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Abstract—Cloud reliability is essential today. Although ensur-
ing cloud reliability can be challenging and sometimes labor-
intensive, unexpected issues can lead to significant financial
loss. This report presents three works that enhance cloud
reliability. One project tests cloud system operators to reduce
potential failures. Another allows servers with failed components
to continue hosting virtual machines (VMs) without repair,
effectively masking degraded capacity and performance. The
third project enables timely diagnosis of application-network
anomalies facilitating quick failure recovery. All three projects
have been published in top venues in operating systems.

Index Terms—Cloud Reliability, Failure Recovery, Incident
Diagnosis

I. INTRODUCTION

Cloud systems are growing in scale and demand beyond
what human-based operation can reliably, continuously, and
efficiently manage. Modern cloud systems are increasingly
being managed by operation programs, termed operators [1],
that automate labor-intensive operations. Operators of cloud
management platforms like Kubernetes [2], Twine [3], and
ECS [4] implement declarative interfaces based on state rec-
onciliation. An operation declares the desired system state
and the operator automatically reconciles the system from its
current state to the declared state. This “cloud-native” operator
pattern simplifies operations and improves efficiency.

The rapid development and deployment of operators make
their quality assurance a pressing need—operation correctness
is critical to system reliability [5]. A buggy operator can impair
correctly implemented systems in production. Compared with
human operator mistakes—major causes of system failures [6],
[7]—bugs in operators have more magnified impacts due to the
nature of automation and widespread software reuse. In fact,
buggy operators caused many recent production incidents [1],
[2], [8].

Server hardware failures are quite frequent in cloud plat-
forms. For example, a typical cloud server relies on at least
24 DIMMs, six SSDs, six fans, and two CPU sockets [9].
Even assuming optimistic annual failure rates of 0.1% per
DIMM and 0.2% per SSD, 22% of servers will have at least
one failure during the typical 6-year lifetime of a cluster. In
practice, repair rates are typically even higher.

Cloud regions host the core business systems of Alibaba
and serve billions of customers worldwide [10], [11]. The key
challenge of operating Alibaba cloud is timely detection and
diagnosis of application-network anomalies, to ensure service
level agreements (SLAs) and avoid customer, reputation, and
revenue losses caused by SLA violations [12].

This report presents three techniques to address network
incidents, hardware failures, and bugs in cloud operators. To
tackle the network issues, we introduce the experience in
designing and deploying the Application-Network Diagnosing
(AND) system in Alibaba cloud. AND exploits TCP retrans-
missions (rest xs) to extract anomalies with low overheads,
capture problems at a (micro)service level, and correlate
applications with platform/infrastructure layers end to-end.
Existing works [6] also collect TCP retxs and statistics at
end hosts for anomaly detection and diagnosis. We observe
several deployment challenges that hinder the direct usage
of these systems in a cloud-native environment. To tackle
hardware failure, we introduce Hyrax, the first implementation
of the fail-in-place paradigm for cloud computing servers. In
a multi-year study of component failures across five server
generations, we find that sufficient redundancy in existing
servers can overcome the most common memory and SSD
device failures. While existing diagnostics can only identify
a subset of component types, we empirically find that they
are 95% accurate. We identify hooks in deployed firmware
that enable deactivating components in ways that overcome
many failure possibilities (e.g., dirty or corroded connectors or
chip failures). Finally, Hyrax adds a degraded server state and
corresponding scheduling rules to a production control plane
to support servers with deactivated components. To detect
operator bugs, we introduce Acto, the first automatic technique
and tool for end-to-end testing of cloud system operators.
Acto automatically generates end-to-end tests to check three
operation correctness requirements: the operator (1) always
reconciles the managed system to desired states, (2) performs
managed system recovery from undesired or error states by
rolling back to a previous good state, and (3) should be
resilient to misoperations (i.e., operation errors) by preventing
them from driving the system into error states.

AND has been deployed in Alibaba cloud for over three
years. It processes more than one billion retxs events per
hour and reduces data volume by orders of magnitudes.
The routing model achieves 95% recall/accuracy in detect-
ing/routing anomalies to target network teams in the long-term
evaluation. AND enables minute-level anomaly detecting and
routing. AND also achieves high coverage of anomalies in
the end-to-end path, from networks to end hosts and even
abnormal application behaviors, and complements the fade
area of existing systems.

Hyrax has been deployed for a few months on a subset of
Azure clusters and a small set of component types. We report



on its effectiveness on real failures and use microbenchmarks
and large-scale trace-driven simulations to extrapolate a full
deployment over six years. Our experience demonstrates that
the fail-in-place paradigm is practical under real-world plat-
form constraints.

