
Heterogeneous System for LLM Inference
Acceleration

Yuhao LIU
School of Data Science

Chinese University of Hong Kong, Shenzhen
224040365@link.cuhk.edu.cn

Abstract—Nowadays, Large Language Models (LLMs) are
changing the world with their powerful capabilities on various
tasks In order to improve their effectiveness, they are becoming
larger and larger with massive parameters. On the other hand,
there are more and more diverse scenarios where there is no
available high-end computation resources(GPUs). Therefore, its
inference becomes an expensive problem. Traditionally, GPU is
assumed as the only appropriate device since most of computation
is the tensor multiplication GPU excels in, while CPU’s comput-
ing power is negligible. But for the inference, the performance
bottleneck of GPU is the slow data loading via PCIe bus. The
introduction of CPU computation with data held in CPU memory
would shorten the overall execution time if using a heterogeneous
system where CPU and GPU are running in parallel, which is
the potential to accelerate inference under the assistance of CPU.

This survey presents several existing methods which come up
with different scheduling strategies to utilize CPU-GPU systems,
and evaluate their performance. Finally, it offers several possible
directions for future exploration.

Index Terms—Heterogeneous system, LLM inference

I. INTRODUCTION

Large Language Models[1] (LLMs) are becoming more
and more popular among the world due to their versatile
capabilities and outstanding performance for diverse tasks.
OpenAI’s GPT [2], Google’s PaLM [3], Meta’s Llama [4]
are famous examples which are used at every field almost
everyday. Usually, the large models are trained at large and
GPU clusters with powerful computation for many days before
being deployed for miscellaneous inference applications [5,
6]. One of the important characters of LLMs’ inference is
response time. The reason for it is that, one model could
be used in an interactive scenario where it is serving a few
users. Therefore, the response latency — output tokens per
second for each user — is more important than the system’s
throughput. Recently, the large models have been having larger
and larger parameters (millions, billions, or even trillions),
which makes them more efficient for inference.

Based on the above description, while the LLMs are be-
coming more and more powerful, its inference is a challenging
and expensive problem because of the high computation and
extreme memory requirements and economic cost. Even the
amount of computation during inference is much less than that
of training, which allows us to deploy it in lower-end GPUs,
the demand for parameters and working set makes the GPU
memory insufficient to fit the model. For instance, the GPT-
175B requires 325GB of GPU memory to load model weights.

To fit this model into GPUs, we need at least five A100 (80GB)
GPUs and complicated computation strategies [7]. If there
are variable length KV cache (key-value cache) tensors, the
memory shortage issue becomes even worse. Another issue
is, serving a GPT-3 model for a production-scale application
could cost between $100,000 to $300,000 monthly.

On the other hand, it is not uncommon to find that the
large model inference is not only run on resource-rich devices,
but also on diverse system setting where there is no high-end
GPUs, like edge computing system and mobile devices. There-
fore, under these environments the memory constraint is much
severe. Thus, lowering LLM inference resource requirements
is a urgent problem and has caught a lot of attention.

Meanwhile, the CPU memory is much larger than GPU’s.
The figure for that can reach to hundreds of Gigabytes. So
placing a large number of inference’s data into CPU memory
is a common way. And transferring data among CPU and
GPU memory happens frequently. However, the data loading
and offloading relies on PCIe I/O bus. Compared with GPU’s
memory, the latter one’s bandwidth is much lower, with
16GB/s to 600GB/s. The data stall could arise from the low
PCIe bandwidth. The data used at different stages would take
a long time to load via PCIe bus, but GPU can consume it all
within a much shorter time period. This progress would not
stop until the whole inference is completed. As a result, GPU
is running at a fraction of its full speed due to the PCIe’s low
bandwidth. Thus this bottleneck prevents the deployment of
LLMs on diverse environments, affecting users’ experience.

Fig. 1. The GPU-CPU Architecture.

Surprisingly, the idea of utilizing CPU and GPU simultane-
ously to perform inference and assist each other is emerging.
Although CPU does not have the strong computation power
as GPU, facing the memory-constrained GPU waiting for
new data, CPU can share portion of computation tasks since

1

the bandwidth of L3 cache is much higher than PCIe bus
(approximately 160Gb/s, as shown in Fig. 1). It is possible
to assign computation onto both GPU and CPU, thus it can
alleviate the PCIe bus overhead. This survey would review
some exiting models and methods to accelerate LLMs’ in-
ference, and present some novel methods utilizing CPU-GPU
system and evaluate corresponding performance. In the end,
there would be some considerations for future research.

II. RELATED WORK

Recent advancements in LLMs inference are showing the
growing importance of optimizing both system and algorithm
aspects of LLM workloads.

