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Abstract—Graph-theoretic algorithms and graph machine
learning models are essential tools for addressing many real-life
problems, such as social network analysis and bioinformatics. To
support large-scale graph analytics, graph-parallel systems have
been actively developed for over one decade, such as Google’s
Pregel and Spark’s GraphX, which (i) promote a think-like-
a-vertex computing model and target (ii) iterative algorithms
and (iii) those problems that output a value for each vertex.
However, this model is too restricted for supporting the rich
set of heterogeneous operations for graph analytics and machine
learning that many real applications demand.

In recent years, two new trends emerge in graph-parallel
systems research: (1) a novel think-like-a-task computing model
that can efficiently support the various computationally expensive
problems of subgraph search; and (2) scalable systems for learn-
ing graph neural networks. These systems effectively complement
the diversity needs of graph-parallel tools that can flexibly work
together in a comprehensive graph processing pipeline for real
applications, with the capability of capturing structural features.
This tutorial will provide an effective categorization of the recent
systems in these two directions based on their computing models
and adopted techniques, and will review the key design ideas of
these systems.

Index Terms—graph mining, subgraph-centric, frequent sub-
graph, graph, parallel, task, Fraction-Score.

I. INTRODUCTION

Many computationally expensive problems can be solved
by divide and conquer: the computation over a big dataset
can be recursively divided into independent tasks over smaller
subsets of the dataset, exposing great parallelism opportunities.
To illustrate, we provide 2 examples described as follows.

Given a graph G = (V,E) where V (resp. E) is the
vertex (resp. edge) set, we consider the problem of finding
those subgraphs of G that satisfy certain conditions. It may
enumerate or count all these subgraphs, or simply output the
largest subgraph. Examples include maximum clique finding
[1], quasi-clique enumeration [2], triangle listing and counting
[3], subgraph matching [4], etc. These problems have a wide
range of applications including social network analysis and
biological network investigation. These problems have a high
time complexity (e.g., finding maximum clique is NP-hard),
since the search space is the power set of V : for each subset
S ⊆ V , we check whether the subgraph of G induced by S
satisfies the conditions. Few existing algorithms can scale to
big graphs such as online social networks.

Subgraph mining is usually solved by divide and conquer.
A common solution is to organize the giant search space of
V ’s power set into a set-enumeration tree [2].
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Fig. 1. Set-Enumeration Tree.

Fig. 1 shows the setenumeration tree for a graph G with
four vertices {a, b, c, d} where a < b < c < d (ordered by
ID). Each node in the tree represents a vertex set S, and only
vertices larger than the last (and also largest) vertex in S are
used to extend S. For example, in Fig. 1, node {a, c} can
be extended with d but not b as b < c; in fact, {a, b, c} is
obtained by extending {a, b} with c. Edges are often used for
the early pruning of a tree branch. For example, to find cliques,
one only needs to extend a vertex set S with those vertices
in (V -S) that are common neighbors of every vertex of S,
since all vertices in a clique are mutual neighbors. Also, [2]
shows that to find γ-quasi-cliques (γ ≥ 0.5), one only needs
to extend S with those vertices that are within 2 hops from
every vertex of S.

The problems we consider above share two common fea-
tures: (1) pattern-to-instance: the structural or label constraints
of a target subgraph (i.e., pattern) are pre-defined, and the goal
is to find subgraph instances in a big graph that satisfy these
constraints; (2) there exists a natural way to avoid redundant
subgraph checking, such as by comparing vertex IDs in a set-
enumeration tree, or partitioning by different vertex instances
of the same label as in [5], [6].

Some graph-parallel systems attempt to unify the above
problems with frequent subgraph pattern mining (FSM), in
order to claim that their models are “more general”. However,
FSM is an intrinsically different problem: the patterns are
not pre-defined but rather checked against the frequency of
matched subgraph instances, which means that (i) the problem
is in an instance-to-pattern style. Moreover, frequent subgraph
patterns are usually examined using pattern-growth, and to
avoid generating the same pattern from different sub-patterns,
(ii) expensive graph isomorphism checking is conducted on
each newly generated subgraph, as in Arabesque [7], RStream
[8] and Nuri [9]. This is a bad design choice since graph
isomorphism checking should be totally avoided in pattern-to-
instance subgraph mining. After all, FSM is a specific problem
whose parallel solutions have been well-studied, be it for a big
graph [10] or for many graph transactions [11], [12], and they0000–0000/00$00.00 © 2021 IEEE
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Fig. 2. Frequent Sequential Pattern Mining.

can be directly used.
We consider the pattern-growth approach: we check whether

a pattern is frequent, and if so, we grow the pattern for further
examination. Figure 3 illustrates the PrefixSpan algorithm
for mining frequent sequential patterns, where the sequence
database D in Figure 3(a) is projected by prefix pattern A
(i.e., Figure 3(b)), and then AB (i.e., (c)), and finally ABC
(i.e., (d)). We see that the projected database D|P is shrinking
in size.

Without loss of generality, we illustrate the use of T-thinker
by considering the application of mining subgraphs in the rest
of this paper. Earlier work attempts to tackle this problem
using MapReduce but is found to be 10 times slower than a
single-threaded program [13] due to a communicatio execution
pattern that underutilizes CPU cores. Other attempts face a
similar problem [7], [14] which motivates the development
of task-centrn-boundic graph mining systems like G-thinker
[6] and G-Miner [15]. However, the latter two systems still
suffer from design problems such as (1) expensive initial graph
partitioning and task generation, (2) threads contend on a
single data cache for one-at-a-time access, (3) a disk-based
task queue that is expensive to insert new tasks.