We evaluated Acto on eleven popular Kubernetes operators
of various kinds. Acto found 56 new operator bugs in total,
among which 42 have been confirmed and 30 have been
fixed. Acto also found six bugs in Kubernetes and in the
Go runtime that affected multiple operators (all have been
confirmed or fixed). The detected bugs lead to severe safety
and liveness issues, affecting not only the operators but also
the reliability and security of the managed systems. Lastly,
Acto finds many vulnerabilities to misoperations. Acto tests
all these operators within eight hours (a nightly run) on a
cluster of eight machines; five of eleven operators only need
one machine. Acto has few false positives: Acto reports no
false alarm and Acto has a 0.19% false alarm rate.

II. BACKGROUND

A. Modern Cloud Operation Programs

Operation programs (i.e., operators) for modern cloud man-
agement platforms like Kubernetes [13], Twine [14], and ECS
[15] follow a declarative, state-reconciliation design pattern.
An operation declares a desired system state and the operator
automatically reconciles the system to the declared state. This
design pattern simplifies system management operations by
removing the need to write ad hoc, imperative scripts for
different one-off tasks. The pattern also makes system manage-
ment declarative and intent-driven. We give a brief overview of
the pattern, using Kubernetes [16] as a representative example.

1) Declarative operation interface.: In Kubernetes, oper-
ators expose a declarative interface in the form of custom
resources (CRs) [17]. A CR defines a system resource and
its properties that can be modified to manage that resource. A
state declaration specifies property values in a CR. Figure 3
shows an example of desired-state declarations for ZooKeeper;
it specifies primitive properties like replicas and image, and
composite properties like persistence which has sub-properties.
A ZooKeeper operator reconciles a managed ZooKeeper clus-
ter to satisfy the declared state. Management operations are
expressed by changing one or more property values in a
CR. Kubernetes operators maintain CR definitions in the
OpenAPISchema format [18], which defines constraints on
each CR property (e.g., data type and data range). Operations
that change a CR are first validated against the specification
by the API servers, before being forwarded to the operator.

Kubernetes operators maintain CR definitions in the Ope-
nAPISchema format [19], which defines constraints on each
CR property (e.g., data type and data range). Operations that
change a CR are first validated against the specification by the
API servers, before being forwarded to the operator.

2) Operator design pattern: Kubernetes operators follow
the state-reconciliation pattern of modern cloud management
platforms and control planes, such as Kubernetes, Borg,
Omega, Twine, and ECS [1], [4], [20], [21]. An operator

Fig. 1. At Azure, servers are either online and serving VMs, or offline and
being repaired. Repairs take between 3 and 190 days at the 50-th and 99-th
percentile, respectively.

Fig. 2. A component can appear faulty due to other component faults along
the path between a core and the actual component. We call this a pathway
that typically spans the socket and pins, printed circuit board (PCB), and
slots/risers to the actual component like the NVMe SSD or memory DIMM.

continuously reconciles the managed system from its current
state to a newly declared desired state, if the current state
does not match the declared state. The management platforms
maintain their current system states in a collection of state
objects in strongly consistent datastores (e.g., etcd [22]). Every
entity in the system, such as a pod, a volume, and a stateful
set (representing a stateful system), has a corresponding state
object. State objects have uniform APIs and consistent data
schema, making them highly interpretable and extensible [23].

B. Cloud hardware failure

1) Repair workflow: A software agent called Server Health
Monitor (SHM) checks server error logs and component
types, counts, and capacity for deviations from the expected
(homogeneous) configuration. If the SHM suspects any kind of
fault, the server is marked as “offline”, which signals the VM
scheduler to filter out this server (Figure 1). VMs are migrated
away or gracefully evicted. The server is then rebooted into
a diagnostics environment. If diagnostics finds a hardware
problem, it immediately creates a repair ticket [24]–[26].

Repair tickets can point to a specific component pathway
(like DIMM 4, Figure 2a) or require a manual diagnosis. After
a technician resolves a ticket, e.g., by reseating connectors or
swapping out components, the server is tested again to certify
reliability (certification step). A reliable server is marked
“online” and again becomes a candidate for hosting VMs.

2) Impact of all-or-nothing repairs on TCO: Server repairs
are a significant component of total cost of ownership (TCO).
The main components of TCO are CapEx (capital expenditure
for the purchase of servers, networking, cooling, and power
infrastructure) and operational costs due to energy and power
(estimated at 6% of CapEx per year [6], [27], [28]), and
maintenance (estimated at 5% of CapEx per year for each



Fig. 3. Overview of cloud traffic.

server [19], [29]). Maintenance costs are largely made up by
technician salaries and cover maintenance of all datacenter
components. At Azure, server repairs account for about half
of technician work hours in the all-or-nothing operating model.
Server repairs thus account for 9% and 12% of total cost
(TCO) for server lifetimes of 6 and 10 years, respectively.

