ3: How does these methods trade off memory waste
with latency reduction?

« RQ4: How do complementary designs influence these
methods?

A. Experiment Settings

We evaluate these methods on the most widely used indus-
trial dataset [56] released by Microsoft Azure Function [13]
with real-world invocation traces. The dataset contains the
invocation counts per minute for 14 days. The first 12 days
are used for pattern modeling (training), and the last two
days are used for the simulation, conducted on a workstation
with an 8-core Intel i5-3470S CPU and 16 GB memory.
The records involve 15,097 users, 24,964 applications, and
83,137 functions. 71,616 functions appear in the training data,
39,388 functions appear in the simulation data, and 743 never
appeared during training.

We adopt the simulation principles following [13]. First,
assume all executions finish within one minute since 1) most
(96%) functions have very short execution time (less than
60 seconds), and 2) we can thereby calculate the worst-
case wasted resource time. Second, we assume that cold-start

latency for each function is the same, so we only need to care
about the number of cold starts and the wasted memory time.

1) Baselines: We compare SPES with five state-of-the-
art baselines applied to the application layer. Approaches
involving system renovations are out of this paper’s scope
and will be discussed in Section ??. Our baselines include
FaaSCache [15], Defuse [22], Hybrid [13], and a fixed keep-
alive policy. We reproduce these methods as they do not
provide open-source code by strictly following the original
papers and referring to a reproduction attempt [57]. Note
that the original Hybrid method works at the application unit
(Hybrid-Application, HA), so we derive a Hybrid-Function
method by employing its design on the function granularity
(Hybrid-Function, HF), following [22]. All the parameters are
set according to their original papers. The fixed keep-alive
policy adopts a length of 10 mins. FaaSCache requires a pre-
defined memory limit, so we adopt the maximum memory size
of SPES during the whole simulation.

2) Metrics and parameters: To quality the cold-start opti-
mization, we measure the function-wise (application-wise for
HA) cold-start rate (CSR), i.e. the number of cold starts di-
vided by the number of invocations. We apply wasted memory
time (WMT, §II1-B) to gauge the idle resource waste. Naturally,
the lower the CSR or WMT, the fewer cold starts or wasted
resources, the better. We also monitor the effective memory
consumption ratio (EMCR), which measures the fraction of
invoked function instances relative to the total loaded instances
on each host machine, serving to assess resource efficiency.
A higher EMCR signifies wiser memory allocation, as it
indicates a greater proportion of memory is used by active
instances rather than remaining idle. As for the parameters, we
set Oprewarm as two. The Ogiyenyp for “dense” and “plused”
is five, whereas one for the other types. Section V-D further
discusses the impact of these pre-defined parameters.

B. RQI: Effectiveness in Cold-Start Reduction

Figrue 11 displays the cumulative distribution (CDF) of
CSR under the provision decisions of SPES and baselines.
With a fixed y-axis value, the line representing SPES is
positioned to the left of other baseline lines, which indicates
that SPES consistently leads to fewer cold starts across a
variety of functions, each corresponding to different invocation
frequencies. In particular, SPES reduces the 75th percentile
cold-start rate (Q3-CSR, for simplicity) from 0.215 to 0.108
compared to Defuse, the best-performing baseline, achiev-
ing 49.77% improvement, and reduces 75-CSR by 64.06%—
89.20% compared to other baselines. We care more about Q3-
CSR because infrequently invoked functions benefit most from
optimization [13]. Moreover, 57.99% functions experience no
cold starts with SPES, indicating that SPES can allow most
functions to be warmly invoked. In contrast, 25.61%-52.59%
functions completely experience warm startup using baselines
where FaaSCache is the best one. On the other hand, regard-
ing infrequently invoked functions, SPES reduces the 90th
percentile CSR by 19.87% compared to the best-performing
baseline, HA. Such improvements imply that SPES exhibits
significant optimization performance for both frequently and



infrequently invoked functions, while no baseline can achieve
second-best performance with different percentile CSRs.
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Fig. 11. Cold start behaviors of SPES and its competitors.

Furthermore, SPES significantly reduces “always-cold”
functions, which always experience cold starts upon invoca-
tions (with CSR equal to 1.0). Figure 12(b) further presents
the always-cold percentage, and that of SPES is just less than
8%. Among the baselines, HA has the fewest always-cold
functions, which is closest to that of SPES, whereas Defuse
and HF, both function-grained methods, increase always-cold
functions dramatically. This can be attributed to infrequently
invoked functions. About 3.82% functions are invoked less
than twice during training, and 6.14% are only once during the
simulation, so always-cold functions seem inevitable with lim-
ited records. HA mitigates this issue by grouping and loading
functions together, yet resulting in more memory consumption
and waste. SPES instead connects unseen and unpredictable
functions with known functions using trigger, application,
and user information and gradually updates the associated
functions based on actual invocations. Hence, without much
extra memory, SPES performs close to HA.