II. RELATED WORK

This section explains the concepts of IO-bound and CPU-
bound workloads, and reviews existing graph-parallel systems.
And then present the SOTA subgraph pattern enumeration
algorithm gSpan [16] and the SOTA subgraph matching al-
gorithm by [17], which are two primitives used by T-FSM
[18].

IO-bound v.s. CPU-bound. The throughput of CPU com-
putation is usually much higher than the IO throughput of
disks and the network. However, existing Big Data systems
dominantly target IO-bound workloads. For example, the
word-count application of MapReduce [19] emits every word
onto the network, and for each word that a reducer increments
its counter, the word needs to be received by the reducer
first. Similarly, in the PageRank application of Pregel [20], a
vertex needs to first receive a value from each in-neighbor and
then simply adds it to the current PageRank value. IO-bound
exe- cution can be catastrophic for computation problems
beyond those with a low time complexity. For example, even
for tri- angle counting with time complexity O(|E|1.5), [13]
reported that the state-of-the-art MapReduce algorithm uses
1,636 machines and takes 5.33 minutes on a small graph, on
which their single-threaded algorithm uses less than half a
minute. In fact, McSherry et. al [21] have noticed that exist-
ing graph-parallel systems are comparable and sometimes

slower than a single-threaded program. In another recent post
by McSherry , he further indicated that the current dis- tributed
implementations “scale” (i.e., using aggregate IO bandwidth),
but their performance does not get to “a simple single-threaded
implementation.”

Subgraph-Centric Systems. Recently, a few systems be-
gan to explore a think-like-a-subgraph programming model,
including distributed systems NScale [14], Arabesque [7] and
G-Miner [15] and single-machine systems RStream [8] and
Nuri [9]. Despite more convenient programming inter- faces,
their execution is still IO-bound. Assume that subgraphs of
diameter k around individual vertices need to be examined,
then NScale (i) first con- structs those subgraphs through
breadth-first search (BFS) around each vertex, implemented
as k rounds of MapReduce computations to avoid keeping the
numerous subgraphs in memory; (ii) NScale then mines these
subgraphs in parallel by reducers. Since this design requires
that all subgraphs be constructed before any of them can
begin its computation, it leads to poor CPU utilization and
the straggler’s problem. Arabesque [7] is a distributed system
where every machine loads the entire input graph into memory,
and sub- graphs are constructed and processed iteratively. In
the i-th iteration, Arabesque expands the set of subgraphs with
i edges/vertices by one more adjacent edge/vertex, to construct
subgraphs with (i + 1) edges/vertices for processing. New
subgraphs that pass a filtering condition are further processed
and then passed to the next iteration. For example, to find
cliques, the filtering condition checks whether a subgraph g
is a clique; if so, g is passed to the next iteration to grow
larger cliques. Obviously, Arabesque materializes subgraphs
represented by all nodes in the set-enumeration tree (recall
Fig. 1) in a BFS manner which is IO-bound. As an in-memory
system, Arabesque attempts to compress the numerous mate-
rialized subgraphs using a data structure called ODAG, but it
does not address the scalability limitation as the number of
subgraphs grows exponentially. The task-based vertex-pulling
API of G-thinker is first proposed by our G-thinker preprint
[6], but our execution engine design is now significantly
improved to eliminate the bad designs mentioned there. In
our task-based vertex- pulling API, tasks are spawned from
individual vertices, and a task can grow its associated subgraph
by requesting adja- cent vertices and edges for subsequent
computation. This API is then followed by G−Miner [15],
as indicated by the statement below Fig. 1 of [15]: “The
task model is inspired by the task concept in G-thinker.” The
original G-thinker prototype in our preprint [6] is to verify that
our API can significantly improve the performance of subgraph
finding compared with existing systems, but the execution
engine there is still a simplified IO-bound design that does
not even consider multithreading; it runs multiple processes
in each machine for parallelism which cannot share data.

G-Miner adds multithreading support to our old prototype
to allow tasks in a machine to share vertices, but the design
is still IO-bound. Specifically, the threads in a machine share
a common list called RCV cache for caching vertex objects
which becomes a bottleneck of task concurrency. G-Miner also
requires graph partitioning as a preprocessing job, but real big
graphs often do not have a small cut and are expen- sive to
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partition; we thus adopt the approach of Pregel to hash vertices
to machines by vertex ID to avoid this startup overhead.

All tasks in G-Miner are generated at the beginning (rather
than when task pool has space as G-thinker does) and kept
in a disk-resident priority queue. Each task t in the queue
is indexed by a key computed via locality-sensitive hashing
(LSH) on its set of requested vertices, to let nearby tasks in
the queue share requested vertex objects to maximize data
reuse. Unfortunately, this design does more harm than good:
Because tasks are not processed in the order of their genera-
tion (but rather LSH order), an enormous number of tasks are
buffered in the disk-resident task queue since some partially
computed tasks are sitting at the end of the queue while new
tasks are dequeued to expand their subgraphs. Thus, rein-
serting a partially processed task into the disk-resident task
queue for later processing becomes the dominant cost for a
large graph.

