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Abstract—Vector databases serve as the fundamental technol-
ogy for similarity search, enabling efficient retrieval of high-
dimensional data. They are widely utilized in applications such
as recommendation systems, search engines, and Retrieval-
Augmented Generation (RAG) in AI.

This paper provides an overview of three popular vector
databases, Faiss, ADBV and Milvus, which are designed to
efficiently handle high-dimensional vector search tasks. Faiss
is an open-source library that focuses on efficient similarity
search and vector indexing. ADBV enhances the efficiency of
attribute filtering and vector search by introducing a cost-based
approach to select the best strategy for different query scenarios,
while Milvus, an open-source project, supports distributed, high-
performance retrieval in various environments. The paper will
delve into their architectures, key features, and performance
characteristics, introducing their capabilities in terms of scal-
ability, and indexing techniques. The aim is to guide researchers
and practitioners in selecting the most suitable vector database
for their specific use cases in data retrieval and machine learning
applications.

Index Terms—Vector databases, Nearest Neighbor Search, AI-
driven Analytics, Graph-based Structures, Product Quantization

I. INTRODUCTION

Approximate Nearest Neighbor (ANN) search has become
a cornerstone for solving high-dimensional data retrieval prob-
lems, with applications spanning recommendation systems
[2], [8], [39], medical diagnosis [18], Retrieval-Augmented
Generation (RAG) [12], [21], and more. As data grows in
scale and complexity, developing efficient and scalable ANN
methods has become increasingly important.

ANN search has become a critical component in numerous
applications, such as recommendation systems, search engines,
and vector-based AI solutions. Over the years, several meth-
ods have demonstrated exceptional performance in solving
high-dimensional similarity search problems. Techniques like
HNSW (Hierarchical Navigable Small World) [34], DiskANN
[19], [25], [42], and IVF PQ (Inverted File Index with Product
Quantization) [11] have achieved significant success due to
their efficiency, scalability, and adaptability to large datasets.

In recent years, the growing demand for efficient similarity
search in high-dimensional spaces has led to the development
of specialized vector databases. Among the most widely used
vector databases are Faiss [11] and Milvus [44], both of
which offer robust solutions for vector search tasks, albeit with
distinct design philosophies and features.

The combination of traditional databases with vector
databases offers a compelling solution for a variety of use case

[36], [46]. Traditional databases continue to manage struc-
tured metadata, transactional data, and complex queries, while
vector databases handle the fast retrieval of unstructured data
representations, like embeddings. The integration of both types
of databases enables a holistic approach where structured data
can be joined seamlessly with unstructured vector data. This
combination is particularly powerful in applications where
both types of information—e.g., user profiles (structured data)
and content embeddings (vector data)—are needed to make
more personalized and accurate predictions.

Beyond algorithmic advancements, several modern database
systems now natively support vector storage and similarity
search, enabling seamless integration with large-scale applica-
tions. Systems like AnalyticDB-V [46] and PostgreSQL [10]
(with extensions like pgvector) provide built-in functionality
for managing and querying vector data. These systems bridge
the gap between ANN methods and production environments,
making vector search accessible and scalable for real-world
applications.

Despite the high availability and utility of existing methods
like HNSW, DiskANN, IVF PQ and those vector search
algorithms, there are notable limitations in daily usage. ANN
search often needs to work in tandem with specific attributes
and restrictions. For example, in recommending commodities,
filters such as price limitations or categorical constraints must
be applied alongside similarity search, requiring a combination
of ANN algorithms with filtering mechanisms.

The challenge, however, lies in the integration of these
two systems. Since traditional databases are not designed to
handle high-dimensional vectors, retrieving vectors from a
traditional database for similarity search can result in signif-
icant delays and inefficiencies. However, by combining both
systems—using traditional databases for structured data and
vector databases for vector-based search—organizations can
achieve a more efficient and scalable solution. For instance,
the traditional database can store metadata related to the vec-
tors (e.g., identifiers, categories, attributes), while the vector
database handles the high-performance retrieval of similar
vectors, allowing applications to benefit from both structured
and unstructured data in a seamless manner.

Several databases are specifically designed to handle vector
similarity search, offering efficient and scalable solutions for
high-dimensional data retrieval. These databases play a crucial
role in applications like recommendation systems, semantic
search, and AI-powered analytics. Some notable examples



include Milvus [44], Pinecone [47], Qdrant, and FAISS [11].
These systems are purpose-built for efficient vector storage and
retrieval, offering features like approximate nearest neighbor
(ANN) search, scalability, and hybrid query support. Their
designs address the unique challenges of high-dimensional
data, ensuring performance and accuracy in demanding real-
world applications.

This paper aims to provide an in-depth introduction of Faiss
[11], ADBV [46] and Milvus [44], highlighting their respective
strengths and use cases. We will examine their architectural
designs, indexing strategies, query performance, and ease of
integration with existing machine learning frameworks. By
understanding the core principles of each database, this paper
will offer valuable insights for researchers and engineers
seeking to implement efficient vector search solutions in
various applications. By analyzing these two approaches, this
paper aims to highlight their unique techniques, challenges,
and trade-offs, providing insights into their applications and
potential future advancements in ANN search.

II. RELATED WORK

In this section, I introduce the background of vector
database, focusing on three notable techniques: ANN search
algorithm [11], [25], [34], OLAP system, and the development
of searching on unstructured data. These tpoics form the
foundation for efficient and scalable vector batabase system.

A. Approximate Nearest Neighbor Search

The primary objective of ANN search is to efficiently
identify the closest data points to a given query point in high-
dimensional spaces. This problem is challenging due to the
curse of dimensionality, which makes exact nearest neighbor
search computationally expensive and infeasible for large-
scale datasets. To overcome this, ANN search techniques aim
to provide approximate results with reduced computational
complexity while maintaining a high level of accuracy.

Several tree-based algorithms have been proposed with
theoretical guarantees [23], [40] in an attempt to reduce the
running time of the brute force solution. However, because
of the curse of dimensionality [24], when it comes to high
dimensional features, these algorithms do not perform any
better than an exhaustive search [45].

Now the well applied ANN search methods are typically
classified into two broad categories: graph-based algorithms
and quantization-based methods. Each of these approaches
has its own strengths and trade-offs, making them suitable
for different applications and use cases.