Repairs are also known to be slow [30]. At Azure, 2% of
servers are waiting for repairs at any given time in the all-or-
nothing operating model.

3) Server hardware: Figure 4 shows a typical cloud server
configuration [48]. Variants of this base architecture include
one or two NICs and 24-32 DIMMs; most servers use a single
NIC. We note that the component count for some component
types is larger than one. We refer to these as degradable
components as they do not represent a single point of failure.

We note that hardware components internally contain redun-
dancy, such as spare blocks in SSDs [5], [31]–[34]. Moreover,
the operating system and hypervisor at Azure employ an
aggressive policy for offlining memory pages to mask faulty
cachelines. A repair ticket is generated for a component only
when the above mechanisms cannot resolve the problem.

C. Network Operations

1) Overview of cloud traffic: Cloud applications go through
each layer of components in the end-to-end path. As shown
in Figure 3, applications run on containers and VMs, and
communicate via kernel stack and virtualized netdev [35]. The
traffic is then forwarded via vSwitch [36] and physical NIC at
host machines or node controllers (NCs). The cloud gateways
[5] as the cores of virtual networks perform stateless and state-
ful network functions, including forwarding gateways among
virtual private clouds (VPCs), stateful load balancing (SLB),
network address translate (NAT), access control list (ACL).
The physical network consists of multilevel switches/links,

and the cloud enterprise network (CEN, a dedicated leased
line network between cloud regions).

On this basis, we summarize five common scenarios of
cloud traffic (Figure 3): (1) Cloud services actively access
internet data centers (IDCs). (2) User clients request services
hosted by the cloud, which return responses. (3) Cloud services
access other intranet services via SLB. (4) Cloud services
access each other directly via forwarding gateways. (5) Cloud
services access each other cross regions.

2) Operational experience: How to estimate the impact of
anomalies on real application traffic? The networking teams
build large-scale probing systems to monitor virtual/physical
networks [29], [37]. However, probing systems cannot tell
whether application traffic is affected by anomalies and
even overlook severe failures. Specifically, they probe each
node/link with equal weight, while partial nodes/links carrying
critical (micro)services that many applications depend on
should have larger weights. Probing results on these critical
nodes/links may be covered by noises of network jitters. We
observe many cases where failures in critical (micro)services
are not perceived by probing systems. Real case studies of
SLB and Redis services are presented. Other monitors on the
platform or infrastructure layer face similar problems. Even
though anomalies are detected, they cannot tell whether or
how many applications are affected.

III. METHODOLOGY

A. AND

we introduce the design and deployment of AND in practice
to resolve the above challenges. Figure 8 shows the overall
architecture of AND incorporating anomaly collecting, detec-
tion and diagnostic. The process from anomaly collecting to
routing takes less than 1 minute.

1) Challenge 1: Anomaly Collecting: AND monitors retxs
at end hosts via a dedicated tool, namely nBPF. nBPF designs
eBPF-based kernel filters to extract prominent anomalies that
impact application performance, i.e., fails of connection es-
tablishment and retransmission timeouts. nBPF also devises
user-space filters to record accurate retxs counters for anomaly
detection and sample retxs details (TCP 5-tuple and even
process info) for anomaly diagnostic. Last but not least,
nBPF proposes statistics of retxs events per (micro)service
(SRC) and per traffic scenarios (DST) to delimit the scope
of anomalies in the collecting phase. nBPF effectively filters
out ≥ 90% of retxs and achieves low overheads in extreme
stress tests with million connections. The filtering rules also
ensure a high coverage rate of anomalies and help anomaly
routing among multiple scenarios.

2) Challenge 2: Anomaly Detection: AND then performs
real-time anomaly detection on time series of retxs counters.
AND adopts multi-level time-series clustering to distinguish
distinct retxs patterns with respect to frequency, stability,
seasonality, etc. According to the clustering results, AND
designs lightweight feature engineering and extracts normal-
ized features for anomaly detection. The compute-intensive
clustering and model training are conducted in the offline



Fig. 4. Server states in Hyrax.

phase, while the feature extraction and anomaly detection
are executed in real-time. Finally, AND achieves minute-level
detection for millions of data streams (time series of millions
of IPs × multiple scenarios). AND extracts ≤ 1% abnormal
IPs from ‘noisy’ time series of retxs and guarantees high recall
in anomaly detection.