RStream [8] is a single-machine out-of-core system which
proposes a so-called GRAS model to emulate Arab- es-
que’s filter-process model, utilizing relational joins. Their
experiments show that RStream is several times faster than
Arabesque even though it uses just one machine, but the
improvement is mainly because of eliminating network over-
heads. Recall that Arabesque materializes subgraphs repre-
sented by all nodes in a set-enumeration tree. Also, the
execution of RStream is still IO-bound as it is an out-of-core
system.

Nuri [9] aims to find the k most relevant subgraphs us-
ing only a single computer, by prioritized subgraph expan-
sion. However, since the subgraph expansion is in a best-
first manner (Nuri is single-threaded), the number of buffered
subgraphs can be huge, and their on-disk subgraph manage-
ment can be IO-bound.

DistGraph [10] partitions vertices to different workers so
that the distributed memory can collectively hold a giant
graph. DistGraph enumerates patterns in level-wise breadth-
first search (BFS), where at level i it computes the support
of candidate subgraph patterns comprising i edges. As a
distributed system, it relies on efficient collective commu-
nication operations (AllToAll, AllGather and AllReduce) to
minimize communication, and uses pruning techniques to
avoid communication for definitely (in)frequent patterns.

Since each graph partition is expanded by 1-hop in each
round, the partitions can become very large after a few rounds
and overlap a lot, leading to redundant computation. Moreover,
each worker not only holds its partition but also the matched
subgraph instances, leading to prohibitive memory space cost.

Fractal, Arabesque, RStream and Pangolin. These sys-
tems focus on unifying several graph mining problems such
as motif counting and FSM. Their programming models
materialize all the matched subgraph instances of the sub-
graph patterns, and count these instances to determine pattern
frequentness. Arabesque [7], RStream [8] and Pangolin [22]
expand the matched subgraph instances in BFS manner to
create and examine larger and larger subgraph instances, which
is very costly since the number of subgraph instances grows
exponentially. This is in contrast to GraMi’s early-termination
idea that determines a pattern S as frequent as soon as its

Fig. 3. Subgraph Patterns S1, S2 in Two Data Graphs G1, G2.

current support becomes larger than τ . Pangolin [22] exposes
the pattern extending phase so that programmers can more
effectively prune the enumeration space by eagerly detecting
duplicate embeddings. Pangolin also allows architectural opti-
mizations (e.g., data structures) and can run not only on CPU
but also on GPU like cuTS [23]. Fractal [24] mitigates the
performance issue by allowing its execution engine to conduct
depthfirst subgraph-instance backtracking without actually ma-
terializing the instances, but it still exhaustively mines all
valid subgraph instances without any early termination (as in
GraMi). Due to this algorithm inefficiency, Fractal requires
users to specify a maximum pattern size nmax, so that patterns
with more than nmax vertices will not be grown.

III. PRELIMINARIE

This section first formally defines our single-graph FSM
problem and the useful notations in Section III-A. Section 2.2
then introduces our new and more accurate support measure
Fraction-Score.

A. Problem Definition

Without loss of generality, we consider an undirected graph
G = (V G, EG, LG) with a vertex set V G, an edge set
EG ⊆ V G × V G, a label set LG for vertices and edges. We
only consider simple graphs without self-loops and multiple
edges. Our algorithms can be easily generalized to a directed
graph. Given a query graph S, subgraph matching finds all
isomorphisms of S in data graph G, i.e., to find all mappings
ψ : V S → V G , such that (1) for each u ∈ V S , we have
LS(u) = LG(ψ(u)), and (2) for each e = (ui, uj) ∈ ES ,
there exists (ψ(ui), ψ(uj)) ∈ EG and LS(e) = LG(ψ(e)). As
an illustration, consider query graph S2 and data graph G1 in
Figure 3, where A and B are vertex labels. Then, S2 has 3
isomorphisms in G1, namely (v1, v2), (v1, v3)and(v1, v4).

Given a support threshold τ , FSM in G finds all subgraph
patterns S with support ≥ τ , where support is an anti-
monotonic measure such as MNI [25] or Fraction-Score (see
Section 2.2). Recall that we say that a data vertex v ∈ G is a
valid match to a pattern vertex u ∈ S, denoted by v ⇝ u, iff
there exists an isomorphism of subgraph pattern S in G that
contains v, where u is mapped to v.

Also recall from Figure 4 that each pattern S is associated
with a domain table, which maintains a column D(u) of
candidate data vertices to match to u for each u ∈ S. MNI
[25] is a popular anti-monotonic support measure for single-
graph FSM, which measures the least number of valid matches
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Fig. 4. Domain Illustration.

of every vertex u ∈ S, i.e., mni(S) = minu∈S |D∗(u)|. A
pattern S is said to be frequent iff mni(S) ≥ τ .

IV. PROPOSED METHODS

A. G-thinker Architecture and Challenges

Fig. 5 shows the architecture of G-thinker on a cluster of 3
machines. We assume that a graph is stored as a set of vertices,
where each vertex v is stored with its adjacency list Γ(v) that
keeps v’s neighbors. G-thinker loads an input graph from the
Hadoop Distributed File System (HDFS). As Fig. 5 shows,
each machine only loads a fraction of vertices along with their
adjacency lists into its memory, kept in a local vertex table.
Vertices are assigned to machines by hashing their vertex IDs,
and the aggregate memory of all machines is used to keep
a big graph. The local vertex tables of all machines form a
distributed key-value store where any task can request Γ(v)
using v’s ID.

