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Abstract—Serverless computing enables developers to focus
on application logic by abstracting away infrastructure man-
agement. By leveraging Function-as-a-Service and Backend-as-
a-Service models, serverless platforms provide cost-effective,
scalable, and event-driven solutions for modern applications.
Despite its advantages, serverless computing faces challenges
such as cold start latency, programming complexity, resource
allocation inefficiencies, and security vulnerabilities.

This paper addresses these challenges through a comprehen-
sive exploration of four critical aspects: cold start performance,
programming frameworks, resource management, and security.
It proposes strategies to mitigate cold start delays via techniques
like container prewarming and snapshot restoration, evaluates
programming frameworks such as OpenFaaS for enhancing
developer productivity, and introduces resource management
approaches to optimize dynamic provisioning and workload bal-
ancing. Additionally, it identifies key security risks and presents
innovative solutions, including machine learning for anomaly
detection and fine-grained access control.

By tackling these issues, this work provides actionable insights
to optimize serverless architectures, paving the way for their
broader adoption in complex applications.

Index Terms—serverless computing, cold start optimization,
resource management, serverless security

I. INTRODUCTION

Serverless computing allows a cloud customer to run their
code in production without configuring and allocating the
software and the infrastructure stack [1]. A cloud customer
can thus focus on their application, rather than on managing
the production environment. Serverless computing supports
two primary service models: Function-as-a-Service (FaaS)
and Backend-as-a-Service (BaaS) [2]. FaaS allows developers
to build applications as small, event-driven functions (i.e.,
serverless functions), while BaaS provides ready-to-use cloud
services such as storage (e.g., AWS S3 [3]), database, and
API gateway management. This collaboration between FaaS
and BaaS enables developers to efficiently create serverless
applications.

The serverless computing model has been successfully
adopted in a wide range of application domains, such as for
ingesting IoT data for flood warnings [138] and for air quality
monitoring and alerting in smart ports [139]. There are open-
source serverless deployments such as OpenFaas, Apache
OpenWhisk and KNative1, and commercial ones such as AWS
Lambda 2, Google Cloud Functions 3 and Azure Functions
4. Its many advantages include: (a) lower deployment costs

1https://knative.dev/
2https://aws.amazon.com/lambda/
3https://cloud.google.com/functions
4https://azure.microsoft.com/en-gb/products/functions/

where many of the management tasks are taken care by
the platform provider and as a result users do not explicitly
provision or configure virtual machines (VMs), (b) resource
elasticity where applications can scale up to tens of thousands
of cloud functions on demand, in seconds, with no advance
notice, and (c) lower operational costs based on a pay-as-
you-use policy where users only get charged based on the
number of resources consumed by the application functions
during execution [140].

Despite its advantages, Serverless computing also presents
unique challenges and areas for optimization. In this paper,
we focus on four critical aspects of Serverless: Cold Start
Performance, Programming Frameworks, Resource Manage-
ment, and Security. Each of these topics addresses fundamental
limitations and opportunities within the Serverless ecosystem:

• Cold Start Performance: Serverless functions often face
latency due to initialization delays [4], particularly in
high-demand or large-scale scenarios. We analyze the
impact of cold starts on user experience and system
throughput, explore strategies like container prewarming,
snapshot restoration, and optimized scheduling, and pro-
pose methods to mitigate these delays without compro-
mising resource efficiency.

• Programming Frameworks: Building serverless applica-
tions demands robust frameworks that abstract complex-
ities while supporting diverse use cases [5]. We evaluate
existing frameworks such as OpenFaaS and Knative,
focusing on their ability to streamline function orches-
tration, enable multi-cloud compatibility, and support
emerging workloads like AI/ML inference [6]–[8]. Addi-
tionally, we propose enhancements to improve developer
productivity and support for advanced workflows [9].

• Resource Management: The elasticity of serverless com-
puting relies on intelligent resource allocation to han-
dle varying workloads effectively [145]. We investigate
techniques for dynamic provisioning, task scheduling,
and workload prediction, with an emphasis on reducing
underutilization and addressing bottlenecks in compute
and memory [147], [148]. We also analyze trade-offs
between cost efficiency and performance, proposing so-
lutions tailored to heterogeneous environments.

• Security: The serverless model introduces new security
challenges, including misconfigurations in function de-
ployment, vulnerabilities in third-party dependencies, and
risks of data breaches during function invocation [10]. We
study strategies for safeguarding serverless environments,



including static and dynamic analysis of configurations,
runtime monitoring [11], and isolation mechanisms [12].
Furthermore, we examine innovative methods, such as
leveraging machine learning for anomaly detection and
employing fine-grained access control, to enhance secu-
rity without undermining the agility of serverless archi-
tectures.

Through detailed exploration of these topics, this paper aims
to provide actionable insights into optimizing serverless com-
puting. By addressing the inherent challenges in cold starts,
programming frameworks, resource management, and security,
we contribute to advancing the adoption and efficiency of
serverless systems, paving the way for their integration into
more complex and demanding applications.

II. RELATED WORK

A. Cold Start Performance

1) Bin packing with setup times: Weng et al. [13] study
similar problem of minimizing mean weighted completion
time in case of tasks with sequence dependent setup times.
[14] presents dynamic algorithms addressing scheduling with
setup times with objective of minimal weighted flow time.

2) Quadratic programming: Existing study [15] was unable
to find an optimal schedule in 15 minutes (on a reasonable
desktop machine) even for a small instance with N = 20 jobs
each of nl = 20 tasks. Schedulers in production systems need
to respond in seconds, thus an approach based on a generic
solver is probably not sufficient.

3) Workflow scheduling: [16] measures how inaccurate
runtime estimates influence the schedules — which comple-
ments our study (as we assumed that estimates are known).
[17] analyzes possible performance benefits of resource in-
terleaving across the parallel stages. [18] proposes Balanced
Minimum Completion Time, an algorithm for scheduling tasks
with dependencies (and without setup times) on heterogeneous
systems. [19] schedules workflows with setup times using
branch-and-bound. While they considered small instances (up
to N ∗ nl = 100 task and m = 4 machines); their method
required 100s time limit for execution. Such long running
times makes this method unusable in data-center schedulers.
A comprehensive survey on workflow scheduling in the cloud
is presented in [20]. [21] analyzes scheduling tasks with
sequence-dependent setup times, precedence constraints, re-
lease dates on unrelated machines with resource constraints
and machine eligibility. The authors present two solutions:
based on genetic algorithm and based on an artificial immune
system. Their largest instances had 60 tasks and 8 machines
and needed 25 minutes (on the average) to solve, again
rendering these methods unusable for FaaS.

B. Programming Framework

1) Serverless inference systems: Extensive research has
focused on optimizing ML model serving in serverless archi-
tectures, targeting batching [22]–[24], scheduling [25], [26],
and resource efficiency [27], [28]. Industry solutions like AWS
SageMaker and Azure ML [29], along with the open-source

KServe [30], demonstrate practical implementations. Despite
these advancements, serverless inference systems still perform
suboptimally with LLMs, as our paper demonstrates.

2) Exploiting locality in serverless systems: Locality plays
a crucial role in various optimization strategies for serverless
systems. This includes leveraging host memory and local
storage for data cache [46]–[48], optimizing the reading of
shared logs [49], and enhancing communication efficiency
in serverless Directed Acyclic Graphs (DAGs) [50], [51].
ServerlessLLM, distinct from existing methods, introduces
a high-performance checkpoint cache for GPUs, markedly
improving checkpoint loading from multi-tier local storage to
GPU memory. Recent studies [52], [53] have also recognized
the need for leveraging locality in orchestrating serverless
functions. Beyond these studies, ServerlessLLM leverages
LLM-specific characteristics in improving the locality-based
server’s selection and launching locality-driven inference.

3) LLM serving systems: Recent advancements in LLM
serving have improved inference latency and throughput.
Orca [54] uses continuous batching for better GPU utilization
during inference. AlpaServe [55] shows that model paral-
lelism can enhance throughput while meeting SLO constraints,
though it has yet to be tested on generative models. vLLM [56]
introduces PagedAttention for efficient KV cache manage-
ment. SplitWise [57] improves throughput by distributing
prompt and token generation phases across different machines.
Some approaches [58], [59] also use storage devices to offload
parameters from GPUs to manage large LLM sizes. However,
these systems often overlook model loading challenges, lead-
ing to increased first token latencies when multiple models
share GPUs. ServerlessLLM addresses this by focusing on
minimizing loading latency to complement these throughput
and latency optimizations.

C. Resource Management

1) Container Optimization: The authors of the paper [145]
focus on how to optimize the container creation by using
shortcuts based on checkpoint-and-restore procedures, without
the need of recreating the docker container image from the
very first step. The authors of [146] improve the container
boot process to achieve cold starts in the low hundreds of
milliseconds. The work of [177] proposes a new lightweight
isolation mechanism which, in order to reduce initialisation
times, restores Faaslets from already-initialised snapshots.

2) Prediction methods: The authors of the paper [147]
focus on reducing the number of cold starts in a serverless
environment. They propose an adaptive resource management
policy called hybrid histogram for prewarming and keep-alive
time windows. They also use ARIMA modeling for appli-
cations that have infrequent invocations. This is considered
as a state-of-the-art technique. However, their work does not
consider and exploit the similarity of serverless applications
as we do in our work. The authors of this work [148] propose
a keep-alive policy based on a Greedy Dual Size Frequency
caching scheme, which relies in the container pool of the
OpenWhisk serverless platform. The work actually replaces



the default TTL scheme which is the typical case of the
industry standards. The authors use a function hit-ratio curve
for determining the percentage of warm-starts at different
server memory sizes. The work of [178], is implemented on
top of Apache Storm and incorporates a congestion-aware
scheduler and a fixed-size worker pool into an edge friendly
Streaming process environment, but this could not be applied
to our setting, in which we focus on batches of requests.

D. Security

1) Traditional Misconfiguration Detection: Existing mis-
configuration detection methods can be categorized into two
types: white-box and black-box approaches. White-box ap-
proaches [60]–[64] generally focus on source code or pro-
gram analysis to identify misconfigurations within the code-
base, relying on manually defined domain-specific rules. For
example, Rex [60] detected dependency violations between
source code and configurations that must be updated together.
Ctest [61] identified configuration-induced failures in code
affected by configuration changes. SPEX [62] employed static
program analysis to infer configuration constraints, designing
predefined rules from variables in the source code to uncover
misconfiguration vulnerabilities.

However, these methods are not well-suited for detect-
ing misconfigurations in serverless applications, which rely
on YAML-based configuration files rather than source code
structures. Serverless-specific misconfigurations, embedded in
configuration files, require new approaches that extend beyond
traditional white-box techniques.

Black-box approaches [65]–[68] are generally data-driven
and rely on learning configuration patterns from a dataset
of example configurations. For instance, EnCore [65] used
numerous configurations to learn and customize rule templates,
inferring correlations and detecting misconfigurations in server
applications. ConfigC [66] analyzed a dataset of correct con-
figurations to build a language model that could detect errors in
new configurations. DRIVE [67] created a Dockerfiles dataset
and applied sequential pattern mining to extract frequent
patterns, identifying rule violations through heuristic-based
reduction and human intervention. However, these data-driven
methods have inherent limitations: (i) They require a well-
curated dataset, but ensuring the completeness and correctness
of such datasets is challenging. As a result, configurations not
represented in the training data may be missed, while nor-
mal configurations might be incorrectly flagged as anomalies
due to dataset gaps. (ii) To compensate for dataset issues,
these methods incorporate domain-specific knowledge (e.g.,
customized rule templates), requiring significant manual effort
and continuous checking. These limitations hinder the practical
application of data-driven approaches. Our results on RQ1
show that such approaches are less effective in our scenario.

2) LLM-based Misconfiguration Detection: LLM-based ap-
proaches offer a promising alternative. A recent paper pre-
sented Ciri [69], an LLM-based configuration validator. It
demonstrated the potential of LLMs for detecting misconfigu-
rations in systems such as Alluxio, Django, Etcd, and HDFS.

However, Ciri depends on an external database containing
valid configurations, misconfigurations, related questions, and
ground-truth responses. Constructing this database is costly
and challenging for various scenarios. In contrast, SlsDetector
employs zero-shot learning that does not require external
datasets, eliminating the need for predefined data. On the
other hand, Ciri used a prompt without any constraint, limiting
its ability to detect dependencies [69]. Serverless applications
have complex configuration structures and stronger interdepen-
dencies, making simple prompt-based methods less effective.
Our results on RQ2 and RQ3 show that such a method (i.e., BL
method) is less effective in our scenario. Instead, SlsDetector
incorporates carefully designed multi-dimensional constraints
without predefined data, providing a more effective detection
for serverless application configurations.

III. COLD START PERFORMANCE

A. Modeling FaaS Resource Management

1) Resource Management in OpenWhisk: In this section,
we describe from the resource management perspective a
representative implementation of a serverless cloud platform,
the open-source Apache OpenWhisk [70]. OpenWhisk is ma-
ture, actively-developed software also offered commercially
(IBM Cloud Functions, Adobe I/O Runtime). OpenWhisk
alternatives include OpenLambda [150] and Fission [72].
OpenLambda uses containers to provide runtime environment
for functions. Fission is designed for Kubernetes [73]; it can
be deployed on existing cluster among other applications,
which makes its adoption significantly easier. This section
forms a background for our scheduling model that follows
in Section III-A2.

OpenWhisk allows a cloud customer to upload functions
(essentially, code snippets). A function is executed when end-
users issue requests. A function executes in an environment
— an initialized Docker container. Different Docker images
are used for each of supported languages; a customer can
also provide a custom image (with, e.g., additional libraries).
Before the first execution of a function, the container must be
initialized (e.g., setting up the container or compiling a Go
function). This initialization can take a considerable amount
of time (called later the setup time) — [74] reports at least
500ms. An environment is specific to a function (it is not
reused between different functions). Subsequent invocations
may reuse the same environment (no further setup times are
necessary). By default, in OpenWhisk an environment executes
at most a single invocation at any given moment.

OpenWhisk also allows to compose several functions into a
chain (a sequence). After one function finishes, its result are
passed to the next function; the last function responds to the
end-user. While sequences are natively supported, in order to
spawn two or more functions in parallel (resulting in a DAG),
the developer may use an additional OpenWhisk Composer
module or call the OpenWhisk API from the function code.

Architecture of OpenWhisk is complex. However, from our
perspective the key components are the controller and the



invoker. The controller communicates with the invokers by
message passing (via Apache Kafka).

The invoker is an agent program running on a worker node.
The invoker is responsible for executing actions scheduled
on a particular node. Each invoker has a unique identifier;
it announces itself to the controller while starting.

The controller acts as a scheduler handling incoming events
and routing function invocations to invokers. The controller
monitors the status of workers and the currently executing
invocations.

The controller attempts to balance load across nodes. The
algorithm selects the initial worker node for each function
based on a hash of the workspace name and the function
name. Similarly, the algorithm picks for each function another
number, called the step size (a number co-prime with the
count of worker nodes). Each time a function is invoked, the
controller attempts to schedule the invocation on its initial
worker. If a worker doesn’t have sufficient resources immedi-
ately available, the controller tries to schedule the invocation
on the next node (increased by the step size). If the invocation
cannot be immediately scheduled on any node, it is queued
on a randomly chosen node.

2) A Scheduling Model for FaaS: In this section we define
the optimization model for the FaaS resource management
problem. The aim of this model is to have the simplest
possible (yet still realistic) approximation of a FaaS system
that enables us to show that considering FaaS compositions
allow optimizations. We thus deliberately do not take into
account some factors that we argue are orthogonal for this
work.

We use the standard notation from [75]. A single end-
user request corresponds to a job Ji. A job is composed of
one or more tasks Oi,k, each corresponding to a single FaaS
invocation. The request is responded to (the job completes)
at time Ci when the last task completes, Ci = maxj Ci,j .
Tasks have dependencies resulting from, e.g., before-after
relationships in the code. While in general such dependencies
can be modeled by a DAG, in this work we concentrate on
chains of tasks, i.e., task Oi,k+1 starts (at time σi,k+1) only
after Oi,k completes, σi,k+1 ≥ Ci,k (we show additional
results for DAGs in [76]).

We assume that individual functions are repeatedly executed
(modeling similar requests from many end-users but also
shared modules like authorization). We model such grouping
by mapping each task Oi,k to exactly one family f(Oi,k)
(obviously, two tasks Oi,k and Oi,l from a job Ji might belong
to different families). All tasks from a family f require the
same environment Ef , have the same execution time (duration)
pf and require the same amount of resources qf .

A task Oi,k from a family f(Oi,k) is executed on exactly
one machine in an environment (OpenWhisk container) Ef .
Ef requires set-up time sf (initialization of the environment)
before executing the first task (subsequent tasks do not require
set-up times). Typically, sf is non-negligible and longer than
the task’s duration, sf > pf (but we don’t assume this).

A machine commonly hosts many environments (thus sup-
porting parallel execution of tasks). Since the moment the
environment’s preparation starts – and until it is removed –
each environment ef uses qf of the machine’s resources (e.g.,
bytes of memory) whether a task executes or not. The number
of hosted environments is limited by the capacity of the ma-
chine Q (

∑
qf ≤ Q). We consider only a single dimension of

the resource requests as OpenWhisk assumes a linear relation
between memory and CPU limits of the underlying containers.
Similarly, Google Cloud Functions allow customers to specify
only a single dimension (memory requirement). However,
it should be relatively easy to extend our model to vector
packing [77].

We do not consider the additional latency caused by com-
munication between tasks because we assume that a high-
throughput, low-latency network of a modern datacenter is
less of a limit than the link between the datacenter and
the Internet. We assume that the machines are homogeneous
(machine resources Q and execution times pf are the same).
If a FaaS system is deployed on VMs rented from an IaaS
cloud, it is natural to use a Managed Instance Group (MIG)
that requires all VMs to have the same instance type. If FaaS is
deployed on a bare-metal data-center, the amount of machines
having the same hardware configuration should be higher that
other scalability limits (e.g. at a Google data-center, 98% of
machines from a 10,000-machine cluster belong to one of just
4 hardware configurations [78]).

We assume that jobs have no release times, i.e., the first
tasks of all the jobs are ready to be scheduled at time 0. This
assumption approximates a system under peak load — there is
a queue of requests to be scheduled now. Note that in contrast
to jobs, individual tasks (in particular, the tasks that follow the
first task of a job) do have non-zero release times, resulting
from inter-task dependencies.

Our model is clairvoyant. A FaaS system repeatedly (thou-
sands of times) executes individual functions. Thus, once a
particular family is known for some time, qf , pf and the
function structure should be easy to estimate using standard
statistical methods — and before that, the system can use
conservative upper bounds (e.g., defaults used by OpenWhisk).
[79] shows that even simple methods estimate precisely mem-
ory and CPU for long-running containers (which, in principle,
is harder than estimating FaaS, as FaaS are shorter, thus
repeated much more frequently than a container).

