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Abstract—Large language models (LLMs) have achieved re-
markable success across a wide range of natural language
processing tasks, driving significant advancements in artificial
intelligence. However, the growing scale and complexity of these
models introduce significant challenges in serving them efficiently,
particularly during the inference phase. Traditional methods for
LLM serving often rely on colocation of the prefill and decoding
stages, which can lead to inefficiencies due to their differing com-
putational patterns and performance requirements. This survey
addresses these challenges by systematically reviewing state-of-
the-art optimization techniques that disaggregate the prefill and
decoding stages of LLM inference. We categorize existing ap-
proaches into three key areas: disaggregated architecture design,
key-value (KV) cache pool management for distributed memory
optimization, and scheduling strategies. Additionally, we provide
a comprehensive analysis of experimental results, evaluating the
effectiveness of these techniques in improving system efficiency
and resource utilization. The paper aims to offer valuable insights
into the current landscape of LLM serving optimization and
identifies promising directions for future research in this field.

Index Terms—Large language models (LLMs), model serving
optimization, disaggregated architecture, distributed memory
management, scheduling strategies.

I. INTRODUCTION

GENERATIVE large language models (LLMs) have be-
come a transformative force in the field of artificial in-

telligence (AI), significantly advancing the capabilities of ma-
chine learning systems across a variety of language-intensive
tasks. These models have shown exceptional performance
in areas such as natural language processing (NLP), image
captioning, visual recognition, and even multimodal tasks.
As such, they have emerged as a critical component in the
evolution of artificial general intelligence (AGI), shaping both
theoretical research and practical applications in AI.

Among the many contributions of LLMs to AI, the advent
of transformer-based architectures has marked a paradigm
shift in the way machines understand and generate human
language. Notable examples include the GPT family (Gen-
erative Pre-trained Transformer) [1], the LLaMA family [2],
and other cutting-edge models such as OPT [3], BLOOM
[4], Mistral [5], DeciLM [6], Baichuan [7], and GLM [8].
These transformer-based LLMs distinguish themselves from
traditional neural networks and earlier architectures in several
key ways. One of the most striking differences is their sheer
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Fig. 1: The scaling trend of models over time.

scale. The size of the representative model grows astonishingly
over time. For instance, as shown in Fig. 1, while earlier
models such as T5 consisted of 11B parameters, state-of-
the-art LLMs like PanGu can contains over 1G parameters,
resulting in nearly 100 times of magnitude increase in model
complexity. This massive scale enables LLMs to perform at
unprecedented levels but also introduces substantial challenges
in terms of resource utilization, including memory require-
ments, computational costs, and communication overheads.

However, this exponential growth in model size does not im-
ply that every part of the transformer architecture contributes
equally to the overall scaling trend. Transformer models are
generally composed of two primary stages: the attention
mechanism and the feed-forward network (FFN). Each of these
stages plays a distinct role in the model’s ability to process and
generate language. Moreover, the inference process of LLMs
can be divided into two additional stages: the prefill stage,
during which initial context is loaded, and the decoding stage,
where the model generates predictions based on the context.
These two stages, though part of a continuous process, dif-
fer significantly in their computational characteristics, which
introduces unique challenges for efficient model deployment.

Given the complexity and diversity of operations within
transformer-based models, optimizing the inference process
for LLMs has become a critical area of research. Traditional
optimization approaches such as parallelization [9], quantiza-
tion [10], and kernel optimization [11] have been explored
to mitigate the computational burden of LLMs. However,
these methods often overlook the heterogeneous nature of
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Fig. 2: Schematic diagram of parallelization strategies in machine learning systems. Different color blocks indicate different
layers in the network.

the inference process, particularly the distinct demands of the
prefill and decoding stages. Addressing this heterogeneity is
crucial for improving both the efficiency and scalability of
LLM serving.

This paper presents a comprehensive survey of state-of-the-
art methods for optimizing LLM serving by disaggregating
the prefill and decoding stages. We provide a systematic
categorization of existing approaches, focusing on three key
aspects: disaggregated architecture realization, key-value (KV)
cache pool management (distributed memory optimization),
and scheduling strategies. Additionally, we include a detailed
analysis of the experimental results of various methods, offer-
ing insights into their relative performance and applicability.
Our goal is to provide both researchers and practitioners with
a deeper understanding of the current landscape of LLM
serving optimization and highlight promising directions for
future work.