G-thinker computes in the unit of tasks, and each task is
associated with a subgraph g that it constructs and mines
upon. For example, consider the problem of mining maximal
γ-quasi-cliques (γ ≥ 0.5) for which [2] shows that any two
vertices in a γ-quasi-clique must be within 2 hops. One may
spawn a task from each individual vertex v, request for its
neighbors (in fact, their adjacency lists) in Iteration 1, and
when receiving them, request for the 2nd-hop neighbors (in
fact, their adjacency lists) in Iteration 2 to construct the 2-
hop ego-network of v for mining maximal quasi-cliques using
a serial algorithm like that of [2], [26]. To avoid double-
counting, a vertex v only requests those vertices whose ID is
larger than v (recall from Fig. 1), so that a quasi-clique whose
smallest vertex is u must be found by the task spawned from
u.

Such a subgraph mining algorithm is implemented by
specifying 2 user-defined functions (UDFs):(1) spawn(v) in-
dicating how to spawn a task from each individual vertex
in the local vertex table. (2) compute(frontier) indicating
how a task processes an iteration where frontier keeps
the adjacency list of the requested vertices in the previous
iteration. In a UDF, users may request the adjacency list
of a vertex u to expand the subgraph of a task, or even
decompose the subgraph by creating multiple new tasks to
divide the mining workloads. As Fig. 3 shows, each machine
also maintains a remote vertex cache to keep the requested
vertices (and their adjacency lists) that are not in the local
vertex table, for access by tasks via the input argument
frontier to UDF compute(frontier). This allows multiple
tasks to share requested vertices to minimize redundancy, and
once a vertex in the cache is no longer requested by any

task in the machine, it can be evicted to make room for
other requested vertices. In UDF compute(frontier), a task is
supposed to save the needed vertices and edges in frontier
into its subgraph, as the vertices in frontier are released by
G-thinker right after compute(·)returns.

To maximize CPU core utilization, each mining thread
keeps a task queue of its own to stay busy and to avoid
contention. Since tasks are associated with subgraphs that may
overlap, it is infeasible to keep all tasks in memory. G-thinker
only keeps a pool of active tasks in memory at any time by
controlling the pace of task spawning. If a task is waiting
for its requested vertices, it is suspended so that the mining
thread can continue to process the next task in its queue; the
suspended task will be added back to the queue once all its
requested vertices become locally available, in which case we
say that the task is ready.

Note that a task queue can become full if a task generates
many subtasks into its queue, or if many waiting tasks become
ready all at once (due to other machines’ responses). To keep
the number of in-memory tasks bounded, if a task queue is
full but a new task is to be inserted, we spill a batch of tasks
at the end of the queue as a file to local disk to make room.

As the upper-left corner of Fig. 5 shows, each machine
maintains a list of task files spilled from the task queues of
mining threads. To minimize the task volume on disks, when
a thread finds that its task queue is about to become empty,
it will first refill tasks into the queue from a task file (if it
exists), before choosing to spawn more tasks from vertices in
the local vertex table. Note that tasks are spilled to disks and
loaded back in batches to minimize the number of random IOs
and lock-contention by mining threads on the task file list.

For load balancing, machines about to become idle will steal
tasks from busy ones (could be spawned from their local vertex
table) by prefetching a batch of tasks and adding them to the
task file list on local disk. The tasks will be loaded by a mining
thread for processing when its task queue needs a refill.

1) Desirabilities: Our design always guarantees that a
mining thread has enough tasks in its queue to keep itself busy
(unless the job has no more tasks to refill), and since each task
has sufficient CPU-heavy mining workloads, the linear IO cost
of fetching/moving data is seldom a bottleneck.

Other desirabilities include:
• Bounded memory consumption: only a pool of tasks is

kept in memory at any time, the local vertex table only
keeps a partition of vertices, and the remote vertex cache
has a bounded capacity.

• Efficient task spilling: tasks spilled from task queues are
written to disks (and loaded back) in batches to achieve
serial disk IO, and spilled tasks are prioritized when
refilling task queues of mining threads so that the number
of tasks kept on disks is minimized (in fact negligible
according to our experiments).

• Vertex sharing: threads in a machine can share vertex
data in the remote vertex cache, to avoid redundant vertex
requesting.

• Independence of tasks: tasks are totally independent
(due to divide-and-conquer logic) and will never block
each other.
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Fig. 5. G-thinker Architecture Overview.

Fig. 6. Feature Comparison of Subgraph-Centric Systems.

• Batch vertex requests: we also batch vertex requests and
responses for transmission to combat round-trip time and
to ensure throughput.

• Task division: if a big task is divided into many tasks,
these tasks will be spilled to disks to be refilled to the task
queues of multiple mining threads for parallel processing;
moreover, work stealing among machines will send tasks
from busy machines to idle machines for processing.

We remark that G-thinker is the only system that achieves
these desirabilities and hence CPU-bound mining workloads.
Fig. 6 summarizes how existing subgraph-centric systems
compare with G-thinker in terms of these desirabilities.

2) Challenges: To achieve the above desirabilities, we
address the following challenges. For vertex caching, we need
to ask the following questions:

• How can we ensure high concurrency of accessing vertex
cache by mining threads, while inserting newly requested

vertices and tracking whether an existing vertex can be
evicted?