1) Graph-based Algorithms: Graph-based methods repre-
sent the dataset as a graph, where each data point is a node,
and edges connect points that are similar to each other. These
algorithms aim to create efficient data structures that allow
for fast search in high-dimensional spaces by exploiting local
and global graph structures. Some of the most widely used
graph-based ANN algorithms include:

• NSG (Navigable Small World Graph) [35] The NSG
algorithm is designed for efficient nearest neighbor search

Fig. 1. Example of HNSW

in unstructured data. The graph is structured to facilitate
fast querying by maintaining a ”small world” property,
meaning that most nodes are connected to a few others
that can efficiently lead to any other node in the graph.

• HNSW (Hierarchical Navigable Small World): HNSW
[34] is a highly efficient algorithm that leverages a
hierarchical graph structure. It builds a multi-layer graph
where the top layers contain fewer nodes and represent
the global structure, while the lower layers contain more
nodes and focus on local connectivity. Its structure is
shown in figure 1

• Vamana Graph: Vamana graph [25] constructs one layer
graph in a fast way by connecting and pruning form
a random connected graph. It is designed to optimize
the trade-off between search accuracy and computational
efficiency, making it suitable for large-scale data retrieval
tasks.

Fig. 2. Example of PQ

2) Quantization-based Methods: Quantization-based meth-
ods work by approximating the data points using a smaller
set of representative values, or centroids, which reduces the
complexity of the search task. These methods are particularly
effective for very large datasets, as they reduce the amount of
data that needs to be stored and compared during the search.
Common quantization-based ANN algorithms include:

• PQ (Product Quantization): PQ is a technique that
splits the data space into multiple subspaces, each of
which is quantized separately, shown in figure 2. This



allows the algorithm to represent each data point as a
product of smaller quantized components, significantly
reducing storage requirements and speeding up distance
computations. PQ is widely used in applications such as
image and video retrieval.

• SQ (Scalar Quantization): SQ [51] is a simpler form of
quantization where each data vector is approximated by
a single scalar value (usually the centroid of a cluster).
This method is less computationally expensive than PQ,
but it may not be as accurate when dealing with high-
dimensional data, as it does not capture the full structure
of the data.

• OPQ (Optimized Product Quantization): OPQ [16]
extends PQ by jointly optimizing the quantization process
across multiple subspaces. This optimization improves
the overall approximation of the original data, leading to
better search performance and higher accuracy compared
to standard PQ.

• RaBitQ: RaBitQ [15] is a recent development in quanti-
zation methods that aims to improve upon the traditional
PQ and OPQ by introducing more advanced optimiza-
tion techniques and exploring non-linear quantization
approaches. It is designed to handle high-dimensional
data more efficiently, particularly in cases where other
quantization methods may struggle with accuracy or
scalability.

3) Inverted File Index (IVF): IVF method are often com-
bined with quantization methods. IVF divides the dataset
into coarse partitions, each represented by a centroid. During
indexing, The dataset is clustered into K partitions using
algorithms like k-means. Each vector is assigned to its closest
centroid. During querying, The query vector is matched to its
closest centroids, limiting the search to only the associated
partitions.

B. OLAP system.
Most OLAP systems like OLAP databases (Vertica [29],

Greenplum [1], etc.), batch processing systems (Spark-SQL
[3]), analytical cloud services (Amazon Redshift [22], Google
BigQuery [41] and Alibaba AnalyticDB [49]) have been used
in a wide range of fields and provided excellent analytic
ability for users in practice. However, these systems only work
on traditional structured datasets and do not support hybrid
queries containing unstructured data.

C. Solutions for searching unstructured data.
Jegou et al. implement the extension on Elasticsearch [13]

to support ANNS over vector data. Microsoft develops GRIP
[50], a vector search solution that adopts HNSW to reduce the
expensive centroid searching cost of encodingbased algorithms
and supports different kinds of vector indexes [14], [26].
Recently, unstructured data processing arise a lot of interests
[30], [37], [44].

III. PRELIMINARIES
In this section, we will present the notations and terminol-

ogy used in this paper.

TABLE I
NOTATIONS

Table I shows the common notations used throughout the
paper. Let x ∈ Rd be a query point, where d is the dimension
of a vector. d(a, b) denotes the distance between vector a and
vector b. The L2 distance, also known as Euclidean distance
d(a, b) = ∥a− b∥. Inner product ⟨a, b⟩ =

∑n
i=1 aibi.

Let vector xi in dataset D with its size n = |D|, and a set
of queries q ∈ Q, the goal of nearest neighbor search is to
get the top k nearest neighbors in a certain metrics. It can be
written as:
NNk(qi, d) = {{xm}k1 |d(qi, xm) ≤ d(qi, xl)}, where

{xm}k1 ∩ {xl}n−k
1 = ∅

IV. FAISS

FAISS (Facebook AI Similarity Search) [11] is an open-
source library developed by Facebook AI Research for efficient
similarity search and clustering of high-dimensional vectors.
It is designed to handle large-scale datasets, making it ideal
for applications like image retrieval, recommendation systems,
and natural language processing, where vectors (embeddings)
represent data points. FAISS provides optimized algorithms
for nearest neighbor search, supporting both exact and ap-
proximate methods.

The library supports a variety of indexing structures, such
as Flat (exact search) and IVF (Inverted File Index for ap-
proximate search), allowing users to balance between search
speed and accuracy. FAISS is highly optimized for perfor-
mance, with GPU support to accelerate computation and
reduce search times. It can be easily integrated into machine
learning pipelines and handles datasets ranging from small to
extremely large, offering efficient memory management and
scalability. Its flexibility and speed make FAISS a popular tool
for similarity search tasks in AI applications.

A. Structure

Faiss originated in a research environment. Consequently,
it grew organically as indexing research advanced. Below,
we’ll briefly cover the guiding principles that maintained the
library’s coherence, how optimization is carried out, and an
example demonstrating how Faiss internals are exposed for it
to be embedded in a vector database.



1) Code Structure: The core of Faiss is implemented in
C++. Its guiding principles are as follows:

• The code should be as open as possible to enable users
to access all the implementation details of the indexes.

• Faiss should be easy to embed from external libraries.
• The core library concentrates on vector search only.
Faiss’s basic data types are concrete (not templates). Vectors

are consistently represented as 32-bit floats, which are portable
and strike a good balance between size and accuracy. Likewise,
all vector ids are represented using 64-bit integers. Although
this is often larger than needed for sequential numbering, it is
widely employed for database identifiers.

Fig. 3. Architecture of the Faiss library

2) High-level Interface: Figure 3 illustrates the structure of
the library. The C++ core library and the GPU add-on have
minimal dependencies, requiring only a BLAS implementation
and CUDA itself.

