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Abstract—With the rapid development of artificial intelligence
(AI), large language models (LLMs) have emerged to make
life more convenient for people. However, the deployment of
LLMs, encompassing numerous parameters, demands substan-
tial computational power and high memory consumption. The
computational characteristics of LLMs pose significant serving
challenges in real-world scenarios that necessitate low latency and
high throughput. This survey covers cutting-edge advancements
in efficient LLMs serving systems, including low-bit quantization,
parallel computing, and memory management. Additionally, this
survey delves into prospective future directions in the design of
efficient LLMs serving systems, offering insights to researchers
striving to overcome the barriers of effective LLMs serving.

Index Terms—large language models, serving system, quanti-
zation, parallel computing, memory management

I. INTRODUCTION

Generative large language models (LLMs) have indeed
become a cornerstone in the rapid evolution of artificial
intelligence (AI), pushing the boundaries of what machines can
achieve in understanding and interacting with human language.
These models have not only excelled in traditional NLP tasks
but have also opened up new avenues for AI applications:

• Machine Translation [1]: LLMs have significantly im-
proved the accuracy and fluency of translations, making
cross-cultural communication smoother and more acces-
sible. They analyze vast amounts of bilingual text to learn
context, idioms, and nuances, thereby reducing errors that
were common in older translation systems.

• Sentiment Analysis [2]: By processing extensive datasets
of human expressions, LLMs can now detect subtle
emotional cues in text, helping businesses understand
consumer sentiment at a granular level. This capability
aids in brand management, product development, and cus-
tomer service by offering insights into public perception.

• Question Answering [3]: With models like those from
the GPT family, the ability to provide accurate and
contextually relevant answers to complex queries has
been enhanced. This technology is pivotal in educational
tools, customer support, and information retrieval sys-
tems, where quick, precise answers are crucial.

• Text Generation [4]: From writing articles to creating po-
etry or scripts, LLMs can generate text that is increasingly
difficult to distinguish from human-written content. This
has implications for content creation, where AI can assist
or even autonomously produce written material, reducing
the workload on human writers.

The development of Transformer-based architectures like
the GPT-family (Generative Pre-trained Transformer) [5]–[7],
LLaMA-family [8]–[10], and other notable public LLMs such
as OPT [11], BLOOM [12], Mistral [13], Baichuan [14], and
GLM [15], [16] has been instrumental. These architectures
have:

Revolutionized NLP: By introducing self-attention mech-
anisms, these models can weigh the importance of different
words in a sentence, leading to better contextual understanding
and generation of text. This shift has allowed for more
dynamic and fluid processing of language, moving away from
rigid rule-based systems to more adaptable, learning-based
approaches. Automated Programming [17]: Assisting devel-
opers by suggesting code, auto-completing lines, and even
writing small programs or scripts based on natural language
instructions. Science Discovery [18]: Helping researchers by
analyzing scientific literature, predicting outcomes, or even
suggesting new research directions through pattern recogni-
tion in vast datasets. Personalized Digital Assistants [19]:
Enhancing the personalization and predictive capabilities of
digital assistants, making them more intuitive and responsive
to user needs. Medical Diagnosis [20]: Aiding healthcare pro-
fessionals in diagnosing diseases, recommending treatments,
and analyzing patient data to improve outcomes.

The versatility of these models stems from their ability
to learn from vast amounts of text data, which allows them
to understand and manipulate language in ways previously
thought impossible. Their impact is profound, not just within
the tech industry but across various sectors, demonstrating
the potential of AI to revolutionize how we interact with
technology and each other. As these models continue to
evolve, their integration into everyday applications will likely
grow, further blurring the lines between human and machine
interaction.

The unprecedented success of large language models
(LLMs) in recent years has revolutionized various fields,
from natural language understanding to automated content
generation. However, this success comes with its own set
of challenges, most notably their formidable computational
requirements during serving.

1) Model Size and Complexity: LLMs often contain bil-
lions of parameters, which not only demand vast storage
space but also require significant computational power to
process each request. Their complexity arises from the
intricate network architectures designed to capture deep



semantic understanding, making real-time processing a
daunting task.

2) Energy Consumption: The training and serving of these
models consume enormous amounts of energy. Data
centers hosting these models contribute significantly to
carbon footprints, raising environmental concerns. The
energy required for each interaction with an LLM can be
equivalent to the daily energy consumption of multiple
households, highlighting the sustainability issues at play.