• How can we guarantee that a task will not request for the
adjacency list of a vertex v which has been requested by
another task in the same machine (even if response Γ(v)
has not been received) to avoid redundancy?

For task management, we need to consider: (1) How to
accommodate tasks that are waiting for data. (2) How can
those tasks be timely put back to task queues when their data
become ready? (3) How to minimize CPU occupancy due to
task scheduling.

B. PrefixFPM Architecture and Implementation

PrefixFPM is written as a set of C++ header files defining
some base classes and their virtual functions for users to inherit
in their subclasses and to specify the application logic. We
call these virtual functions as user-defined functions (UDFs).
The base classes also contain C++ template arguments for
users to specify the proper pattern and data structures. We
now introduce these base classes as shown in Figure 7.

Trans. The Trans class implements a transaction (i.e.,
a data instance in the input database) with a predefined
transaction ID field. Users implement their transaction subclass
by inheriting Trans and including additional fields to store the
target data instance, such as a sequence or a graph. Initially, the
input dataset is read into an in-memory transaction database
D, which is simply an array of objects whose type is the
Trans subclass.

ProjTrans. The ProjTrans class implements a projected
transaction s|α in a projected database D|α . A ProjTrans
object also has a transaction ID field indicating which trans-
action s ∈ D this projected transaction corresponds to. The
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Fig. 7. PrefixFPM Programming Interface.

user-defined ProjTrans subclass should also indicate how
s|α is currently matched on s, so that the matching status can
be incrementally updated as the pattern α grows.

Pattern. The Pattern class specifies the data structure of a
pattern α, and contains a (pure) virtual function print(fout)
specifying how to output the object of a Pattern subclass
into an output file stream fout . Recall that PrefixFPM runs
multiple task computing threads, and each thread appends the
frequent patterns found by it to a file of its own (with file
handle fout). When a job finishes, frequent patterns are simply
recorded by the files written by all task computing threads.

A Pattern subclass usually also includes the projected
database D|α as a field. In print(fout), users may choose to
output D|α along with α, to capture the matched transactions.

Task. he Task class specifies the algorithmic logic. Recall
that a task tα checks the frequentness of pattern α using D|α,
and grows α by one more element to generate children patterns
{β} and their projected databases {D|β} for further mining.
An object of the base class Task⟨ PatternT, ChildrenT, TransT⟩
implements a task tα with 3 template arguments:

• PatternT: the user-defined Pattern subclass (with D|α);
• ChildrenT: the type of the table children that keeps

{D|β};
• TransT: the user-defined Trans subclass.

A Task object tα maintains 2 fields: a pattern α of type
PatternT (often containing D|α), and the children table
children that keeps {D|β}, which is typically implemented
as an std :: map with children[e] = D|β if β is grown from
α with element e.
TransT is needed since the Task class provides a function

to access the global static transaction database D for users
to call in their Task UDFs. This is useful since a projected
transaction si|α usually only keeps a compact matching status
towards si ∈ D, and to extend it with one more element e in
si to generate si|β, we need to access si as D[i], where i is
the transaction ID field of si|α whose type is a ProjTrans
subclass.

Fig. 8. The run(fout) function of base class Task.

For example, the projected transaction of PrefixSpan only
keeps the position of the last match (i.e., ‘ ’ in Figure 2), to
minimize the memory consumed by projected databases.
Task has an internal function run(fout) which executes

the processing logic of the task tα . The behavior of run(·)
is specified by Task UDFs which are called in run(·) .

Figure 8 shows the structure of run(·). In Line 2, tα
first runs UDF pre check(fout) to see if α is frequent
(and its encoding is canonical if applicable), and if so, it
outputs α to fout. If α is not pruned, Line 4 then runs UDF
setChildren(children) to scan D|α and compute {D|β} into
the table field children . In this step, every infrequent child
pattern β should be removed from the table children as
a post-processing step after {D|β} are constructed. Line 6
then wraps each child pattern β in table children as a task
tβ , and calls the UDF needSplit() to check if tβ is time-
consuming (e.g., if D|β is large). If so, we add tβ to the
task queue Qtask (Lines 8–10) to be fetched by available task
computing threads (recall that Qtask is a global last-in-first-out
task stack protected by a mutex), which divides the computing
workloads by multithreading. Otherwise, we recursively call
tβ’s run(fout) to process the entire checking and extension
of β by the current thread, which avoids contention on Qtask.

Worker. A PrefixFPM program is executed by subclassing
the Worker < TaskT > base class and calling its run()
function. Here, TaskT refers to the user-defined Task sub-
class, from which Worker derives the other necessary types
such as TransT .

The run() function:(1) Keeps calling UDF getNextTrans() to
read transactions and append them to the transaction database
D; (2) Calls the UDF setRoot() to generate root tasks (where
α contains only one element) into Qtask; (3) Creates k task
computing threads to concurrently process the tasks in Qtask.

Implementing Worker :: setRoot(cot) should be similar
to implementing Task :: setChildren(cot): instead of con-
structing {D|β} from D|α, we construct {D|e} from D . Each
seed task te = ⟨e,D|e⟩ is added to Qtask to initiate parallel
computation.
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Fig. 9. System Architecture of T-FSM.

At the beginning of Worker :: setRoot(cot), we also need
to get the element frequency statistics and eliminate infrequent
elements (i.e., they are not considered when growing patterns).