To enable experimentation, the entire library is wrapped
for scripting languages like Python with numpy. For this
purpose, SWIG5 exhaustively generates wrappers for all C++
classes, methods, and variables. The associated Python layer
also incorporates benchmarking code, dataset definitions, and
driver code. Moreover, an increasing amount of functionality
is being embedded in the contrib package of Faiss.

Faiss also offers a pure C API, which is beneficial for
creating bindings with programming languages such as Rust
or Java. The Index is presented to the end user as a monolithic
object, even when it incorporates other indexes like quantizers,
refinement indexes, or sharded subindexes. As a result, an
index can be duplicated using clone index and serialized into a
single byte stream via the write index function. It also includes
the necessary headers so that it can be read by the generic read
index function.

The index factory. Index objects can be instanti-
ated explicitly in C++ or Python, yet it’s more com-
mon to build them using the index factory function. This
function accepts a string that details the index struc-
ture and its main parameters. For instance, the string

PCA160, IV F20000 HNSW,PQ20x10, RF lat creates an
IVF index where KIV F = 20000. In this setup, the coarse
quantizer is a HNSW index, the vectors are represented by a
PQ20x10 product quantizer. The data undergoes preprocessing
with a PCA to reduce it to 160 dimensions, and the search
results are re-ranked using a refinement index that conducts
exact distance computations. All index parameters are set to
reasonable defaults; for example, the PQ encodes the residual
of the vectors with respect to the coarse quantization centroids.
Faiss indexes can also be utilized as vector codecs with
functions like sa encode, sa decode, and sa code size.

3) Optimization: Approach to optimization: Faiss initially
focuses on achieving feature completeness. All indexes are first
implemented in a non-optimal form. Optimization of the code
is carried out only when it becomes clear that the runtime
performance matters significantly for a specific index. The
non-optimized implementation is used to ensure the accuracy
of the optimized version.

Typically, only a portion of data sizes are subjected to
optimization. For instance, with PQ indexes, only when K
is equal to 28 or 24 and d/M ∈ {2, 4, 8, 16, 20} are they fully
optimized. Regarding IndexLSH search, only code sizes 4, 8,
16, and 20 are optimized. By specifying these sizes, it becomes
possible to create “kernels” – sequences of instructions without
explicit loops or conditional tests – which aim to maximize
arithmetic throughput.

Once the generic scalar CPU optimizations have been
fully utilized, Faiss proceeds to conduct specific optimizations
tailored to certain hardware platforms.

CPU vectorization. Modern CPUs are capable of Sin-
gle Instruction, Multiple Data (SIMD) operations, such as
AVX/AVX2 on x86 architectures and NEON on ARM archi-
tectures. Faiss takes advantage of these at three distinct levels.
At the first level, when operations are relatively straightfor-
ward (for example, an element-wise vector sum), the code is
structured in a manner that enables the compiler to vectorize
it independently. This usually involves adding ”restrict” key-
words to indicate that arrays do not overlap.

The second level makes use of SIMD variables and in-
structions via C++ compiler extensions. Faiss incorporates
simdlib, which is a collection of classes designed to serve as
a layer above the AVX and NEON instruction sets. However,
a significant portion of the SIMD work is tailored specifically
for one instruction set, most commonly AVX, as it tends to
be more efficient.

The third level of optimization focuses on adapting
the data layout and algorithms to accelerate their SIMD
implementation. The 4-bit product and additive quantizer
implementations follow this approach, inspired by the
SCANN library [20]. Specifically, the layout of the PQ codes
for several consecutive vectors is interleaved in memory. This
allows for a vector permutation to be employed, enabling
parallel LUT lookups. This particular implementation is
carried out in the FastScan variants of PQ and AQ indexes
(IndexPQFastScan, IndexIV FResidualQuantizerFastScan,
etc.).



GPU Faiss. Porting Faiss to the GPU is a complex task due
to significant architectural differences. The details of the GPU
Faiss implementation are provided in [28], and here we sum-
marize the challenges faced during its GPU implementation.
Modern multi-core CPUs are highly optimized for latency.
They utilize an elaborate cache hierarchy, branch prediction,
speculative execution, and out-of-order code execution to
enhance the execution of serial programs. In contrast, GPUs
have a more limited cache hierarchy and omit many of these
latency optimizations. Instead, they possess a large number of
concurrent threads of execution (for instance, Nvidia’s A100
GPU can support up to 6,912 warps, with each warp roughly
equivalent to a 32-wide vector SIMD CPU thread of execu-
tion). They also have a substantial number of floating-point
and integer arithmetic functional units (the A100 has up to 19.5
teraflops per second of fp32 fused-multiply add throughput)
and a massive register set that enables a high number of long-
latency pending instructions to be in progress simultaneously
(the A100 has 27 MiB of register memory). Hence, GPUs
are largely throughput-optimized machines. The algorithmic
techniques employed in vector search can be categorized
into three broad groups: Distance Computation: This involves
calculating the distance of floating-point or binary vectors
(which might have been obtained through dequantization from
a compressed form). GPUs handle distance computation with
ease and can readily outperform CPUs in this regard, as they
are optimized for matrix-matrix multiplication like that seen
in IndexFlat or IVFFlat. Table Lookups and Scanning: Such
as those in PQ distance computations or when traversing IVF
lists. These operations can also be made efficient on GPUs. It’s
possible to stage small tables (as in product quantization) in
shared memory (which is roughly a user-controlled L1 cache)
or register memory and conduct lookups in parallel across all
warps. For sequential table scanning in IVF indices, where
data needs to be loaded from main (global) memory, despite
the high access latencies, since we know beforehand what data
to access, the data movement can be pipelined or use double
buffering to achieve close to peak performance.

Irregular, Sequential Computations: Examples include
linked-list traversal (used in graph-based indices) or ranking
the k closest vectors. On the CPU, ranking distances to select
the k closest vectors is typically implemented using a min-
or max-heap. However, on the GPU, the sequential nature of
heap operations would push it into a latency-bound regime.
This is the biggest challenge for the GPU implementation of
vector search, as the time required for the heap implementation
is an order of magnitude greater than that for all other
arithmetic operations. To address this, an efficient GPU k-
selection algorithm [Johnson et al., 2019] was developed. It
enables ranking candidate vectors in a single pass and operates
at a significant fraction of the peak possible performance
within memory bandwidth limits. It relies heavily on the high-
speed, large register memory on GPUs and uses small-set
bitonic sorting via warp shuffles with buffering techniques.