3) Scalability: Scaling these models to serve a large number
of users simultaneously while maintaining performance
efficiency is a significant challenge. Traditional scaling
methods like vertical scaling (increasing the power of a
single server) or horizontal scaling (adding more servers)
face limitations due to the models’ resource demands.

4) Accessibility: The high computational overhead means
that only organizations with substantial financial and
infrastructural resources can afford to deploy these
models. This creates a digital divide, where only large
corporations or well-funded research institutions can
leverage the full potential of LLMs, leaving smaller
entities or individuals at a disadvantage.

This survey paper focuses on addressing the critical need
for efficient LLM serving. It delves into the multifaceted
strategies proposed by the research community to tackle these
challenges:

Low-bit Quantization [21]–[23]: This technique involves
reducing the precision of the model’s parameters from 32-
bit or 16-bit to lower-bit representations like 8-bit or even
4-bit. By doing so, the model size is significantly reduced,
allowing for faster computation and lower memory usage
without substantially sacrificing accuracy.

Parallel Computing [24]–[26]: Strategies like model paral-
lelism, where different parts of the model are processed on
different computational units, and data parallelism, where a
single model processes multiple data batches simultaneously,
are explored. These methods help in distributing the com-
putational load, thereby enhancing throughput and reducing
latency.

Memory Management [27], [28]: Efficient memory manage-
ment techniques, such as dynamic memory allocation, caching
strategies, and optimized data loading, are crucial. These
approaches aim to minimize the memory footprint during
model inference, which is especially important for models that
exceed the memory capacity of typical hardware.

The paper is structured as follows: we begin by providing
background information on the challenges of serving LLMs
in Section 2. Section 3 discusses the advancements in effi-
cient LLM serving systems, focusing on low-bit quantization,
parallel computing, and memory management, respectively.
Section 4 predicts the future of efficient LLM serving systems,
highlighting potential research directions and emerging trends.
Finally, Section 5 concludes the paper by summarizing the key
findings and insights presented in this survey.

Fig. 1. The architecture of the Transformer model.

II. BACKGROUND

A. The Transformer Architecture

Transformer-based Large Language Models (LLMs) have
brought about a major change in the field of natural language
processing by introducing a new approach to understanding
and generating human language. At the core of this advance-
ment lies the Transformer architecture [29]. As is shown in
Figure 1, transformer utilizes self-attention mechanisms to
determine the significance of various parts of the input data
in prediction-making.

Mathematically, the self-attention mechanism in Transform-
ers can be described as follows: Given an input sequence
X = [x1, x2, ..., xn], the Transformer calculates queries Q,
keys K, and values V through linear transformations of X .
The self-attention scores are then computed as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (1)

where dk is the dimension of the keys. This mechanism
allows the model to focus on different parts of the input



Fig. 2. The example text tokenization process of OpenAI’s tokenizer.

sequence for each element of the output, capturing complex
dependencies regardless of their distance in the input sequence.

Another crucial component of Transformers is the Feed-
Forward Network (FFN), which is found in every layer of
the Transformer and plays a key role in its computational
complexity. The FFN usually includes two linear transforma-
tions separated by a non-linear activation function, commonly
shown as:

FFN(x) = max(0, xW1 + b1)W2 + b2, (2)

Here, W1, W2, b1, and b2 represent the learnable parameters
of the FFN. The non-linear function max(0, ·), also known as
ReLU, adds necessary non-linearity to the model, enabling it
to learn complex patterns.

The FFN contributes significantly to the model’s parameters,
affecting its memory usage and computational demands. In
each Transformer layer, following the multi-head attention
(MHA) step which gathers information from various parts
of the input, the FFN independently processes this combined
information for each position. This parallel processing ability
is a key feature of the Transformer, allowing it to handle
sequences efficiently. However, this also means that the com-
putational load and memory requirements increase with the
input sequence length and network depth.

The integration of self-attention and FFN in Transformer-
based LLMs allows these models to effectively grasp diverse
linguistic contexts and details, achieving impressive results in
numerous NLP tasks. Nevertheless, the significant computa-
tional demands for both training and inference have become
a major research focus, aiming to enhance efficiency without
sacrificing performance. The Transformer model incorporates
additional crucial elements such as position encoding, provid-
ing positional information for each token in the sequence, and
the multi-head attention mechanism, enabling the model to at-
tend to various sequence segments in different representational
dimensions.