In addition to cold start reduction, Figure 12(a) presents
the memory usage normalized by the averaged one of SPES.
SPES’s memory usage is only 8.08% more than the most
resource-efficient method, the fixed keep-alive policy, and
saves 36.07%-55.55% memory compared to the other base-
lines on average. It only consumes about half of the memory
of Defuse, the best baseline for cold start reduction.
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Fig. 12. SPES is memory-efficient compared to most baselines with relatively
few always-cold functions.

Figure 13 shows the averaged CSR among different types.
As the simulation period is not long enough, we only catego-
rize unknown functions into the type of “possible”, denoted
by “newly-possible”. We can see that “unknown” functions
contribute the most to cold starts, and “pulsed” functions also
incur high CSRs. This is attributed to insufficient historical
invocation records. Actually, SPES intentionally connives a
cold start when an “unknown” or “pulsed” invocation arrives

after a long idle time. Though we can leverage less predictive
information, such as the averaged WT, to predict the next
invocation or even keep such functions always warm, this can
lead to considerable unbillable and wasted memory, undesired
for FaaS providers. This outcome is deliberating on the trade-
off between performance and resource allocation. Such an
issue can be mitigated with more invocation histories revealing
predictive indicators for better provision.
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Fig. 13. Averaged cold start rate of each type.

Meanwhile, though “correlated” and “possible/newly-
possible” functions also lack predictive information with in-
frequent invocations, their invocations are more likely to be
predicted. Thus, we connect some of them with deterministic
functions or adaptively extract meaningful behavior indicators
from incoming invocations. In this way, their cold starts are
suppressed effectively. We will further discuss the usefulness
of such strategy designs in Section V-E.

C. RQ2: Wasted Memory Time and Overhead

1) Wasted Memory Time: Figure 14(a) presents that SPES
significantly decreases the wasted memory time by 10.89%-—
63.50% compared to all baselines. Particularly, compared to
Defuse, the most effective baseline on cold-start reduction, we
reduce 57.06% of the WMT. Figure 14(b) also demonstrates
that SPES efficiently uses memory resources, whose EMCR is
46.32%, 5.20%—-120.89% higher than compared approaches.
The success of SPES can be attributed to careful pattern
modeling and differentiated strategies.
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Fig. 14. SPES significantly reduces memory waste and achieves more
effective memory consumption.

To further demonstrate how each type contributes to WMT,
we derive a metric called the ratio of WMT, which is the
WMT divided by the number of invoked times for each
serverless function. If a type contains more functions or
function invocations, the bespoke scheduling strategy tends
to make more proactive provisions, likely resulting in more
WMT. Thus, the ratio of WMT can better portray the accuracy
of invocation prediction and the usefulness of pre-loading.



Figure 15 shows the distribution of the ratio of WMT among
different function types, from which we can see the “possible”
functions have the highest probability of generating WMT. The
predominant reason for this is the infrequent invocation of
possible functions, which leads to a scarcity of patterns in the
historical database and complicates establishing associations
with other functions. Despite these challenges, we persist
in our efforts to forecast and pre-warm the invocation of
these functions, aiming to reduce cold starts as much as
possible. Different from “pulsed” or “unknown” functions that
are allowed to generate cold starts, we encourage aggressive
prediction attempts for “possible” functions since the latter
have at least a duplicated WT, enabling potential predictive
value obtaining. However, this strategy unavoidably results in
augmented resource wastage.
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Fig. 15. The ratio of WMT of each function type.

2) SPES Overhead: Herein, we measure the additional
latency induced by our implementation. The time complexity
within each time window of our approach and the fixed keep-
alive policy is O(n), where n represents the number of func-
tions, as it only requires accessing the corresponding function’s
category and its predictive value(s). For each invocation, the
time complexity of pre-load/unload operations is merely O(1).
Within each time window, the time complexity for the fixed
keep-alive method is O(m), where m is the number of loaded
functions. In contrast, FaaSCache has a time complexity of
O(logm), which involves identifying the container with the
lowest priority. Other methods, such as HA, HF, and Defuse,
have higher complexities, mainly due to the computational
bottleneck in updating histograms. The simulation results align
with these expectations. Compared to the fastest fixed keep-
alive baseline, which has an average overhead of 0.024 sec
per minute, our method adds 0.44 sec’s overhead per minute,
mainly due to our more complex strategies for each provision
action. Contrasted with the second fastest, FaaSCache, our
overhead is reduced by 6.8%. In summary, our overhead is
inconsequential compared to the typical latency found in most
existing serverless platforms.