For irregular computations like traversing graph structures in
graph-based indices such as HNSW, they tend to remain in the

latency-bound regime (due to sequential traversal) rather than
being bound by arithmetic throughput or memory bandwidth.
In such cases, GPUs are at a disadvantage compared to CPUs,
and emerging techniques like CAGRA [Ootomo et al., 2023]
are needed to parallelize otherwise sequential graph traversal
operations.

B. Index

Fig. 4. Decision tree to choose a Faiss index

For most cases, choosing an appropriate index can be done
by following the process in Figure 4. First, determine if
indexing is needed. In some cases, a direct brute force search
is the best option. Otherwise, choose between IVF and graph-
based indexes.

An IVF index can be considered a special case of a graph-
based index, especially when a small graph-based index is
used as a coarse quantizer. Graph-based indices are suitable



for indexes with no memory usage constraint, typically for
those below 1M vectors. For indexes beyond 10M vectors,
construction time usually becomes the limiting factor. For
larger indexes that require compression to fit database vectors
in memory, IVF indexes are the only option. The decision
tree in Figure 4 offers initial directions. The Faiss wiki1 has
comprehensive benchmarks for various database sizes and
memory budgets. To refine index parameters, benchmarking
should be used.

C. Experiments

encoding time. Figure 5 illustrates the tradeoff between
encoding time and Mean Squared Error (MSE). When consid-
ering a specific code size, it turns out to be more accurate to
utilize a smaller number of sub-quantizers (M) along with a
higher K value.

Regarding GPU encoding for Learned Step Quantization
(LSQ), it doesn’t consistently provide an advantage. The Look-
Up Table (LUT)-based encoding of Residual Quantization
(RQ) is quite interesting in the context of RQ/Product Residual
Quantization (PRQ) quantization, especially when the beam
size is larger.

In the 64-byte regime, it can be observed that LSQ isn’t
as competitive as RQ. Progressive Learned Step Quantization
(PLSQ) and PRQ, on the other hand, gradually become
more competitive when dealing with larger memory budgets.
Moreover, they are also faster because they operate on smaller
vectors.

Vector compression benchmark. Figure 6 presents the
tradeoff between code size and accuracy for numerous variants
of the codecs.

Additive quantizers prove to be the optimal choice when
it comes to small code sizes. For larger code sizes, it’s
advantageous to independently encode several sub-vectors by
employing product-additive quantizers.

Learned Step Quantization (LSQ) is more accurate than
Residual Quantization (RQ) for small codes, yet it doesn’t
scale effectively to longer codes. It’s worth noting that product
quantizers are somewhat less accurate than additive quantizers;
however, given their short encoding time, they remain an
appealing option.

Scalar quantizers perform well for very long codes and are
even faster. The 2-level Product Quantization (PQ) options are
what an IVFPQ index utilizes for encoding: there’s a first-level
coarse quantizer and a second-level refinement of the residual.

KIVF settings. Figure 7 displays the optimal settings of
KIV F for different database sizes. When KIV F is set to
a small value like 4096, the coarse quantization runtime
becomes negligible, and the search time increases linearly in
relation to the database size. For larger datasets, it’s advanta-
geous to raise the value of KIV F . As indicated in (18), the
ratio of KIV F to the square root of N is approximately 15
to 20. It should be noted that this ratio depends on the data
distribution as well as the target accuracy.

1https://github.com/facebookresearch/faiss/wiki/Indexing-1G-vectors

PQ settings. Figure 8 demonstrates that encoding residuals
is advantageous when dealing with shorter codes. However, for
larger codes, the contribution made by the residual becomes
less significant. In fact, given that the original data has 96
dimensions, it can be compressed to 64 bytes with relatively
good accuracy.

V. ANALYTICDB-V

AnalyticDB-V is a high-performance, distributed database
designed for real-time analytical processing on massive
volumes of vector data. Developed by Alibaba Cloud,
AnalyticDB-V specializes in handling vector-based data, com-
monly used in machine learning, artificial intelligence, and rec-
ommendation systems, where high-dimensional vectors such
as embeddings are integral. The database offers seamless
integration with vector search, enabling fast retrieval of similar
items in datasets with millions or billions of vectors.

Key features of AnalyticDB-V include high scalability,
distributed processing, and low-latency querying, allowing
users to efficiently store and process large amounts of unstruc-
tured data. It leverages advanced indexing techniques, such
as HNSW and PQ, to optimize nearest neighbor search and
support real-time data analytics. Additionally, AnalyticDB-
V provides an intuitive interface for data scientists and de-
velopers, enabling integration with AI models and machine
learning pipelines. This makes it ideal for applications in
recommendation engines, image search, and natural language
processing tasks requiring fast, accurate vector retrieval at
scale.

The system uses a columnar storage model, which reduces
disk I/O and improves compression rates, making it ideal
for OLAP (Online Analytical Processing) scenarios. It also
supports seamless scaling, providing elasticity to handle fluc-
tuating workloads and large data volumes. AnalyticDB-V is
compatible with popular SQL interfaces and integrates with
various big data processing tools, facilitating easy adoption in
data-driven applications such as business intelligence, machine
learning, and real-time data analytics. Its architecture ensures
fault tolerance and high availability, ensuring continuous op-
eration without data loss.

A. Architecture Overview

The architecture of ADBV is presented in Figure 9 and
is mainly composed of three types of nodes: Coordinator,
Write Node, and Read Node. Coordinators accept, parse,
optimize SQL statements, and dispatch them to read/write
nodes. ADBV adopts a typical read/write decoupling approach
[49], which trades consistency for low query latency and
high write throughput. As a result, write nodes are solely
responsible for write requests (i.e., INSERT, DELETE, and
UPDATE), while read nodes handle SELECT queries. Newly
ingested data is flushed into Pangu upon commit.

In the storage layer, ADBV adopts the lambda framework to
manage vectors efficiently. The streaming layer handles real-
time data insertion and modification, while the batching layer
periodically compresses newly inserted vectors and rebuilds



Fig. 5. Comparison of additive quantizers in terms of Encoding time vs. accuracy (MSE)

Fig. 6. Tradeoff of accuracy vs. code size for different codecs on the Deep1M and Contriever1M datasets

Fig. 7. Search time as a function of the database size N for BigANN1M with
different KIV F settings Fig. 8. Comparing IVF indexes with and without residual encoding for

KIV F ∈ {210, 214} on the Deep1M dataset (d=96 dimensions), with
different product quantization settings.