During parallel task computation, each computing thread
keeps fetching a task tα from Qtask to call its run(fout)
function, and gets hung to release the CPU core when it cannot
find a task in Qtask . Note that while Qtask is currently empty,
another thread may be processing a task and could add more
subtasks back to Qtask . The job terminates only if all k task
computing threads are hung and no task is found in Qtask.

C. Overview of T-FSM Mining Process

T-FSM is implemented as a shared-memory parallel system
focusing on parallel task scheduling and computation, but it
can easily be extended for distributed execution using the
vertex pulling technique of G-thinker [27]. In this section, we
first overview the mining process of T-FSM, followed by a
brief cost analysis, and then provide the technical details.

1) Mining Process Overview: Job Initialization and Ini-
tial Pattern Candidates. A T-FSM program begins by letting
the worker perform the following steps:(1) Load the input
graph G, (2) Scan G to obtain and output the set of frequent
vertex labels Vfreq and frequent 1-edge patterns Efreq , (3)
Prune the edges of G that do not match any 1-edge pat-
tern in Efreq , (3) Use Efreq to create an initial set of 2-
edge candidate patterns, denoted by C0

pat, for parallel task-
based pattern frequentness evaluation and pattern extension by
compers to maximize CPU utilization. To illustrate, consider
the example in Figure 4 with a support threshold τ = 3.
Let: Vfreq = {A,B}, Efreq = {(A,B)}. Label C is
pruned because only 2 vertices in G have label C, which is
below the threshold. Therefore, G is pruned to contain only
the following 4 edges: (v1, v2), (v4, v5), (v5, v7), (v8, v9). The
initial candidate pattern set is: C0

pat = {A-B-A,B-A-B}.
Pattern Containers Figure 6 provides an overview of the

system architecture of T-FSM, which utilizes two pattern
containers: (1) Cpat, which keeps candidate patterns to be

Fig. 10. Pattern-Growth Tree.

evaluated. (2) Lactive, which keeps a list of active patterns
currently under task-based frequentness evaluation.

Specifically, Cpat is implemented as a stack, protected by
a mutex for concurrent access by compers. Initially, Cpat is
populated with C0

pat, the set of 2-edge candidate patterns.
When the capacity of Lactive is not full, a comper pops a new
candidate pattern S from Cpat for evaluation, and S is added
to Lactive with its status (e.g., domain table) being allocated
and initialized.

If a frequent pattern is found, it will be extended with edges
in Efreq to create more candidate patterns, which are then
pushed into Cpat. We use gSpan’s pattern extension approach,
which extends a new edge along the rightmost path of S’s
DFS code tree [16].

The stack structure of Cpat helps to grow existing frequent
patterns into larger ones, achieving a near depth-first traversal
order on the pattern-growth tree (as shown in Figure 10). This
minimizes the number of candidates in Cpat, in contrast to a
queue-based breadth-first search (BFS) approach. Since only
subgraphs are kept in Cpat without any status information, the
memory consumption is low.

On the other hand, Lactive is implemented as a linked list
of active patterns. To keep memory bounded, we only allow
Lactive to contain at most nmax

active active patterns at any time,
where nmax

active is a user-specified capacity parameter (default
is 32). A pattern S appears earlier in Lactive if it was fetched
from Cpat and inserted into the tail of Lactive for evaluation
earlier.

Whenever a comper attempts to obtain a subgraph-matching
task, it will check the task availability of active patterns
starting from the head of Lactive. It will fetch a task from
the first active pattern S ∈ Lactive with an available task.

Memory Cost Analysis. Recall that Cpat only keeps
candidate subgraph patterns without any status information.
Therefore, the memory cost is primarily dominated by Lactive,
which contains the active patterns. The memory cost of Lactive

is well bounded since it can hold at most nmax
active active

patterns, and each active pattern is associated with a pattern
capsule that contains a small, bounded number of active
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subgraph-matching tasks.
Worker Mining Procedure. In T-FSM, each comper is

a thread that keeps fetching the next task for processing
if available, or sets its state to idle otherwise. The worker
periodically checks if there are still tasks to be processed
(i.e., if Lactive or Cpat is not empty), or if some comper is
still computing, which may generate new candidate patterns
in Cpat.Case i: If there are still tasks to be processed, the
worker wakes up idle compers to process them (worker-
compers notification is via condition variables). Case ii: If
all compers are idle and both Lactive and Cpat are empty, the
worker terminates the T-FSM program.

Mining Procedure of a Comper: An Overview of the
Steps. A comper keeps fetching tasks from Lactive for eval-
uation as follows. It scans Lactive from the head to obtain
a subgraph-matching task from the capsule of the first active
pattern S ∈ Lactive with an available task (see Figure 9).
Case 1: If a task is successfully fetched from the capsule
of a pattern S, the task is executed, and the status of S is
updated accordingly. Case 1.1: If the task determines that S is
frequent, it will extend S to generate larger candidate patterns,
push them into Cpat , and delete S from Lactive. Case 1.2: If
the task determines that S is infrequent, it directly deletes S
from Lactive. The comper then continues to the next round,
fetching another task from Lactive for evaluation.

Case 2: If, during a round, a comper cannot find any
task after scanning the whole Active, then: Case 2.1: If
|Lactive| < nmax

active, the comper pops a new candidate pattern
S from Cpat, allocates a pattern capsule for S, and inserts it
into the tail of Lactive. The comper then continues the next
round to fetch another task from Lactive for evaluation. Case
2.2: If the capacity of Lactive is full, the comper goes idle
directly, which may be awakened by the worker later either to
process new tasks or to terminate the task probing loop if the
worker flags the T-FSM program to terminate.