The system optimizes the average response latency. As
all N jobs are ready at time 0, this metric corresponds to
1
N

∑N
i=1 Ci.

To summarize, the scheduling problem consists of finding
for each task Oi,k a machine and a start time σi,k so that:

1) at σi,k, there is a prepared environment for f(Oi,k) on
that machine that does not execute any other task during
[σi,k, σi,k + pf ] (a scheduling constraint);

2) dependencies are fulfilled: if k > 1, σi,k ≥ Ci,k−1 (a
dependency constraint);

3) at any time, for each machine, the sum of requirements
of the installed environments is smaller than the machine



capacity (a multiple knapsack constraint).

This problem is NP-hard, as generalizing several NP-hard
problems (knapsack [80], P2|chains|

∑
Ci [75]).

B. Method Description

In this section we describe heuristics to schedule FaaS
invocations. We decompose the FaaS scheduling problem
into three aspects: sequencing of invocations; deployment
of execution environments on machines; and allocation of
invocations to deployed environments. We describe specific
Sequencing corresponds to the ordering policy (Section III-B1)
and the awareness of task dependencies (Section III-B4). De-
ployment corresponds to the removal policy (Section III-B2).
Allocation corresponds to the waiting/non-waiting variants
(Section III-B3).

The framework algorithm is a standard scheduling loop
executing schedulingStep at time t when at least one task
completes. The algorithm maintains a queue of tasks [Oi,k]
to schedule.

1) Queue the successors Oi,k+1 of tasks completed at t
({Oi,k : σi,k + pf = t}) (queueDependentTasks).

2) Apply a scheduling policy to the queued tasks (Order).
3) Try to find an environment e for each queued task:

a) Try to claim an initialized environment of the re-
quired type (FindUnusedEnvironment, and – if wait
– FindEnvironmentToWait). In this step we iterate over
all machines and take the first matching environment.
(Section III-B3 describes the wait variant).

b) If (a) fails, try to create a new environment without
removing any existing one (PlaceNewEnvironment). As
above, we use the first fitting machine.

c) If (b) fails, try to find a machine with sufficient capacity
for e that is currently claimed by environments that do
not execute any task; remove these environments, and
install e (RemoveAndPlaceEnvironment).

d) If (c) fails, the task remains in the queue.
4) If an environment e is found, assign the task (AssignTask);

otherwise (3.a-c all fail) the task remains in the queue.

AssignTask starts a task on an environment as follows. Each
environment has a queue of assigned task. Immediately after
creating an environment, it is initialized (which takes time
sf ). Then, the environment starts to execute tasks sequentially
from its queue. If the head task is not ready (waiting for
dependencies), the environment waits (no backfilling). This
may happen in the start policy (see Section III-B4).

In the following, we propose concrete variants for these
functions. We denote the full scheduling policy by a tuple
(A,B,C,D), e.g., , (FIFO,LRU,wait, start), where A
denotes the ordering policy, B denotes the removal policy,
C indicates if variant is waiting and D describes whether the
variant is dependency-aware.

1) Ordering policy (Order): We compare the standard
FIFO and SJF with three orderings taking into account the
dependencies:

• FIFO (First Come First Served) – use the order in which
the tasks were added.

• EF (Existing First) – partition the tasks into two groups:
(1) there is at least one idle, initialized environment
e of matching type Ef(Oi,k); (2) the rest. Schedule
the first group before the second group. The rela-
tive order of the tasks in both groups remains sta-
ble (FIFO). For example, if queue contains five tasks
[Oi1,k1

, Oi2,k2
, Oi3,k3

, Oi4,k4
, Oi5,k5

], there is only one
environment e that is idle and only tasks Oi1,k1

, Oi3,k3
,

Oi4,k4 require environment with type matching e, the
resulting order is [Oi1,k1 , Oi3,k3 , Oi4,k4 , Oi2,k2 , Oi5,k5 ].

• SJF (Shortest Jobs First) – order by increasing durations
pf ;

• SW (Smallest Work) – order by increasing remaining work
in a job, i.e. for a task Oi,k, order by

∑
k′≥k pf(Oi,k′ ).

• RT (Release Time) – ordered by the time the task’s
predecessors are completed.

2) Removal policy: RemoveAndPlaceEnvironment removes
environments according to either a standard LRU, or one of
policies considering either initialization time sf or environ-
ment popularity:

• LRU – remove the LRU (Least Recently Used) envi-
ronment(s) from first fitting machine (i.e. having enough
space to be freed).

• min time removal – remove the environment(s) with the
smallest setup time sf (if more than one, select a single
machine having environments with the smallest total sf ).

• min family removal – remove the environment(s) from
the family with the highest number of currently initialized
environments. As it may be needed to remove more than
one environment, choose a machine to minimize resulting
number of families without any environment.

3) Greedy environment creation: If there is no unused envi-
ronment of the required type Ef , a greedy algorithm (i.e. when
wait is false) just attempts to create a new one. However, when
setup times sf are longer than task’s duration pf , it might be
faster just to wait until one of currently initialized environ-
ments completes its assigned task. When no idle environment
is available, function FindEnvironmentToWait computes for
each initialized environment e of type Ef the time Ce the
last task currently assigned to this environment completes. If
an environment e∗ is available sooner than the time needed
to set up a new environment (minCe ≤ t + sf ), the task is
assigned to e∗. This variant use the (limited) clairvoyance of
the scheduler by taking into account the knowledge of tasks’
durations and setup times of their execution environments.

The waiting variant is analogous to scheduling tasks in
Heterogeneous Earliest Finish Time (HEFT [81], [82]) that
places a task on a processor that will finish the task as the
earliest.

4) Awareness of task dependencies: A myopic (default)
scheduler queues just the tasks that are currently ready to
execute: Oi,0 (the first tasks in the jobs), or the tasks for which
the predecessors completed {Oi,k : Ci,k−1 ≤ t}. However,



when a task’s Oi,k predecessors complete, it might happen
that there is no idle environment ef(Oi,k), and thus Oi,k must
still wait sf until a new environment is initialized.

We propose two policies, start and start with break (stbr),
that use the structure of the job to prepare environments in
advance. Both policies put the successor Oi,k+1 to the end of
the queue when scheduling Oi,k; the successor has the release
time t+pf(Oi,k) (the time when Oi,k completes). The notion of
the release time allows us to block Oi,k+1’s execution until it
is ready (as described in AssignTask). Note that start and stbr
may result in an environment that is (temporarily) blocked:
e.g., if an empty system schedules a chain of two tasks, the
second task from the chain is added to the queue immediately
after scheduling the first task; this second task will be assigned
to its environment, but cannot be started until the first task
is completed. In start variant, after schedulingStep completes
and new tasks were added to queue, scheduler tries placing
them following the same procedure. Compared with start, stbr
immediately after adding Oi,k+1 reorders tasks in the queue
according to the scheduling policy and restarts the placement.

C. Evaluation

We evaluate our algorithms with a calibrated simulator. We
use a simulator rather than modify the OpenWhisk scheduler
for the following reasons. First, a discrete-time simulator
enables us to execute much more test scenarios and on a con-
siderably larger scale (we perform tests on 1440 · 15 problem
instances). Second, as our results will show, to schedule tasks
more efficiently, the OpenWhisk controller (the central sched-
uler) should take over some of the decisions currently made by
the invokers (agents residing on machines). For example, min
family removal needs to know which family has the highest
number of installed environments in the whole cluster — thus,
the state of the whole cluster (note that this policy can be
implemented in a distributed way: the cluster state can be
broadcasted to the invokers). To ensure that our simulator’s
results can be generalized to an OpenWhisk installation, we
compare the performance of an actual OpenWhisk system with
its simulation; the Pearson correlation between these results is
very high (Section III-C2).

1) Method: To test the performance of our algorithms, we
generated synthetic instances with a wide range of parameter
values. We are not aware of any publicly-available workloads
for FaaS or related systems (having dependencies, function
families and setup times). Nevertheless, we also attempted to
create instances resembling real scenarios by using Google
Cluster Trace [83] and generating only missing data. We
present results of this approach in the Appendix [76].

Many parameters of instances have a relative, rather than
absolute, effect on the result. For example, multiplying by a
constant both Q, the machine capacity, and qf , the size of the
task, results in an instance that has very similar scheduling
properties. There is a similar relationship between setup times
sf and durations pf ; and between the total number of tasks
n and the number of tasks in a chain l. We thus fix one
parameter from each pair to a constant (or a small range); and

vary the other. We have n = 1000 tasks; pf is generated by
the uniform distribution over integers pf ∼ U [1, 10]; similarly
qf ∼ U [1, 10]. The remaining parameters have ranges:

• family count nf : 10, 20, 50, 100, 200, 500;
• setup times sf : [0, 0], [10, 20], [100, 200], [1000, 2000];
• chain lengths l: [2, 10], [10, 20], [50, 100];
• machine count m: 2, 5, 10, 20, 50;
• machine sizes Q: 10, 20, 50.

For each combination of the parameters (or ranges) nf ,
sf , l, we generate 20 random instances, resulting in 1440
instances. We evaluate each instance on each of the 15 machine
environments.

These ranges of parameters are wide. As we experiment
on synthetic data, one of our goals is to explore trends –
characterize instances for which our proposed method works
better (or worse) than the current baseline. In particular, chains
longer than 10 (l > 10) are longer than what we suspect is
the current FaaS usage. On the other hand, it is not a lot
compared with a call graph depth on any non-trivial software.
At this point of FaaS evolution it is difficult to foresee the
degree of compartmentalization future FaaS software will have
– and chains longer than 10 invocations represent fine-grained
decomposition (similar to modern non-FaaS software).

Given nf , [smin, smax], [lmin, lmax] we generate an instance
as follows. For each of nf , we set sf ∼ U [smin, smax] and
pf ∼ U [1, 10]. For each of n = 1000 tasks, we set its family
f to U [1, nf ]. We then chain tasks to jobs. Until all tasks are
assigned, we are creating jobs by, first, setting the number of
tasks in a job to l ∼ U [lmin, lmax] (the last created job could
be smaller, taking the remaining tasks); and then choosing l
unassigned tasks and putting them in a random sequence.

For each experiment, our simulator computes the average
response latency, (1/n)

∑
Ci. Due to space constraints, we

omit results on tail, 95%-ile latency – the 95%-ile results also
support our conclusions (unsurprisingly, the ranges are larger
than for the averages).

We simulate the current, round-robin behavior of the Open-
Whisk scheduler (Section III-A1) with an algorithm OW. OW
randomly selects for each family f the initial machine mf

and the step size kf , an integer co-prime with the number of
machines m. When scheduling a task Oi,k in family f , OW
checks machines mf , mf + kf , mf + 2kf , . . . (all additions
modulo m), stopping at the first machine that has either
the environment Ef ready to process, or qf free resources
(including unused environments that could be removed) to
install a new environment Ef . If there is no such machine,
Oi,k is queued on a randomly-chosen machine.

2) Validation of the simulator against OpenWhisk: To
compare the results of our simulator with OpenWhisk, we
developed a customized OpenWhisk execution environment
that emulates a function with a certain setup time sf , execution
time pf and resource requirement qf . This environment emu-
lates initialization by sleeping for sf ∗ 10ms; and it emulates
execution by sleeping for pf ∗ 10ms. While sleeping does
not use the requested memory (qf ∗ 128MB), the memory is
blocked (through Linux cgroup limits) and therefore cannot be
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Fig. 1: Average latency on OpenWhisk system (Y axis) and simulation (X axis). 1 unit is 10ms. Each point corresponds to a
single instance executed on both OpenWhisk and simulator.

simultaneously used by other environments. We chose 10ms as
the time unit to reduce impact of possible fluctuations of VM
or network parameters in the datacenter (we performed some
early experiments with 1ms and this noise was significant; and
with a longer time unit tests take unreasonable time). We emu-
late a single instance from our simulator by creating, for each
job Ji, an equivalent sequence of invocations in OpenWhisk.
To avoid caching of results in OpenWhisk, we ensure that
each invocation is executed with a distinct set of parameters.
We deployed an OpenWhisk cluster (1 controller and m = 10
invokers) on 11 VMs in GCE. All machines have 2 vCPU and
16GB RAM. We further restrict the memory OpenWhisk can
use on machines to 1280MB (equivalent to Q = 10). In order
to reduce impact of cloud storage on system performance, we
used a ramdisk to store OpenWhisk accounting database. We
also extended limits (maximum duration and sequence length)
and changed the default log level to WARN. To reduce the
impact of brief performance changes, we executed each test
instance thrice and reported the median.

In Figure 1 we compare the average response latency
in OpenWhisk and in our simulator varying chain lengths,
the number of families and the ranges of setup times. For
consistency, OpenWhisk results are rescaled to the simulator
time unit (divided by 10) The Pearson correlation between
OpenWhisk and simulator is very high (between 0.86 when
varying family count, Fig. 1.b, and 0.999 when varying the
setup time, Fig. 1.c). There is, however, an additive factor
in OpenWhisk noticeable especially in smaller instances in
Fig., 1.(a) and Fig. 1.(b): the range of OpenWhisk results
in [5000, 9000], while the range of simulated results is in
[550, 1600]; on larger instances, as in Fig. 1.(c), this constant
factor is less noticeable. This additive factor is caused by an
additional system overhead added to every function execution:
each invocation stores data in a database and requires internal
communication. We conclude that the high correlation between
the simulator and the OpenWhisk results validates our simula-
tor – that the differences between algorithms observed in the
simulator are transferable to the results in OpenWhisk.

3) Relative Performance of Policies: We first analyze the
impact of each policy by analyzing their relative performance.
For each variant (A, B, C, D), on each instance, we compute

the relative performance of the policy we measure by finding
the minimal average latency across all variants of the measured
policy while keeping the rest of the variants the same. For
example, when measuring the effect of the scheduling policy
(A), on an instance, we find the minimum average latency from
the 5 variants of the scheduling policy: (EF, b, c, d), (FIFO, b,
c, d), (RT, b, c, d), (SFJ, b, c, d), (SW, b, c, d) (keeping b, c,
d the same); and then we divide all 5 by this value. The goal
of this analysis is to narrow down our focus to the aspects of
the problem that are crucial for the performance. Using this
method, we show that, e.g., all removal policies result in very
similar outcomes. Figure 2 shows the results.

Ordering: EF policy dominates other ordering policies,
confirming that it is better to avoid environment setup by
reusing existing environments. Its median is similar to RT
(and lower than other algorithms), and the range of values
(including the third quartile) is the lowest. Removal: Unlike
scheduling policies, all the removal policies result in virtually
the same schedule length: the range of Y axis is 1.035; thus
outliers are only 3.5% worse than the minimal schedule found
in the alternative methods.

Dependency awareness: Both start and stbr result in similar
performance. We confirmed this result by looking at individual
instances: the performance of start and stbr were similar.

To improve the readability in the remainder, given that
the removal policies have little effect on the schedule length
(Figure 2), we show only the results for LRU. Similarly, we
skip results for SJF and RT orderings: RT is close to FIFO
and SJF is clearly dominated by other variants. Finally, as the
difference between start and stbr variants is small, we show
results only for start.

4) Impact of the length of the chain: In the rest of the
experimental section, we analyze the sensitivity of the policies
to various parameters of the instance, starting with the average
length of the chain. In Figure 3, in all instances nf = 50,
sf ∈ [10, 20], m = 20, Q = 10 (results for larger nf , sf m
and Q are similar; we omit them due to space constraints).
All scheduling algorithms using EF as the ordering policy
significantly reduce latency compared to the baseline OW
(1.3-2.4x), with larger reductions for shorter chains. The start
dependency-aware variant further reduces latency, especially
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Fig. 2: Comparison of resulting average latency under: different scheduling policies (a), removal policies (b) and variants of
dependency–awareness (c). In (a), for each instance (the same tasks, machine capacities and machine count), and having other
variants of the algorithm set (removal policy, waiting and dependency-awareness), we find the minimal average latency among
the 5 scheduling policies; we then normalize the results from all 5 scheduling policies by this minimal average latency. Each
box corresponds to a statistics over experiments with all the removal policies (both in waiting non-waiting variant) and all
dependency-awareness variants (def, start, stbr), performed on all instances and all possible machine environments (over 300k
individual data points). For (b) and (c) results are normalized as in a), but for different removal policies (b) and for different
dependency-aware variants (c), rather than scheduling policies. Here and in all following box plots, the box height indicates
the first and the third quartile, the line inside the box indicates the median, and the whiskers extend to the most extreme data
point within 1.5 × IQR.
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Fig. 3: Influence of the length of the chain. For all instances nf = 50, m = 20, Q = 10 with setup times 10-20.

for longer chains ([50 − 100]), and also for other scheduling
methods (FIFO). Therefore, for deployments with long (50
tasks and above) chains, at least 100 families, setup times
100 (and larger) with at least 20 machines of size 10 (or
more), implementing dependency-aware scheduler can provide
measurable benefits.

5) Impact of the number of families: Figure 4 compares
results as a function of the number of task families in the
system. When the number of task families is small (up to
20), variants without dependency awareness (def ) and with
wait can give better results than dependency-aware variants.
In such cases, variants using EF method are slightly better than
their equivalents using FIFO. The same applies to the removal
method: wait variants give better results than their equivalents
using plain LRU. The higher the number of families, the
higher the probability that the required type of environment
is missing. With at least nf = 100 families (Fig. 4.c, similar
results for sf ≥ 100, l ≥ 50, m ≥ 20, Q ≥ 10 omitted due
to space constraints), dependency awareness plays a crucial
role – variants using start outperforms def regardless of
the used scheduling algorithm and removal policy. Thus, in
case of high variability of functions (i.e. requiring different
environments), taking into account tasks’ dependencies can

significantly reduce the serving latency.
6) Impact of the setup time: Figure 5 compares results

as a function of different setup time ranges. In the edge
case with no setup times, sf = 0, we see no difference
between the waiting and the non-waiting variants, as there is
no additional penalty for inefficient environment re-creation.
Similarly, there are no differences between EF and FIFO. For
non-zero setup times, dependency awareness (start) reduces
the latency. However, with no setup time, start latencies are
longer. This behavior is caused by adding tasks with future
release time to the queue (see Section III-B4). Consider two
jobs each of two tasks: 1) a long job with task A (duration 10)
followed by task B (duration 1); 2) a short job with task C
(duration 1), followed by task B (same as in ”long”). EF and
FIFO using start variants may assign the second task from
the long job to the environment of type B immediately after
assigning the first task. This might block the second task from
the short job until t = 11; while the optimal schedule starts
this task at t = 1. For the same reason, start has worse results
when there are more jobs (i.e. shorter chains) and the systems
are smaller (less machines, smaller capacities).