B. Auto-regressive Decoding of LLM Inference

During inference, LLMs first tokenize the input text into
a sequence of tokens, which are then fed into the model for
processing. Tokenization is the process of converting raw text
into a sequence of tokens, where each token represents a word,
subword, or character. Figure 2 illustrates an example of text
tokenization using OpenAI’s tokenizer.

LLM inference, particularly in models like GPT (Generative
Pre-trained Transformer), often employs an auto-regressive
decoding approach. This method is central to how these
models generate text, ensuring that each new word or token

TABLE I
C4 VALIDATION PERPLEXITIES OF QUANTIZATION METHODS FOR

DIFFERENT TRANSFORMER SIZES FROM 125M TO 13B PARAMETERS.

Parameters 125M 1.3B 2.7B 6.7B 13B

32-bit Float 25.65 15.91 14.43 13.30 12.45

Int8 absmax 87.76 16.55 15.11 14.59 19.08
Int8 zeropoint 56.66 16.24 14.76 13.49 13.94

Int8 absmax row-wise 30.93 17.08 15.24 14.13 16.49
Int8 absmax vector-wise 35.84 16.82 14.98 14.13 16.48
Int8 zeropoint vector-wise 25.72 15.94 14.36 13.38 13.47

Int8 absmax row-wise + decomposition 30.76 16.19 14.65 13.25 12.46
Absmax LLM.int8() (vector-wise + decomp) 25.83 15.93 14.44 13.24 12.45
Zeropoint LLM.int8() (vector-wise + decomp) 25.69 15.92 14.43 13.24 12.45

produced takes into account the entire sequence generated so
far. Given the input sequence X = [x1, x2, ..., xn], the model
generates the next token xn+1 by conditioning on the entire
sequence X: P (xn+1|X). This process is repeated iteratively
to generate the desired output text. The auto-regressive nature
of this decoding strategy allows the model to capture long-
range dependencies and generate coherent text.

III. THE RECENT ADVANCES

A. Low-bit Quantization

This section delves into cutting-edge low-bit quantization
techniques that allow for efficient representation of model
weights and activations. By utilizing fewer bits (i.e., less than
32) to represent numerical values, these techniques greatly de-
crease memory usage and speed up inference on hardware plat-
forms. One approach involves quantizing LLM, with quantiza-
tion methods falling into two main categories: Quantization-
Aware Training (QAT) and Post-Training Quantization
(PTQ).

PTQ reduces the computational precision of model weights
and activations after training, thereby reducing the model’s
memory footprint and computational requirements. This tech-
nique is particularly effective for fine-tuning pre-trained mod-
els on specific tasks, as it allows for faster inference without
significant loss in accuracy. PTQ methods include uniform
quantization, non-uniform quantization, and mixed-precision
quantization, each with its trade-offs between model size, ac-
curacy, and computational efficiency. LLM.int8() [22] is a re-
cent PTQ method that quantizes model weights and activations
to 8-bit integers, significantly reducing the model size and im-
proving inference speed without compromising performance.
As illustrated in Figure 3, when provided with 16-bit floating-
point inputs Xf16 and weights Wf16, the features and weights
are divided into sub-matrices of high-value features and other
values. The high-value feature matrices are calculated in 16-
bit, while all other values are calculated in 8-bit. The 8-bit
vector-wise multiplication is conducted by scaling with the
maximum absolute values of rows and columns in Cx and Cw,
followed by quantizing the results to Int8. The Int32 matrix
multiplication results (Out32) are dequantized using the outer
product of the normalization constants Cx

⊗
Cw. Finally,

the outputs from both high-value and regular calculations
are accumulated in 16-bit floating point format. As presented



Fig. 3. The Schema of LLM.int8(). Given 16-bit floating-point inputs Xf16 and weights Wf16, the features and weights are decomposed into sub-matrices
of large magnitude features and other values. The outlier feature matrices are multiplied in 16-bit. All other values are multiplied in 8-bit. We perform 8-bit
vector-wise multiplication by scaling by row and column-wise absolute maximum of Cx and Cw and then quantizing the outputs to Int8. The Int32 matrix
multiplication outputs Out32 are dequantization by the outer product of the normalization constants Cx

⊗
Cw . Finally, both outlier and regular outputs are

accumulated in 16-bit floating point outputs.