Time Cost Analysis. Recall that Step ◦4 in Figure 6
extends each frequent pattern by an edge using rightmost path
extension and conducts a canonicality check on each newly
extended pattern, as in gSpan [16]. Therefore, no redundant
patterns are inserted into Cpat, and any pattern candidate in
Cpat must be extended from a frequent pattern.

Let us denote the number of frequent patterns be nfreq , and
assume that the average number of rightmost extensions of a
frequent pattern’s DFS code tree is nfout. Thus, the total num-
ber of candidate patterns to examine is at most nfreq · nfout
While the value of nfreq and nfout is difficult to analyze (e.g.,
gSpan’s paper [16] does not provide such an analysis), they are
well-bounded in practice when a selective support threshold τ
is used to find only very frequent patterns.For each candidate
pattern S with vertices {u1, u2, . . . , uk}, each entry in the
domain table may initiate a subgraph-matching task, giving at
most

∑k
i=1 |D(ui)| subgraph-matching runs in total. However,

the actual number is much smaller due to various pruning
techniques (see Section 3.4). Let the average cost of each
subgraph-matching run be Cmatch, then the time complexity
of FSM is: O(nfreq ·nfout ·Cmatch ·

∑k
i=1 |D(ui)|). Although

subgraph isomorphism is NP-complete [28], we use the latest
algorithm for subgraph matching with pruning techniques [17],

Fig. 11. GRAPH DATASETS.

ensuring that Cmatch is well-bounded.

V. PERFORMANCE EVALUATION AND EXPERIMENTAL
RESULTS

We compared G-thinker with the state-of-the-art graphpar-
allel systems, including (1) the most popular vertexcentric
system, Giraph [29] (to verify that vertex-centric model does
not scale for subgraph mining), (2) G-Miner [15] and (3)
Arabesque [7]. NScale [14] is not open-sourced. We also
tested the single-machine out-of-core subgraph-centric sys-
tem such as RStream [8]. We used the 3 applications also
used in the experiments of [6], [15] for performance study:
(1) maximum clique finding (MCF), (2) triangle counting
(TC), and (3) subgraph matching (GM). We compared with
Giraph on MCF and TC as their vertex-centric algorithms
exist [30], [31]. Arabesque also only provided MCF and
TC implementations. All relevant code can be found at
http://www.cs.uab.edu/yanda/gthinker. Figure 11 shows real
graph datasets used: Youtube, Skitter, Orkut, BTC and Friend-
ster. They have different characteristics, such as size and
degree distribution. All our experiments were conducted on
a cluster of 16 virtual machines (VMs) on Microsoft Azure.
Each VM (model D16S V3 deployed with CentOS 7.4) has
16 CPU cores, 64 GB RAM, and is mounted with a 512 GB
managed disk. Each experiment was repeated 10 times, and all
reported results were averaged over the 10 runs. We observed
in all our experiments that the disk space consumed by G-
thinker is negligible (since compers prioritize spilled tasks
when refilling their Qtask), and thus we omit disk space report.

Comparison among Distributed Systems. Figure 12 re-
ports the (1) running time and (2) peak VM memory consump-
tion (taking the maximum over all machines) of our 3 applica-
tions over the 5 datasets shown in Figure 11. We can see that
Arabesque and Giraph incurred huge memory consumption
and could not scale to large datasets like BTC and Friendster,
since they keep materialized subgraphs in memory. G-Miner
is memory-efficient as it keeps tasks (containing subgraphs)
in a disk-resident task priority queue; it is also more efficient
than Arabesque and Giraph. However, while GMiner scales to
large datasets, its performance is very slow on them. This is
caused by its IO-bound disk-resident task queue, where task
insertions are costly when the data size and hence task number
become large. G-Miner also failed to finish any application on
BTC within 24 hours, which is likely because of the uneven
vertex degree distribution of BTC where the dense part of BTC
incurs enormous computation workloads, and G-Miner is not
able to handle such scenarios efficiently.
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Fig. 12. SYSTEM COMPARISON.

Fig. 13. Datasets.

As Figure 12 shows, G-thinker consistently uses less mem-
ory than G-Miner and is faster from a few times to 2 orders
of magnitude (e.g., see TC and MCF on Friendster). One
exception is MCF over Skitter, where we find that this is
because of the different task processing order of G-Miner
and G-thinker. Specifically, G-thinker processes tasks approx-
imately in the order of how the vertices in Tlocal are ordered
(as tasks are spawned from vertices in Tlocal on demand
when memory permits), while G-Miner prioritizes tasks using
locality sensitive hashing over P (t), which is the set of vertices
to pull by a task t. MCF uses the latest maximum clique found
to prune search space, and G-Miner happens to process the
maximum clique much earlier. However, this is irrelevant to
system design and really depends on how vertices are ordered
in the input file (and hence in Tlocal after graph loading).

We now evaluate T-FSM and compare it with SOTA sys-
tems ScaleMine, Fractal, DistGraph, Pangolin and Peregrine.

These systems only support MNI so we use MNI by default.
Datasets and Environmental Setup. We select 10 real-world
graph datasets with various sizes, densities and categories as
summarized 13.