Fig. 9. Analytic DB-V architecture

ANNS indexes. Additionally, ADBV pushes down several
expensive predicates to the storage layer to fully utilize the
computational capability of the nodes.

B. Lambda Framework

The complexity of searching over the entire vector dataset
is unacceptable, so an index must be built to mitigate the
cost. However, traditional index techniques like KD-tree [6]
and ball-tree [38], which are widely used in low dimensions,
do not perform well for high-dimensional vectors generated
by deep learning models. It has been empirically proven that
such solutions exhibit linear complexity for high-dimensional
vectors [45].

To address this, algorithms like HNSW (Hierarchical Nav-
igable Small World) [34] and LSH (Locality-Sensitive Hash-
ing) [17] have been proposed for real-time, approximate index
building on vectors.

To address the challenge of supporting real-time inserts, we
adopt the lambda framework. Under this framework, ADBV
uses HNSW to build an index for newly-inserted vectors (i.e.,
incremental data) in real time. Periodically, ADBV merges the
incremental data with baseline data into a global index using
the proposed VGPQ algorithm and discards the HNSW index.

Fig. 10. Analytic DB-V Lambda Framework

Figure 10 illustrates the lambda framework, which consists
of three layers: the batching layer, the streaming layer, and
the serving layer. These layers work together to process each
incoming query. The batching layer returns search results
based on baseline data. The streaming layer performs two

tasks: processing data modifications (i.e., INSERT, DELETE,
and UPDATE) and producing search results over incremental
data.

ADBV contains two types of data: baseline data and in-
cremental data. The incremental data includes newly-written
WALs (stored in Pangu), along with vector data and its indexes
on read nodes. It also contains a data-status bitset to track
which vector data has been deleted. Incremental raw data and
indexes are much smaller in size compared to baseline data and
can be entirely cached in memory. HNSW is used to build the
index for incremental data, allowing index building and search
to be conducted simultaneously.

C. Clustering-based Partitioning

Fig. 11. Clustering-based partition pruning

As shown in Figure 11, ADBV provides the ability to
partition vector data across multiple nodes to achieve high
scalability. However, partitioning techniques used for struc-
tured data, such as hash and list partitioning, are unsuitable
for vector data. These techniques rely on equivalence and
range assessment, while analytics on vector data is based on
similarity (e.g., Euclidean distance). Directly adopting these
strategies would require queries to execute on all partitions
indiscriminately, without any pruning effect.

To solve this problem, we propose a clustering-based par-
titioning approach. For the partitioned column, we apply k-
means [17] to calculate centroids based on the number of
partitions. For example, if we define 256 partitions, 256
centroids are calculated. Each vector is then clustered to the
centroid with the largest similarity, forming a partition for each
cluster. Index building and data manipulation are subsequently
conducted on each individual partition.

For partition pruning, ADBV dispatches the query to N
partitions, which are the most similar to the queried vector.
N is a query hint defined by users, reflecting the trade-off
between query performance and accuracy.

D. Vector Processing Algorithms

Hybrid query processing in ADBV relies heavily on ded-
icated approximate nearest neighbor search (ANNS) algo-
rithms. These efficient ANNS algorithms are implemented



as physical operators to handle top-k retrieval tasks. In this
subsection, we introduce how ANNS algorithms are used to
process vector queries and propose a novel ANNS algorithm,
VGPQ (Voronoi Graph Product Quantization), to further im-
prove query efficiency, particularly in the batching layer.

1) Vector Query Processing: To enable fast retrieval on
high-dimensional datasets, a trade-off between accuracy and
running time is needed. ADBV uses neighborhood-based al-
gorithms for nearest neighbor search in the streaming layer and
quantization-based algorithms in the batching layer to improve
efficiency.

At the streaming layer, ADBV implements HNSW. While
it supports dynamic insertion, it cannot scale to large datasets,
making it suitable for querying newly-inserted data. At the
batching layer, ADBV uses PQ to encode vectors with com-
pact, low-dimensional, and lossy representations, reducing
pairwise distance calculation costs. However, PQ requires
offline training of its codebook. To handle large-scale data,
IVFPQ [26] clusters PQ codes with k-means and scans relevant
groups during queries. ADBV improves efficiency further with
VGPQ.

2) Voronoi Graph Product Quantization: VGPQ (Voronoi
Graph Product Quantization) improves query efficiency in
IVFPQ by partitioning Voronoi cells into subcells based on
centroid midpoints. In IVFPQ, vectors are clustered using
k-means, and each vector’s PQ code is linked to the near-
est centroid. VGPQ refines this by dividing each centroid’s
Voronoi cell into subcells, focusing on the relevant subcells
during query processing. The preprocessing steps involve
k-means clustering, neighbor selection, subcell construction
using midpoints, and inserting PQ codes into inverted files.
VGPQ reduces construction costs by selecting the top-b near-
est centroids for subcell creation.

3) Storage Design For VGPQ: In VGPQ’s in-memory
storage structure, three components are designed to optimize
execution: Indexing data, PQ data, and Direct map. PQ data
stores PQ codes in fixed-size pages, organized by subcell.
Indexing data contains feature vectors and anchors, linking
each centroid to subregions. When a page is full, its pageid is
added to the corresponding linked list in Indexing data. The
Direct map establishes a bi-directional relationship between
rowid and PQ code location, enabling efficient access. This
design ensures a single copy of each PQ code and supports
hybrid queries, enhancing data access and query performance.

4) hybrid Query Optimization: The optimizer of
ADBV analyzes the Abstract Syntax Tree (AST) from
the query parser to identify patterns for retrieving
top-k tuples based on unstructured columns (e.g.,
”orderbyDISTANCE()LIMITk”). When this pattern is
detected, the optimizer converts the logical plan into multiple
physical execution plans, incorporating ANNS algorithms
wrapped into anns scan nodes for approximate nearest
neighbor searches. These scans reduce the computational
cost of retrieving top-k neighbors from large datasets. Four
effective physical plans are proposed, considering different

ANNS algorithms, and are discussed in the context of the
query example shown in Figure 12.

Fig. 12. Physical plans

E. EXPERIMENTS

In this subsection, ADBV is evaluated using both public
and in-house datasets to assess the effectiveness of the pro-
posed designs. The evaluation focuses on demonstrating the
performance improvements of ADBV compared to existing
solutions.