3) Challenge 3: Anomaly Diagnostic: The abnormal IPs
are aggregated by application/network attributes and exported
to the diagnostic process. The key insight is that anomalies
in multiple scenarios, e.g., intermediate networks, end hosts,
etc., exhibit different distributions of retxs, after correlating
retxs details with application/network attributes. AND builds
a supervised anomaly-routing model using single retxs metrics
and designs feature sets of anomalies for multiple target teams
or scenarios. The routing model also expands the training sets
and executes re-trains in a self-iterative way. In the long-term
evaluation in the production cloud, AND achieves ∼ 95%
recall/accuracy in detecting/routing network anomalies. The
routing model helps to locate anomalies in specific scenarios
and embodies generalization ability to more problem domains.

B. Hyrax

Hyrax is a concrete implementation of the FIP idea and the
first FIP system at a cloud provider. Hyrax implements a new
“degraded” online server state on servers and in the control
plane and changes multiple aspects of the offline workflow at
Azure. Currently, Hyrax supports three degradable component
types: memory, SSDs, and fans.

Figure 4 provides an overview of server states in Hyrax.
After a server is marked as suspect, results from Diagnostics
are used by the Hyrax Policy to decide whether to degrade
or repair. This policy applies first filters for degradable com-
ponent types. Second, it verifies that diagnostics points to a
specific pathway within this component type. Third, it applies
a threshold on how many components of each type can be
degraded. Degraded servers are created by deactivating the
faulty component pathway. Repairs are scheduled for un-
degradable component types, when diagnostics cannot identify
the faulty component pathway, or if deactivation would cross
the policy’s threshold. Degraded and repaired servers are
subject to extensive testing before becoming available for
hosting VMs (online).

Hyrax achieves CEfficiency via the policy’s thresholds.
Currently, we never deactivate more than two components of
any type. Empirically, we find that this is sufficient to prevent
resource stranding.

Fig. 5. State transitions of different test strategies.

Hyrax achieves CPerformance by characterizing how de-
activating components affects VM performance for different
VM types. This allows Hyrax to decide whether the remaining
healthy components are sufficient for the server to continue
serving VMs and which VM types it can serve without
impacting user experience. Hyrax modifies the VM scheduler
such that only the VM types whose performance requirements
can be met are scheduled on the degraded server.

Hyrax minimizes repair tickets because many servers that
are degraded instead of repaired will not encounter another
fault during their deployed period. If degraded servers en-
counter another fault that cannot be degraded, Hyrax issues
a single repair ticket and technicians repair all faults on
the server at once. We call this technique “mini-batching”.
Minibatching effectively amortizes technician work like the
journey to the server’s rack, identifying and opening the server,
manual diagnosis, and record keeping.

Hyrax achieves CCapacity in two ways. First, the capacity an
individual degraded server can lose is limited via the policy’s
thresholds. Second, undegradable servers are not permanently
left offline without repairs.

C. Acto

1) Realizing State Transitions: During a test campaign,
Acto automatically generates a new state declaration Di+1

based on the current system state Si to realize a state transition,
Si, Di+1 → Si+1. Test campaigns start from the initial state
S0. Acto triggers state transitions with the goals to: (1) cover
all properties exposed by the operation interface, and (2)
exercise representative operation scenarios based on property
semantics.

Acto systematically exercises all the properties that are
defined in the operation interface. Each new Di+1 changes
one property in the current state Si and any other properties
that are needed to satisfy predicates on property relationships.
Specifically, Acto selects a previously untested property and
uses it to declare a new desired state. The end state after
one transition, becomes the start state for the next transition



(Figure 5b). All state declarations collectively change every
property at least once during a test campaign.

Acto tests different scenarios based on the semantics of
the changed properties. (Acto automatically infers these se-
mantics). For example, Acto tests the scale-up-and-scale-
down and the scale-downand-scale-up sequences if a property
represents the number of replicas. Acto also tests different
pod assignments that trigger the operator to re-configure or
re-deploy managed systems differently. This scenario-driven
approach allows Acto to focus on a small number of rep-
resentative states, instead of the very large set of all possible
property values. We implement scenarios as plugins that can be
extended or customized; users of Acto can add more plugins.

In addition to valid operation scenarios, Acto also generates
misoperations, each of which triggers a state transition to an
error state, Se. For example, Acto generates misoperations
that (1) scale the replicas beyond the total number of available
physical resources, and (2) set unsatisfiable affinity rules. Acto
uses misoperations to check if an operator (1) is resilient to
operation errors, and (2) can recover from undesired or error
states. Acto’s oracles check the former (is the system in a state
Se?). Acto checks the latter by rolling back Se to the most
recent healthy state. Misoperations that declare semantically
erroneous states could escape constraint validation. A correct
operator should not carry out an erroneous operation or at least
should be able to recover from operation failures.