D. RQ3: Trading-off resources and latency

We control the trade-off through two parameters: 0p,cwarm
and Og;penup. As introduced in Section IV-C4, the former de-
cides how long to pre-load a function with a predicted nearby
invocation, and the latter decides how long to keep an idle
function warm. Intuitively, the larger these two parameters,
the more likely a function is to pre-load or keep loaded with
more memory usage and potential wasted memory, and the

less cold starts. In RQ1 (§V-B), we set O,rciparm as two, and
the 0yivenup for “dense” and “plused” is five, whereas one for
the other types. Our original simulation setting is denoted by
the red star (x) in the following figures.

Figure 16(a) shows the trade-off under different &, cuqrm.
where a point (x,y) represents using x-unit memory and
obtaining the 75-CSR of y, under a certain 0,,cyqrm. The
memory is normalized to that under the original setting. The
normalized memory usage and the 75-CSR are nearly linearly
correlated. We can conveniently choose a proper setting by
controlling €prcqqrm- Since the red star is below and the most
distant from the fitting line, 0prciparm = 2 is the optimal value.

As 0givenup should be integers and different from each type,
we simply multiply the original Og;yenup setting by 2, 3, 4,
and 5, respectively. The results are shown in Figure 16(b),
where the linear relationship still approximately holds, but
larger Ogivenups have less impact on cold start reduction.
This indicates that keeping invoked functions too long is sub-
optimal and idle functions should be evicted promptly.
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Fig. 16. Under different 6prewarm, the memory usage and Q3-CSR exhibit
an approximately linear relationship. Similarly, under different 6y;yen . the
linear relationship still approximately holds, yet dramatically increasing the
memory does not guarantee cold start mitigation.

E. RQ4: Impact of Strategy Designs

1) Impact of inter-function correlations: This section
gauges our design in processing ill-informed functions by de-
veloping inter-function correlations. As introduced in §IV-C2,
we propose a simple yet effective T-lagged co-occurrence rate
metric to connect ill-informed functions with categorized ones.
Those with closely related known functions are “correlated”.
This strategy is applied during both training and simulation.



Figure 17 presents the impact of this strategy. w/o Corr
means re-categorizing ‘“‘correlated” functions into “pulsed”,
“possible” or “unknown” during training, but we still deal
with unseen functions during the simulation. w/o Online-
Corr denotes removing the simulation-applied strategy, i.e.
regarding unseen functions as “unknown” but still retaining
the “correlated” functions obtained during training. It is shown
that the latter strategy slightly reduces the Q3-CSR, whereas
the former makes a significant contribution. We attribute the
results to the influenced function number. 4.71% of the func-
tions belong to “correlated” whereas only 1.89% are unseen.
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Fig. 17. The correlation strategy contributes to the cold-start and memory-
waste reduction.

2) Impact of designs regarding concept shifts: This section
studies the impact of two designs regarding concept shifts:
1) forgetting: forcing unknown functions to a defined type
by ignoring older invocations while focusing more on recent
data (§1V-C2); 2) adjusting: adaptively adjusting the predictive
values during the simulation (§IV-C3). Figure 18 depicts
the effectiveness after omitting these two adaptive designs,
respectively. Removing the second shifting strategy has a
slighter impact. Similarly, this is attributed to the fact that
the forgetting strategy involves more function categorization
efforts. We do not pre-load unknown functions, so the forget-
ting strategy categorizing 340 unknown functions has a larger
impact. In contrast, the adjusting strategy only categorizes 174
unknown functions into the “newly-possible” type and updates
the predictive values of 499 “(appro-)regular/dense” functions,
resulting in less impact. Nevertheless, both designs contribute
to the effectiveness of SPES. These designs will play a greater
value with more data and a longer simulation period (usually
indicating larger shifts).
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Fig. 18. SPES’ adaptivity benefits cold-start reduction.

VI. CONCLUSION
This survey has reviewed three state-of-the-art ap-
proaches—SPES, Hybrid, and Defuse—that address the cold
start issue in serverless computing while optimizing the
performance-resource trade-off. Each approach offers distinct

strategies for improving serverless function provisioning, re-
ducing latency, and minimizing resource wastage. SPES em-
ploys a differentiated scheduling strategy based on predictable
invocation patterns to optimize function pre-loading and un-
loading, thereby reducing both cold start latency and memory
overhead. Hybrid characterizes the FaaS workload and pro-
poses a resource management policy that effectively balances
cold start mitigation with resource efficiency, making it suit-
able for large-scale cloud environments. Defuse introduces a
dependency-aware scheduling method that leverages function
invocation patterns to reduce cold starts, improving system
efficiency. These approaches present valuable contributions to
the optimization of serverless function deployment. Further
research is needed to refine these methods and explore hybrid
solutions that integrate multiple strategies, thereby enhancing
the scalability, responsiveness, and cost-efficiency of serverless
systems.
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