Fig. 4. Different finetuning methods and their memory requirements. QLORA
improves over LoRA by quantizing the transformer model to 4-bit precision
and using paged optimizers to handle memory spikes.

in Table II-B, the C4 validation perplexities of quantization
methods for various transformer sizes ranging from 125M to
13B parameters are displayed. It is observed that absmax, row-
wise, zeropoint, and vector-wise quantization methods result
in notable performance degradation as we increase the size,
especially noticeable at the 13B parameter mark where the
perplexity of 8-bit 13B is worse than that of 8-bit 6.7B. How-
ever, when utilizing LLM.int8(), the full perplexity is restored
as we scale. Zeropoint quantization displays an advantage due
to its asymmetric nature, but this advantage diminishes when
used alongside mixed-precision decomposition.

On the other hand, QAT integrates quantization into the
training process, enabling the model to learn with lower
precision from the start. This approach ensures that the model
adapts to the reduced precision during training, leading to
better performance on low-bit hardware. QAT methods in-
clude quantization-aware backpropagation, which incorporates
quantization errors into the training process, and dynamic

quantization, which quantizes model weights and activations
dynamically during training. Qlora [23] introduces multiple
innovations designed to reduce memory use without sacrificing
performance: (1) 4-bit NormalFloat, an information theoreti-
cally optimal quantization data type for normally distributed
data that yields better empirical results than 4-bit Integers and
4-bit Floats. (2) Double Quantization, a method that quantizes
the quantization constants, saving an average of about 0.37
bits per parameter (approximately 3 GB for a 65B model). (3)
Paged Optimizers, using NVIDIA unified memory to avoid
the gradient checkpointing memory spikes that occur when
processing a mini-batch with a long sequence length. As
displayed in Figure 4, Qlora combines these contributions into
a better tuned LoRA approach that includes adapters at every
network layer and thereby avoids almost all of the accuracy
tradeoffs seen in prior work. Results which are shown in
Table II suggest that 16-bit, 8-bit, and 4-bit adapter methods
replicate the performance of the fully finetuned 16-bit baseline.
This suggests that the performance lost due to the imprecise
quantization can be fully recovered through adapter finetuning
after quantization.

B. Parallel Computing
This section explores parallel computation strategies specif-

ically designed for large language models. By utilizing the
parallel processing capabilities of modern hardware architec-
tures, these methods distribute computations across multiple
cores or devices, resulting in significant speed improvements
during inference.

Many strategies for model parallelism were initially intro-
duced to support the distributed training of large-scale DNNs,
particularly Transformer-based models. One such approach is
tensor model parallelism (TP), which divides the model layers



TABLE II
EXPERIMENTS COMPARING 16-BIT BRAINFLOAT (BF16), 8-BIT INTEGER (INT8), 4-BIT FLOAT (FP4), AND 4-BIT NORMALFLOAT (NF4) ON GLUE

AND SUPER-NATURALINSTRUCTIONS. QLORA REPLICATES 16-BIT LORA AND FULL-FINETUNING.

Dataset GLUE (Acc.) Super-NaturalInstructions (RougeL)
Model RoBERTa-large T5-80M T5-250M T5-780M T5-3B T5-11B

BF16 88.6 40.1 42.1 48.0 54.3 62.0
BF16 replication 88.6 40.0 42.2 47.3 54.9 -

LoRA BF16 88.8 40.5 42.6 47.1 55.4 60.7
Qlora Int8 88.8 40.4 42.9 45.4 56.5 60.7
Qlora FP4 88.6 40.3 42.4 47.5 55.6 60.9
Qlora NF4 + DQ - 40.4 42.7 47.7 55.3 60.9

(such as attention and FFN) into separate portions based on
internal dimensions (like head and hidden), assigning each
to a different device (such as a GPU). Megatron-LM [24]
can greatly decrease inference latency by utilizing parallel
computing, commonly employed across multiple GPUs on
the same machine, particularly in situations with high-speed
NVLink connections.

As shown in Figure 5, the PaLM architecture [30], imple-
ments a sophisticated 2D tensor parallelism strategy to effec-
tively partition the layout for large-scale Transformer infer-
ence. This method is particularly noted for its lower theoretical
communication complexity when deployed on clusters with
more than 256 devices, significantly reducing the overhead
associated with data transfer in large-scale distributed systems.

The primary goal here is to manage the vast computational
demands of modern deep learning models. By employing
this parallelism, PaLM aims to not only scale effectively but
also to maintain performance efficiency across an expansive
network of GPUs. This strategy is crucial for applications
where computational resources are paramount, such as in
training or inference of large language models or complex
vision tasks.