We further investigate for which instance parameters the
dependency-aware start dominates the myopic def, assuming
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(b) 50 families
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Fig. 4: Influence of the different number of families. To show general trend, we present results for 10, 50 and 200 families.
For all instances m = 20, Q = 10, sf ∈ [100, 200], l ∈ [50, 100]

(E
F,

 L
RU

, w
ai

t, 
st

ar
t)

(E
F,

 L
RU

, w
ai

t, 
de

f)

(E
F,

 L
RU

, d
ef

, s
ta

rt)

(E
F,

 L
RU

, d
ef

, d
ef

)

(F
IF

O,
 L

RU
, w

ai
t, 

st
ar

t)

(F
IF

O,
 L

RU
, w

ai
t, 

de
f)

(F
IF

O,
 L

RU
, d

ef
, s

ta
rt)

(F
IF

O,
 L

RU
, d

ef
, d

ef
)

(S
W

, L
RU

, w
ai

t, 
st

ar
t)

(S
W

, L
RU

, w
ai

t, 
de

f)

(S
W

, L
RU

, d
ef

, s
ta

rt)

(S
W

, L
RU

, d
ef

, d
ef

)

OW

500

1000

1500

2000

av
er

ag
e 

la
te

nc
y

(a) setup time 0
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(b) setup time 10-20
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(c) setup time 100-200
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(d) setup time 1000-2000

Fig. 5: Influence of the setup time. For all instances nf = 50, m = 10, Q = 10, l ∈ [50, 100].

non-negligible setup times sf ≥ 100. We aggregate results
by all simulation parameters (count of families nf , machines
m, machine sizes Q, range of chain lengths l, range of setup
times sf and used algorithm variant) and compute the median
average latency among 20 instances. Then we analyze in
how many of resulting cases changing def to start improves
performance. For long chains (l ≥ 50), many task families
(nF > 100), and many machines (m ≥ 10), changing
the default (def ) variant to dependency-aware one improves
performance in all cases.

7) Impact of machine capacity: Figure 6 compares results
as a function of the number of machines and their size.
For all instances nf = 50, l ∈ [10, 20], sf ∈ [10, 20]. To
show general trend and ensure clarity, out of 15 considered
machine configurations we present results only for instances
with (m,Q) ∈ {(5, 20), (20, 20), (50, 10), (50, 50)}. For cases
up to (m,Q) = (5, 20), the only observable differences
between the plain and dependency-aware variants are for SW
scheduling policy. Due to large number of jobs (chain lengths
are in range 10-20), when dependent tasks are added to the
queue earlier, environments may get blocked as described
in Section III-C6, therefore there is no additional benefit
of dependency-awareness. For capacities up to (m,Q) =
(50, 10), using wait variants outperform the default (def)
variants using the same scheduling algorithm and with the
same setting of dependency-awareness. In all presented cases,
for FIFO and EF scheduling policies, variants using wait with
start have one of the lowest average latency. The improvement
on overall system performance is most visible in the case of
highly-overloaded machines. Therefore, our methods could be
used to improve handling of situation when datacenter has to

handle rapid increase (peak) of requests.

IV. RESOURCE MANAGEMENT

A. Method Description

In this section we present our approach that uses neural
networks for predicting the most appropriate resource con-
figuration for the mobile data processing pipelines in order
to satisfy certain SLO deadlines and ensure their timely
responses. Then we discuss our methodology for resource
provisioning in cases that no a priori information exists for
these pipelines.

1) Resource estimation: To estimate the most appropriate
resource configuration, one simple way is to use grid search,
i.e., enumerate all possible combinations of memory, CPU
and number of instances, which would provide the optimal
solution. However, the cost of enumeration is incredibly high
since there is a very large number of combinations that need to
be explored, and thus this approach is rather infeasible. In the
bibliography, there exist approaches like multi-armed bandits
[153] or Bayesian Optimization approaches [154], which are
still limited for the setting we consider. Multi-armed bandit
approaches require the setup of a set of functions for reward
and regret, where, through exploration and exploitation, they
will likely derive a sub-optimal configuration. On the same
path, Bayesian Optimization approaches, through sampling
and minimizing the number of trials to identify a near-optimal
solution [155], require also a trial-and-error approach in order
to find the solution.

Our intuition comes from a different perspective: Can we
exploit pre-existing knowledge from other pipeline runs in or-
der to derive the best configuration for the serverless functions
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(a) 5 machines, size 20
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(b) 20 machines, size 20
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(c) 50 machines, size 10
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(d) 50 machines, size 50

Fig. 6: Influence of the machine environment. For all instances fn = 50, l ∈ [10, 20], sf ∈ [10, 20]

of a specific pipeline? Transfer learning refers to a technique
for predictive modeling on a different but somehow similar
problem that can then be reused partly or on its entirety to
accelerate the training or improve the performance of a model
on the problem of interest. This characteristic can be quite
beneficial if exploited appropriately.

In TIMBER, we opt for a prediction model approach. More
specifically, several works in the literature have utilized neural
networks as the appropriate prediction model for different
types of inference tasks. Typically, in a neural network setting,
an agent learns how to benefit most from making sequential
decisions by iteratively propagating information back and forth
during the training phase and accumulating knowledge from
previous experience. This fundamental characteristic is inline
with our intuition that existing knowledge can serve as the
appropriate means for enhancing a prediction model.

To this end, in TIMBER, we build a Sequential Neural
network model for predicting the appropriate configuration for
each one of the serverless functions comprising the mobile
data processing pipeline. A Sequential model [156] by its
design consists of a plain stack of layers where each layer has
exactly one input tensor and one output tensor i.e. it allows
us to build a model by stacking layers of nodes (neurons)
on top of each other. The Sequential model is the simplest
neural network base model in Keras (https://keras.io/). Each
argument of the Sequential constructor is a layer of neurons; in
this case Dense layers. In dense layers (or densely-connected
or fully-connected) all the neurons receive an input from all
the neurons present in the previous layer.

Input Layer. Each neuron has an activation function which
computes the value that is passed on to the neurons in the
next layer. In terms of the layers in TIMBER we choose the
ReLU function as an activation function in all layers apart
from the last one, which has shown faster convergence times as
shown in various works in the bibliography [157], as it requires
the estimation of a max value in each neuron rather than the
estimation of exponential formulas compared to the sigmoid
activation function. More formally, the activation function is
described as: g(h) = h+ = max(0, h) where h is the input to
a neuron. The input layer takes into consideration the container
allocation, i.e., the CPUs and memory allocated for each of
the functions of the pipeline as well as the request rate of the
pipeline. We use the request rate of the pipeline to estimate the
pipeline completion time (PCT) to satisfy a certain deadline,
as requested from the service provider.

Output Layer. The goal of the neural network is to predict
the appropriate number of function replicas for each function
of the mobile data processing pipeline required in order to
satisfy the specific request rate, as defined by the service
provider. In TIMBER, the number of predicted necessary
instances that will satisfy the user imposed constraints is
translated to a set of labels, where each label refers to one
of the serverless functions that consist the pipeline. At the
very last step of our prediction algorithm using the neural
network, it is required to normalize its output to a probability
distribution over predicted output classes. For this purpose, in
the last layer of our neural network, we utilize the softmax
activation function, based on Luce’s choice axiom [158]. The
softmax activation function implies that we have different
probabilities among the different labels. More formally, this
implies that σ(−→qn)n = eq

′
n∑K

b=1 eq
′
b

, where σ(−→qn)n represents the

prediction probabilities for each one of the possible labels, K
is the number of classes in the multi-class classifier and qn are
the elements of the input vector to the softmax function, and
they can take any real value, positive, zero or negative. For
example a neural network could have output a vector such as
(-0.62, 8.12, 2.53), which is not a valid probability distribution,
hence why the softmax would be necessary.

Loss Function. A prerequisite of the model training process
is to monitor how well the model’s prediction fits the training
data. This is denoted by the loss (or cost) function of a model,
where the target is to minimize the loss value by adjusting the
weights accordingly. In TIMBER, we use cross-entropy [159],
a widely used loss function when optimizing classification
model. In order to speed up the training process, we opt for us-
ing the cross-entropy error instead of the sum-of-squares error
function, as well as, to improve the generalization of the model
[160]. Another important aspect in our prediction problem
setting is that we aim to solve a multiple class classification
problem. For this reason, we opt for categorical cross-entropy
rather than binary cross-entropy (since we consider each
number of instances as a different label). In our experimental
evaluation, we show extensively that other metrics such as
the KullbackLeibler divergence [161] (which indicates that the
two data distributions in question have identical quantities of
information) and the Poisson distribution [162] (which is a
generalized linear model form of regression analysis used to
model count data), are outperformed by the categorical cross-
entropy metric.



2) Pipeline Similarity: Reinforcement learning models
have shown to be a good fit [163] for learning policies
for computer systems, because the model agents are ca-
pable of learning from real-world workloads and operating
conditions without human-designed inaccurate assumptions
and interference. More specifically, the model learns how to
benefit most from making sequential decisions by iteratively
interacting with the environment and accumulating knowledge
from previous experience. In addition to that, regardless the
training process overhead required, neural networks feature an
important characteristic: neural networks representations may
exhibit significant similarities and correspondences between
representations in networks trained from different initializa-
tions and they can be identified reliably [164]. Similar to
earlier works [165], [166], TIMBER assumes that mobile
data processing pipelines with similar codebase will have
the same behavior for the same size of input, making it an
exploitable characteristic to improve the estimation of resource
provisioning configurations based on accumulated knowledge
of the model from previous experiences, and provide likely
similar timely responses.

Estimating the required resources for mobile data pro-
cessing pipelines with zero a priori knowledge. Our intuition
is that mobile data processing pipelines for different but some-
how similar problems can be partially or entirely reused, as the
means to estimate the number of instances for each serverless
function consisting a new and probably agnostic mobile data
processing pipeline. The main goal is to avoid retraining the
neural network model for each different pipeline and overcome
any limitations regarding the size of the trained model. Recent
works in the literature [165] have exploited the notion of
execution plans of distributed VM-based applications, rather
than mobile data processing pipelines consisting of serverless
functions. On the other hand, we opt for the finer-graind notion
of call graphs [167] for estimating the similarity between
mobile data processing pipelines. Each mobile data processing
pipeline comprises a sequence of serverless function calls. Our
goal is to exploit that different pipelines may have similar
serverless functions call graphs.

To compute the similarity between the call graphs com-
prising the serverless applications we need a graph similarity
measure. There have been multiple graph similarity metrics but
with the most popular to be: i) the graph edit distance (GED)
[151], [165], ii) the maximum common subgraph (MCS) [168]
and iii) the Prefix Preference [169]. We decided to opt for
the Graph Edit Distance metric as it has been accepted as
the most appropriate measure for representing the distance
between graphs. More specifically, GED defines the similarity
between two graphs by the minimum amount of required
distortions to transform one graph into the other. Moreover,
GED is error-tolerant and can identify similar graphs even in
the presence of noise and errors. Prefix preference on the other
hand, though it has been adopted in Deep Neural Networks
training, like in [169], does not evaluate the whole mobile
data processing pipeline, and mostly, it focuses on the prefixes
of the graphs rather than also the suffixes, as the other two

metrics. For this purpose, in our experimental evaluation we
report the results for the GED and the MCS metrics. For a
new mobile data processing pipeline, for which there is no a
priori knowledge, we identify which of the existing pipelines
have similar serverless function call graphs. Then, we use the
trained neural network to estimate the number of instances of
each serverless function consisting the pipeline that will satisfy
certain SLO deadlines.

GED Computation. Let us assume two call graphs, CG1

and CG2 of the mobile data processing pipelines consisting of
serverless functions fk respectively and that gedCG1,CG2 is the
GED distance between call graph CG1 and call graph CG2.
The main idea is to match the call graph CG1 with exactly the
call graph of CG2, compute their GEDs (i.e., the number of
necessary distortions to make two call graphs identical). The
lower the values of GED, the more similar two call graphs
are. The main drawback of computing the GED metric is
the fact that its computation has exponential complexity in
terms of the graph vertices as the problem of measuring the
graph edit distance is NP-hard. For this reason we decided
to use a well-known approximation technique [151] that is
able to effectively and in polynomial time approximate the
GED between two call graphs. The main idea is to transform a
graph structure to a multiset of a special data-structure, called
star structure, and then compute the distance between these
multisets instead of the actual graphs. Comparing multisets
reduces the search space of the problem as they do not consider
the complete structure of the original graph.

Detecting the most similar pipeline. It is necessary to
compute the GED of two call graphs in order to detect
whether a mobile data processing pipeline exists for which
we have already built a prediction model. The idea is to
compute the GED between the newly submitted pipeline
and all the pipelines that comprise the set of mobile data
processing pipelines HQ with which the neural network has
been built with. We find the pipeline that leads to the maximum
GED value and then examine whether this value is greater
than a pre-defined threshold T (T is an administrator-defined
parameter to control the similarity among two graphs; this can
be tuned dynamically based on the degree of similarity we
target). If this condition is true we simply return the already
built prediction model. In the case that the GED is lower
than T then we proceed with the next most similar serverless
application in the HQ set. By performing this step, we can
estimate the number of instances for each serverless function
comprising the pipeline to prewarm and set them ready for
execution in order to meet the developer SLO deadline, even
if there is no prior knowledge about the pipeline’s resource
needs or performance.

B. Implementation

In this section, we discuss the implementation of our TIM-
BER framework (the TIMBER architecture is shown in Figure
50). TIMBER comprises the following main components: (a)
Configurator, utilized by the developers to define their param-
eters, i.e., service level objectives for the pipelines and upload



Fig. 7: TIMBER architecture

the source code for the functions comprising the pipeline.
These parameters will be utilized by the Predictor Component
to specify the number of instances required for each one
of the pipeline functions to execute. The functions will be
deployed through our container orchestrator. (b) Graph-Edit
Distance Estimator, computes the GED value between two
pipelines, that captures the degree of similarity between the
developer’s submitted pipeline for execution and previously
executed pipelines. (c) Predictor: uses the GED value that
was determined by the Graph-Edit Distance Estimator Com-
ponent in order to estimate the number of instances for each
one of the pipeline functions to satisfy the SLO constraint. (d)
Gateway Agent. We developed a Gateway Agent similar to
[170] utilized for the deployment of new pipelines as well as to
scale up and down deployed serverlesss functions consisting
the pipelines. The Agent also acts as a Proxy for function
invocations, which are propagated to the deployed function
containers. (e) Mesosphere Marathon: This is our orches-
trator (https://mesosphere.github.io/marathon/) that we utilized
to start serverless function containers. The deployed containers
run in our Apache Mesos cluster. Apache Mesos abstracts the
compute resources away from machines (physical or virtual),
enabling fault-tolerant and elastic distributed systems to easily
be built and run effectively. Each container listens to port
8080 and Mesos maps that port to a random port of the host
Agent. Functions are invoked via sending an HTTP POST
request to http : // < agentIp >:< mappedPort >. All
functions are generated with the OpenFaas Function build
tools and services that provide the ability to the user to
deploy and invoke its functions using the underlying container
orchestrator. We adapted OpenFaas to be compatible with
Apache Mesos and we used Mesosphere Marathon for easier
container deployment on Mesos. We also build our functions
using the OpenFaas Watchdog Docker containers, which work
as follows: when it receives a request for a pipeline invocation
it starts another process within the container that runs the
function handler and dispatches the received request to the
standard input of the forked process. Then it receives the
function result from the function standard output and returns
it as the response to the received HTTP request that carried
the original function invocation call. Since we do not focus
solely on serverless functions but on pipelines consisting of a
sequence of serverless function invocations, then the sequence
of serverless function call invocations is routed through the
gateway agent, since existing production serverless infrastruc-
tures do not support direct communication between serverless

Workload Pipeline Type Serverless Functions
W1 Processing Jaes, Linpack, Matmul
W2 Sensor Correlation PyPearsons, KNN
W3 Clustering Kmeans

TABLE I: Different types of pipeline workloads

functions explicitly (only through a gateway [171]).

C. Experimental Evaluation

1) Experimental Setup: We conducted our experiments in
our local cluster comprising 7 nodes (Intel i7-7700 3.6GHz
processors), with a total number of 56 CPUs and 112GB of
RAM. This setup allows us to illustrate the benefits of our
approach and balance the trade-off among finding the config-
uration that satisfies the deadline constraints that is also cost-
effective. Similar experimental size setups have been utilized
in related works [141], [165]. All the nodes are interconnected
with 1Gbps Ethernet. All nodes run on Ubuntu 20.04 LTS. We
run Apache Mesos 1.9 as our serverless platform and we use
Marathon 1.5 in order to deploy Docker containers on top of
Mesos. Marathon is used only to start/stop the containers and
no other features are utilized. In this cluster, we deployed our
TIMBER system. Similar to related works [141], we varied the
number of serverless function instances from 5 up to 30. We
used OpenFaas Python and Java templates in order to create
our functions and pipelines and PyCG [172] to extract the
call graphs for the pipelines consisting of serverless functions
written in Python.

2) Functions and Workloads: Functions: In order to eval-
uate the performance of our approach, we conducted our
experiments using real world pipeline scenarios from state-
of-the-art performance benchmarks [173]. The FunctionBench
is composed of micro benchmark and pipeline workload; the
micro-benchmark uses simple system calls to measure the per-
formance of resources exclusively, and the pipeline-benchmark
represents realistic data-oriented pipeline that generally utilize
various resources together. In our experimental evaluation we
use six realistic serverless functions that consist mobile pro-
cessing pipelines chosen from both micro-benchmark libraries
[173], as well as, developed by us in the context of real-world
pipelines as in the works of [165], [174]. Below, we give a
brief description for each one of those pipeline functions (PF):

PF1 - Jaes: Jaes benchmark that performs private key-
based encryption and decryption. It is a Java implementation
of the AES block-cipher algorithm in CTR mode.

PF2 - Linpack: Linpack solves linear equations (Ax =
b). We identified that the Linpack serverless function is used
by many state of the art works [175] to benchmark CPU
performance.

PF3 - Matmul: Matmul performs square matrix multipli-
cations. Along with Linpack, these are considered as CPU
benchmarks, which are mainly used to measure the CPU-
bound performance.

PF4 - PyPearsons: PyPearsons is a Python implementation
of Pearsons correlation over a smart-city sensor network and
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for a given set of geospatial coordinates it returns a list of the
most correlated sensors.

PF5 - KNN: KNN is the well known k-nearest neighbor
algorithm implemented in Java and for a given set of geospatial
coordinates it returns a list of the K nearest sensors from a
smart-city sensor network.

PF6 - Kmeans: Kmeans function refers to the Kmeans
algorithm as implemented in the scikit-learn python library.
Kmeans runs on a small batch of data equal to 2Mb and fits
the data to the model.