1) Experimental setup: Environment: We conduct the ex-
periments with a 16-node cluster on Alibaba Cloud; each node
has 32 logical cores, 150GB DRAM and 1TB SSD. The host
machines are all equipped with one Intel Xeon Platinum 8163
CPU (2.50GHz), and hyperthreading is triggered. Machines
are connected via a 10Gbps Ethernet network.

Dataset: We use two public datesets and one in-house
dataset to evaluate our system, as listed below:

• Deep1B [4] is a public dataset consists of image vectors
extracted from a deep neural network. It contains one
billion 96-dimensional vectors.

• SIFT1B [27] is a public dataset consists of handcrafted
SIFT features. It contains one billion 128-dimensional
vectors.

• AliCommodity consists of 830 million 512-dimensional
vectors extracted from commodity images used at Al-
ibaba. It also contains 21 structured columns including
color, sleeve type, style, create time, etc.

Fig. 13. Logical plans

Query types: We reuse the two query templates provided
in figure 13 for evaluation. According to our observations in
production environments, most of queries processed by ADBV
follow these patterns.

Metrics: We use the recall to measure the accuracy of
a result set returned by an ANNS algorithm (or a system).



Suppose the exact result set is S, the recall is defined as
recall = |S ∩ S′|/|S|, where S is the result set returned by a
ANNS algorithm (or a system) and || computes the carnality of
a set. We also use the recall in Top-k results (recall@Topk ) to
evaluate the system performance, which means |S| = |S′| = k.

2) VGPQ: We compare VGPQ and IVFPQ across three
aspects: accuracy, index construction time, and index file size.

TABLE II
THE CONSTRUCTION TIME AND INDEX SIZE COMPARISON BETWEEN

VGPQ AND IVFPQ ON ALICOMMODITY

Table II lists the construction time and index file size for
different parameter settings on AliCommodity. It shows that
the index file sizes generated by VGPQ and IVFPQ are very
similar. The construction time for both methods primarily
depends on the number of centroids in k-means (referred to as
’n clusters’ in Algorithm 1). The performance of VGPQ is also
influenced by the number of subcells. However, we observe
that adjusting the number of subcells does not significantly
affect the construction time of VGPQ.

3) lustering-based partition pruning: We demonstrate the
effect of clustering-based partition pruning on query through-
put in ADBV. Two distributed data tables, each with 512
clustering-based partitions, are created for SIFT1B and
Deep1B.

Fig. 14. Performance analysis for clustering-based partition pruning

As shown in Figure 14, recall improves with respect to
different top-k settings as the number of partitions searched
increases. However, searching more partitions also leads to
lower query throughput. We observe that partition pruning is
more effective for queries with relatively small k. Based on
our empirical experience, clustering-based partition pruning
enables ADBV to achieve significant throughput improve-
ments (ranging from 10× to 100×) on large-scale datasets (with
1000+ storage nodes), particularly for queries with small k,
which is common in real-world applications.

4) Hybrid query optimization: We evaluate the accuracy-
aware, cost-based optimization for hybrid query execution. We
demonstrate that the proposed approach ensures the accuracy
of query results while identifying the optimal physical plan
across various scenarios.

Fig. 15. Performance analysis for clustering-based partition pruning

As illustrated in the left column of Figure 15, most of these
plans can provide results that meet the required recall under
different selectivities. This suggests that our accuracy-aware
cost-based optimizer (CBO) is effective in selecting appropri-
ate hyperparameters for each physical plan. Additionally, in
all three representative cases, the optimizer consistently selects
the optimal plan from the four options, as shown in the right
column of Figure 12. This confirms that the proposed cost
models are valuable in most scenarios.

VI. MILVUS

This section introduces Milvus, a purpose-built data man-
agement system designed for storing and searching large-scale
vector data in data science and AI applications. Unlike general-
ized relational databases that adapt to support vectors, Milvus
follows the design philosophy of ’one-size-does-not-fit-all’
[43], making it a specialized system for high-dimensional
vectors. Milvus offers a wide range of application interfaces,
including SDKs in Python, Java, Go, and C++, as well as
RESTful APIs, enabling easy integration with applications. It
is highly optimized for heterogeneous computing architectures,



leveraging modern CPUs and GPUs (including multiple GPU
devices) to maximize efficiency. Additionally, Milvus supports
various query types, including vector similarity search with
multiple similarity functions, attribute filtering, and multi-
vector query processing

Milvus supports various types of indexes, including
quantization-based indexes [26], [28] and graph-based indexes
[14], [34], and provides an extensible interface for easily
incorporating new indexes into the system. To manage dy-
namic vector data, such as insertions and deletions, Milvus
uses an LSM-based structure while ensuring consistent real-
time searches through snapshot isolation. As a distributed data
management system, Milvus is deployed across multiple nodes
to provide scalability and availability.

A. System Design

Fig. 16. Milvus System

Figure 16 illustrates the architecture of Milvus, which
consists of three major components: the query engine, the GPU
engine, and the storage engine.

Query Engine: It handles client query processing over
vector data, optimized for modern CPUs. The query engine
minimizes cache misses and utilizes SIMD instructions to
enhance performance.

GPU Engine: This co-processing engine accelerates per-
formance through vast parallelism and supports multiple GPU
devices to further improve efficiency.

Storage Engine: Responsible for data durability, the storage
engine uses an LSM-based structure for dynamic data man-
agement. It operates on various file systems (e.g., local file
systems, Amazon S3, and HDFS) and includes a buffer pool
in memory.

This structure emphasizes the functionality and role of each
component in Milvus’ architecture.

1) Query Processing: We first present the concept of en-
tity used in Milvus and then explain query types, similarity
functions, and application interfaces.

Entity. To effectively address a wide range of data science
and AI applications, Milvus supports query processing for both

vector and non-vector data. The term entity is used to describe
data within the system. Each entity in Milvus is defined as
one or more vectors, along with optionally some numerical
attributes (non-vector data). For instance, in an image search
application, the numerical attributes could represent character-
istics like age and height of a person, in addition to multiple
machine-learned feature vectors derived from their photos
(e.g., describing different angles like front-face, side-face,
or posture). Currently, Milvus supports numerical attributes,
which have been commonly observed in various applications.

Query types. Milvus supports three primitive query types:
• Vector Query: This query type performs traditional vector

similarity search [8], [26], [33], [34], where each entity is
represented by a single vector. The system returns the k
most similar vectors, where k is a user-defined parameter.

• Attribute Filtering: Each entity is defined by a single
vector and associated attributes [46]. The system returns
the k most similar vectors while adhering to the attribute
constraints. For example, in recommend systems, users
might want to find clothes similar to a given query image,
while ensuring the price is below 100.