• Attention and Feed-forward Layers: PaLM distributes
both the attention and feed-forward layers across the
hardware. This distribution ensures that each GPU han-
dles a manageable portion of the workload, reducing
bottlenecks and allowing for parallel computation which
increases throughput.

• Data and Model Parallelism: The combination of data and
model parallelism allows for a balance between keeping
each GPU busy with unique data (data parallelism) and
spreading the model’s parameters across multiple de-
vices (model parallelism). This dual approach optimizes
memory usage as the entire model does not need to fit
into the memory of a single GPU, and it also enhances
computational efficiency by allowing for simultaneous
processing of different parts of the model.

• Hybrid Tensor Partition Strategy: For scenarios where
multi-query attention mechanisms are used, with only

Fig. 5. Partitioning layouts for feedforward layer.

one head for keys and values, PaLM incorporates data
parallelism into its hybrid tensor partition strategy. This
approach ensures that even with fewer attention heads, the
system can still leverage parallel processing to maintain
high performance.

Pipeline model parallelism (PP), as discussed in [31], is a
sophisticated technique aimed at optimizing the performance
of large-scale neural network models by distributing their
computational load across multiple devices. The primary goal
of PP is to facilitate the training and inference of models
that are too large to fit into the memory of a single device.
By breaking down the model into manageable segments, PP
allows for the efficient use of hardware resources, thereby
reducing the time and computational costs associated with
training complex models.

As illustrated in Figure 6, the layers of the model are
arranged in a sequential pipeline across several devices when
applying pipeline parallelism. 1) Layer Distribution: Each



Fig. 6. Timelines of different pipeline-parallel executions. Without loss of generality, forward and backward passes are assumed to take twice as long as
forward passes; forward passes are shown in blue and backward passes are shown in green. Numbers indicate microbatch ID, time is shown along x-axis,
per-worker utilization is shown along the y-axis. GPipe maintains a single weight version, but periodically flushes the pipeline. PipeDream does not introduce
periodic pipeline flushes, but maintains multiple weight versions.

layer of the model is assigned to a specific device in the
sequence. For example, if a model has 10 layers and there are
3 devices, each device could handle roughly 3 to 4 layers, de-
pending on the complexity and memory requirements of each
layer. 2) Pipeline Stages: Each device handles what is known
as a ’pipeline stage’. A stage includes multiple consecutive
layers of the model. The number of layers in each stage can be
adjusted based on the device’s capacity or the specific needs of
the workload. 3) Data Flow: Data flows through this pipeline
in a manner similar to an assembly line. When an input enters
the first stage, it undergoes processing by the layers on the first
device. After processing, the output is passed to the next device
for further processing, and this continues until the data has
passed through all stages. 4) Synchronization: To maintain
efficiency, synchronization points are introduced to ensure that
data is processed in a coordinated manner. This might involve
techniques like bubble scheduling or pipeline flushing to man-
age the potential idle times between stages. 5) Background
and Context: The necessity for pipeline parallelism arises
from the ever-increasing size of neural networks, especially
in applications like natural language processing (NLP), where
models with billions of parameters are common. Traditional
data parallelism, where the same model is replicated across
devices, becomes less efficient with such large models due to
memory constraints and communication overheads.

By employing pipeline model parallelism, we can not only
manage the memory constraints of large models but also
utilize hardware resources more effectively. This technique not
only speeds up the training process but also allows for the
deployment of models that would otherwise be impractical to
run on single devices. Thus, understanding and implementing
pipeline parallelism is crucial for advancing the capabilities of
deep learning in various high-demand sectors.

However, while Pipeline Parallelism excels at boosting
throughput, it does not inherently reduce the time required
to process a single input from start to finish, known as
latency. Each input still goes through all the stages of the
pipeline, meaning that the time for a single piece of data

to traverse the entire pipeline remains the same. In contrast,
Tensor Parallelism (TP) focuses on distributing the workload
across multiple processing units or devices in such a way
that each unit handles a part of the computation for every
input simultaneously. This method can indeed decrease latency
because it essentially parallelizes the computation within a
single input, allowing for quicker processing of individual data
points.