2) Extracting Constraints: Extracting Constraints. The op-
eration interface specification defines syntactic validity con-
straints on state declarations. For example, Kubernetes’ Ope-
nAPISchema specification defines constraints on all supported
properties. Acto uses these constraints to ensure that all
property values in declared desired states are syntactically
valid. (Invalid declarations would likely be directly rejected
by the API servers before reaching the operator.) For compos-
ite properties, Acto uses composite constraints like required
properties and also derives constraints from the sub-properties.
For primitive properties, Acto uses constraints like the type,
min/max values (for numeric types), length (for string type),
regular expression patterns, etc.

3) Inferring Property Semantics.: To exercise different sce-
narios, Acto changes properties based on their semantics. Acto
infers the semantics of a property in the interface specification
by mapping it to a set of resource types in the Kubernetes core
APIs. Such mapping is feasible because many operations for
property changes are eventually delegated to Kubernetes core
services.

4) Inferring semantics from property structure: Acto ex-
ploits the insight that property structure is effective for map-
ping to properties in the Kubernetes core resource specifi-
cation. Specifically, all Kubernetes core resource types have
unique structures. Figure 5 exemplifies how Acto infers se-
mantics from the property structure: CassOp has a cassandra-
DataVolumeClaimSpec property with the same structure as the
VolumeClaimTemplates property in Kubernetes’ StatefulSet
resource. Therefore, Acto infers the semantics of cassandra-
DataVolumeClaimSpec using a structural mapping.

5) Inferring semantics from source code: Acto cannot use
property structure to map primitive properties (e.g., integer).
Also, naming conventions can be ambiguous or unreliable.
For example, the integer size property maps to replicas in
Kubernetes’ StatefulSet. To map primitive properties, Acto
analyzes operator code. The idea is to track the data flow of
the property value in the operator code and analyze how the
values are used. If a property value is passed to a Kubernetes
API or assigned to a Kubernetes resource object, Acto maps
the property to a Kubernetes object that stores its value.

Acto implements a static taint analysis to track property val-
ues. The initial taints are pointers and references to the desired-
state declaration (e.g., cr.spec) and the taints are propagated
via data-flow dependencies. The analysis is field sensitive—to
track each primitive (sub-)property in the declaration—, inter-
procedural and context sensitive.

6) Generating Property Values: To generate values for
properties with inferred semantics, Acto currently implements
57 property-specific generators based on Kubernetes resource
semantics. Most of these properties are composite. The gen-
erators focus on high-level semantics to exercise different
scenarios. Each generator creates property values to realize
a scenario. We find that most properties exposed by opera-
tion interfaces (83% on average in our evaluated operators)
can be mapped to Kubernetes resources. Acto’s generators
are invoked at runtime. Some generators read environment
and runtime information to inform value generation (e.g., an
unsatisfiable affinity rule).

For properties whose semantics Acto cannot infer, Acto
mutates current values based on their data types while sat-
isfying syntactic constraints. Acto only mutates primitive sub-
properties of composite properties. Acto’s mutation ensures
syntactic validity but does not guarantee semantic meaning-
fulness. Mutated values that are not semantically meaningful
help check for vulnerabilities to misoperations. Our manual
inspection during Acto evaluation shows that 80+% of muta-
tions are semantically meaningful.

IV. EVALUATION

A. AND

1) Offline & Online Processing.: Real-time is the key
requirement of the detection algorithm for fast anomaly/failure
discovery and recovery. To achieve this goal, AND adopts a
hybrid offline and online processing via the low-cost Max-
Compute [26] and real-time Flink [16] respectively. The offline
stage performs compute-intensive clustering, prediction and
model training, while the online stage only extracts real-time
features and then detects anomalies.

Offline Clustering. AND uses offline clustering for ‘day+1’
detection. Partial container IPs may occasionally be assigned
to other applications and have different retxs patterns com-
pared with the previous clustering results. The time series of
these IPs will be identified and penalized in feature engineer-
ing. The clustering results will be updated the next day.

Offline Prediction. AND designs dedicated offline prediction
for different clustering of time series (Figure 7). On the one



Fig. 6. Effects of detection procedure.

Fig. 7. Clustering of time series (intranet): (1) Stable time series with small
‘noise’ take 41.06%; (2) Stable and seasonal time series with predictable
‘noise’ take 48.09%; (2) Unstable time series (mean-shift or hybrid) take
10.85%

hand, partial time series have an ultra-low frequency of retxs.
AND adopts a simple difference with constants as features.
On the other hand, AND adopts a lightweight predication to
eliminate the ‘noise’ of time series, based on the expectation
and variance of history windows.