Several specialized systems for LLM inference have
emerged in recent years, such as FasterTransformer[8],
Orca[9], LightSeq[10], TurboTransformers[11], DeepSpeed
Inference[12], and Hugging Face Accelerate[13], among oth-
ers. These systems are mainly focused on latency-oriented
scenarios with high-end accelerators, which limits their use
in throughput-oriented inference on more easily accessible,
commodity hardware.

One of the critical techniques to enable LLM inference on
commodity hardware is offloading, which involves shifting
parts of the computation to other devices like CPUs or dis-
tributed systems. However, among the existing systems, only
DeepSpeed Zero-Inference and Hugging Face Accelerate sup-
port offloading. Many of the current systems rely on offloading
techniques adapted from training systems (e.g., DeepSpeed
Zero etc.), but they overlook the unique computational prop-
erties of generative inference, particularly in how to optimize
the scheduling of I/O traffic. The Petals[14] framework takes
a different approach by exploring collaborative computing,
which aims to enable LLM inference on more accessible
hardware.

In terms of algorithmic optimizations, sparsification and
quantization have been widely adopted to accelerate LLM in-
ference and reduce memory usage. Works on sparsification[15]
and quantization[16] show that weights and activations can be
compressed effectively, often down to 3-8 bits for weights
and activations. In FlexGen[17], the authors propose a novel
approach by compressing both weights and the KV cache to 4
bits, which they combine with offloading techniques to further
optimize inference.

There is also several work on memory optimizations and
offloading in the broader context of training [18] and linear
algebra optimizations [19]. These works provide a founda-
tion for optimizing memory usage and computation during
the inference process, contributing to the efficiency of LLM
systems. And vLLM [20] present PagedAttention mechanism
to addresses memory allocation challenges in serving LLMs by
achieving near-zero waste in KV cache memory. It uses block-
level memory management and preemptive request scheduling,
both co-designed with PagedAttention, enabling more efficient
use of memory resources.

III. PRELIMINARIES
This section would describe the concrete LLM inference

problem and basic background.

A. LLM Structure

The typical LLM structure is shown in Fig. 2 [21], where
the model has 4 layers and generate 3 tokens per prompt.

Fig. 2. Computational graph of LLM inference

In the LLM structure, each square represents the compu-
tation of a prompt for a layer. For the computation of the
different prompts, the squares in the same column would use
the same layer weights. During the inference, the model would
produce answer for each prompt token by token. When a
token’s computation is completed, this output token would
be fed to the first layer so that produce the next token. This
process would be repeated until the model generates a terminal
token, which shows all token computation is over, or the token
length reaches the maximum limitation.

Here are computation rules among the whole process to
obey:

• Sequential computation: A square can be computed only
if all square units to its left have been completed

• All inputs to be loaded: To compute a square, all data
needed — weights, activations, cache — must be loaded
to the same device.

• KV cache lasting time: A square would generate two
outputs after its computation: activations and KV cache.
The activations should be stored until its right square
unit is computed. The KV cache must be kept until we
complete the last square’s computation on the same row.

• Memory capacity: During inference, the size of active
tensor would be limited to the device memory.

B. Problem Formulation

A traditional system has a three-level memory hierarchy
formed by GPU, CPU, and disk. The GPU and CPU are
capable of performing computations, and the disk is used to
store large number of data. GPU has the smallest but fastest
memory, while the disk has the largest but slowest memory.
When a LLM cannot fully fit into the GPU’s memory, it
must be offloaded to secondary storage, and computations are
performed in segments by partially loading the LLM.

We can model the generative inference with offloading as a
graph traversal problem. For example, Fig. 3 shows two kinds
of path to perform the computation. Fig. 3 (a) schedule all
computation row by row, while this way cannot reuse the same

2

Fig. 3. Two computation schemes. The red arrows denote the computation
order.

data in the same layer. Therefore it would cost a lot of time to
re-load weights. Fig. 3 (b) would perform all computation for
the same layer before it moves to the next layer’s computation.
As a result it can reuse the same data needed for computation
and save loading time, which is called Zig-zag block schedule.
Thus, our goal is to find a valid path that minimizes the total
execution time, which includes the computation and cost of
moving tensor among different devices via I/O.

C. Inference Stages

The generation process consists of two phases: prefilling and
decoding, as illustrated in Fig. 4. In the prefilling phase, the
user’s input prompt is provided to the model, and the model
would initialize the KV cache for each transformer layer. The
KV cache plays a crucial role in the subsequent decoding
phase. During decoding, the model utilizes the KV cache to
generate output tokens in a sequential manner. Once a token
is produced, it is reintroduced into the model to update the
KV cache. The updated cache is then used to generate the
following token.