Workloads & Pipelines: Furthermore, we have grouped
these functions in the context of different real-world pipeline
types and evaluate their performance, as shown in Table I. This
allows us to monitor, identify and understand the behaviour of
similar pipelines in the context of a serverless environment.
Specifically, these workloads, namely W1, W2 and W3, refer
to three different types of real-world pipelines: Processing,
Sensor Correlation and Clustering respectively. Our initial
intuition was to show that similar pipelines with those in
the workloads examined will also have similar demands in
terms of computational resources as well as the same expected
throughput for similar input. Once we have trained the neural
model with the pipelines from each one of these different
workloads, we can then use it to estimate the number of
instances for each other function in similar pipelines and their

resource needs even for pipelines for which we have possibly
zero knowledge on their performance.

3) Prediction Performance: Dataset We have evaluated the
prediction performance of our neural network utilizing real
data from the workloads described in the previous subsection.
More specifically, we followed similar guidelines with state-
of-the-art works [141], [165] and utilized four different types
of memory and CPU configurations, and also varied the num-
ber of replica instances from 5 up to 30. We performed 1000
runs using Hey5, for each one of the possible configurations,
and aggregated these results in order to construct the training
dataset for the neural network deployed in TIMBER.

Metrics
F1-Score: The F1-Score metric is computed from the

precision and recall of the data. The highest possible value
of an F-score is 1.0, indicating perfect precision and recall.

Accuracy: The accuracy metric illustrates the frequency
with which predicted labels match the true labels.

Precision: The precision metric is the fraction of relevant
labels among the retrieved labels, that is the true positive labels
over the sum of true positive labels with false positive labels.

Recall: The recall metric illustrates the fraction of relevant
labels that were retrieved, that is the true positive labels over
the sum of true positive labels and those that were falsely
estimated as negative.

Loss: The loss metric refers to the cross-entropy loss (also
known as log loss) and captures the performance of a classi-
fication model whose output is a probability value between 0
and 1. Cross-entropy loss increases as the predicted probability
diverges from the actual label. In TIMBER, we evaluated
different types of losses in order to find the appropriate for
our problem. These are namely Categorical Cross-Entropy loss
[159], KullbackLeibler Divergence Entropy loss [161] and the

5https://github.com/rakyll/hey
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Fig. 20: PyPearsons throughput
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Fig. 21: Kmeans throughput

Poisson Entropy loss [162]. We describe our findings regarding
those metrics in the following section.

Findings In Figures 8, 10, 12, 14 and 16, we illustrate
the behaviour of each different serverless function consisting
the pipelines, where in the x-axis we vary the loss metric
utilized for the training of the neural model (CCE stands for
Categorical cross-entropy loss, KLDE is the KullbackLeibler
Divergence Entropy loss and PSSE is the Poisson Entropy
loss). The results show that each different function can achieve
very good performance in terms of F1-Score, accuracy, preci-
sion and recall, when using the categorical cross entropy as the
loss metric required for training. We reason these results due to
the fact that KLDE calculates the relative entropy between two
probability distributions, whereas cross-entropy can be used
to calculate the total entropy between two distributions. That
is, CCE can estimate how similar two label distribution are,
whereas KLDE how relevant they are. Moreover, we looked
into the prediction performance across the different workloads.
The results illustrated in Figures 9, 11, 13, 15 and 17 validate
our initial intuition of choosing the CCE as the appropriate
loss metric for our neural network model training. Despite the
fact that the loss value of CCE in the case of workload W3
(Clustering) is higher, the overall prediction performance is
best when choosing the CCE as the loss metric required for
the neural network model training for these three different kind
of real-world workloads.

4) Serverless performance: Please note that due to lack
of space, we present the results for the most computationally
heavy Python functions (Matmul, Linpack, PyPearsons and
Kmeans). Metrics

Throughput: Throughput is typically defined as the
number of requests/second that are successfully served from
the serverless system. That is, in TIMBER, our goal is to
identify the appropriate container configuration (in terms of
cpu, memory allocation) that will achieve a certain level of
throughput, as requested from the pipeline developer.

Cost: We evaluated TIMBER’s efficiency in terms of
monetary units over the duration of one month. Our goal
is to illustrate the ability of TIMBER to identify the best
configuration in order to meet the developer’s defined SLO
deadline, while keeping the cost low and flourish the benefits

of using a pay-as-you-use model.
Findings In Figures 18, 19, 20 and 21, we draw the through-

put achieved by each one of the configurations for a given SLO
(equal to 2500 requests / second for matmul and linpack, 80
requests / second for PyPearsons (which is computationally
intensive) and 300 requests / second for Kmeans). In the
x-axis, we draw all the examined configurations, in y-axis
we draw the number of throughput achieved by each one
of the examined configuration, and we also annotate the one
predicted by TIMBER. We may observe that in every function
of each of the three workloads examined (W1, W2 and W3),
TIMBER succeeds in estimating the best configuration in order
to meet the developer’s service level objective. Despite the
fact that, there also exist configurations that also succeed in
meeting the developer imposed deadline, this may lead to
additional provisioning costs, as we discuss next.

In Figures 22, 23, 24 and 25, we draw the
corresponding costs, using the pricing scheme from
(https://cloud.ibm.com/functions/learn/pricing), for selecting
a specific configuration for a pipeline. In the x-axis, we
draw all the examined configurations, in the y-axis we draw
the cost in monetary units for each one of the examined
configurations and we also annotate the cost of the predicted
configuration by TIMBER. We may observe that in every
function of the three pipelines examined, TIMBER succeeds
in predicting and selecting the configuration that not only
meets the developer’s requirements but is also beneficial in
terms of cost (compared to configurations that also succeed in
meeting the deadline but require greater number of replicas,
thus invoking additional provisioning costs). Compared to
choosing naively the greatest number of replicas (i.e. 30) and
the largest configuration available, TIMBER can save up to
68.32% for the Matmul serverless app in terms of operations
costs without overprovisioning (66.84% for linpack, 64.86%
for PyPearsons and 64.96% for Kmeans).

GED vs Estimated Performance: In the last set of ex-
periments we evaluated TIMBER’s performance with respect
to the estimated configuration for pipelines with zero existing
knowledge. We developed 5 different agnostic pipelines (L1
corresponds to a combination of Matmul and Linpack, L2
corresponds to a slightly modified version of PyPearsons,
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Fig. 22: Matmul Cost over a month
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Fig. 23: Linpack Cost over a month
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Fig. 24: PyPearsons Cost over a
month
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Fig. 25: Kmeans Cost over a month

App GED MCS ps (%)
L1 GED (PF3,L1) = 5 MCS (PF3,L1) = 1.5 77.81%
L1 GED (PF2,L1) = 2 MCS (PF2,L1) = 2.0 94.1%
L2 GED (PF4,L2) = 2 MCS (PF4,L2) = 1.25 96.4%
L3 GED (PF4,L3) = 6 MCS (PF4,L3) = 1.0 90%
L4 GED (PF6,L4) = 2 MCS (PF6,L4) = 1.5 91.9%
L5 GED (PF6,L5) = 15 MCS (PF6,L5) = 1.0 68.1%

TABLE II: Performance vs GED vs MCS

L3 is a moderately modified version of PyPearsons, L4 is
a slightly modified version of Kmeans and L5 corresponds
to an extensively modified version of Kmeans) and computed
their throughput using the configuration estimated by TIMBER
based on the pipeline they are most similar to. In Table
II, we summarize for each one of the agnostic pipelines,
the corresponding graph similarities with existing pipelines
and the performance similarity ps [176], which is defined as
follows: ps = |1 − ThrAgnostic−ThrSimilarApp

ThrSimilarApp
| ∗ 100%, where

ThrAgnostic is the throughput achieved by the agnostic func-
tion and ThrSimilarApp is the estimated throughput by TIM-
BER for the existing known pipelines. We may safely conclude
that as the GED gets closer to 1, the performance similarity
increases. Similarly, as the MCS metric increases (that is,
the two pipelines share multiple same call graph nodes), the
performance similarity also increases, which is inline with our
findings using the GED metric. Therefore, TIMBER provides
good estimations even for agnostic pipelines.

V. PROGRAMMING FRAMEWORK

A. Preliminary and Motivation

1) Why Serverless Inference for LLMs: Numerous com-
panies, including Amazon, Azure, Google, HuggingFace, To-
gether AI [84], Deepinfra [85], Replicate [86], Databricks [87],
Fireworks-AI [88], and Cohere [89], have introduced server-
less inference services (also known as serverless model entry-
points). These services enable users to deploy standard open-
source LLMs either in their original form or by modifying
them through fine-tuning or by running custom-built models.

Serverless inference can significantly reduce costs for LLM
users by charging only for the duration of inference and the
volume of processed data. These serverless platforms also offer
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Fig. 26: Overview of GPU serverless clusters, LLM inference
and new designs introduced by ServerlessLLM.

functionalities such as auto-scaling and auto-failure-recovery
to keep instances in an ”always-on” state. For the providing
companies, serverless inference allows effective multiplexing
of models within a GPU cluster, improving resource uti-
lization, and generating a software premium for managing
infrastructure on behalf of users.

Serverless inference systems are especially advantageous for
LLM applications with dynamic and unpredictable workloads.
These may include newly launched products without clear
predictions of user engagement (e.g., the launch of the Chat-
GPT service) or those facing spontaneous and unpredictable
demands, which are typical in sectors such as healthcare,
education, legal, and sales. Unlike global-scale LLM services,
these applications are activated only when users access the
LLM service.

2) Serverless Cluster and LLM Inference: We introduce the
key components in GPU serverless clusters in Figure 26. Upon
receiving a new inference request, the controller dispatches
it to GPU-equipped nodes in a cluster running LLM infer-
ence service instances, and to cloud storage hosting model
checkpoints. The controller typically consists of two main
components: the request router and the model loading sched-
uler. The request router directs incoming requests to nodes
already running LLM inference processes, or instructs the
model loading scheduler to activate LLM inference processes
on unallocated GPUs. The selected GPU node initiates a



GPU process/container, setting up an inference library (e.g.,
HuggingFace Accelerate [90] and vLLM [56]). This inference
process involves downloading the requested models check-
point from a remote model storage and loading it into the
GPU, passing through SSD and DRAM.

The LLM inference process often handle requests that
include user-specified input prompts, i.e., a list of tokens,
as shown in Figure 26. This process iteratively generates
tokens based on the prompt and all previously generated
tokens, continuing until an end-of-sentence token (denoted as
EoS) is produced, resulting in non-deterministic total inference
time [57]. During each iteration, the LLM caches intermediate
computations in a KV-cache to accelerate subsequent token
generation [56], [91]. The tokens generated by each iteration
are continuously streamed back to the requesting client, mak-
ing LLM applications interactive by nature. Their performance
is thus measured by both first-token latency (i.e., the time to
return the first token) and per-token latency (i.e., the average
time to generate a token).

3) Challenges with Serverless LLM Inference: The deploy-
ment of LLMs on serverless systems, although promising,
often incurs significant latency overheads. This is largely
due to the substantial proportions of cold-start in serverless
clusters, as demonstrated by public data: the Azure Trace [39]
shows that over 40% of functions exhibit a cold-start rate
exceeding 25%, and approximately 25% of functions expe-
rience a cold-start rate greater than 60%, within a 5-minute
keep-alive interval. These figures align with the findings from
our experiments, underscoring the impact of cold-starts in
real-world settings. Consequently, many serverless providers,
including Bloomberg, have publicly acknowledged experienc-
ing extremely high latencies, often reaching tens of seconds,
when initializing state-of-the-art LLMs for inference on their
platforms.

We observe several primary reasons for the prolonged LLM
cold-start latency:
(1) LLM checkpoints are large, prolonging downloads.
LLM checkpoints are significantly larger than conventional
DNN checkpoints, which leads to longer download times.
For instance, Grok-1 [92] checkpoints are over 600 GB,
DBRX [93] are 250GB, and Mixtral-8x22B [94] are about
280GB 6 Downloading such large checkpoints from remote
storage becomes costly. For example, acquiring an LLM
checkpoint with a size of 130GB (e.g., LLaMA-2-70B [7])
from S3 or blob storage takes a minimum of 26 seconds using
a fast commodity network capable of 5GB/s [95].
(2) Loading LLM checkpoints incurs a lengthy process.
Even when model checkpoints are stored locally on NVMe
SSDs, loading these checkpoints into GPUs remains a complex
process including model initialization, GPU memory alloca-
tion, tensor creation, and tensor data copy, typically taking
tens of seconds (as detailed in §V-F2). For instance, loading
the OPT-30B model into 4 GPUs requires 34 seconds using
PyTorch, and loading LLaMA-2-70B into 8 GPUs takes 84

6Model size calculated in float16 precision.

seconds. This loading latency far exceeds the time required
for generating a token during the inference process, which
is usually less than 100ms [57]. Consequently, the prolonged
first-token latency can significantly disrupt user experience.

4) Existing Solutions and Associated Issues: To improve
the latency performance when supporting LLMs, existing
solutions show a variety of issues:

(1) Over-subscribing GPUs. The prevalent solutions [24],
[96], aimed at circumventing model download and loading
times in serverless inference clusters, frequently involve over-
subscribing GPUs to accommodate peak demand scenarios.
For instance, AWS Serverless Inference [96] maintains a
certain number of GPU instances in a warmed state to alleviate
the impacts of slow cold starts. While this strategy is effective
for managing conventional smaller models, such as ResNet
and BERT, it proves challenging for LLMs, which require
substantially greater resources from costly GPUs.

(2) Caching checkpoints in host memory. Several solu-
tions [45], [97] have been developed that cache model check-
points in the host memory of GPU servers to eliminate the
need for model downloads. This approach is typically effective
for smaller conventional models (e.g., up to a few GBs [45]).
However, solely relying on host-memory-based caching proves
inadequate for LLMs. LLMs can easily exceed hundreds of
GBs in size, challenging the capacity of host memory to store a
sufficient number of their checkpoints adequately. The limited
size of host memory leads to significant cache misses, resulting
in frequent model downloads, as further discussed in §V-F4.

(3) Deploying additional storage servers. Various strate-
gies [95] recommend the deployment of additional storage
servers within a local cluster to cache model checkpoints.
Despite these enhancements, recent trace studies [95] indicate
that model downloads can exceed 20 seconds through an
optimized pipeline, even when connected to local commodity
storage servers equipped with a 100 Gbps NIC. Although
the integration of faster networks (e.g., 200 Gbps Ethernet or
InfiniBand) could reduce this latency, the associated costs of
implementing additional storage servers and high-bandwidth
networks are substantial [98], [99]. For instance, utilizing
network-optimized AWS ElasticCache servers [100] to support
a 70B model can lead to a 100% increase in costs. Specifically,
cache.c7gn.16xlarge servers, which provide 210GB of memory
and 200 Gbps of network performance, are priced at $16.3/h,
equivalent to the cost of an 8-GPU g5.48xlarge server.

B. Exploiting In-Server Multi-Tier Storage

ServerlessLLM addresses the challenges highlighted in the
previous sectionsnamely, high model download times and
lengthy model loadingusing a design approach that is cost-
effective, scalable, and long-term viable.

1) Design Intuitions: Our design is inspired by the sim-
ple observation that GPU servers used for inference feature
a multi-tier storage hierarchy with substantial capacity and
bandwidth. From a capacity standpoint, these servers are
equipped with extensive memory capabilities. For example, a



contemporary 8-GPU server can support up to 4 TBs of main
memory, 64 TBs on NVMe SSDs, and 192 TBs on SATA
SSDs [101]. Additionally, we observe that in the serverless
inference context, a significant portion of the host memory
and storage devices in GPU servers remains underutilized.

Regarding bandwidth, GPU servers typically house multiple
GPUs, each connected to the host memory via a dedicated
PCIe connection, providing significant aggregated bandwidth
between the memory and GPU. NVMe and SATA SSDs also
connect through their respective links and can be configured
in RAID to enhance throughput. For instance, an 8-GPU
server utilizing PCIe 5.0 technology can achieve an aggregated
bandwidth of 512 GB/s between the host memory and GPUs,
and around 60 GB/s from NVMe SSDs (RAID 0) to host
memory.

Building on these observations, we propose a design ap-
proach that leverages the unused in-server multi-tier storage
capacity to store models locally and load them more rapidly,
thus reducing latency. This approach is (i) cost-effective, as
it reutilizes existing, underutilized storage resources in GPU
servers; (ii) scalable, given that the available local storage
capacities and bandwidth can naturally increase with the
addition of more inference servers; and (iii) long-term viable,
as upcoming GPU servers will include even greater capacities
and bandwidth (e.g., each Grace-Hopper GPU features 1 TB
on-chip DRAM and a 900GB/s C2C link between on-chip
DRAM and HBM).

2) Design Concerns and Overview: In implementing our
design, we identify three crucial concerns that must be ad-
dressed.

(1) Support complex multi-tiered storage hierarchy. Current
checkpoint and model loading tools such as PyTorch [102],
TensorFlow [103], and ONNX Runtime [104] are primarily
designed to enhance the training and debugging phases of
model development. However, these tools are not optimized
for read performance, which becomes critically important in
a serverless inference environment. In these settings, model
checkpoints are stored once but need to be frequently loaded
and accessed across multiple GPUs. This insufficient optimiza-
tion for read operations results in significant loading delays.
While solutions like Safetensors [5] can enhance loading
performance, as demonstrated in Section V-F, they still fail
to fully leverage the capabilities of a multi-tiered storage
hierarchy.

(2) Strong locality-driven inference. Supporting efficient
model loading alone is insufficient; we also need approaches
that can effectively schedule requests onto GPU servers with
locally stored checkpoints. Implementing locality-driven LLM
inference, however, presents challenges. Current ML model
serving systems such as ClockWork [97] and Shepherd [105]
take checkpoint locality into account. Yet, they either depend
on accurate predictions of model inference time, which is
problematic with LLMs, or they preempt ongoing model in-
ferences, causing significant downtime and redundant compu-
tations. Therefore, ServerlessLLM must adopt a new approach

that is tailored to the unique characteristics of LLM inference
(i.e., this workload is interactive and features long, unpre-
dictable durations), necessitating the support for inference live
migration, which is further detailed in Section V-D.
(3) Scheduling models for optimized startup time. Server-
lessLLM is designed to minimize the model startup latency.
The cluster scheduler (or controller) plays a crucial role in
scheduling models onto GPU resources to answer incoming
inference requests. However, the scheduler needs to carefully
consider the checkpoint’s locality in the entire cluster. Many
factors may influence the overall startup latency, such as the
difference in the bandwidth offered by each layer in the mem-
ory hierarchy. There may be instances where it is beneficial
to move the current inference execution to a new GPU than
to allocate the request to a GPU where the model may have
to be loaded from the storage media. Hence, ServerlessLLM
needs to accurately estimate the startup times considering the
cluster’s checkpoint locality status and accordingly allocate
resources to minimize startup time.