Offline Training & Online Detection. For offline training,
AND randomly samples time series from a one-month period
and also includes time series of anomalies/failures to enhance
the robustness. The real-time features adopt simple arithmetic
calculations using prediction values and penalizing/scaling
factors pre-processed offline. Finally, the online detection takes
real-time features as inputs and outputs the abnormal IPs and
timestamps for further aggregation and diagnosis.

2) Effective Data Filtering.: Next, we demonstrate that the
detection procedure effectively extracts features of anomalies
and also reduces data volume.

As shown in Figure 6, we intuitively show the effects of
the detection procedure, taking stable and seasonal time series
as examples. The detection procedure eliminates the ‘noise’
of time series by lightweight prediction. The features are also
penalized and scaled via coefficients in cyclic windows and
variance in short-time windows.

B. Hyrax

In this section, we demonstrate that Hyrax can successfully
mitigate any VM performance impact of degraded mode oper-
ation. For space reasons, we focus on the more complex case
of memory performance (memory latency and bandwidth).

1) Server-level experiments.: Figure 8 compares VM mem-
ory bandwidth of Hyrax and Naı̈ve on a degraded server to
a healthy server. The degraded server has A1 and A2 deac-
tivated. Hyrax allocates the VM using colors 0-3, depending
on VM core count. We find that memory bandwidth under

Fig. 8. Peak memory bandwidth of a healthy server, a Hyrax server with page
coloring, and a naı̈ve implementation of degraded servers with two DIMMs
deactivated.

Fig. 9. Hyrax almost always achieves the same VM memory bandwidth on
degraded nodes as VMs would on healthy servers.

Hyrax is within 1% of the healthy server. In contrast, Naı̈ve’s
performance is highly variable with mean bandwidth up to
36% lower and worst-case bandwidth up to 82% lower than
on the healthy server.

We also tested memory latency. In all three systems, and
across all experiments, the unloaded memory latency reported
by MLC for the degraded server remains within 5% of the
healthy server.

2) Large-scale page coloring simulations: The previous
experiment focused on a single VM in isolation for one
particular failure pattern. For a more complete view of VM
performance under Hyrax we use simulations that are driven
by actual traces of VM arrivals and departures to capture the
effect of VM churn and also simulate component deactivation
based on real failure traces to capture the rich set of failure
patterns that arises in practice. (The traces come from our
cluster simulations). We play back these VM events in server-
level simulations of the three memory allocation policies:
Hyrax page coloring, page interleaving, and Naı̈ve.

Figure 9 shows the percentage of VMs with less than 95%
and 99% of the bandwidth of a healthy server, both for VM
aggregate bandwidth (left) and bandwidth of the VM’s worst
page (right). With Hyrax, fewer than 0.16% of VMs see
bandwidth on their worst page that is lower than 99% of
the worst-page bandwidth achieved on a healthy server. VM
aggregate bandwidth under Hyrax is even closer to that of a
healthy server.



Fig. 10. The Kubernetes operators that we evaluate.

Page interleaving also results in a low percentage of VMs
that achieve less than 95-99% of the aggregate memory
bandwidth of a healthy server. However, more than half of
VMs include at least one memory page with significantly
lower bandwidth. We also note that page interleaving increases
a VM’s page table by orders of magnitude. This leads to
a high rate of TLB misses and increased memory access
latency. In practice, we know that memory access latency is
even more important than bandwidth — internal production
workloads lose 5-15% of performance for small page sizes.
Thus, interleaving is not practical.

Naı̈ve is compatible with large page sizes but more than
2% of VMs achieve less than 95% of the aggregate bandwidth
goal. This grows to 3.5% for a goal of 99% and above 50%
when considering the worst page in a VM. While Naı̈ve
performs well on average, tail performance matters at scale.

C. Acto

Acto’s premise is that fully automatic end-to-end correct-
ness testing for unmodified operators is viable and effective.
We answer three research questions: (1) Can Acto effectively
find new bugs in real-world operators? (2) How efficient is
Acto? (3) Are Acto’s signaled alarms trustworthy?

We apply Acto to eleven popular open-source Kubernetes
operators which manage nine cloud systems (Figure 10). All
evaluated operators are developed by the official teams of the
managed systems, or by companies that sell services built
around the managed systems.

1) Finding New Bugs and Vulnerabilities: Acto finds pre-
viously unknown bugs in all evaluated operators, 56 bugs in
total. We reported all these bugs. So far, 42 were confirmed and
30 have been fixed. No bug report was rejected. Acto found
all 56 bugs. Acto missed one bug, due to not being able to
infer the semantics of a primitive property that is needed to
generate a scenario.

Acto generates e2e tests to reproduce all 56 bugs that it
detects; developers can add these e2e tests to their regression
test suite. In fact, for six bug fixes, developers added regression
tests that perform the same state transition generated by Acto.