The remainder of this paper is organized as follows: Section
2 reviews related works and provides the necessary back-
ground for understanding the challenges in LLM serving.
Section 3 outlines the motivations and theoretical foundation
for disaggregating the prefill and decoding stages. Section
4 categorizes the various disaggregation techniques and dis-
cusses the associated works within each category. Section
5 examines the evaluation methodologies used to assess the
performance of these optimization methods. Finally, Section
6 concludes the survey and proposes future directions for
research in this area.

II. RELATED WORK

A. Conventional Machine Learning System (MLSys) Optimiza-
tions

Parallelization strategies have long been a cornerstone in
optimizing machine learning (ML) systems, particularly for
large-scale model serving. These techniques leverage the par-
allel processing capabilities of modern hardware architectures,
distributing computations across multiple cores or devices
to achieve significant speedups during inference. Prior to
recognizing the distinct computational demands of prefill and
decoding stages, parallelization was applied across the entire
inference pipeline in a uniform manner.

Most model parallelism techniques were initially developed
for distributed training of large deep neural networks (DNNs),

particularly transformer-based models. Figure 2 illustrates sev-
eral parallelism strategies commonly employed in distributed
training. For example, tensor model parallelism (TP) [12] par-
titions model layers—such as attention and feed-forward net-
works (FFN)—into smaller chunks, with each chunk deployed
across separate devices (e.g., GPUs). This approach can greatly
reduce inference latency, particularly in environments with
high-speed interconnects like NVLink, allowing for efficient
use of multiple GPUs within the same machine. Moreover,
when applied to multi-query attention with a single head for
key-value pairs, TP can be combined with data parallelism in
a hybrid tensor partitioning strategy.

In contrast, pipeline model parallelism (PP) [13] organizes
model layers into a sequence, with each device responsible
for processing one or more consecutive layers. While PP can
increase the throughput (i.e., the number of inputs processed
per unit of time), it does not inherently reduce the time
required to process a single input from start to finish, as TP
does. Sequence parallelism (SP) represents another variation,
with its key innovation being the distribution of long sequences
across multiple GPUs along the sequence length dimension
[14]. Each GPU processes a portion of the sequence, helping
to balance computational and memory loads. Different paral-
lelism approaches introduce varying levels of communication
overhead and computational latency [15], and achieving opti-
mal performance often requires careful consideration of these
trade-offs.

To automate the selection of the most efficient paralleliza-
tion strategy, several frameworks for distributed training have
been proposed, such as Alpa [16], FlexFlow [17], and Galva-
tron [18]. These systems aim to optimize resource utilization
and improve overall system efficiency by dynamically adjust-
ing parallelism strategies based on the characteristics of the
model and the underlying hardware.

B. Resources in Cluster
The successful deployment of LLMs also relies on the ef-

fective utilization of resources within a computational cluster.
These resources include computational, communication, and
memory resources, each of which plays a critical role in
optimizing the performance of distributed systems.

• Node-to-Node Communication Resources: Remote Di-
rect Memory Access (RDMA) [19] is a key technology
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Fig. 3: Leveraging different types of computational resources in a heterogeneous GPU cluster.

for enabling high-speed, low-latency data transfer be-
tween nodes in a cluster. RDMA allows one computer’s
memory to be accessed directly by another without
involving the operating system, significantly reducing
communication overhead. GPUDirect-RDMA [20]further
enhances this process by enabling direct communication
between GPUs across different nodes, bypassing the CPU
entirely. This is particularly advantageous for large-scale
LLM training, where the rapid synchronization of model
parameters and gradients is crucial. Two common RDMA
technologies are InfiniBand and RDMA over Converged
Ethernet (RoCE) [21]. InfiniBand, known for its low-
latency, high-speed capabilities, is widely used in high-
performance computing (HPC) environments, such as the
Eagle supercomputer [22]. RoCE, on the other hand, takes
advantage of existing Ethernet infrastructure to provide
RDMA functionality.

• Heterogeneous Computational Resources: In contrast
to traditional data center setups, which typically assume
homogeneous clusters of nodes, modern LLM serving
often requires heterogeneous computational resources. As
LLMs scale to increasingly large sizes and the availability
of the latest-generation GPUs becomes more limited, de-
ploying models across heterogeneous devices has become
an essential strategy. However, this approach introduces
new challenges that were not fully addressed in earlier
optimization methods. Figure 3 highlights several recent
works [12] that explore the use of heterogeneous re-
sources in LLM serving. These studies aim to better uti-
lize the diverse hardware available in clusters, including
CPUs, GPUs, and other accelerators, to achieve more
efficient processing and resource allocation.