Overview. ServerlessLLM addresses these concerns with
three novel designs, as depicted in Figure 26. Firstly, it facili-
tates fast multi-tier checkpoint loading (Section V-C) to fully
utilize the storage capacity and bandwidth of each GPU server.
It also coordinates GPU servers and the cluster controller for
efficient live migration of LLM inference (Section V-D), ensur-
ing locality-driven inference with minimal resource overhead
and user disruption. Lastly, ServerlessLLM features a startup-
time-optimized model scheduling policy (Section V-E) imple-
mented in its controller, effectively analyzing the checkpoint
storage status of each server within a cluster, and it chooses
a server for initiating a model, minimizing its startup time.

C. Fast Multi-Tier Checkpoint Loading

In this section, we introduce the design of fast multi-tier
checkpoint loading in ServerlessLLM, with several key objec-
tives: (i) to fully utilize the bandwidth and capacity of multi-
tier local storage on GPU servers, (ii) to ensure predictable
loading performance, critical for ServerlessLLM’s readiness in
low-latency inference clusters, and (iii) to maintain a generic
design that supports checkpoints from various deep learning
frameworks.

1) Loading-Optimized Checkpoints: Our design is moti-
vated by the observation that LLM checkpoints are often
written frequently during training and debugging but loaded
infrequently. Conversely, in serverless inference environments,
checkpoints are uploaded once and loaded multiple times. This
discrepancy has inspired us to convert these checkpoints into
a loading-optimized format.

To ensure our design is generic for different frameworks,
we operate under a set of assumptions that are common
in checkpoints. The checkpoints have: (i) Model execution
files which define the model architecture. Depending on the
framework, the format varies; TensorFlow typically uses proto-
buf files [106], while PyTorch employs Python scripts [107].
Beyond architecture, these files detail the size and shape of
each tensor and include a model parallelism plan. This plan
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specifies the target GPU for each tensor during checkpoint
loading. (ii) Model parameter files which stores the binary
data of parameters in an LLM. Tensors within these files can
be arranged in any sequence. Runtimes such as PyTorch may
also store tensor shapes as indices to calculate the offset and
size for each tensor.

To ensure fast loading performance, we implement two main
features for the converted checkpoints: (i) Sequential chunk-
based reading: To ensure efficient sequential reading, tensors
for each GPU are grouped in partitions (shown in Figure 27).
These files contain only the binary data of model parameters
and exclude metadata such as tensor shapes, facilitating large
chunk reading. (ii) Direct tensor addressing: We create a
tensor index file (shown in Figure 27) that maps tensor names
to a tuple of GPU id, offset, and size, facilitating the efficient
restoration of tensors. The tensors are aligned with memory
word sizes, facilitating direct computation of memory address.

We observe that decoupling the loading and inference
processes can further enhance loading performance. This sep-
aration allows checkpoint loading to be pre-scheduled and
overlapped with the initialization of the inference process. For
this, ServerlessLLM uses a model manager to load tensor data,
while allowing the inference process to focus on initializing
the model by setting the data pointers for each tensor. More
specifically, the model manager allocates memory on GPUs
and loads the binary data of the checkpoint via a fast multi-
tier loading subsystem (see details in V-C2). The inference
process initializes the model object and sets the GPU memory
address for each tensor. It acquires the base addresses for each
GPU (i.e., CUDA IPC handles) from the model manager and
reads the tensor offset from the tensor index file, facilitating
the computation of the tensor GPU memory address (i.e., base
+ offset). To ensure the model is fully initialized before infer-
ence, the inference process and the model manager perform a
synchronization.

2) Multi-Tier Loading Subsystem: To achieve fast and pre-
dictable checkpoint loading performance, we design a multi-
tier loading subsystem, integrated within the model manager.

This subsystem incorporates several techniques:

Chunk-based data management. For fast loading perfor-
mance, we have implemented chunk-based data management
with three main features: (i) Utilizing parallel PCIe links. To
mitigate the bottleneck caused by a single PCIe link from
storage when loading multiple models into GPUs, we employ
parallel DRAM-to-GPU PCIe links to facilitate concurrent
checkpoint loading across GPUs. (ii) Supporting application-
specific controls. Our memory pool surpasses simple caching
by providing APIs for the allocation and deallocation of
memory. This enables fine-grained management of cached
or evicted data chunks, based on specific requirements of
the application. (iii) Mitigating memory fragmentation. We
address latency and space inefficiencies caused by memory
fragmentation by using fixed-size memory chunks.

Predictable data path. We have created an efficient data path
in our model manager with two main strategies: (i) Exploiting
direct file access. We use direct file access (e.g., ‘O DIRECT’
in Linux) to avoid excessive data copying by directly read-
ing data into user space. This method outperforms memory-
mapped files (mmap), currently adopted in high-speed loaders
such as Safetensors [5], which rely on system cache and lack
consistent performance guarantees (critical for predictable per-
formance). (ii) Exploiting pinned memory. We utilize pinned
memory to eliminate redundant data copying between DRAM
and GPU. This approach allows direct copying to the GPU
with minimal CPU involvement, ensuring efficient use of PCIe
bandwidth with a single thread.

Multi-tier loading pipeline. We have developed a multi-
tier loading pipeline to support various storage interfaces and
improve loading throughput. This pipeline has three features:
(i) Support for multiple storage interfaces. ServerlessLLM
offers dedicated function calls for various storage interfaces,
including local storage (e.g., NVMe, SATA), remote storage
(e.g., S3 object store [108]), and in-memory storage (pinned
memory). It utilizes appropriate methods for efficient data
access in each case. (ii) Support for intra-tier concurrency.
To leverage modern storage devices’ high concurrency, Server-
lessLLM employs multiple I/O threads for reading data within
each storage tier, improving bandwidth utilization. (iii) Flex-
ible pipeline structure. We use a flexible task queue-based
pipeline design, supporting new storage tiers to be efficiently
integrated. I/O threads read storage chunks and enqueue their
indices (offset and size) for the I/O threads in the next tier.

D. Efficient Live Migration of LLM Inference

In this section, we describe why live migration is the key
to effective locality-driven LLM inference, and how to make
such a live migration process particularly efficient.

1) Need for Live Migration: We consider a simple example
to analyze the performance of different current approaches in
supporting the checkpoint locality. In this example, we have
two servers (named Server 1 and Server 2) and two models
(named Model A and Model B), as illustrated in Figure 28.
Server 1 currently has Model A in DRAM and Model B in
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SSD and its GPU is idle, while Server 2 currently has Model
B in DRAM, and its GPU is running the inference of Model
A.

In Figure 28, we analyze the performance of potential
policies for starting up Model B. Our analysis is based on
their impact on the latency performance of both Model A and
B:
• Availability-driven policy chooses Server 1 currently with an

available GPU, and it is agnostic to the location of Model
B. As a result, the Model B’s startup latency suffers while
the Model A remains unaffected.

• Locality-driven policy opts for the locality in choosing the
server and thus launching Model B on Server 2. However,
it waits for Model A to complete, making Model B suffer
from a long queuing delay. Furthermore, the locality policy
leaves Server 1 under-utilized, preventing all servers from
being fully utilized.

• Preemption-driven policy preempts Model A on Server 2
and startups Model B. It identifies that Server 1 is free
and reinitiates Model A there. This policy reduces Model
B’s latency but results in significant downtime for Model A
when it performs reloading and recomputation.

• Live-migration-supported locality-driven policy prioritizes
locality without disrupting Model A. It initially preloads
Model A on Server 1, maintaining inference operations.
When Model A is set on Server 1, its intermediate state
is transferred there, continuing the inference seamlessly.
Following this, Model B commences on Server 2, taking
advantage of locality. This policy optimizes latency for both
Models A and B.
According to the examples above, live migration stands out

in improving latency for both Model A and Model B among
all locality-driven policies.

2) Making Live Migration Efficient: We aim to achieve
efficient live migration of LLM inference, incurring minimal
resource overhead and minimal user interruption. We initially
considered using the snapshot method from Singularity [109],

which involves snapshotting the LLM inference. However,
this method is slow due to lengthy snapshot creation and
transfer times (e.g., typically 10s seconds or even minutes).
Dirty-page-based migration might be considered to accelerate
virtual machine migration, but this approach is currently not
supported in GPU-enabled containers and virtual machines.
Hence, we decided to explore live migration methods that can
be easily implemented in applications.

To make the live migration method effective for LLM
inference, we aim to achieve two objectives: (i) the migrated
inference state must be minimal to reduce network traffic, and
(ii) the destination server must quickly synchronize with the
source server’s progress to minimize migration times.

For (i), we propose to migrate tokens (typically 10-100s
KB) instead of the large KV-Cache (typically 1-10s GB), as
recomputing the KV-Cache based on the migrated tokens on
the destination GPU is generally much faster than transferring
the dirty state over the network. In certain conditions (e.g.,
given high-bandwidth network and short input sequences),
migrating KV-Cache might also be fast yet it still increases
cluster network traffic compared to migrating tokens.

For (ii), we leverage an insight from LLM inference: re-
computing the KV-Cache for current tokens on the destination
GPU is significantly faster (usually an order of magnitude
shorter) than generating an equivalent number of new tokens
on the source GPU. This approach facilitates efficient conver-
gence of multi-round token-based migration, with the quantity
of tokens generated on the source diminishing with each round.
For example, time to recompute the KV-Cache for 1000 tokens
equals to the time to generate about 100 new tokens according
to [110].

3) Multi-Round Live Migration Process: We implement the
above proposal as a multi-round live migration process. In each
migration round (step 3 , 4 and 5 ), the destination server
(referred to as the dest server) recomputes the KV cache using
the intermediate tokens sent by the source server (referred to as
the src server). When the gap (i.e., the tokens generated after
the last round) between the source server and the destination
server is close enough, the src server stops generating and
sends all tokens to the dest via the request router, ensuring
minimal interruption on ongoing inference during migration.
This migration process is depicted in Figure 29 with its steps
defined below:
1) The model loading scheduler sends a model loading request

to dest server to load model A into GPUs. If there is an
idle instance of model A on dest server, the scheduler skips
this step.

2) After loading, the scheduler sends a migration request
carrying the address of dest server to src server.

3) Upon receiving a migrate request, src server sets itself
as “migrating”, sends a resume request with intermediate
tokens (i.e., input tokens and the output tokens produced
before step 3) to dest server if the inference is not com-
pleted. Otherwise, it immediately returns to the scheduler.

4) dest server recomputes KV cache given the tokens in the
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resume request.
5) Once resume request is done, src server stops inference,

returns to the scheduler, and replies to the request router
with all tokens (i.e., the intermediate tokens together with
the remaining tokens produced between step 3 and step 5)
and a flag “migrated”.

6) The scheduler finishes the migration, unloads model A at
src server and starts loading model B.

7) The request router checks the flag in the inference response.
If it is “migrated”, the request router replaces src server
with dest server in its route table and sends all tokens to
dest server to continue inference.

4) Practical Concerns: Handling inference completion.
The autoregressive nature of LLM inference may lead to task
completion at src server between steps 3 and 5 . In such cases,
src server informs the request router of the inference comple-
tion as usual. Additionally, it notifies the loading scheduler,
which then instructs dest server to cease resuming, terminating
the migration.

Handling server failures. ServerlessLLM can manage server
failures during LLM inference migration. In scenarios where
src server fails, if the failure happens during loading (i.e.,
before step 2 in Figure 29), the scheduler aborts the migration
and unloads the model from the destination. If the failure
occurs during migration (i.e., between steps 2 and 3 ), the
scheduler directs the destination to clear any resumed KV
cache and unload the model.

In cases where dest server fails, if the failure takes place
during loading, the migration is canceled by the scheduler.
Should the failure occur while resuming, the source notifies
the scheduler of the failure and continues with the inference.

E. Startup-Time-Optimized Model Scheduling

In this section, we describe the design of the startup-time-
optimized model scheduling implemented in ServerlessLLM’s
cluster scheduler (denoted as controller), as shown in Fig-
ure 30. This scheduler processes loading tasks from the request
router and employs two key components: a model loading time
estimator and a model migration time estimator. The former
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assesses loading times from various storage media, while the
latter estimates times for necessary model migrations. For
example, as shown in Figure 30, the scheduler calculates the
time to load Model A (indicated by A ) from different servers’
DRAM and SSD, aiding in server selection. Similarly, for
Model B ( B ), it assesses whether to migrate Model C to
another server or load Model B from Server 2’s SSD.

To ensure robust time estimation, the ServerlessLLM sched-
uler employs distinct loading task queues for each server,
effectively mitigating the impact of contentions caused by con-
current loading activities. Upon assigning a task, it promptly
updates the server statusincluding GPU and DRAM/SSD
statesin a reliable key-value store (e.g., , etcd [111] and
ZooKeeper [112]). This mechanism enables ServerlessLLM
to maintain continuity and recover efficiently from failures.

1) Estimating Model Loading Time: To estimate the time
needed to load models from different storage tiers, we consider
three primary factors: (i) queuing time (q), which is the wait
time for a model in the server’s loading task queue. This occurs
when other models are pending load on the same server; (ii)
model size (n), the size of the model in bytes, or its model
partition in multi-GPU inference scenarios; (iii) bandwidth (b),
the available speed for transferring the model from storage to
GPUs. ServerlessLLM tracks bandwidth for network, SSD,
and DRAM, allowing us to calculate loading time as q+n/b.
Here, q accumulates from previous estimations for the models
already in the queue.

For precise estimations, we have implemented: (i) Se-
quential model loading per server, with single I/O queues
for both Remote-SSD and SSD-DRAM paths (since these
paths are shared by multiple GPUs on a server), reducing
bandwidth contention which complicates estimation; (ii) In
multi-tier storage, ServerlessLLM uses the slowest bandwidth
for estimation because of ServerlessLLM’s pipeline loading
design. For example, when SSD and DRAM are both involved,



SSD bandwidth is the critical bottleneck since it is orders of
magnitude slower than DRAM; (iii) The scheduler monitors
the loading latency returned by the servers. It leverages the
monitoring metrics to continuously improve its estimation of
the bandwidth through different storage media.

2) Estimating Model Migration Time: For live migration
time estimation, our focus is on model resuming time (as
shown in step 4 in Figure 29), as this is significantly slower
(seconds) than token transfer over the network (milliseconds).
We calculate model resuming time considering: (i) input tokens
(tin), the number of tokens in the LLM’s input prompt; (ii)
output tokens (tout), the tokens generated so far; and (iii)
model-specific parameters (a and b), which vary with each
LLM’s batch sizes and other factors, based on LLM system
studies like vLLM [56]. With all the above factors, we can
compute the model resuming time as a× (tin + tout) + b.

However, obtaining real-time output tokens from servers
for the scheduler can lead to bottlenecks due to excessive
server interactions. To circumvent this, we developed a method
where the scheduler queries the local request router for the
inference status of a model, as illustrated in Figure 30. With
the inference duration (d) and the average time to produce a
token (t), we calculate tout = d/t.

For selecting the optimal server for model migration, Server-
lessLLM employs a dynamic programming approach to min-
imize migration time.

3) Practical Concerns: Selecting best servers. Utilizing
our time estimations, ServerlessLLM evaluates all servers for
loading the forthcoming model, selecting the one offering the
lowest estimated startup time. The selection includes the server
ID and GPU slots to assign. If no GPUs are available, even
after considering migration, the loading task is held pending
and retried once the request router informs the scheduler to
release GPUs.

Handling scheduler failures. ServerlessLLM is built to with-
stand failures, utilizing a reliable key-value store to track
server statuses. On receiving a server loading task, its GPU sta-
tus is promptly updated in this store. Post server’s confirmation
of task completion, the scheduler updates the server’s storage
status in the store. Once recorded, the scheduler notifies the
request router of the completion, enabling request routing to
the server. In the event of a scheduler failure, recovery involves
retrieving the latest server status from the key-value store and
synchronizing it across all servers.

Scaling schedulers. The performance of the loading sched-
uler has been significantly enhanced by implementing asyn-
chronous operations for server status reads, writes, and es-
timations. Current benchmarks demonstrate its capability to
handle thousands of loading tasks per second on a standard
server. Plans for its distributed scaling are earmarked for future
development.

Resource fairness. ServerlessLLM treats all models with
equal importance and it ensures migrations do not impact
latency. While we currently adopt sequential model loading

on the I/O path, exploring concurrent loading on servers with
a fairness guarantee is planned for future work.

Estimator accuracy. Our estimator can continuously improve
their estimation based on the monitored loading metrics re-
turned by the servers. They offer sufficient accuracy for server
selection, as shown in Section V-F.

F. Evaluation

This section offers a comprehensive evaluation of Server-
lessLLM, covering three key aspects: (i) assessing the per-
formance of our loading-optimized checkpoints and model
manager, (ii) examining the efficiency and overheads associ-
ated with live migration for LLM inference, and (iii) evaluat-
ing ServerlessLLM against a large-scale serverless workload,
modelled on real-world serverless trace data.

1) Evaluation Setup: Setup. We have two test beds: (i) a
GPU server has 8 NVIDIA A5000 GPUs, 1TB DDR4 memory
and 2 AMD EPYC 7453 CPUs, two PCIe 4.0-capable NVMe
4TB SSDs (in RAID 0) and two SATA 3.0 4TB SSDs (in
RAID 0). This server is connected to a storage server via 1
Gbps networks on which we have deployed MinIO, an S3
compatible object store; (ii) a GPU cluster with 4 servers
connected with 10 Gbps Ethernet connections. Each server
has 4 A40 GPUs, 512 GB DDR4 memory, 2 Intel Xeon Silver
4314 CPUs and one PCIe 4.0 NVMe 2TB SSD.

Models. We use state-of-the-art LLMs, including OPT [6],
LLaMA-2 [7] and Falcon [8] in different sizes. For cluster
evaluation (§V-F3 and §V-F4) on test bed (ii), following prior
work [55], we replicate OPT-6.7B/OPT-13B/OPT-30B models
for 32/16/8 instances respectively (unless otherwise indicated)
that are treated as different models during evaluation.

Datasets. We use real-world LLM datasets as the input to
models. This includes GSM8K [113] that contains problems
created by human problem writers, and ShareGPT [114] that
contains multilanguage chat from GPT4. Since the models we
used can handle at most 2048 context lengths, we truncate the
input number of tokens to the max length. We also randomly
sample 4K samples from each dataset to create a mixed
workload, emulating real-world inference workloads.

Workloads. Since there are no publicly available LLM server-
less inference workloads, we use Azure Serverless Trace [39]
which is a representative serverless workload used in recent
serverless studies [115] and model-serving studies [55], [105].
We designate functions to models and creates bursty request
traces (CV=8 using Gamma distribution), following the work-
load generation method used in AlpaServe [55]. We then scale
this trace to the desired requests per second (RPS). For cluster
evaluation, we replicate each model based on its popularity
and distribute them across nodes’ SSDs using round-robin
placement until the total cluster-wide storage limit is reached.
Optimization of checkpoint placement is considered a separate
issue and is not addressed in this paper. For all experiments
(unless we indicate otherwise), we report the model startup
latency, a critical metric for serverless inference scenarios.
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When migration or preemption is enabled, this latency is added
with pause latency, accounting for the impacts of delays.