Our experience tells that the generated e2e tests are invaluable
for debugging and validating bug fixes.

Many bugs detected by Acto have severe consequences:
managed-system failures, reliability issues, and security issues.
Estimating the likelihood of encountering each bug “in the
field” is hard—the data for such estimation is not publicly
available. However, a bug detected by Acto was also encoun-
tered by a real user after we reported it. Also, some previously
reported bugs are similar to those that Acto detects. Note
that the evaluated operators are popular open-source projects,
suggesting that operator correctness is hard to achieve.

Acto also detects 630 misoperation vulnerabilities. Each
vulnerability corresponds to a unique misoperation that drives
the managed system into an error state.

2) Test Efficiency: All experiments are run on Cloudlab
Clemson c6420 machines with 2 Intel Xeon Gold 6142 CPUs
(16 cores) and 376 GB of memory, with Ubuntu 20.04 LTS.
Campaign times vary from 4.72 to 57.51 hours across oper-
ators. Using eight machines, test campaigns for all operators
finish in less than eight hours. So, Acto can be run nightly.

3) False Positive: Acto’s alarms have a low false positive
rate. Acto reports no false alarm. Every test failure during
the test campaigns points to either a bug in the operator code
or a misoperation vulnerability. In total, Acto reports 2243
test failures: 738 test failures are caused by the 56 bugs in the
operator and six bugs in Kubernetes and Go runtime, and 1505
test failures are caused by 630 misoperation vulnerabilities.
Fixing one bug or vulnerability may resolve multiple test
failures. We are automating alarm clustering based on fault
localization [13], [38], but it is now beyond the scope of
testing.

Acto reports four false alarms in total. It reports 2071 test
failures in total; among them, 653 test failures are caused by 55
bugs in operators and six bugs in Kubernetes or Go; 1414 test
failures are caused by 616 misoperation vulnerabilities. There-
fore, the overall false positive rate of Acto is 0.19%, or 4 out
of 2071 alarms. All four false alarms are caused by unsatisfied
predicates when Acto changes properties. Acto is unable to in-
fer dependencies that do not follow the naming convention. For
example, in ZooKeeperOp, the property, ephemeral, depends
on a predicate: another property, storageType, must also be set
to “ephemeral”. Hence, Acto fails to satisfy the predicate when
changing the ephemeral property, but it expects a state change
and raises a false alarm. These dependencies are captured by
Acto through control-flow analysis.

V. RELATED WORK

A. Active Probing.

Pingmesh [23] targets physical networks in large data
centers. VNET Pingmesh [39] and VTrace [40] extend the
coverage to virtual networks in the clouds. Zoonet [6] further
extends the scope to end hosts, which covers anomalies of
vSwitches/NICs and VMs/netdevs via ARP ping. However, the
out-band probing may not cover problems of actual service
traffic. For example, ACL rules allow probing packets by
default and the ARP packets experience different paths with



TCP/IP packets of services at the kernel stack. They target
non-transient network failures (no shorter than the probing
interval [41]) and intranet traffic (internet is uncontrollable
[42]). Last but not least, AND reveals for the first time that
the probing systems fall short in assessing the impacts of
network anomalies on real application traffic in a cloud-native
environment.

B. End-host Monitoring.

To correlate applications with network paths end-to-end,
existing works collect connection-, linkand even packet-level
metrics at end hosts. PathDump [43] and Facebook [44]
propose to correlate connections with the network paths by
marking packets at each hop and then parsing packets at end
hosts. 007 [2] also collects retxs and queries the network path
of each retx via Traceroute. However, Traceroute incurs too
much overheads to the switch’s control plane with many retxs.
NetPoirot [45] identifies root causes of failures only using
TCP statistics at one host, which relies on artificial failure
injections. In all, collecting fine-grained metrics helps a lot in
anomaly diagnostics, however, incurs considerable overheads
in long-term operation and should be enabled on-demand.

C. Datacenters that fail-in-place.

Related to our work are the general efforts toward lights-out
data centers such as containerized datacenters [32], underwater
datacenters [13], and zero-maintenance storage systems [46],
[47]. In our evaluation, AoN with high batch repair intervals
(12m) represents these approaches. Unfortunately, the loss in
availability or cost (hardware, power, space) to make up for
this loss is prohibitive without degraded mode.

D. In-network Telemetry.

The programmable data plane and in-network telemetry pro-
mote novel monitoring systems at switches/NICs [47]. PINT
[35] and NetSeer [32], [48] record network-wide statistics
and abnormal events at programmable switches respectively.
SpiderMon [30] builds a closed-loop between monitoring and
posterior diagnosis to achieve low overhead and high coverage.
BufScope [49] monitors request-level anomalies of application
RPCs by correlating requests at end hosts (SmartNICs) to
network paths (programmable switches). While BufScope [12]
has been deployed in Alibaba’s production storage application,
these solutions rely on new hardware (e.g., programmable
switches).