Fig. 4. The LLM inference process

Fig. 4 provides additional insight into the decoding stage
of a typical LLM inference process. The architecture of such
models is generally composed of multiple stages, starting with
an input embedding layer, followed by several transformer
layers, and concluding with an output embedding layer.

The decoding process begins with the input embedding
layer, which converts the raw input tokens into dense vectors.
This transformation is achieved by row indexing in a weight
matrix that captures the semantic representation of the input
features. The embedding layer helps to map the discrete to-
kens into continuous representations, which are more suitable
for processing by the subsequent layers. These embeddings,
containing contextual information, serve as the foundation for
the model’s understanding of the input sequence.

Following the embedding layer, the model enters the core
of its architecture: the transformer layers. Each transformer
layer consists of several subcomponents, including multi-head
attention and feedforward networks. These subcomponents
enable the model to capture intricate dependencies within
the input sequence, facilitating the generation of coherent
and contextually relevant output tokens. At each transformer
layer, multiple matrix multiplications are performed, which
contribute significantly to the computational cost and latency
during decoding. As the number of transformer layers in-
creases, the time complexity of these operations grows, making
them the primary bottleneck in the overall decoding stage.

After passing through the transformer layers, the output is
processed by the final output embedding layer, which maps
the hidden representations back into the vocabulary space.
The generated tokens are then used as the model’s output.
Crucially, the model also maintains a KV cache during the
decoding stage. This cache stores the intermediate results from
previous steps, which helps the model efficiently generate
the next token by using these cached values rather than
recalculating them. This caching mechanism plays a crucial
role in optimizing the inference process, especially when
dealing with large-scale models.

Transformer layer is a time-consuming stage due to the
massive matrix multiplication, and it dominates the latency
of decoding stage. Therefore it is necessary to go deep into it.
Fig. 5 shows the basic data flow in a transformer layer. There
are seven operations in each layer: Q, K, V, SCORE, OUT,
MLP1, and MLP2. Table I shows more details on description
and data dependency.

Fig. 5. Transformer layer

D. Data Transfer Trick

Because it is unavoidable to move data among devices, the
mechanism of transferring is crucial. Here would review tow
common ways, and Fig. 6 shows them:

3

TABLE I
OPERATIONS IN TRANSFORMER LAYER.

Operation Description Dependency
Q q = Xi ×W i

Q -
K k = Xi ×W i

K -
V v = Xi ×W i

V -

SCORE score = Attention(q,
APPEND(K,k), APPEND(V ,v)) Q,K,V

OUT O = score×W i
O SCORE

MLP1 A = O ×W i
MLP1 OUT

MLP2 Xi+1 = A×W i
MLP2 MLP1

• The GPU Direct Memory Access (DMA) engine is a
typically efficient way to transfers large amounts of data
between CPU memory and GPU memory. And it is non-
preemptive, meaning that subsequent DMA transfers are
blocked until all earlier-issued transfers are completed.
This non-preemptive behavior can lead to unpredictable
delays in the transfer of intermediate results. Some back-
ground transfers can block the required DMA channels,
thus introducing latency in the execution pipeline.

• Zero-Copy mechanism. This mechanism enables direct
read/write operations between the GPU cores and page-
locked CPU memory over the PCIe bus, bypassing the
need for intermediate memory copies. Limited by PCIe
bandwidth, this approach is suitable to moving smaller
scale of data. By using Zero-Copy, the intermediate result
transfers would not be blocked by ongoing background
DMA operations.

Fig. 6. GPU DMA and Zero-Copy

E. Potential of Leveraging CPU

Although the data loading does cost significantly much
time than the GPU computing time, we can find a substantial
reduction in data size after completing each operation. For
instance, we can analyze the space and time breakdown of
each operation as shown in Fig. 7 (a). An obvious observation
is the size of each operation’s input and output tensors is
much smaller than that of weights and KV cache involved
in the computation. If some operations can be offloaded to
the host CPU, we can save the significant amount of time
by transferring only a small amount of intermediate results
to CPU instead of large data (weights and KV cache) to the
GPU, which can reduce the overall execution time.

F. Judiciously Using GPU Memory

Memory shortage should not be overlooked, which limits
the smooth GPU computation. On the other hand, the size of
current layer’s active tensor and the space allocated for the
next layer (these two pieces of space is called working set) is
much smaller than the whole GPU memory. Fig. 7 (b) shows
the periodic change of active tensor in a NVIDIA A10G card
with 24GB memory as the different operation computing. We
can find a sudden drop down of the active tensor size. It is
because the computation of current layer has been completed,
and its weights and KV cache can be freed. This fact shows
a considerable amount of memory space we can utilize.