• Multi-vector Query: Each entity is represented by multi-
ple vectors [5]. The query returns the top-k most similar
entities, determined by an aggregation function (e.g.,
weighted sum) applied to the multiple vectors of each
entity.

Similarity functions. Milvus offers commonly used similar-
ity metrics, including Euclidean distance, inner product, cosine
similarity, Hamming distance, and Jaccard distance, allowing
applications to explore vector similarity in the most effective
approach.

Application interfaces. Milvus provides easy-to-use SDK
(software development kit) interfaces that can be directly
called in applications written in various languages including
Python, Java, Go, and C++. Milvus also supports RESTful
APIs for web applications.

2) Indexing: In Milvus, we support two primary types of
indexes to optimize vector search for different applications:
quantization-based indexes, such as IVF FLAT [11], [26],
[28], IVF SQ8 [11], [28], and IVF PQ [11], [16], [26], [28],
as well as graph-based indexes, including HNSW [34] and
RNSG [14]. The design decisions behind these indexes are
influenced by several factors, such as the latest literature
reviews [31], industrial-strength systems (e.g., Alibaba PASE
[48], Alibaba AnalyticDB-V [46], Jingdong Vearch [30]),
open-source libraries (e.g., Facebook Faiss [11], [28]), and
input from customers. LSH-based approaches are excluded
due to their lower accuracy compared to quantization-based
methods, particularly for billion-scale datasets [46], [48].

B. Dynamic Data Management

Milvus supports efficient insertions and deletions by adopt-
ing the concept of an LSM-tree [32]. Newly inserted entities
are initially stored in memory as a MemTable. Once the
MemTable reaches a predefined threshold or after a set interval
(e.g., one second), it becomes immutable and is flushed to disk



as a new segment. Smaller segments are merged into larger
ones to facilitate fast sequential access. Milvus implements a
tiered merge policy, similar to Apache Lucene, which merges
segments of roughly equal sizes until a configurable size limit
(e.g., 1GB) is reached. Deletions are handled using the same
out-of-place approach, with obsolete vectors removed during
the segment merge process. Updates are achieved through
deletions and insertions. By default, Milvus builds indexes
only for large segments (e.g., > 1GB), though users can
manually trigger index creation for smaller segments if needed.
Both data and indexes are stored in the same segment, making
the segment the fundamental unit for searching, scheduling,
and buffering.

C. Storage Management

Vector storage. For single-vector entities, Milvus stores
all vectors continuously, without explicitly storing row IDs.
The vectors are sorted by their row IDs, so given a row ID,
Milvus can directly access the corresponding vector, as all
vectors are of uniform length. For multi-vector entities, Milvus
stores vectors from different entities in a columnar format. For
example, assuming that there are three entities (A, B, and C)
in the database and each entity has two vectors v1 and v2,
then all the v1 of diFFerent entities are stored together and
all the v2 are stored together. That is, the storage format is
A.v1, B.v1, C.v1, A.v2, B.v2, C.v2.

Attribute storage. The attributes are stored column by
column. In particular, each attribute column is stored as an
array of < key, value > pairs where the key is the attribute
value and value is the row ID, sorted by the key. Additionally,
Milvus builds skip pointers (i.e., minimum and maximum
values) following the Snowflake indexing scheme [9] for
data pages stored on disk. This indexing mechanism enables
efficient point and range queries on the attribute columns. For
example, it allows fast queries such as ”price is less than $100”
by quickly narrowing down the relevant data pages that meet
the specified condition.

Bufferpool. Milvus assumes that the majority, if not all,
of the data and indexes are kept in memory to ensure high
performance. When this is not the case, it uses an LRU (Least
Recently Used)-based buffer manager to manage memory
effectively and ensure data is efficiently loaded and accessed
from disk when needed.

Multi-storage. For flexibility and reliability, Milvus sup-
ports multiple file systems, including local file systems, Ama-
zon S3, and HDFS, for underlying data storage. This versatility
enhances the system’s adaptability and makes it easier to
deploy Milvus in cloud environments, enabling scalable and
efficient data management.

D. HETEROGENEOUS COMPUTING

In this subsection, we present the optimizations imple-
mented in Milvus to efficiently leverage heterogeneous com-
puting platforms that involve both CPUs and GPUs.

1) CPU-oriented Optimizations: The fundamental problem
for query processing over quantization based indexes is that,
given a collection of queries {q1, q2, ..., qm} and a collection
of = data vectors {v1, v2, ..., vn}, how to quickly find for each
query qi its top-k similar vectors? In practice, users can submit
batch queries so that m ≥ 1.

Milvus addresses these issues with two key strategies. First,
it reuses data vectors as much as possible across multiple
queries to minimize CPU cache misses. This optimization
focuses on reducing L3 cache misses, as accessing memory
incurs a significant penalty, and the L3 cache is much larger
than L1/L2 caches, offering more room for optimization.
Second, Milvus employs fine-grained parallelism by assigning
threads to data vectors rather than query vectors, which helps
maximize multi-core parallelism, especially since the data size
is typically much larger than the query size in practice.

Fig. 17. Milvus Cache Aware Design

E. Experiments

1) Experimental Setup: All experiments are conducted on
Alibaba Cloud, utilizing various types of computing instances
(up to 12 nodes) to optimize for cost efficiency. By default,
we use the CPU instance ecs.g6e.4xlarge, which is equipped
with a Xeon Platinum 8269 Cascade 2.5GHz processor, 16
vCPUs, 35.75MB L3 cache, AVX512, 64GB of memory, and
NAS elastic storage. For GPU-intensive tasks, we utilize the
ecs.gn6ic16g1.4xlarge instance, featuring an NVIDIA Tesla
T4 GPU with 64KB private memory, 512KB local memory,
16GB global memory, and a PCIe 3.0 16x interface.

Datasets. To ensure reproducibility, we use two pub-
licly available datasets to evaluate Milvus: SIFT1B [27] and
Deep1B [4]. SIFT1B consists of 1 billion 128-dimensional
SIFT vectors (512GB), while Deep1B contains 1 billion 96-
dimensional image vectors (384GB) extracted from a deep
neural network. Both datasets are widely used in previous
studies on vector similarity search and approximate nearest
neighbor search [35, 41, 65, 68].