Sequence parallelism (SP) [32] offers numerous innovative
approaches and configurations tailored specifically for enhanc-
ing large language model (LLM) inference. The core concept
behind SP in the context of LLM inference revolves around
optimizing the distribution of computational tasks and storage
demands. SP distributes the computational and storage load
by dividing the processing of long sequences across multiple
GPUs. This distribution is not random; it follows the sequence
length dimension, meaning each GPU processes a segment of
the sequence. This approach significantly reduces the memory
footprint on individual GPUs, allowing for the handling of
much longer sequences than would be possible with a single
GPU setup. By splitting the sequence, SP enables: Increased
Sequence Length: Allowing for the analysis and generation
of longer texts or data streams, which is crucial for tasks like
document summarization, long-form text generation, or any
application requiring understanding or generating extended
contexts. Efficiency: It enhances the efficiency of GPU usage
by ensuring that computational resources are not bottlenecked
by memory limitations, thus improving throughput and reduc-
ing processing time.

As displayed in Figure 7, implementing SP via a ring of
hosts allows LLMs to scale to handle much larger data sets
or documents, which is essential in fields like legal analysis,
scientific research, or any area requiring deep textual analysis.
By reducing memory bottlenecks, SP can significantly speed
up inference times, making real-time applications of LLMs
more feasible.



Fig. 7. Top (a): Ring Attention uses the same model architecture as the original Transformer but reorganize the compute. In the diagram, we explain this
by showing that in a ring of hosts, each host holds one query block, and key-value blocks traverse through a ring of hosts for attention and feedforward
computations in a block-by-block fashion. As we compute attention, each host sends key-value blocks to the next host while receives key-value blocks from
the preceding host. The communication is overlapped with the computation of blockwise attention and feedforward. Bottom (b): Ring Attention computes the
original Transformer block-by-block. Each host is responsible for one iteration of the query’s outer loop, while the key-value blocks rotate among the hosts.
As visualized, a device starts with the first query block on the left; then we iterate over the key-value blocks sequence positioned horizontally. The query
block, combined with the key-value blocks, are used to compute self-attention (yellow box), whose output is pass to feedforward network (cyan box)

C. Memory Management

Efficient memory management is a major challenge in
large language model (LLM) serving, especially due to the
memory-intensive nature of transformer architectures. The KV
cache’s memory footprint is key for optimization when com-
pared to model weights and workspace for other activations,
particularly with the increasing demand for long-sequence
inference. During incremental decoding, the KV cache mem-

ory fluctuates unpredictably. The traditional approach, like
FasterTransformer, assumes a maximum sequence length and
pre-allocates a continuous memory block, which leads to
significant memory wastage for input batches with varying
lengths and complex decoding scenarios generating multiple
output sequences simultaneously, such as beam search and
parallel decoding.

vLLM [27] introduces an innovative approach known as



Fig. 8. Average percentage of memory wastes in different LLM serving
systems.

paged attention, which revolutionizes how memory is man-
aged in the context of large-scale language models. Tra-
ditionally, the KV (Key-Value) cache in these models has
been stored in contiguous memory blocks, which can lead
to inefficiencies, especially when dealing with variable-length
sequences or when the model needs to handle multiple requests
in parallel. Paged attention tackles these issues by partitioning
the KV cache into non-contiguous memory blocks.

The advantages of paged attention are as follows: 1) Re-
duces Memory Fragmentation: As shown in Figure 8, by
allowing memory to be allocated in smaller, more man-
ageable chunks, paged attention minimizes the problem of
memory fragmentation, where free memory is broken into
small, unusable pieces due to varying lengths of sequences.
2) Increases Batch Size: With the ability to manage memory
more efficiently, vLLM can support larger batch sizes. This
means that more sequences can be processed in parallel,
significantly speeding up the training and inference processes,
which is critical for applications requiring real-time responses
or handling large datasets. 3) Improves Throughput: The
non-contiguous memory allocation enables better utilization
of hardware resources, leading to an increase in throughput.
This improvement is vital for scenarios where high perfor-
mance is necessary, such as in online services or real-time
data processing. The implementation of paged attention not
only enhances the efficiency of memory usage but also has
broader implications for the scalability and performance of
deep learning models. It allows for more dynamic handling of
data, making models more adaptable to the varying demands
of modern applications.

As shown in Figure 9, SpecInfer [28] suggests using tree
attention and depth-first tree traversal to reduce unnecessary
KV cache allocation for multiple output sequences that have
a common prefix. SpecInfer’s speculative inference and token
tree verification offer two main advantages compared to the
incremental decoding method used in current LLM inference
systems.