• Memory Resources: Memory resources play a pivotal
role in the distributed training and serving of LLMs. Stor-
age systems must be designed to match the computational
power of the GPUs they support to avoid bottlenecks
that could waste computational resources. Furthermore,
these systems must be scalable, capable of storing both
large-scale structured and unstructured training datasets,
and able to handle the storage and retrieval of model
checkpoints throughout training. In addition to meeting
the performance requirements dictated by model size
and training duration, the memory system must also
satisfy enterprise-level needs such as data protection, high
availability, and security.

Fig. 4: Because of the interference between prefill and
decoding under co-location, resources need to be

over-provisioned to meet SLOs.

III. ANALYSIS AND MOTIVATION

This section first discusses the reason people do disaggre-
gation for prefill and decoding. After that, we address an
intuitive implementation of disaggregation, and then introduce
the tradeoff between data transfer overhead and throughput
improvement.

A. Motivation for Disaggregating Prefill and Decoding

The motivation behind disaggregating the prefill and decod-
ing stages of large language model (LLM) inference lies in ad-
dressing the inherent inefficiencies caused by the conventional
approach of colocating these two stages. Prefill and decoding,
while both integral to the inference process, exhibit distinct
computational patterns and performance characteristics. This
divergence introduces several challenges when both stages are
executed together on the same infrastructure.

Firstly, the computation patterns of prefill and decoding
differ significantly. The prefill stage typically involves the
initialization and loading of context, requiring high throughput
to efficiently process large amounts of input data in parallel.
In contrast, the decoding stage, which generates predictions
based on the context, involves sequential processing and more
complex dependencies between tokens, leading to different re-
source demands. As a result, when these stages are colocated,
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Fig. 5: Intuitive implementation of disaggregation.

interference occurs, as the resource allocation strategies opti-
mized for one stage may negatively impact the performance
of the other.

Secondly, prefill and decoding have different service-level
objectives (SLOs). The prefill stage prioritizes throughput and
fast data loading, aiming to handle a large volume of input
efficiently. Decoding, on the other hand, is more latency-
sensitive, as it involves generating output tokens one at a time,
often requiring real-time responsiveness. The simultaneous
execution of both stages under a unified resource management
strategy may cause conflicts in optimizing these SLOs, as
the system is forced to balance throughput and low-latency
requirements, often to the detriment of one or the other, just
as shown in Fig. 4.

Furthermore, the conventional practice of coupling prefill
and decoding also leads to suboptimal resource allocation and
parallelism strategies. The shared allocation of computational
resources and parallelism mechanisms between the two stages
prevents the system from tailoring its approach to the unique
needs of each stage. This results in inefficient utilization of
hardware resources and can significantly slow down the overall
inference process.

By disaggregating the prefill and decoding stages, it be-
comes possible to optimize the resource allocation, parallelism
strategies, and execution pipelines for each stage indepen-
dently, thereby improving the overall performance and effi-
ciency of LLM inference systems. This approach enables a
more granular and adaptable optimization process, allowing
for better utilization of hardware resources and a more bal-
anced achievement of the performance goals for both stages.

B. Intuitive Implementation of Disaggregation

In Fig. 5 it shows an intuitive implementation of disaggre-
gating prefill and decoding. To be specific, it deploys prefill
stage on one GPU (called Prefill Worker), and decoding stage
on another (called Decode Worker). In this way, these two
stages that may interfere with each other are separated to
different hardware. This intuitive implementation is beneficial
for a better chance for separated optimization, but introduces
extra overhead: transferring KV Cache between GPUs for the
two stages.

Fig. 6: KV cache transfer could be not a bottleneck.

C. Overhead-Throughput Tradeoff Analysis

We analyze from either side of the tradeoff to see how it
works.

1) The throughput gain. Take Fig. 6 as an example.
Assume the two SLOs (time-to-first-token (TTFT) for
prefill, and time-per-output-token (TPOT) for decoding)
are:

90% TTFT ≤ 400ms (1)

90% TPOT ≤ 40ms (2)

On the left of Fig. 6 shows the request rate per second
(rps) for prefill and decode when these two stages are
co-located, while on the right of Fig. 6 shows the rps
for both when they are separated, with 2 GPUs serving
prefill and 1 GPU serving decoding. In this case, we can
calculate the max system rps following:

max system rpsco = Min(Prefill,Decode)

= 1.6 rps/GPU
(3)

max system rpsdisagg =
Min(Prefill × 2, Decode)

3GPU
= 3.3 rps/GPU

(4)
From Equation 3 and Equation 4 we can tell
that max system rpsco ≤ max system rpsdisagg ,
which represents an over 100% throughput enhancement
after disaggregation.