2) ServerlessLLM Checkpoint Loading: We now evaluate
the model manager’s effectiveness in reducing the model
loading latency. For our experiments, we test the checkpoint
read on test bed (i). We record reads from 20 copies of each
model checkpoint to get a statistically significant performance
report. We clear the page and inode caches after checkpoint
copies are made to ensure a cold start. For each type of
model, we randomly access the 20 copies to simulate real-
world access patterns.

Loading performance. We aim to quantify the performance
gains achieved by the ServerlessLLM checkpoint manager.
We compare PyTorch [102] and Safetensors [5], representing
the read-by-tensor checkpoint loading and mmap-based check-
point loading, respectively. We use all types of models with all
checkpoints in FP16 and run the test on RAID0-NVMe SSD
having a throughput of 12 GB/s.

Figure 31 shows the performance comparison in terms of
mean latency for all the models7. We observe that Serverless-
LLM is 6X and 3.6X faster than PyTorch and Safetensors,
respectively, for our smallest model (OPT-2.7B). We observe
similar results with the largest model (LLaMA-2-70B) where
ServerlessLLM is faster than PyTorch and Safetensors by 8.2X
and 4.7X respectively. Safetensors is slower than Serverless-
LLM due to a lot of page faults (112K for LLaMA-2-7B) on
cold start. In contrast, ServerlessLLM’s checkpoint manager
leverages direct I/O and realizes chunk-based parallel loading,
all contributing to the significant improvement in loading
throughput. PyTorch is about 2X slower than Safetensors
in our evaluation, consistent with the results in a public
benchmark reported by Safetensors. The primary reason is that
PyTorch first copies data into host memory and then into GPU
memory.

Furthermore, we observe that the loading performance of
ServerlessLLM is agnostic to the type of the model. For
example, the performance of both OPT-13B and LLaMA-2-
13B is similar signifying the fact that the performance is only
dependent on the checkpoint size.

Loading performance with LoRA adapters. ServerlessLLM

7The number after the model name represents the number of parameters in
the figure and B stands for Billion.

also supports loading LoRA adapters [9] in PEFT format.
For an adapter (rank=32, size=1GB) of LLaMA-70B model,
ServerlessLLM achieves 83.5ms loading latency which is
4.4X faster than Safetensors whose loading latency is 370ms.
This demonstrates ServerlessLLM’s loader design efficiency
in small checkpoint loading.

Harness full bandwidth of the storage devices. We now
move to understand if ServerlessLLM can utilize the entire
bandwidth that a storage medium offers to achieve low la-
tency. We use the same setup as described above. We choose
LLaMA-2-7B to represent the SOTA LLM model. We use FIO
with the configuration of asynchronous 4M direct sequential
read with the depth of 32 as the optimal baseline and optimized
throughput using the result in all storage media. We test
various settings of FIO to make sure the configuration chosen
has the highest bandwidth on each storage media. For object
storage over the network, we use the official MinIO benchmark
to get the maximum throughput.

Figure 32 shows the bandwidth utilization across different
storage devices, normalized relative to the measurements ob-
tained using FIO and MinIO. The storage device from bottom
to top is ascending in maximum bandwidth. We observe that
ServerlessLLM’s model manager is capable of harnessing dif-
ferent storage mediums and saturating their entire bandwidth
to get maximum performance. Interestingly, we observe that
ServerlessLLM is well suited for faster storage devices such
as RAID0-NVMe compared to Pytorch and Safetensors. It
shows that existing mechanisms are not adaptive to newer and
faster storage technology. Despite the loading process passing
through the entire memory hierarchy, ServerlessLLM is capa-
ble of saturating the bandwidth highlighting the effectiveness
of pipelining the loading process.

Performance breakdown. We now move to highlight how
each optimization within the model manager contributes to-
wards the overall performance. We run an experiment using
RAID0-NVMe with various OPT models. We start from the
basic implementation (ReadByTensor) and incrementally add
optimizations until the Pipeline implementation. Figure 33
shows the performance breakdown for each model. We observe
similar contributions by different optimizations for all the
models despite having different checkpoint size.

Bulk reading improves 1.2x throughput, mitigating the



ReadByTensor +Bulk +Direct +Thread +Pinned +Pipeline

2
4
6
8

10
12

Th
ro

ug
hp

ut
 (G

B/
s)

OPT-350M
OPT-1.3B
OPT-2.7B

OPT-6.7B
OPT-13.0B

Fig. 33: Performance breakdown of checkpoint loaders.

Serverless SHEPHERD* ServerlessLLM

0 2
Latency(s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

2.25 2.50

0.96

0.98

1.00

Fig. 34: GSM8K,
RPS=0.2

0.0 2.5 5.0 7.5
Latency(s)

0.0

0.2

0.4

0.6

0.8

1.0

2 3

0.96

0.98

1.00

Fig. 35: GSM8K,
RPS=0.8

0 5 10
Latency(s)

0.0

0.2

0.4

0.6

0.8

1.0

2 4

0.96

0.98

1.00

Fig. 36: GSM8K,
RPS=1.4

0 2 4
Latency(s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

2.0 2.5

0.96

0.98

1.00

Fig. 37: ShareGPT,
RPS=0.2

0 20 40 60
Latency(s)

0.0

0.2

0.4

0.6

0.8

1.0

10 20

0.96

0.98

1.00

Fig. 38: ShareGPT,
RPS=0.8

0 200 400
Latency(s)

0.0

0.2

0.4

0.6

0.8

1.0

250 300
0.925

0.950

0.975

Fig. 39: ShareGPT,
RPS=1.4

throughput degradation from reading small tensors one after
another (on average one-third of the tensors in the model
are less than 1MB). Direct IO improves 2.1x throughput,
bypassing cache and data copy in the kernel. Multi-thread
improves 2.3x throughput, as multiple channels within the
SSD can be concurrently accessed. Pinned memory provides a
further 1.4x throughput, bypassing the CPU with GPU DMA.
Pipeline provides a final 1.5x improvement in throughput,
helping to avoid synchronization for all data on each storage
tier.

We run ServerlessLLM in a container to limit the CPU cores
it can use. We find that with 4 CPU cores, ServerlessLLM can
achieve maximum bandwidth utilization. We set a sufficiently
large chunk size in bulk reading (16MB) to involve less
number of reads and also pinned memory-based chunk pool
does not need extra CPU cycles for data copy.

3) ServerlessLLM Model Scheduler: In this section, we
evaluate the performance of the ServerlessLLM’s cluster
scheduler on test bed (ii). We compare ServerlessLLM against
two schedulers – the de-facto serverless scheduler and Shep-

herd [105] scheduler. The serverless scheduler randomly
chooses any GPU available and does not comprise any opti-
mization for loading time. We implement Shepherd scheduler
and use ServerlessLLM’s loading time estimation strategy to
identify the correct GPU. We call the modified scheduler as
Shepherd*. Therefore, in principle, Shepherd* and Serverless-
LLM will choose the same GPU. However, Shepherd* will
continue to rely on preemption, while ServerlessLLM will rely
on live migration to ensure lower latency times.

Figure 34 shows the result of a scenario where we run all
three schedulers against OPT-6.7B model and GSM8K and
ShareGPT dataset while increasing the requests per second.
ShareGPT dataset’s average inference time is 3.7X longer
than GSM8K. Figure 34 and Figure 37 show the case where
there is no locality contention for both datasets. The serverless
scheduler cannot take advantage of locality-aware scheduling
unlike ServerlessLLM and Shepherd* leading to longer la-
tency. For 40% of the time, the model is loaded from SSD due
to random allocation of the GPUs. As there is no migration or
preemption, the performance of Shepherd and ServerlessLLM
is similar.

When the schedulers are subjected to medium requests
per second, for GSM8K (Figure 35, without locality-aware
scheduling, the loading times start causing queueing latency
leading with Serverless scheduler resulting in increasing the
P99 latency by 1.86X. As there is no migration or preemption,
the performance of Shepherd and ServerlessLLM is similar.
With a longer inference time with ShareGPT (Figure 38, we
even observe 2X higher P99 latency with Shepherd* compared
to ServerlessLLM due to preemption. As ServerlessLLM relies
on live migration in case of locality contention, ServerlessLLM
performs better than the other schedulers despite the number
of migrations is higher (114 out of 513 total requests) than
the number of preemptions (40 out of 513 total requests).

On further stressing the system by increasing the requests
per second to 1.4, for GSM8K, one can clearly observe the
impact of live migration and preemption. ServerlessLLM out-
performs Shepherd* and Serverless schedulers by 1.27X and
1.95X on P99 latency respectively. There are 9 preemptions
and 53 migrations respectively for a total of 925 requests.
As discussed in Section V-D1, preemptions lead to longer
latency compared to migrations. We also observe that with
Shepherd*, model checkpoints are read from SSD 2X times
more than with ServerlessLLM. With ShareGPT (figure 39,
we observe that the GPU occupancy reaches 100% leading
to requests timeouts with all the three schedulers8. Shepherd
behaves the worst compared to Serverless and ServerlessLLM
schedulers, i.e., 1.43X and 1.5X higher P95 latency respec-
tively. ServerlessLLM and Shepherd* issue 64 migrations and
166 preemptions, respectively for a total of 925 requests. In
this scenario, ServerlessLLM’s effectiveness is constrained by
resource limitations.

We further stress the system by running even larger mod-

8Based on the average inference time of OPT-6.7B on ShareGPT dataset,
the maximum theoretically RPS is 1.79.
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els (OPT-13B and OPT-30B) with GSM8K and ShareGPT
datasets. Figure 40 shows the results for those experiments.
locality-aware scheduling is more important for larger models
as caching them in the main memory can reap better perfor-
mance. As ServerlessLLM and Shepherd* are both locality-
aware, they can make better decisions while scheduling the
requests leading to better performance. As Serverless sched-
uler makes decisions randomly, for GSM8K, we observe that
for 35-40% times, the model is loaded from SSD leading
to poor performance. We see similar behavior for ShareGPT,
OPT-13B experiment too. For the OPT-30B ShareGPT case,
the model size is 66 GB. Hence, only two models can be
stored in the main memory at any given time reducing the
impact of locality-aware scheduling. Even in this extreme case,
ServerlessLLM still achieves 35% and 45% lower P99 latency
compared to Serverless and Shepherd* respectively.

Time Estimation. The GPU time estimation error is
bounded at 5ms, while the SSD loading error is bounded
at 40ms. However, we do observe instability in CUDA
driver calls. For instance, when migrating a model, we
noted that cleaning up GPU states (e.g., KV cache) using
torch.cuda.empty_cache() can lead to inaccurate es-
timations, resulting in an average underestimation of 25.78 ms.
While infrequent, we observed a maximum underestimation of
623 ms during GPU state cleanup in one out of 119 migrations
(as depicted in Figure 38).

4) Entire ServerlessLLM in Action: We aimed to deploy the
entire ServerlessLLM with a serverless workload on test bed
(ii). Here, we compare ServerlessLLM against state-of-the-
art distributed model serving systems: (i) Ray Serve (Version
2.7.0), a version we have extended to support serverless
inference scenarios with performance that can match SOTA
serverless solutions such as KServe; (ii) Ray Serve with Cache,
a version we improved to adopt a local SSD cache on each
server (utilizing the LRU policy as in ServerlessLLM) to avoid
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costly model downloads; and (iii) KServe (Version 0.10.2),
the SOTA serverless inference system designed for Kubernetes
clusters.

For best performance, Ray Serve and its cache variant are
both enhanced by storing model checkpoints on local SSDs
and estimating download latency by assuming an exclusively
occupied 10 Gbps network. For each system, we set the
maximum concurrency to one and set the keep-alive period
equal to its loading latency, following prior work [26]. We
launch parallel LLM inference clients to generate various
workloads, where each request has a timeout threshold of 300
seconds.

Effectiveness of loading-optimized checkpoints. We aimed
to assess the effectiveness of loading-optimized checkpoints
within a complete serverless workload, employing various
model sizes and datasets to diversely test the checkpoint
loaders.

In this experiment, as depicted in Figure 44, Ray Serve
and Ray Serve with Cache utilize Safetensors. Owing to the
large sizes of the models, the SSD cache cannot accommodate
all models, necessitating some to be downloaded from the
storage server. With OPT-6.7B and GSM 8K, ServerlessLLM
starts models in an average of 0.8 seconds, whereas Ray Serve
takes 12.1 seconds and Ray Serve with Cache 8.2 seconds,
demonstrating an improvement of over 10X. Even with a faster
network (i.e., 100 Gbps), the average latency of Ray Serve
could drop to 3.8 seconds, making it still 4.7 times slower
than ServerlessLLM. The significance of the model loader
becomes more pronounced with larger models, as Serverless-
LLM can utilize parallel PCIe links when loading large models
partitioned on multiple GPUs from pinned memory pool.
For instance, with OPT-30B, ServerlessLLM still initiates the



model in 7.5 seconds, while Ray Serve’s time escalates to 213
seconds and Ray Serve with Cache to 199.2 seconds, marking
a 28X improvement.

This considerable difference in latency substantially affects
the user experience in LLM services. Our observations indicate
that ServerlessLLM can fulfill 89% of requests within a 300-
second timeout with OPT-30B, whereas Ray Serve with Cache
manages only 26%.

With the ShareGPT dataset (Figure 45), which incurs a 3.7X
longer inference time than GSM 8K, the challenge for model
loaders becomes even more intense. For models like 6.7B
and 13B, ServerlessLLM achieves latencies of 0.8 and 1.6
seconds on average, respectively, compared to Ray Serve and
Ray Serve with Cache, which soar to 182.2 and 162.4 seconds.
When utilizing OPT-30B, ServerlessLLM begins to confront
GPU limitations (with all GPUs occupied and migration
unable to free up more resources), leading to an increased
latency of 89.9 seconds. However, this is still a significant
improvement over Ray Serve with Cache, which reaches a
latency of 261.8 seconds

Effectiveness of live migration and loading scheduler. In
evaluating the effectiveness of LLM live migration and the
loading scheduler, we created workloads with varying RPS
levels. Scenarios with higher RPS highlight the importance of
achieving load balancing and locality-aware scheduling since
simply speeding up model loading is insufficient to address
the resource contention common at large RPS levels.

From Figure 46, it is evident that ServerlessLLM, equipped
with GSM8K, consistently maintains low latency, approxi-
mately 1 second, even as RPS increases. In contrast, both Ray
Serve and Ray Serve with Cache experience rising latency
once the RPS exceeds 0.5, which can be attributed to GPU
resource shortages. Their inability to migrate LLM inference
for locality release or to achieve load balancing, unlike Server-
lessLLM, results in performance degradation.

With the more demanding ShareGPT workload, as shown in
Figure 47, ServerlessLLM maintains significant performance
improvements up to 212 times better over Ray Serve and
Ray Serve with Cache across RPS ranging from 0.2 to 1.1.
However, at an RPS of 1.4, ServerlessLLM’s latency begins
to rise, indicating that despite live migration and optimized
server scheduling, the limited GPU resources eventually im-
pact ServerlessLLM’s performance.

Resource efficiency. A major advantage of the low model
startup latency in ServerlessLLM is its contribution to resource
savings when serving LLMs. We vary the number of GPUs
available on each server to represent different levels of re-
source provisioning. As shown in Figure 48, ServerlessLLM
scales well with elastic resources. With just one GPU per
server, ServerlessLLM already achieves a 4-second latency by
efficient migrations and swaps. In contrast, Ray Serve with
Cache requires at least four GPUs per server to attain a 12-
second latency, which is still higher than ServerlessLLM’s
performance with only one GPU per node. With larger clusters,
the resource-saving efficiency of ServerlessLLM is expected
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to become even more pronounced, as larger clusters offer more
options for live migration and server scheduling.

The resource efficiency of ServerlessLLM is further evident
when maintaining a fixed number of GPUs while increasing
the number of LLMs in the cluster. In Figure 49, with a
limited number of models, Ray Serve with Cache can match
ServerlessLLM in latency performance. However, as the num-
ber of models grows, the performance gap widens, showcasing
ServerlessLLM’s potential suitability for large-scale serverless
platforms.

KServe comparison. In our study, we assess KServe and
ServerlessLLM within a Kubernetes cluster. Given that our
four-server cluster is unsuitable for a Kubernetes deployment,
we instead utilize an eight-GPU server, simulating four nodes
with two GPUs each. Since KServe performs slower than the
other baselines considered in our evaluation, we only briefly
mention KServe’s results without delving into details.

With KServe, the GPU nodes initially exhibited a first
token latency of 128 seconds. This latency was primarily
due to KServe taking 114 seconds to download an OPT-6.7B
model checkpoint from the local S3 storage over a 1 Gbps
network. However, after applying the same enhancement as
those for Ray Serve, we reduced the first token latency to 28
seconds. Despite this improvement, KServe’s best latency was
significantly higher than those achieved by ServerlessLLM.
Notably, ServerlessLLM was the only system able to reduce
the latency to within one second.

VI. SECURITY

A. Our approach: SlsDetector

We present SlsDetector, an LLM-based framework designed
to detect misconfigurations in serverless applications. SlsDe-
tector takes a configuration file of the serverless application
to be detected as input and outputs structured results, provid-
ing a list of detected misconfigurations along with detailed
explanations for each issue. The framework is designed to
be adaptable, supporting various LLMs. In the following
sections, we provide an overview of SlsDetector and outline
its component.

1) Overview: Fig. 50 shows an overview of SlsDetector.
It converts a misconfiguration detection request into a metic-
ulously constructed prompt for LLMs. We employ zero-shot
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learning to minimize reliance on external sample configura-
tions. This technique, which requires no prior examples, is
a popular optimization technique [12], [116], [117]. While
many studies [11], [69], [118] have utilized few-shot learning
to improve effectiveness by learning from examples during
inference, it relies heavily on the quality and selection of
labeled samples. In contrast, zero-shot learning avoids the
cost and effort associated with sample collection and curation,
making it the preferred technique for our framework.

In SlsDetector, we design a prompt generation component
to construct a tailored prompt focused on the objective of
detecting misconfiguration in serverless applications. This
prompt is structured into four parts, where multi-dimensional
constraints are core of SlsDetector and highly context-aware,
shown in Fig. 50. Once the prompt is constructed, it is sent to
the LLM, which generates the final output. Next, we introduce
the prompt generation component in detail.

2) Prompt Generation: We present the prompt content gen-
erated by the prompt generation component, which includes:
(i) the configuration file to be analyzed, (ii) a task description
for the LLMs, (iii) detailed multi-dimensional constraints, and
(iv) a customized response. Fig. 51 illustrates our prompt
structure.