E. Mechanisms to implement fail-in-place.

We borrowed the term degraded mode from RAID systems
[19], where upon failure of a drive, the system seamlessly
continues to operate until the failed drive is replaced, however
at reduced capacity and reduced performance.

There are many existing fault-tolerance approaches that use
component-internal redundancy [1], [24], [40], [50]. Hyrax
targets the left-over failures not already covered by these
approaches. It can be viewed as taking degraded mode to
the extreme and applied to even combinations across different

devices. As such, Hyrax has different requirements that raises
novel challenges.

F. Improving repairs and redundancy.

Recent efforts for reducing the reliance on human techni-
cians in lights-out datacenters explore the use of robots to
replace hardware components [51]. Currently, this technology
is not sufficiently capable, versatile and economical to be
employed at scale. Our work presents a solution that can be
deployed immediately in today’s systems.

Finally, systems that require no or minimal repairs through-
out their lifetime are common in the context of embedded
systems, for example, as part of autonomous vehicles, air-
planes or satellites [16]. However, these are special purpose
systems with specialized components and significant redun-
dancy. In contrast, we are exploring whether a cluster based
on commodity data center components can operate with no
or minimal repair throughout its lifetime through the use of
fail-in-place.

G. Operation errors.

Prior work identified operation errors as major causes of
production failures [3], [52], [53]; they result mostly from
human mistakes. As human-based operations are increasingly
being replaced by automated operation programs, the correct-
ness of those programs is critical. Acto is a first step towards
automatic testing of operation correctness.

We believe that Acto’s ideas can apply beyond Kubernetes
to other cloud platforms like Twine [9], ECS [21], and Borg
[38]. These platforms also adopt declarative, statereconcilia-
tion patterns for operators or controllers, as a result of many
design iterations [54] and discussions [47].

DCM [55] uses declarative programming to synthesize
cluster managers based on constraint solving; the idea can
potentially be extended for custom operators. However, most
operators are currently written in imperative code.

Acto is complementary to prior work on software de-
ployment [11], [38] and configuration [8], [16], [56]. Acto
checks programs that perform those operations rather than the
correctness of code or configuration changes.

Sieve [54] is a closely related testing technique. It finds
bugs in Kubernetes controllers that are triggered by external
faults like node failures, network delays, etc. Operators are
custom controllers for managing systems atop the Kubernetes
platform. Acto is fundamentally different from, but comple-
mentary to Sieve. In essence, Sieve is a fault injector that
checks fault tolerance, while Acto is an end-to-end test gener-
ator that checks functional correctness. Sieve cannot find the
bugs Acto detects, because it assumes that the operator works
correctly without faults. Sieve detects bugs by comparing
operator executions with and without injected faults. Sieve
does not report errors in any fault-free reference execution.
More importantly, Sieve takes test workloads as input—those
test workloads are currently written manually, but it is chal-
lenging and costly for developers to write comprehensive test
workloads. Acto automatically generates test workloads (i.e.,



“test campaigns” in Acto’s terminology). Conversely, Acto
cannot directly detect bugs that Sieve finds, because Acto does
not inject external faults. We discuss potential Acto and Sieve
integration.

VI. CONCLUSION

In this report, we presents three works that enhance cloud
reliability. AND exploits a single metric of TCP retxs to
build the unified monitoring and diagnosing capability, which
enables minute-level anomaly detection and facilitates fast
failure recovery. According to the operational experience of
over three years, AND demonstrates its superiorities from
several aspects, including impact assessment at (micro)service
levels, multiple-problem-domain anomaly routing, extremely
low overheads and generalization ability. We also introduce
Hyrax, a datacenter stack that enables compute servers with
failed components to continue hosting VMs while hiding the
underlying degraded capacity and performance. A key enabler
of Hyrax is a novel model of changes in memory interleaving
when deactivating faulty memory modules. Experiments on
cloud production servers show that Hyrax overcomes common
hardware failures without impacting peak VM performance. In
large-scale simulations with production traces, Hyrax reduces
server repair requirements by 50-60% without impacting VM
scheduling. For cloud operator bugs, we introduce Acto, an
automatic technique for testing cloud-native operators end to
end with the managed systems. We show that Acto’s state-
centric approach enables effective and practical end-to-end
testing that is readily applicable to existing operators and
complements the significant inadequacy of manually written
tests. Our goal now is to make Acto a common utility in
developing and testing operators, towards correct automation
of cloud system operations.
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