2) The KV cache transfer overhead. Fig. 7 indicates that
the introduced overhead of KV cache transferring is not
always the bottleneck. We can infer that the overhead is
acceptable if:

• The network between the nodes leverage high-speed
networks (e.g., NVLink, PCI-e, IB, etc., or

• tasks are assigned to long sequences or large mod-
els, so that the overall computing time cost scales
fast.

So the optimization goal of this kind of scenarios turns
into: how to optimize throughput while maintaining low
transfer overhead?
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Fig. 7: Throughout comparison: co-location VS
disaggregation.

IV. SYSTEM DESIGN

In this section, based on the previous analysis, we intro-
duce three state-of-the-art works that dedicated to do system
design for reaching the best tradeoff and enhance system total
performance.

A. DistServe

DistServe [23] is a system designed to address the chal-
lenges associated with optimizing the serving of large lan-
guage models (LLMs), particularly in the context of dis-
aggregating the prefill and decoding stages. The approach
taken by DistServe is centered around identifying the optimal
placement of prefill and decoding instances within a cluster,
ensuring that the system meets specific latency requirements
and service level objectives (SLOs) while maximizing per-
GPU goodput. The following section provides a detailed
breakdown of the key contributions of DistServe, focusing
on its placement algorithms, online scheduling strategies, and
optimization techniques for both high and low node-affinity
clusters.

1) Placement for High Node-Affinity Clusters: DistServe’s
placement algorithm for high node-affinity clusters, which
are equipped with high-speed cross-node networks such as
Infiniband, allows for the flexible deployment of prefill and
decoding instances across multiple nodes. In such clusters, KV
cache transmission overhead is negligible, allowing DistServe
to optimize the parallelism strategies for prefill and decoding
instances separately. The system employs a two-level place-
ment algorithm, wherein it first optimizes the parallel config-
urations for each instance type to achieve phase-level optimal
goodput, followed by replication to match the overall traffic
rate. This process involves simulating different configurations
using a workload simulator to estimate SLO attainment and
identify the best configuration. The algorithm’s complexity is
manageable, and simulation results show that it can operate
efficiently, even in large-scale settings.

2) Placement for Low Node-Affinity Clusters: In clusters
with low node-affinity, where bandwidth between nodes is lim-
ited, DistServe addresses the challenge of KV cache transmis-
sion by colocating prefill and decoding instances on the same
node. This approach leverages NVLINK, a high-bandwidth
interconnect available inside GPU nodes, to facilitate efficient

Fig. 8: DistServe Runtime System Architecture.

data transfer. However, for large models, this may require co-
locating multiple instance segments to fit within the resource
limits of the node. DistServe introduces a new method of
partitioning the model into smaller instance segments, each
corresponding to a specific inter-operation stage, and optimizes
their placement within the node to minimize resource con-
tention. This solution is implemented in Algorithm 2, which
enumerates possible configurations for instance segments and
uses simulation to identify the best parallelism strategy.

3) Online Scheduling Optimization: DistServe’s runtime ar-
chitecture is built around an online scheduling system (showed
in Fig. 8) designed to optimize the use of prefill and decoding
instances under real-world workload conditions. The system
uses a simple FCFS (First-Come, First-Served) scheduling
policy but includes several optimizations to address key chal-
lenges such as workload burstiness and non-uniform prompt
lengths. The scheduler balances the execution time of batches
to reduce pipeline bubbles and prevent memory overload by
implementing a ”pull” method for KV cache transmission,
where decoding instances fetch the required data from prefill
instances as needed. Additionally, DistServe supports periodic
re-planning of resource allocations based on detected shifts
in workload patterns, ensuring the system remains adaptable
over time. Although not the primary focus of the system,
DistServe also discusses potential future extensions, includ-
ing preemption strategies and fault tolerance mechanisms to
enhance system resilience.

This section encapsulates DistServe’s key innovations in
optimizing LLM serving through intelligent placement algo-
rithms and scheduling strategies. The system’s ability to adapt
to varying hardware configurations and workload character-
istics makes it a promising solution for large-scale, efficient
LLM deployment.