Competitors. We compare Milvus against two open-source
systems: Jingdong Vearch (v3.2.0) [30] and Microsoft SPTAG
[7]. We also compare Milvus with three industrial-strength
commercial systems (with latest version as of July 2020)



anonymized as System A, B, and C for commercial reasons.
Since Milvus is implemented on top of Faiss, we also present
the performance comparison by evaluating the algorithmic
optimizations in Milvus.

Evaluation metrics. We use the recall to evaluate the
accuracy of the top-k results returned by a system where k
is 50 by default.

Fig. 18. System evaluation on IVF indexes

2) Comparing with Prior Systems: In this experiment, we
compare Milvus with prior systems in terms of recall and
throughput using the first 10 million vectors from the SIFT1B
and Deep1B datasets (SIFT10M and Deep10M).

All systems are run on a single node, except for Systems A,
B, and C, which require multiple nodes. Milvus and the other
systems use two types of indexes: IVF FLAT and HNSW,
both of which are supported by most systems.

The results shown in Figure 18 for IVF indexes reveal that
Milvus (even the CPU version) significantly outperforms other
systems, with speed improvements of up to two orders of
magnitude while maintaining similar recall. Milvus is 6.4 to
27.0 times faster than Vearch, 153.7 times faster than System
B (even when System B uses four nodes), and 1.3 to 2.1 times
faster than SPTAG. However, SPTAG requires 14 times more
memory than Milvus and cannot achieve the same level of
recall. The GPU version of Milvus performs even better as it
can fully utilize the GPU memory.

Fig. 19. System evaluation on HNSW indexes

Figure 19 presents the results for the HNSW index across
different systems. Milvus significantly outperforms the ex-
isting systems, achieving performance improvements ranging
from 15.1 to 60.4 times faster than Vearch, 8.0 to 17.1 times

faster than System A, and 7.3 to 73.9 times faster than System
C. We exclude the results for System A on Deep10M as it
does not support the inner product metric. Additionally, the
results for System C on Deep10M are omitted because the
index building process fails to complete even after more than
100 hours.

Fig. 20. Scalability

3) Scalability: Figure 20(a) displays the results for a single
node of ecs.re6.26xlarge (104 vCPUs and 1.5TB memory),
where the entire data cannot fit into memory. As the dataset
size increases, the throughput decreases proportionally. Figure
20(b) illustrates the scalability of distributed Milvus, with
data sharded across multiple nodes, each of which is an
ecs.g6e.13xlarge instance (52 vCPUs and 192GB memory).
As the number of nodes increases, the throughput scales
linearly. Notably, Milvus achieves higher throughput on the
ecs.g6e.13xlarge instances compared to the ecs.re6.26xlarge
instance, which can be attributed to reduced competition for
shared CPU caches and memory bandwidth across more cores.

Fig. 21. Attribute filtering in Milvus

4) Evaluating Attribute Filtering: We define query selectiv-
ity as the percentage of entities that fail the attribute constraint
CA, following the method in [46].

Figure 21 shows the performance results with varying query
selectivity. Strategy A improves as selectivity increases be-
cause fewer vectors need to be examined. Strategy B, however,
is insensitive to selectivity, as its bottleneck lies in vector
similarity search. Strategy C is slower than Strategy B, as it
requires checking 1.1 times the number of vectors. Strategy D,
which uses a cost-based approach to select the best between A,
B, and C, outperforms all other strategies. Our new approach,



Fig. 22. Attribute filtering in Milvus

Strategy E, significantly outperforms Strategy D by up to
13.7× due to partitioning.

Figure 22 compares Milvus against Systems A, B, C, and
Vearch in terms of attribute filtering, showing that Milvus
outperforms these systems by a factor of 48.5× to 41,299.5×.
Note that the results for System B are omitted in Figure 15b
because its parameters are fixed by the system and cannot be
changed by the user.

VII. CONCLUSION

Vector database systems are becoming increasingly im-
portant in the realm of artificial intelligence and data sci-
ence due to their ability to efficiently manage and search
high-dimensional vector data. This paper introduces ADBV
(Attribute-Driven Vector Search) and Milvus, two key contri-
butions to the field of vector similarity search.

Faiss, crafted by Facebook AI Research, is a powerful open-
source library. It specializes in efficient similarity search and
vector indexing, streamlining nearest neighbor searches crucial
in ML and AI tasks.

With ADBV, practitioners can manage massive high-
dimensional vectors and structured attributes within a single
system. The proposed VGPQ algorithm further enhances hy-
brid query processing performance on large volumes of base-
line data. Additionally, hybrid queries are natively optimized
through the design of accuracy-aware cost-based optimization.
ADBV has been successfully deployed in Alibaba Group
and on Alibaba Cloud, supporting various complex business
scenarios.

Milvus is a high-performance, scalable vector database
designed to handle billion-scale datasets with both CPU
and GPU optimizations. Through extensive experiments, we
demonstrated that Milvus significantly outperforms existing
systems in terms of recall, throughput, and scalability, thanks
to its advanced engineering optimizations such as fine-grained
parallelism, cache-aware strategies, and hybrid execution be-
tween GPUs and CPUs.

We anticipate that the insights and advancements they
bring will fuel further research and development, spurring the
creation of more intelligent and efficient data management
systems.
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[5] Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Mul-
timodal machine learning: A survey and taxonomy. IEEE transactions
on pattern analysis and machine intelligence, 41(2):423–443, 2018.

[6] Jon Louis Bentley. Multidimensional binary search trees used for
associative searching. Communications of the ACM, 18(9):509–517,
1975.

[7] Qi Chen, Haidong Wang, Mingqin Li, Gang Ren, Scarlett Li, Jeffery
Zhu, Jason Li, Chuanjie Liu, Lintao Zhang, and Jingdong Wang. Sptag:
A library for fast approximate nearest neighbor search, 2018.

[8] Rihan Chen, Bin Liu, Han Zhu, Yaoxuan Wang, Qi Li, Buting Ma,
Qingbo Hua, Jun Jiang, Yunlong Xu, Hongbo Deng, et al. Approximate
nearest neighbor search under neural similarity metric for large-scale
recommendation. In Proceedings of the 31st ACM International Con-
ference on Information & Knowledge Management, pages 3013–3022,
2022.

[9] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov,
Artin Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Mar-
tin Hentschel, Jiansheng Huang, et al. The snowflake elastic data
warehouse. In Proceedings of the 2016 International Conference on
Management of Data, pages 215–226, 2016.

[10] Korry Douglas and Susan Douglas. PostgreSQL: a comprehensive guide
to building, programming, and administering PostgresSQL databases.
SAMS publishing, 2003.

[11] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely
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