Task Description The task description includes the follow-
ing elements: (i) a role-playing instruction designed to enhance
the LLMs ability to detect misconfigurations, which is a com-
mon prompt optimization technique [12], [119]; and (ii) a task
description instruction. In our scenario, the role is designed as
“You are an expert at writing AWS SAM configurations for
serverless applications”, while the task description asks, “Are
there any misconfigurations in the above configuration file?”.
These elements are carefully crafted to clearly outline the tasks
the LLM needs to complete within the assigned role.

Multi-dimensional Constraints Multi-dimensional con-
straints are designed based on the configuration characteristics
of serverless applications. The constituent elements of a con-
figuration file are diverse and encompass the following aspects:
• Resource Types: Serverless application configurations are
primarily centered around defining resource type. Resource
types are core to establishing application execution settings.
For instance, custom names such as “BucketEventConsumer”

(line 16) are assigned to objects tied to specific resource types,
such as “AWS::Serverless::Function”. Moreover, resource type
names are case-sensitive.
• Configuration Entries: Each resource type specifies diverse
execution parameters, including language runtime and required
resources for predefined events. These parameters are repre-
sented by configuration entries.
• Values of Configuration Entries: Each configuration entry is
assigned specific values, often governed by varied constraints.
For example, the Runtime entry (line 20) has a set of
allowed languages, e.g., “python3.6” and “nodejs16.x”, while
the Bucket entry (line 27) accepts only referenced objects.
• Entry Dependencies: Certain configuration entries depend
on others. These relationships are implicit and generally dis-
covered by consulting documentation.
• Value Dependencies: Some values of configuration en-
tries are interdependent across different resource types. For
instance, the RestApiId entry for API event triggers
depends on the object name value corresponding to the
“AWS::Serverless::Api” resource. This shows how values can
be linked across different resource types, showing extensive
value dependencies. Such dependencies are common in con-
figurations due to the collaboration between FaaS and BaaS.

Based on these configuration characteristics, we design five
dimensions of constraints (i.e., multi-dimensional constraints)
to enhance the LLM’s ability to identify serverless application
misconfigurations: resource type constraint, entry constraint,
value constraint, entry dependency constraint, and value de-
pendency constraint. Fig. 51 shows their details.

Before explaining constraints, we introduce the Chain of
Thought (CoT) technique [120]–[122]. CoT is a reasoning
strategy to guide the problem-solving process toward more
accurate and logical conclusions. This technique breaks down
complex tasks into smaller, manageable steps. A CoT-based
prompt includes several intermediate natural language rea-
soning steps that describe how to solve the task step by
step. Based on the principle of this technique, we design
our CoT strategy for detecting misconfigurations of serverless
applications by guiding LLMs to consider constraints in a
“category-by-category” manner.

For resource type constraint, we describe it as follows:



n Role: You are an expert at writing AWS SAM configurations for serverless 
applications.

n Question: Are there any misconfigurations in the above configuration file?

Ø Please consider the following constraints in a category-by-category manner.
ü [Resource Type Constraint]

Configuration File

Task Description

Multi-dimensional Constraints

1. Check whether the resource type is currently supported by AWS
SAM, search the following URL1 to compare all supported AWS
resources listed, noting the letter case.

2. Follow the steps below for a step-by-step check.
Step 1: Check whether each configuration entry under each

resource type actually exists, paying attention to the accuracy of the
name of the configuration entry, including case and singular and
plural forms;

Step 2: If Events exists, also further check whether the
corresponding configuration entry exists under each event source
type, and please point out the non-existence of configuration entries;

Step 3: Check whether the hierarchical level of all configuration
entries is correct, and pay attention to the indentation problem.

3. Check that the value type, constraints, and supported values of the
configuration entry are correct, that the value representation is
accurate, and that the value cannot be defined as null.

4. Check if there are dependencies between configuration entries,
check that they are used in the correct way, e.g. Ref and that the
referenced resource types are correct, and that the relevant required
reference definitions are given. Further check which configuration
entries are or are not required under the PackageType type.

5. Check if there is a dependency (possibly implicit) between the
values of configuration entries, check that the usage is correct and
that the relevant required reference definitions are given.

ü [Entry Constraint]
ü [Value Constraint]
ü [Entry Dependency Constraint]
ü [Value Dependency Constraint]

Customized Response

n Please summarize the misconfigurations that are absolutely certain. They are 
categorized as [Resource Type Errors], [Configuration Entry Errors], 
[Configuration Entry Value Errors], [Entry Dependency Errors], 
[Value Dependency Errors] (if present).

n Answer format (You MUST follow this): Detected errors are written 
between <START> and <END> tags:

Fig. 51: The prompt structure of SlsDetector.

“Check whether the resource type is currently supported
by AWS SAM, search the following URL9 to compare all
supported AWS resources listed, noting the letter case.” By
providing a direct link to the official documentation, we enable
SlsDetector to effectively identify and compare resource type
names, with a particular focus on case sensitivity, a critical
aspect in AWS SAM configurations.

For entry constraint, we design a three-step validation
process to ensure the correctness of configuration entries.
The first step checks the correctness of each entry in re-
lation to its corresponding resource type. The second step
checks the correctness of event-related entries. The third
step ensures that all configuration entries follow the correct
hierarchical structure. SlsDetector applies these checks using
the CoT technique, following a “step-by-step” process. The
three steps are as follows. Step 1: SlsDetector checks that
each configuration entry exists under its respective resource
type. This includes checking the entry’s name for accuracy,
paying particular attention to case sensitivity, and the use of
singular or plural forms. Step 2: For event-related entries,
SlsDetector checks that configuration entries corresponding
to each event source type are present. If any non-existent
entries are given, SlsDetector flags them for review. Step 3:
SlsDetector checks the correct hierarchical structure of all
configuration entries, with special attention to indentation.
Misplaced or improperly indented entries may lead to errors,
as they will not be recognized under the expected resource
type. This three-step validation process allows SlsDetector
to systematically detect errors, ensuring comprehensive and
accurate checks for configuration entries.

9Supported resource types: https://docs.aws.amazon.com/ serverlessrepo/
latest/devguide/ list-supported-resources.html

For value constraint, we describe it as follows: “Check
that the value type, constraints, and supported values of the
configuration entry are correct, that the value representation is
accurate, and that the value cannot be defined as null”. These
constraints consider various aspects such as the correct data
type, valid value ranges, and proper value formatting, ensuring
that all values adhere to the required specifications.

For entry dependency constraint, we describe it as: “Check
if there are dependencies between configuration entries, check
that they are used in the correct way”. We also provide spe-
cific guidelines for validating dependencies, such as checking
the accuracy of referenced resource types, ensuring required
reference definitions are present, and confirming that required
function entries are properly configured.

For value dependency constraint, we specify it as: “Check if
there is a dependency (possibly implicit) between the values
of configuration entries, check that the usage is correct and
that the relevant required reference definitions are given”.
This constraint ensures that value dependency checks are
comprehensive across the configuration, helping to maintain
consistency and correctness in how values interact and depend
on each other within the configurations.

Customized Response We customize the LLMs’ output by
specifying both the content and format requirements for the
responses, ensuring their effectiveness and relevance. For the
content demand, we aim to avoid receiving vague or uncertain
answers that fail to explicitly identify configuration errors. To
achieve it, we instruct the model with the directive: “Please
summarize the misconfigurations that are absolutely certain”.
This ensures that only clear, deterministic errors are returned.
Additionally, when applicable, we categorize the detected
misconfigurations into specific groups, including “Resource
Type Errors,” “Configuration Entry Errors,” “Configuration



Entry Value Errors,” “Entry Dependency Errors,” and “Value
Dependency Errors”.

For the format demand, to eliminate redundant content
that does not reveal specific misconfigurations from the raw
output, we use delimiters: “¡START¿” and “¡END¿”, to mark
the required portion of the response. In SlsDetector, the
desired output is enclosed within these markers, for exam-
ple: “¡START¿ Resource Type Errors: ..., Value Dependency
Errors: ... ¡END¿”. This structured way ensures that only the
relevant content is captured. During post-processing, SlsDe-
tector employs regular expressions to extract the information
between these markers efficiently. Although the model might
generate additional text beyond the expected response, the
use of locators allows for the seamless extraction of relevant
content while discarding unnecessary text.

B. Experimental evaluation

To evaluate the effectiveness of SlsDetector in identifying
misconfigurations within serverless applications, we present
four research questions (Section VI-B1). To answer these
questions, we detail the evaluation metrics (Section VI-B2),
baselines for comparison (Section VI-B3), evaluation dataset
(Section VI-B4), and experimental settings (Section VI-B5).

1) Research Questions:
• RQ1: How does the effectiveness of SlsDetector compared
to traditional data-driven methods?
• RQ2: How effective is SlsDetector without considering our
multi-dimensional constraints?
• RQ3: How does the non-determinism of LLMs influence
the effectiveness of SlsDetector?
• RQ4: How does the generalization capability of SlsDetector
when using different LLMs?

2) Evaluation Metrics: We use precision, recall, and F1-
score as evaluation metrics to compare SlsDetector against
the baseline methods at the configuration parameter level,
i.e., configuration entries or values. We check whether the
detection approach can accurately determine the validity of
each configuration parameter within the configuration file.
precision measures the proportion of correctly identified
misconfigured parameters among all parameters flagged as
misconfigured. recall quantifies the ability of the approach to
detect actual misconfigurations by calculating the proportion
of true misconfigured parameters that are correctly identified.
F1-score provides a balanced measure that accounts for the
significance of both false positives and false negatives. These
metrics are calculated through True Positives (TP), False
Positives (FP), True Negatives (TN), and False Negatives
(FN), explained in Table III. precision = TP

TP+FP , recall =
TP

TP+FN , and F1-score = 2 × precision×recall
precision+recall . Values range

from 0% to 100%, with scores closer to 100% indicating
greater effectiveness.

3) Baseline Methods: We implement two types of base-
lines to evaluate effectiveness. Given the lack of approaches
specifically tailored for detecting misconfigurations in server-
less computing, we first draw on principles from estab-
lished data-driven techniques used in prior configuration stud-

ies [65]–[68]. By adapting these methods, we create a data-
driven baseline suited to the characteristics of serverless ap-
plications. Additionally, we introduce a straightforward LLM-
based baseline as a second comparison, which does not
consider our designed constraints.
• Baseline 1: Data-driven method (DD method). We imple-
ment a data-driven approach for serverless applications by
learning configuration patterns from a dataset of configu-
ration files. As no existing dataset specifically focuses on
serverless application configurations, we collect our data from
the AWS Serverless Application Repository (SAR) [123],
an official repository for serverless applications where each
application is packaged with an AWS SAM template and links
to relevant configuration files. We include all configuration
files associated with serverless applications that have been
successfully deployed at least once as of August 18, 2023,
which is the date we collected this dataset. This results in
a collection of 701 configuration files across 658 serverless
applications, with some links providing multiple configuration
files representing distinct configurations. Given the correctness
of ensuring the dataset, we conduct a careful manual review
of the configuration files. This review was performed by the
first two authors, who have a background in cloud computing.
Identified issues were discussed and resolved with consensus
among the authors. To assess the consistency of independent
labeling, we employ Cohen’s Kappa (κ) [124], a widely used
metric for measuring inter-rater agreement. The resulting κ
value of 0.916 indicates an almost perfect agreement and a
reliable labeling procedure [125].

Using this dataset, we learn configuration patterns, focusing
on common resource types, configuration entries, values, and
dependencies among entries and values. To streamline this pro-
cess, we first standardize the configuration files into a uniform
representation. Object names for various resource types are
identified, with object names replaced by standardized labels
(e.g., a placeholder like “PH+resource type”) for consistency
across configuration entries and values. Leveraging this stan-
dardized dataset, we extract the used resource types, entries,
and values.

To detect dependencies among both entries and values,
we apply association rule mining techniques [126], [127].
Specifically, we use the FP-Growth algorithm [128], which is
known for its scalability. We need to set a support threshold
for frequent itemsets using the formula α×len, where len rep-
resents the total number of configuration files, a deterministic
value, and α is a percentage that indicates the desired mining
granularity. Leveraging mined frequent itemsets, we generate
association rules by utilizing traversal way and dividing items
into left and right sets, where items in the right set must
appear if those in the left set are present. These rules reveal
the configuration dependencies. If the tested file contains all
items in a left set, this approach checks whether it includes the
corresponding items in the right set. If any items are missing,
it reports them.
• Baseline 2: Basic LLM method (BL method). It is designed
using a straightforward prompt that does not take our multi-



TABLE III: The explanation of TP, FP, TN, and FN in our scenario.

TP A misconfigured parameter correctly identified as misconfigured
FP A correctly configured parameter mistakenly flagged as misconfigured
TN A correctly configured parameter accurately recognized as valid
FN A misconfigured parameter that is overlooked or incorrectly classified as valid

dimensional constraints into account. This prompt contains the
configuration file content followed by a task description. Sim-
ilarly, the output is enclosed within a locator pair, “¡START¿”
and “¡END¿”, to delimit the required response. This prompt
is shown in Fig. 52.

4) Evaluation Dataset: We conduct experimental evalua-
tions on a dataset comprising three types of configurations.
The first type includes error-free configurations, enabling us
to evaluate true negatives and false positives in detection. The
second type contains configurations with real-world errors, al-
lowing for the assessment of true positives and false negatives.
Although this second type is somewhat free of data leakage
concerns of LLMs, we include a third type to strengthen
the validity of our conclusions. The third type consists of
configurations with injected errors, which are not exposed
to LLMs during training, thereby eliminating data leakage
concerns. By utilizing these diverse configurations, we can
achieve a valid evaluation.
• Configurations without Errors (26). We manually collect
configuration files that have been successfully executed with-
out errors. This data is separate from the one used to mine
configuration patterns in the data-driven approach.

We collect real-world configuration cases from GitHub.
GitHub issues provide rich information, including developer
discussions and related code or configuration fragments. We
conduct the following steps. First, on July 2, 2024, the date
we collected this data, we searched GitHub using the key-
words “AWS,” “serverless,” and “configuration,” which yielded
more than 8,000 relevant configuration-related issues. We then
manually reviewed these issues to extract correct configura-
tion fragments from the problematic casesa time-consuming
and challenging process. To facilitate this task, the first two
authors jointly review the configurations. Initially, they filter
through the configuration fragments by searching for terms
including “successful,” “successfully,” and “it works” within
the issues to identify correct configurations. For the fragments
that matched, they conducted a manual verification process to
ensure that the configurations were indeed error-free. Over two
months, the two authors identified 52 configuration fragments
that met our criteria. These error-free real-world configuration
fragments are divided into two sets: 26 (naming from case
1 to case 26) are used to evaluate error-free configurations,
while the remaining 26 (naming from case 27 to case 52)
are reserved for generating configurations with injected errors,
which is explained in detail later.
• Real-world Misconfigurations (58). To evaluate the effec-
tiveness of approaches in identifying real-world misconfigura-
tions in serverless applications, we construct a relevant dataset
by mining real-world configuration issues from GitHub. These

issues need to contain clearly identified root causes as ground
truths, enabling us to accurately assess the effectiveness of
detection results.

The selection process is as follows: First, we use the same
keywords (i.e., “AWS,” “serverless,” and “configuration”) to
search for relevant issues on GitHub on July 2, 2024. Next,
we identify satisfied issues based on the following criteria:
(i) the issue is marked as closed, indicating that it has been
resolved; (ii) the issue includes a configuration fragment based
on AWS SAM for analysis; and (iii) the discussion concludes
with a clearly identified root cause of the problem. Using
these criteria, we select 58 real-world configuration problems
encountered in serverless applications, surpassing the scale of
prior studies on configuration-related research [65], [127].

To ensure the accuracy of the configuration errors to be de-
tected, we meticulously review each real-world configuration
file in conjunction with its identified root cause. During this
process, we also manually identify and address any potential
configuration issues (e.g., outdated runtime) that could influ-
ence the evaluation.
• Injected Misconfigurations (26). We construct injected mis-
configurations by generating various errors in the correct con-
figuration files. To achieve this, we use 26 error-free configura-
tion files named from case 27 to case 52. Misconfigurations of
different types are then generated, following misconfiguration
generation rules from prior studies [61], [62], [69], [129],
[130]. Prior studies [69], [129] showed that these rules can
cover most configurations. In addition to utilizing existing
rules, we extend specific misconfiguration generation rules
tailored to serverless application configurations, as outlined
in Table IV. For each selected configuration file, we randomly
sample a configuration parameter that aligns with the subcate-
gories in Table IV and generate invalid configurations, creating
a new erroneous configuration file for detection. In total, we
generate 26 configuration files with injected misconfigurations
for evaluation.

Our evaluation dataset contains 110 configuration files with
corresponding ground-truth answers. Fig. 53 shows its details.
Of these, 26 are error-free configuration files, 58 contain
real-world errors, and 26 have injected errors. Across all
configuration parameters, there are 4,108 correct configuration
parameters and 308 misconfigured ones. Among the miscon-
figured parameters, 90 involve incorrect resource types, 108
have misconfigured entries, 48 contain incorrect values, 39 ex-
hibit entry dependency issues, and 23 have value dependency
issues. We analyze the detection results across all configuration
parameters to obtain TP, FP, TN, and FN. We then calculate
precision, recall, and F1-score to evaluate the effectiveness
of the detection.



n Question: Are there any misconfigurations 
in the above configuration file?

Configuration File Task Description Response

Ø Answer format (You MUST follow this):
Detected errors are written between 

<START> and <END> tags:

Fig. 52: The prompt of BL method.

TABLE IV: Misconfiguration generation rules (we use generation rules from previous work [61], [62], [129], [130] and
customize them in our scenario.)

Category Subcategory Specification Generation Rules

Syntax
Resource

type Value set = {AWS::Serverless::Function,
AWS::Serverless::Api, ...}

Generate a resource type that does not belong to
the value set

Entry Value set = {entry1, entry2, ...}, specific entries are used in
a certain resource type

Generate an invalid entry for a resource type

Range

Basic
numeric Valid range constrained by data type Generate values outside the valid range (e.g.,

max value+1)
Enum Options, value set = {enum1, enum2, ...}, specific values

are used in a certain configuration entry
Generate a value that does not belong to set

Dependency
Entry

relationship (P1, V, �) 7→ P2, � ∈ {>,≥,=, 6=, <,≤, occurrence} Generate invalid entry relationships for configu-
ration entries (P1, V,¬�)

Value
relationship (P1, P2, �), � ∈ {>,≥,=, 6=, <,≤, occurrence} Generate invalid value relationship for configu-

ration entry values (P1, P2,¬�)

110 Configuration Files (Evaluation Dataset)

26 Configuration Files 
without Errors

58 Configuration Files 
with Real-world Errors

26 Configuration Files 
with Injected Errors

4,108 Correct Configuration 
Parameters 308 Misconfigured Parameters

90 Misconfigured 
Resource Types

108 Misconfigured 
Entries

48 Misconfigured 
Values

39 Misconfigured 
Entry Dependencies

23 Misconfigured 
Value Dependencies

Fig. 53: The Details of Evaluation Dataset.