B. Splitwise

1) Splitwise: A Technique for Phase Splitting in LLM In-
ference: Based on the characterization insights, the authors
propose Splitwise [24], a technique that splits the prefill
and decoding phases of large language model (LLM) in-
ference onto separate machines. The overall architecture of
Splitwise is depicted in Fig. 9. This approach maintains
two distinct pools of machines for prompt and token process-
ing. Additionally, a third mixed pool expands and contracts
dynamically to meet workload demands. Each machine in the
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Fig. 9: High-level system diagram of Splitwise.

system is preloaded with the model of choice, ensuring that
no time is wasted in loading the model during inference.

When a new inference request arrives, the scheduler allo-
cates it to a pair of machines—one responsible for the prompt
phase and the other for the token generation phase. The prompt
machine processes the input query tokens and generates the
initial token, creating the key-value (KV) cache that is nec-
essary for the token generation phase. Once the KV-cache
is generated, it is transmitted to the token machine, which
continues generating the response. This separation allows for
better resource utilization and a more flexible allocation of
resources based on workload demands.

2) Cluster-Level Scheduling for Efficient Machine Pool
Management: At the cluster level, Splitwise introduces
a two-level scheduling mechanism, where the cluster-level
scheduler (CLS) is responsible for managing the machine
pools and routing inference requests. The machine pools are
divided into three categories: the prompt pool, the token pool,
and the mixed pool. The CLS ensures that machines are as-
signed to the appropriate pool based on the expected workload.
If the load distribution deviates from initial assumptions, the
CLS may dynamically move machines between the pools to
balance the load and minimize fragmentation.

The two-level scheduling architecture is where the CLS uses
a Join the Shortest Queue (JSQ) scheduling algorithm to assign
requests to prompt and token machines. This approach mini-
mizes the overall response time by selecting machines with the
shortest pending queue. Additionally, the CLS is responsible
for routing requests to the mixed pool when the queues for
both prompt and token machines are excessively long. The
mixed pool is designed to ensure that the performance of the
system does not degrade under high load conditions.

Fig. 10: Optimizing KV-cache transfer in Splitwise.

3) Machine-Level Scheduling for Token and Prompt Pro-
cessing: On each individual machine, the machine-level
scheduler (MLS) is responsible for managing the local queue,
tracking memory utilization, and deciding how to batch in-
coming requests. For prompt machines, MLS employs a first-
come-first-serve (FCFS) strategy to schedule requests. To
ensure optimal performance, the MLS restricts the batching
of multiple prompt requests to a total of 2048 tokens, beyond
which throughput begins to degrade.

For token machines, the MLS also follows FCFS schedul-
ing, but it dynamically adjusts the batch size based on available
memory. As the machine’s memory capacity is reached, the
MLS starts queuing tokens to avoid memory overload. The
MLS ensures that the memory is utilized efficiently and
minimizes any idle time on the token machines.

4) Optimizing KV-Cache Transfer for Reduced Latency:
The transfer of the KV-cache from the prompt machine to
the token machine is a significant overhead in Splitwise.
This transfer delay can be especially pronounced for larger
prompts, as the time required for transfer increases with the
size of the KV-cache and the bandwidth between the machines.
To address this issue, Splitwise optimizes the KV-cache
transfer by overlapping it with the ongoing computations in
the prompt phase.

5) System Overview: Splitwise: Fig. 10 shows the process
of KV-cache transfer in both serialized and asynchronous
modes. In the serialized approach, the KV-cache transfer starts
only after the prompt phase has completed, introducing a
significant delay before the token generation phase can begin.
In contrast, the asynchronous approach allows the KV-cache
to be transferred in parallel with the ongoing computation in
the prompt phase. As each layer in the model is computed,
the corresponding KV-cache for that layer is transferred asyn-
chronously to the token machine, significantly reducing the
overall transfer time and allowing for the token generation
phase to begin earlier.

6) Layer-Wise KV-Cache Transfer: Balancing Perfor-
mance and Latency: To further optimize KV-cache transfer,
Splitwise introduces a layer-wise transfer strategy. In
this approach, the KV-cache corresponding to each layer is
transferred immediately after that layer is computed, rather
than waiting for the entire prompt phase to finish. This method
allows for continuous transfer of the KV-cache while the next
layer of the prompt computation is being processed.