Comparison with Existing Systems. Figure 12 shows the
performance of T-FSM compared with ScaleMine [26], Fractal
[24], DistGraph, Pangolin [22] and Peregrine on all 10 graphs
shown in Table 2 for different values of support threshold τ .
For some graphs, mining large patterns are expensive, we stop
extending a pattern if its size goes beyond a certain threshold.
We also set the maximum running time as 104 seconds. In
Figure 14, “M” means Out of Memory (64 GB), “T” means
Out of Time (104 s), “A” means the program aborts (occurs
only in Pangolin [22] due to an assertion error), and “X” means
results returned are not exact. Note that even though a program
fails and may terminate quickly for the case of “M” or “A,”
we still plot its hatched bar to the top like for “T” to help
readers easily see which system the bar corresponds to. Also,
there is no bar on MiCo for Fractal and Peregrine since they
do not support edge labels.

Figure 12 shows that T-FSM generally has the best per-
formance on all the graphs, especially the denser ones. For
example, on Human, T-FSM is the only system that can mine
all pattern with no more than 6 vertices, since Human is very
dense with an average degree of 36.92. A similar observation
can be reached for UK POI, where ScaleMine is the only other
system that can finish for some tested values of τ .

On GSE1730 and DBLP, although ScaleMine sometimes
has a lower running time than T-FSM, we observe that
ScaleMine’s results are frequently not exact and even incon-
sistent from two different runs. For example, on DBLP when
τ = 1800 , T-FSM returns 1745 patterns which is the same
as that returned by GraMi, but ScaleMine returns 830 patterns
in one run and 832 patterns in another run. This shows that
the approximate pruning techniques of ScaleMine can be far
from accurate.

DistGraph can only handle two graphs DBLP and Patent.
Since DistGraph extends patterns by BFS, it suffers frequently
from Out-of-Memory errors on Human, MiCo, UK POI,
Youtube and Twitter. The approach does work well when the
number of patterns is small, where performance comparable
to T-FSM is achieved on DBLP when τ = 1800 and 2000.
The problem of pattern extension by BFS also applies to
Pangolin, which aborts on all datasets except for DBLP and
Patent. Moreover, we find that the results of Pangolin are
different from the exact results on DBLP, which is likely due
to implementation issues.

Although Fractal supports depth-first pattern extension, it
exhaustively mines all valid subgraphs without any early termi-
nation (after τ matches are found), so it is the slowest among
all systems. Peregrine conducts breadth-first pattern extension
but considers domain table as in T-FSM where subgraph
matching is conducted in a depth-first manner. However, its
subgraph matching and load balancing approaches are less
efficient. As a result, Peregrine runs out of time (104 s) on
most datasets except for DBLP and Patent, and Youtube only
when τ = 2000. Both Fractal and Peregrine do not support
edge labels, so we cannot show their results on MiCo.
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Fig. 14. T-FSM v.s. existing FSM systems with 32 Compers.

VI. CONCLUSIONS AND FUTURE WORK

We presented the first truly CPU-bound graph-parallel sys-
tem called G-thinker for large-scale subgraph finding, with
a user-friendly subgraph-centric programming interface and
a task-based execution engine. This journal extension fur-
ther improved load balancing by proposing to add a global
task queue to each machine for prioritized scheduling of big
tasks. We also identified the performance weakness of a basic
algorithm for maximum clique finding (MCF) and proposed
hybrid task decomposition strategies (i.e., color-ignorant, plus
color-based with timeout mechanism and candidate grouping)
to scale to large graphs with a high vertex degree (e.g., over
1M on LiveJournal) and high density (e.g., |E|/|V | = 142.42
on MovieLens). Results show that our best MCF algorithm,
MCF-H, is able to find large maximum cliques which require
deep algorithmic recursion, such as 1,109 on WikiLinks in 70
minutes 51 seconds, and 944 on WebUK in 691 seconds, but
for such graphs we need to use a large time- out threshold

rather than the default value of 1 second to prevent task over-
decomposition. Many future works on top of G-thinker are
currently under way in our research group, including mining
pseudo-clique structures that are even more expensive to find
than cliques, such as quasi-cliques and k-plexes. Another
interesting future work is to develop a general-purpose engine
for subgraph matching on top of G-thinker, the subsection on
“Motivations to Use G-thinker.” Note that the search space
of subgraph matching can be regarded as a state space tree
for efficient backtracking similar to how clique-like struc-
tures can be recursively searched using a set-enumeration
tree, so all our proposed task decomposition and schedul-
ing techniques in this paper can still be applied for parallel
subgraph matching.

We have used PrefixFPM to parallelize 3 state-of-the-art
prefix-projection algorithms for mining 3 different kinds of
frequent patterns, i.e., sequences, subgraphs and subtrees. Due
to space limit, we refer interested readers to https://github.com/
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Fig. 15. CPU Utilization Rates.

yanlab19870714/PrefixFPM for their implementation. We plan
to describe them in detail in a complete journal paper.

We presented an efficient system called T-FSM for parallel
mining of frequent subgraph patterns in a big graph. T-FSM
adopts a novel task-based execution engine design to ensure
high concurrency, bounded memory consumption, effective
load balancing. T-FSM integrates the latest subgraph match-
ing algorithm to enable the efficient mining of much larger
patterns. It also supports a new measure called Fraction-Score
which is more accurate than the widely used MNI measure.
Our experiments show that T-FSM is orders of magnitude
faster than SOTA systems for FSM.
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