Reducing memory accesses to LLM parameters is crucial
for improving the performance of LLM inference. In the cur-
rent incremental decoding method, generating a single token

requires accessing all LLM parameters, which poses a chal-
lenge, especially for offloading-based LLM inference systems.
These systems utilize limited computational resources, like a
single commodity GPU, by offloading tasks to CPU DRAM
and storage for parameter storage and retrieval. SpecInfer,
on the other hand, reduces accesses to LLM parameters
significantly when there is an overlap between speculated
and actual token output. This reduction in memory accesses
can lead to lower energy consumption by minimizing data
transfers between GPU and CPU memory, as accessing GPU
HBM consumes significantly more energy than arithmetic
operations.

Serving large language models (LLMs) often faces delays
in processing requests. For instance, the GPT-3 model, with its
175 billion parameters, can take several seconds to generate a
response. To address this issue, the current method of incre-
mental decoding relies on sequential dependencies between
tokens, causing each token’s computation to be influenced by
all previously generated tokens. As a result, modern LLM
serving systems must handle requests by generating tokens
one by one. In SpecInfer, LLMs are employed to verify a
speculated token tree in a single pass, allowing for simultane-
ous examination of all tokens in the tree. This new approach
enables parallel processing of different tokens within a single
request, ultimately reducing the overall latency of the LLM’s
inference process.

IV. FUTURE DEVELOPMENT

In the realm of low-bit quantization for large language
models (LLMs), exploring more stable quantization methods is
crucial due to the diverse scales at which these models operate.
Quantization, which involves reducing the precision of the
numerical representations used in model weights, is essential
for deploying LLMs on devices with limited computational
resources. Adopting quantization methods that align with the
scaling law of LLMs ensures that as models grow in size and
complexity, their performance does not degrade unexpectedly.
This alignment means that the quantization process respects
the inherent relationships and dependencies within the model’s
architecture, thereby maintaining the model’s accuracy and
efficiency even at lower bit depths. The purpose of this
approach is to enable broader application of LLMs, from
edge devices to cloud services, without significantly sacrificing
performance.

Moving to parallel computation, the challenge often lies in
managing the latency caused by inter-process communication.
This latency can bottleneck the overall speed of computation,
particularly in distributed systems where different parts of the
model or data are processed on separate nodes or devices.
To address this, strategies like optimized data routing, ad-
vanced synchronization techniques, or even hardware-specific
optimizations can be employed. By reducing communication
overhead, we can significantly decrease the time required
for model inference or training, thereby speeding up the
computation process. This enhancement is not just about speed



Fig. 9. An overview of SpecInfer’s tree-based speculative inference and verification mechanism

but also about scalability, allowing LLMs to handle real-time
processing tasks more effectively.

Regarding memory management, fine-grained memory
strategies are often employed to optimize the use of available
memory resources. However, these strategies can sometimes
lead to performance degradation due to the increased overhead
of managing small chunks of memory. To counteract this,
one could look into more coarse-grained approaches or hybrid
strategies that balance between memory efficiency and perfor-
mance. For instance, implementing techniques like memory
pooling or using memory-efficient data structures might help
in reducing the overhead while still maintaining efficient
memory usage. The goal here is to refine memory management
techniques so that they do not impede the computational
efficiency of LLMs, allowing for larger models to be run on
devices with constrained memory without a substantial drop
in performance.

In summary, by addressing these three core areas: low-bit
quantization, parallel computation, and memory manage-
ment, we aim to enhance the deployment and operational
efficiency of large language models. Each improvement con-
tributes to making LLMs more accessible, faster, and more
resource-efficient, thereby broadening their applicability and
utility across various computational environments.

V. CONCLUSION

In conclusion, the rapid advancement of artificial intel-
ligence (AI) and the emergence of large language models
(LLMs) have significantly improved convenience in people’s

lives. However, the substantial computational power and mem-
ory demands associated with LLM deployment present con-
siderable challenges in real-world applications, particularly in
achieving low latency and high throughput. This survey has
explored the latest developments in efficient LLM serving
systems, including approaches such as low-bit quantization,
parallel computing, and memory management. Furthermore,
it has highlighted prospective future directions in designing
efficient LLM serving systems. These insights aim to guide
researchers in addressing the key barriers to effective and
efficient deployment of LLMs in practical scenarios.
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