As layer-wise KV-cache transfer works in parallel with
prompt computation, this optimization reduces the time spent
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Fig. 11: Mooncake Architecture.

on KV-cache transfer and improves the overall throughput of
the system. However, it may introduce some performance in-
terference, particularly for smaller prompts, where the transfer
overhead is less significant. To mitigate this, Splitwise
dynamically selects between serialized and layer-wise transfer
based on the size of the prompt, ensuring that the transfer
method is best suited to the request size.

Overall, the combination of these optimizations—dynamic
scheduling, efficient KV-cache transfer, and paral-
lelism—enables Splitwise to achieve both high throughput
and low latency for large language model inference.

C. MoonCake

Despite from the previous two works, MoonCake [25] out-
performs with a solid code base and real tests in an industrial
cluster.

1) Disaggregated Architecture and KVCache Management:
MoonCake adopts a disaggregated architecture (showed in
Fig. 11)that separates the prefill and decoding nodes while
integrating CPU, DRAM, SSD, and RDMA resources within
the GPU cluster. This architecture enables the implementa-
tion of a disaggregated KVCache, which efficiently utilizes
underutilized resources, offering substantial cache capacity
and transfer bandwidth. The KVCache is stored as paged
blocks in CPU memory, and these blocks can be managed
using cache eviction algorithms, including Least Recently
Used (LRU) and Least Frequently Used (LFU), based on the
request patterns. The transfer of KVCache blocks across CPU
and GPU nodes is managed by a dedicated RDMA-based
component, named Messenger, which facilitates high-speed
data movement. Additionally, MoonCake provides a context
caching API to enable better KVCache reuse.

2) Conductor: The Global Scheduler: Central to Moon-
Cake’s operation is the Conductor, a global scheduler that dis-
patches requests based on the current distribution of KVCache
and node workloads. Conductor is responsible for replicating
or swapping KVCache blocks to improve future inference
performance. As illustrated in Fig. 12, the typical workflow
begins after tokenization is completed, with Conductor se-
lecting prefill and decoding nodes. The workflow includes
the following steps: KVCache Reuse, Incremental Prefill,
KVCache Transfer, and Decoding. Each step is optimized to

Fig. 12: The KVCache pool in CPU memory. Each block is
attached with a hash value determined by both its own hash

and its prefix for deduplication.

Fig. 13: Workflow of inference instances. For prefill
instances, the load and store operations of the KVCache layer
are performed layer-by-layer and in parallel with the prefill

computation to mitigate transmission overhead (see §5.2). (†)
For decoding instances, asynchronous loading is performed
concurrently with GPU decoding to prevent GPU idle time.

minimize latency and ensure that the Tail-to-Tail Firing Time
(TTFT) Service Level Objective (SLO) is met.

3) KVCache Reuse and Incremental Prefill: The KVCache
Reuse step involves loading relevant cached data into GPU
memory, ensuring that as much KVCache as possible is reused
while balancing node workloads and meeting TTFT SLO.
In the Incremental Prefill step, the prefill node completes
the prefix caching process and stores the newly generated
KVCache back into CPU memory. For large inputs, the
prefill process is chunked and executed in parallel, with each
chunk processed across different nodes to fully utilize GPU
computational resources.

4) KVCache Transfer with Messenger: MoonCake uses the
Messenger service to manage and transfer KVCache blocks
across nodes. Messenger is an independent process running
within each inference instance, ensuring high-speed, asyn-
chronous KVCache transfer. This transfer is overlapped with
the incremental prefill to minimize waiting time, enhancing
overall system performance.

5) Decoding Node Selection and Execution: After the KV-
Cache is transferred to the decoding node, Conductor pre-
selects a node based on current load and batch scheduling.
This step is critical for meeting TTFT SLOs. However, the
local scheduler re-evaluates this selection to ensure the node’s
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Fig. 14: Chatbot application with OPT models on the ShareGPT dataset.

load has not changed during the prefill stage, which might lead
to request rejection if the SLO cannot be met.

6) Maintaining a Disaggregated Prefill Pool: While some
studies suggest the benefits of a more integrated architecture,
MoonCake maintains its disaggregated architecture for prefill
operations. This decision is driven by the need to handle long-
context requests efficiently and save VRAM by keeping prefill
nodes separate from decoding nodes. Prefill is inlined into the
decoding batch only when it meets TTFT requirements without
chunking.