5) Experimental Settings: We introduce our parameter set-
tings, experimental repetitions, and experimental environment.

Parameter Settings. For RQ1, the compared DD method
needs to specify a frequent threshold, α. We experiment with
various threshold levels: low (1%), medium (3% and 5%),
and high (10%). A lower threshold corresponds to a lower
support value, enabling the discovery of more dependencies.
For comparisons with SlsDetector, we use a default α value
of 5%. Experimental results also show that 5% is optimal
for achieving the best effectiveness results in DD methods.
We also report results for both SlsDetector and DD method
across other thresholds. For RQ2, we compare SlsDetector
with the BL method, both of which leverage LLMs. We select
ChatGPT-4o as the default LLM due to the widespread use and
outstanding performance of ChatGPT in recent research [12],
[69]. A crucial parameter of LLMs is the temperature, which
controls the level of randomness in the generated responses. To
ensure reproducibility and consistency, we follow the previous
work [11], [118], [131], [132] to set the temperature to 0 for
all identical queries. For RQ3, there are no specific parameters
to be set. For RQ4, we evaluate the generalization capability
of SlsDetector across various LLMs, excluding ChatGPT-
4o. Specifically, we utilize an open-source model, Llama 3.1
(405B) Instruct Turbo, and a proprietary model, Gemini 1.5
Pro. These models are among the top-ranked LLMs [133]. As

with RQ2, we set the temperature of LLMs to 0 to maintain
consistent outputs across repeated queries.
Experimental Repetitions. For experiments involving
stochastic processes, we follow established best practices [11],
[131], repeating each experiment five times and reporting
the mean evaluation metrics to reduce the impact of random
variations.
Experimental Environment. Our experiments were con-
ducted on an Ubuntu 18.04.4 LTS server with an Intel Xeon
(R) 4-core processor and 24 GiB of memory. The LLMs were
accessed through their respective APIs. While all methods
are implemented in Python, their misconfiguration detection
capabilities are independent of the underlying programming
language.

C. Evaluation Results

This section gives and discusses the results of each research
question.

1) RQ1: Effectiveness of SlsDetector and Data-Driven
Method (DD method): This section explores the effectiveness
of SlsDetector in comparison to the DD method. SlsDetec-
tor has a significant advantage in the effectiveness aspect.
Table V presents their results in detecting misconfigurations
in serverless applications. Specifically, SlsDetector achieves
a precision of 72.88%, recall of 88.18%, and F1-score of
79.75%. In contrast, the DD method, with its default threshold



TABLE V: RQ1: Results about SlsDetector and DD method.

Methods precision recall F1-score
DD method with 5% threshold (default) 19.06% 70.78% 30.03%
SlsDetector (vs DD method with 5% threshold) 72.88% (↑ 53.82%) 88.18% (↑ 17.40%) 79.75% (↑ 49.72%)
DD method with 10% threshold 17.70% 64.61% 27.79%
DD method with 3% threshold 18.83% 70.13% 29.69%
DD method with 1% threshold 18.85% 70.45% 29.75%

of 5%, only reaches a precision of 19.06%, recall of 70.78%,
and F1-score of 30.03%. SlsDetector outperforms the DD
method, increasing precision by 53.82 percentage points,
recall by 17.40 percentage points, and F1-score by 49.72
percentage points, showing its superior effectiveness.

We investigate why the DD method produces less effective
results. One major issue is its low precision (19.06%) and F1-
score (30.03%). We further observe TP, FN, FP, and TN values
obtained by the DD method across all configuration parame-
ters, as shown in Table VI. Results show that the FP value is
926, indicating that 22.54% of the 4,108 correct configuration
parameters are mistakenly flagged as misconfigurations. In
contrast, on average, SlsDetector misclassifies only 2.48% of
correct configuration parameters as misconfigurations. Thus,
the low effectiveness of the DD method is attributed to high
false positives. As a data-driven approach, the DD method
learns configuration patterns based on historical data, which
mainly includes previously used configurations. This reliance
makes it difficult to accurately identify configurations that are
either rare or newly supported, resulting in numerous false
positives. Thus, the DD method fails to detect some valid
configurations that are indeed supported, leading to its low
precision and F1-score.

We also compare the effectiveness of the DD method under
different thresholds α: 10%, 3%, and 1%, with the results
presented in Table V. As α decreases from 10% to 1%, the
evaluation metrics show improvement. Specifically, precision
increases from 17.70% to 18.85%, recall rises from 64.61%
to 70.45%, and F1-score improves from 27.79% to 29.75%.
To further explore the reasons for their changes, we give TP,
FN, FP, and TN results of the DD method under different
thresholds, as shown in Table VII. The primary reason for
improvements is that lower α mines more dependencies among
entries or values. This enables the accurate identification of
a larger number of misconfigured parameters. Specifically,
the TP value for the DD method at a 10% threshold is
199, whereas at a 1% threshold, it increases to 217. This
improvement leads to a higher recall, increasing from 64.61%
to 70.45%. However, a lower α also increases the risk
of generating potentially invalid dependencies, resulting in
correctly configured parameters being mistakenly flagged as
misconfigurations. This is evident from the FP values: the FP
value for the DD method at a 10% threshold is 925, while
at a 1% threshold, it increases to 934. As a result, precision
shows only a modest improvement, from 17.70% to 18.85%.
For F1-score, lowering α enhances the effectiveness of the
DD method, reaching a value of 29.75%. However, it still
significantly lags behind the 79.75% achieved by SlsDetector.

In addition, we observe that a threshold of 5% for the
DD method yields superior results compared to 1%, 3%,
and 10%, suggesting that 5% is an optimal threshold for the
data-driven method in this scenario. In the threshold of 5%,
the FP-growth algorithm can effectively mine relationships
without losing valid dependencies or generating an excessive
number of invalid dependencies. However, even at 5%, the
effectiveness of the DD method remains significantly lower
than that of SlsDetector, with particularly low precision and
F1-score.

Ans. to RQ1: SlsDetector achieves a precision of
72.88%, recall of 88.18%, and F1-score of 79.75%,
surpassing data-driven methods across all metrics. It shows
significant improvements, with increases of 53.82 percent-
age points in precision, 17.40 percentage points in recall,
and 49.72 percentage points in F1-score. These results
suggest the high effectiveness of SlsDetector.

2) RQ2: Effectiveness of SlsDetector and Basic LLM-based
Method (BL method): We explore the effectiveness of Sls-
Detector in comparison to the BL method using the de-
fault ChatGPT-4o for detecting misconfigurations in serverless
applications. Table VIII presents their results, showing that
SlsDetector is more effective than the BL method. Specifi-
cally, SlsDetector achieves a precision of 72.88%, recall of
88.18%, and an F1-score of 79.75%. The BL method achieves
a precision of 51.65%, recall of 65.00%, and an F1-score
of 57.55%. SlsDetector outperforms the BL method across
all metrics, with increases in precision by 21.23 percentage
points, recall by 23.18 percentage points, and F1-score by
22.20 percentage points.

We investigate the reasons for the low effectiveness of the
BL method. Table IX shows TP, FN, FP, and TN values
obtained by the BL method across all configuration param-
eters. The results indicate that the BL method has a low TP
value of 200, successfully identifying only 64.94% of the 308
misconfigured parameters. In contrast, SlsDetector accurately
identifies an average of 272 (88.31%) misconfigured parame-
ters. To further explore the root causes of the BL method’s low
effectiveness, we examine the average number of misconfig-
ured parameters correctly identified across different categories.
As presented in Table X, the BL method identifies fewer
errors than SlsDetector in each category, including resource
types, entries, values, entry dependencies, and value depen-
dencies. Particularly, the BL method only detects 17.95% of
misconfigured entry dependencies, while SlsDetector detects



TABLE VI: RQ1: Results* of TP, FN, FP, and TN for DD method and SlsDetector.

Methods 308 misconfigured parameters 4,108 correct configuration parameters
TP FN FP TN

DD method (default) 218 (70.78%) 90 (29.22%) 926 (22.54%) 3,182 (77.46%)
SlsDetector (default) 272 (88.31%) ✓ 36 (11.69%) ✓ 102 (2.48%) ✓ 4,006 (97.52%) ✓
* Higher TP and TN are preferable, while lower FN and FP are desired.

TABLE VII: RQ1: Results of TP, FN, FP, and TN for DD method with different thresholds α.

Methods 308 misconfigured parameters 4,108 correct configuration parameters
TP FN FP TN

DD method with 10% threshold 199 109 925 3,183
DD method with 3% threshold 216 92 931 3,177
DD method with 1% threshold 217 91 934 3,174

TABLE VIII: RQ2: Results about SlsDetector and BL method using the default LLM (ChatGPT-4o).

Baseline precision recall F1-score Ours precision recall F1-score

BL method 51.65% 65.00% 57.55% SlsDetector
(vs BL method)

72.88%
(↑ 21.23%)

88.18%
(↑ 23.18%)

79.75%
(↑ 22.20%)

TABLE IX: RQ2: Results of TP, FN, FP, and TN for BL method and SlsDetector

Methods 308 misconfigured parameters 4,108 correct configuration parameters
TP FN FP TN

BL method (default) 200 (64.94%) 107 (34.74%) 188 (4.58%) 3,920 (95.42%)
SlsDetector (default) 272 (88.31%) ✓ 36 (11.69%) ✓ 102 (2.48%) ✓ 4,006 (97.52%) ✓
* Higher TP and TN are preferable, while lower FN and FP are desired.

97.44%. We check specific configurations and observe that
the BL method struggles to identify configuration entries
related to cloud service resources that should co-occur with the
event sources defined by serverless functions. For instance, the
configuration entry RestApiId under an event source of type
“Api” should be associated with configuration entries of the
“AWS::Serverless::Api” resource type. Overall, these results
indicate that relying solely on the raw capabilities of LLMs,
as done in the BL method, is inadequate for the complex
task of detecting misconfigurations in serverless applications.
A key factor contributing to the improved effectiveness of
SlsDetector is its ability to incorporate multi-dimensional
constraints for guiding LLM inferences. These constraints
are designed across various dimensions. By integrating them
into the analysis, SlsDetector enhances the decision-making
process, resulting in a more effective identification of miscon-
figurations.

Ans. to RQ2: SlsDetector outperforms the BL method
across all metrics using the default ChatGPT-4o, with in-
creases in precision by 21.23 percentage points, recall by
23.18 percentage points, and F1-score by 22.20 percent-
age points. This suggests that integrating multi-dimension
constraints is beneficial for handling misconfiguration de-
tection in serverless applications.

3) RQ3: Impact of Non-determinism on SlsDetector: We
explore how the non-determinism of LLMs impacts our evalu-
ation results. As detailed in Section VI-B5, each experiment is
repeated five times. We analyze their results shown in Table XI

to assess the reliability of our conclusions. Results show that
while the non-determinism of LLMs can influence evaluation
results, its effect is relatively minor. SlsDetector consistently
achieves high effectiveness across different trials. precision
ranges from 70.35% to 76.14%, recall varies between 84.74%
and 91.88%, and F1-score falls between 76.88% and 81.21%.
Even the lowest values, i.e., precision at 70.35%, recall at
84.74%, F1-score at 76.88%, are still higher than precision
(19.06%), recall (70.78%), and F1-score (30.03%) of the
data-driven approach. Furthermore, the lowest metric values
for SlsDetector remain approximately 20 percentage points
higher than the average results (i.e., precision at 51.65%,
recall at 65.00%, F1-score at 57.55%) of the basic LLM-
based method, as shown in Table VIII. This suggests that our
conclusions regarding SlsDetector are not affected by the non-
determinism of LLMs.

Ans. to RQ3: Our conclusions are not impacted by the
non-determinism of LLMs.

4) RQ4: Generalization Capability of SlsDetector: To ex-
plore the generalization of SlsDetector, we use two additional
models: the open-source Llama 3.1 (405B) Instruct Turbo
model and the proprietary Gemini 1.5 Pro model. SlsDetector
consistently achieves high effectiveness across all metrics,
with precision, recall, and F1-score values exceeding 70%,
regardless of the LLM utilized. Table XII shows their results.
Specifically, with the Llama 3.1 (405B) Instruct Turbo, Sls-
Detector achieves a precision of 70.27%, recall of 78.38%,
and an F1-score of 74.05%. With the Gemini 1.5 Pro model,
SlsDetector yields a precision of 71.72%, recall of 74.35%,



TABLE X: RQ2: The average number of misconfigured parameters correctly identified as misconfigured across different
categories.

Methods Misconfigured
resource types (90)

Misconfigured
entries (108)

Misconfigured
values (48)

Misconfigured entry
dependencies (39)

Misconfigured value
dependencies (23)

BL 62 (68.89%) 83 (76.85%) 39 (81.25%) 7 (17.95%) 12 (52.17%)
SlsDetector 84 (93.33%) ✓ 93 (86.11%) ✓ 43 (89.58%) ✓ 38 (97.44%) ✓ 19 (82.61%) ✓

TABLE XI: RQ3: Evaluation metrics results of SlsDetector across five repetitions.

Metrics Repetition 1 Repetition 2 Repetition 3 Repetition 4 Repetition 5 Mean
precision 71.83% 70.78% 70.35% 75.28% 76.14% 72.88%
recall 91.88% 91.23% 84.74% 86.04% 87.01% 88.18%
F1-score 80.63% 79.72% 76.88% 80.30% 81.21% 79.75%

TABLE XII: RQ4: Results about SlsDetector and BL method using various LLMs.

BL Method precision recall F1-score Ours precision recall F1-score

BL (GPT-4o) 51.65% 65.00% 57.55% SlsDetector
(GPT-4o) (vs BL)

72.88%
(↑ 21.23%)

88.18%
(↑ 23.18%)

79.75%
(↑ 22.20%)

BL (Llama) 48.88% 58.38% 53.09% SlsDetector
(Llama) (vs BL)

70.27%
(↑ 21.39%)

78.38%
(↑ 20.00%)

74.05%
(↑ 20.96%)

BL (Gemini) 44.41% 22.86% 30.11% SlsDetector
(Gemini) (vs BL)

71.72%
(↑ 27.31%)

74.35%
(↑ 51.49%)

72.93%
(↑ 42.82%)

and an F1-score of 72.93%. Among these, SlsDetector with
ChatGPT-4o offers the highest effectiveness, while SlsDetector
with the Gemini 1.5 Pro model shows comparatively lower
metrics but still achieves a high F1-score of 72.93%.

We also evaluate the BL method with different LLMs,
shown in Table XII. We observe considerable variability.
While the BL method achieves precision, recall, and F1-
score values approaching or exceeding 50% when using
ChatGPT-4o and Llama 3.1 (405B) Instruct Turbo, its effec-
tiveness drops substantially with the Gemini 1.5 Pro model,
where precision is 44.41%, recall is 22.86%, and F1-
score is 30.11%. This indicates a key limitation of the BL
method: its effectiveness is dependent on the specific LLM
used. In contrast, SlsDetector provides the ability to maintain
consistent effectiveness across different models, showing its
generalization.

We compare the effectiveness differences between SlsDe-
tector and the BL method when using the same LLM. As
discussed in RQ2, SlsDetector outperforms the BL method
with ChatGPT-4o by over 20 percentage points across all
evaluation metrics. From Table XII, when utilizing the Llama
3.1 (405B) Instruct Turbo model, SlsDetector also achieves
improvements of over 20 percentage points across all evalu-
ation metrics compared to the BL method. With the Gemini
1.5 Pro model, SlsDetector outperforms the BL method with
even greater gains, achieving 27.31 percentage points higher
in precision, 51.49 percentage points higher in recall, and
42.82 percentage points higher in F1-score. The effectiveness
gap is especially pronounced with Gemini 1.5 Pro, showing
an effectiveness difference of around 50% in recall and F1-
score, underscoring the effectiveness of our approach.

Ans. to RQ4: SlsDetector exhibits generalization capa-
bility, consistently achieving highly effective results across

various LLMs. In contrast, the effectiveness of the BL
method varies significantly depending on the chosen LLM.
When using the Gemini 1.5 Pro model, SlsDetector out-
performs the BL method by approximately 50 percentage
points in both recall and F1-score.

VII. CONCLUSION

This paper provides a comprehensive exploration of the
challenges and opportunities within serverless computing, of-
fering innovative solutions across four pivotal topics: cold
start performance, programming frameworks, resource man-
agement, and security. In this section, we summarize the
contributions with relevant background context for each area:

Cold Start Performance: Serverless computing excels in
providing on-demand, event-driven services, but cold start
latency remains a significant bottleneck, especially in high-
demand scenarios. Cold starts occur when serverless functions
are invoked after being idle, requiring container initialization
and resulting in delays. Traditional solutions, such as function
preloading or caching, often fail to balance performance and
resource efficiency. In this work, we delve into the mechanics
of cold starts, proposing advanced methods like container
prewarming, snapshot restoration, and optimized scheduling.
These approaches reduce latency while maintaining scalabil-
ity, significantly enhancing the responsiveness of serverless
platforms.

Programming Frameworks: The rise of serverless architec-
tures demands robust programming frameworks that simplify
the development and deployment of applications. Existing
frameworks like OpenFaaS and Knative provide essential
tools for orchestrating serverless functions, but their support
for emerging workloads, such as machine learning (ML)
and AI inference, remains limited. Our research evaluates
these frameworks strengths and limitations, focusing on their



usability, multi-cloud compatibility, and workload adaptabil-
ity. We propose improvements to enhance developer produc-
tivity, streamline function orchestration, and enable support
for advanced workflows, contributing to a more seamless
application-building experience.

Resource Management: Resource elasticity is a hallmark of
serverless computing, enabling systems to scale dynamically
in response to fluctuating workloads. However, achieving
this elasticity efficiently is a complex challenge. Ineffective
resource allocation can lead to underutilization or bottlenecks,
hampering system performance. Our work addresses these
issues by introducing techniques for dynamic provisioning,
workload prediction, and task scheduling. Additionally, we
analyze the trade-offs between cost and performance, propos-
ing tailored solutions for heterogeneous environments, thereby
ensuring optimal resource usage in various deployment scenar-
ios.

Security: The flexibility of serverless computing comes
with unique security challenges, including configuration mis-
management, vulnerabilities in third-party dependencies, and
risks of data breaches during function execution. These risks
are exacerbated by the ephemeral and distributed nature of
serverless environments. We identify these vulnerabilities and
present novel strategies to mitigate them, such as leveraging
machine learning for anomaly detection, implementing fine-
grained access control, and enhancing runtime monitoring.
These solutions strengthen the security posture of serverless
systems without compromising their inherent agility.

By addressing these key areas, this paper contributes to
overcoming critical barriers in serverless computing, paving
the way for its broader adoption in diverse and complex
application domains. Our findings provide actionable insights
to developers, architects, and researchers striving to optimize
serverless systems for the demands of modern computing.
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