7) Multi-Node Prefill for Long Contexts: Given the rapid
increase in the available context length for LLMs, MoonCake
employs multi-node prefill to process long-context requests.
Recent studies have proposed sequence parallelism (SP) to
accelerate long-context processing. However, MoonCake uti-
lizes chunked pipeline parallelism (CPP), which minimizes the
need for cross-node communication and reduces the overhead
of frequent dynamic adjustments to node partitioning. CPP
allows MoonCake to process multiple chunks of a request
simultaneously across different nodes, thus reducing TTFT and
improving resource utilization.

8) Layer-wise Prefill and VRAM Optimization: MoonCake
also optimizes VRAM usage by employing a layer-wise pre-
fill strategy. In this approach, KVCache loading and storing
are asynchronous, overlapping with computation to minimize
VRAM occupation. By using this method, MoonCake can
handle larger context lengths without significant performance
degradation. The layer-wise prefill method, shown in Fig. 13,
reduces latency for long-context requests by optimizing the
transfer and computation overlap.

9) KVCache-Centric Scheduling: MoonCake’s scheduler,
Conductor, places significant emphasis on KVCache-centric
scheduling. This section primarily discusses how Conductor
handles scheduling under normal conditions, with overload
scenarios addressed in subsequent sections. The KVCache-
centric scheduling allows for more efficient resource utiliza-
tion, balancing cache management with workload distribution,
ensuring that the TTFT SLO is met even under varying system

loads.

V. PERFORMANCE EVALUATION

In this section, we will address the experiments done in each
work and do a performance evaluation based on the results.

A. DistServe

They evaluate the performance of DistServe on the chatbot
application for all three OPT models. The first row of Fig.
14 illustrates that when they gradually increase the rate, more
requests will violate the latency requirements and the SLO
attainment decreases. The vertical line shows the maximum
per-GPU rate the system can handle to meet latency require-
ments for over 90% of the requests. On the ShareGPT dataset,
DistServe can sustain 2.0×4.6× higher request rate compared
to vLLM. This is because DistLLM eliminates the prefill-
decoding interference through disaggregation. Two phases can
optimize their own objectives by allocating different resources
and employing tailored parallelism strategies. Specifically, by
analyzing the chosen placement strategy5 for 175B, they find
the prefill instance has inter-op = 3, intra-op = 3; and the
decoding instance has inter-op = 3, intra-op = 4. Under this
placement, DistServe can effectively balance the load between
the two instances on ShareGPT, meeting latency requirements
at the lowest cost. This non-trivial placement strategy is
challenging to manually find, proving the effectiveness of
the algorithm. In the case of vLLM, collocating prefill and
decoding greatly slows down the decoding phase, thereby
significantly increasing TPOT. Due to the stringent TPOT
requirements of chatbot applications, although vLLM meets
the TTFT SLO for most requests, the overall SLO attainment
is dragged down by a large number of requests that violate
the TPOT SLO. Compared to DeepSpeed-MII, DistServe can
sustain 1.6×–7.4× higher request rate. DeepSpeed-MII shows
better performance on larger models because the prefill job
is larger and chunkedprefill mitigates the interference to some
extent. However, due to the reasons discussed in §2.3, chunked



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

Fig. 15: Code completion and summarization tasks with OPT-66B on HumanEval and LongBench datasets, respectively.

prefill is slower than full prefill, so it struggles to meet the
TTFT SLO as a sacrifice for better TPOT.

The second row of Fig. 14 indicates the robustness to the
changing latency requirements of the two systems. They fix
the rate and then linearly scale the two latency requirements
in Table 1 simultaneously using a parameter called SLO
Scale. As SLO Scale decreases, the latency requirement is
more stringent. They aim to observe the most stringent SLO
Scale that the system can withstand while still achieving the
attainment target. Fig. 14 shows that DistServe can achieve
1.8×–3.2× more stringent SLO than vLLM and 1.7×–1.8×
more stringent SLO than DeepSpeed-MII, thus providing more
engaging service quality to the users.

Fig. 15(a) shows the performance of DistServe on the code
completion task when serving OPT66B. DistServe can sustain
5.7× higher request rate and 1.4× more stringent SLO than
vLLM. Compared to DeepSpeedMII, DistServe can sustain
1.6× higher request rate and 1.4× more stringent SLO. As a
real-time coding assistant, the code completion task demands
lower TTFT than chatbot, this leads to both systems ultimately
being constrained by the TTFT requirement. However, in
comparison, by eliminating the interference of the decoding
jobs and automatically increasing intra-operation parallelism
in prefill instances through the searching algorithm, DistServe
reduces the average latency of the prefill jobs, thereby meeting
the TTFT requirements of more requests.

Fig. 15(b) shows the performance of DistServe on the sum-
marization task when serving OPT-66B. DistServe achieves
4.3× higher request rate and 12.6× more stringent SLO than
vLLM. Compared to DeepSpeed-MII, DistServe achieves 1.8×
higher request rate and 2.6× more stringent SLO. The requests
sampled from LongBench dataset have long input lengths,
which brings significant pressure to the prefill computation.
However, due to the loose requirement of TTFT for the sum-
marization task, the TPOT service quality becomes particularly
important. Since vLLM collocates prefill and decoding phases,
it experiences a greater slowdown in the decoding phase with
long prefill jobs and fails to meet the TPOT requirement.

B. Splitwise

For Splitwise cluster designs under the coding trace,
Splitwise-AA provisions 55 prompt machines and 15 for
the token pool, denoted as (55P, 15P). Note that like Base-
lineA100, Splitwise-AA also provisions 75% more machines

Fig. 16: Latency metrics across input loads for iso-power
throughput optimized clusters. Dashed red lines indicate

SLO.

than Baseline-H100. The legends in Fig. 16 show the dif-
ferent provisioning choices under coding and conversation
workloads. Request size distributions reflect in the machine
pool sizing. For example, we provision more prompt machines
under SplitwiseHH (35P, 5T) for the coding trace, while we
provision more token machines (25P, 15T) for the conversation
trace. Latency and throughput. Fig. 16 shows a deep dive
into all the latency metrics at different input load for each
cluster design with the same power (i.e., iso-power). For
the coding trace (Fig. 16a), Splitwise-HH, Splitwise-HHcap,
and Splitwise-AA all perform better than Baseline-H100. As
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Fig. 17: End-to-end experiments of Mooncake and vLLM on simulated data.

the load increases, Baseline-H100 suffers from high TBT
due to mixed batching with large prompt sizes. Although
SplitwiseAA can support higher throughput, its TTFT is
consistently higher than most designs. Splitwise-HA clearly
bridges the gap by providing low TTFT and E2E at high
throughput. The mixed machine pool in Splitwise becomes
useful at higher loads to use all the available hardware without
fragmentation. This benefit can be seen clearly in the P50 TBT
chart for Splitwise-HA, where after 90 RPS, H100 machines
jump into the mixed machine pool and help reduce TBT.
For the conversation trace (Fig. 16b), Splitwise-HHcap clearly
does better on all fronts, including latency. This is because its
token generation phases typically run for much longer than in
the coding trace, which is beneficial for the token machines.

C. Mooncake
Public datasets evaluates the performance of Mooncake and

vLLM in end-to-end tests on public datasets using ArXiv
Summarization and L-Eval. They establish a baseline using
a cluster of four vLLM instances, denoted as vLLM-[4M].
In contrast, Mooncake is configured in two distinct setups:
one cluster consists of three prefill instances and one decod-
ing instance, labeled Mooncake-[3P+1D], and the other has
two prefill and two decoding instances, labeled Mooncake-
[2P+2D]. The results, depicted in Fig. 17, demonstrate that
on the ArXiv Summarization and L-Eval datasets, Mooncake-
[3P+1D] achieves throughput improvements of 20% and 40%,
respectively, over vLLM-[4M] while satisfying SLOs. More-
over, Mooncake’s throughput on the L-Eval dataset is further
enhanced by prefix caching, which significantly reduces prefill
time. However, despite having lower TBT latency, Mooncake-
[2P+2D] does not perform as well on the TTFT metric
compared to Mooncake-[3P+1D] and vLLM-[4M]. This dis-
crepancy arises from an imbalance in the load between prefill
and decoding instances. In real-world clusters, the demand for
prefill and decoding instances generally remains stable over
certain periods, with only minor temporary imbalances. Thus,
the proportion of prefill and decoding instances can be preset.
Future research will explore more flexible deployment and
conversion methods.

VI. CONCLUSION

Prefill and decoding disaggregation enhances resource uti-
lization and satisfies SLO at a lower cost. Prefill and decoding

disaggregation decouple resource allocation and parallelism
strategies such that optimization can be tailored for P and D
separately. After disaggregation, it turns into a conventional
distributed system problem, thus we use scheduling, batching,
and caching to further optimize.
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