Fig. 7. Transformer layer breakdown(prompt length: 896, decode length: 128)

IV. PROPOSED METHODS

The efficient computation among all layers concerns two
parts:

• Scheduling. Usually a set of rules or policies about
the decisions on computation execution or corresponding
data transferring among different devices consists of
scheduling. It involves when and which task (computation
and data moving) should be assigned to which device.
The design of the scheduling may combine math models
and optimization algorithm to implement a scheduler to
manage task scheduling. Moreover, during the progress
of inference, we can perform multiple tasks in parallel.
For instance, CPU could make Q operation and GPU can
make K operation, while there is background data trans-
ferring onto GPU or CPU. Therefore, the overlapping is
an critical part of scheduling.

• Tensor placement. It concerns all data storage manage-
ment. The tensor involved includes weights, KV cache
and activations (intermediate result). The strategies of
placing data has significant impact on the performance,
since weights and KV cache are substantial, which not
allows massive placement onto GPU memory. However,
we also need to utilize high-level memory to accelerate
data access. Thus the balance between the loading and
offloading is crucial.

In this context, this report would introduce informed de-
scription of three methods—FlexGen, Llama.cpp, and twin-
Pilots. Firstly, here is a briefly explanation on their core
concepts. Then more details on each part involved would be
represented.

4

FlexGen [17], a method designed to optimize the memory
usage and computation efficiency of transformer models, is
a framework for running large models without exceeding
memory limits.

Llama.cpp [4] is designed to run large models such as
LLaMA models in environments with constrained resources
like CPU or lower-end GPUs. And Llama.cpp is a lightweight
inference framework optimized for efficiency.

TwinPilots [21], which is a parallel inference technique
designed to improve memory management and speed for
large-scale language models, leverages parallelism for efficient
deployment in multi-GPU environments.

A. Scheduler

The FlexGen method is a GPU-centric pipeline approach
where the scheduler focuses on optimizing the inference
process by using a cost model. This cost model predicts
the latency of transformer layer inference, including both
computation and data transfer times. FlexGen aims to find
the best balance between computation and data transfer by
employing linear programming (as formula (1) shown). The
primary objectives of FlexGen scheduling include:

min
p

T

bls

s.t. gpu peak memory < gpu mem capacity
cpu peak memory < cpu mem capacity
disk peak memory < disk mem capacity
wg + wc+ wd = 1

cg + cc+ cd = 1

hg + hc+ hd = 1

(1)

• Latency Prediction: Estimating the time it will take for
each layer’s inference, considering both the GPU com-
putation and the necessary data transfers.

• Data Placement Optimization: The scheduler tries to
determine the best way to allocate weights, activations,
and KV cache across CPU and GPU memory. It aims to
minimize memory bottlenecks and maximize the effective
use of GPU resources.

The Llama.cpp framework uses a static layer partitioning
strategy for scheduling. Fig. 8 represents a simple model for
Llama.cpp. In this method, the first few contiguous layers
of the model are executed on the CPU, while the remaining
layers are handled by the GPU. This approach simplifies the
scheduling problem by reducing the complexity of dynamic
decisions during runtime, but it may not fully optimize re-
source utilization in all cases.

• Static Partitioning: By predefining which layers should
run on the CPU and which should run on the GPU,
Llama.cpp avoids the overhead of dynamic scheduling
but may not be as efficient in utilizing both resources.

• Memory Management: This method also ensures that the
initial layers, which typically require less memory and

Fig. 8. Data placement of Llama.cpp

computation, are processed on the CPU, leaving more
demanding layers to be handled by the GPU.

The TwinPilots approach introduces a more sophisticated,
online scheduler that makes real-time decisions based on the
current state of the system. Fig. 9 demonstrates the overview
of TwinPilots, whose scheduler consists of two primary com-
ponents:

• Statistics Tracker: Collects real-time information about
the operation execution times on both CPU and GPU.
This includes the time it takes to perform computations on
the CPU and the time required to load data onto the GPU.
By tracking these statistics, the scheduler can dynamically
adjust its decisions based on workload characteristics.

• Planner: The planner uses the information collected by
the statistics tracker to perform load balancing across the
CPU and GPU. It aims to allocate tasks in a way that
minimizes the overall execution time by ensuring neither
CPU nor GPU is overloaded. The load-balancing problem
is modeled as a linear programming (LP) problem, where
the objective is to minimize the maximum load on either
the CPU or GPU. This is achieved by solving for the
optimal allocation of tasks between the two processors.

Fig. 9. TwinPilots overview

The load balancing strategy in TwinPilots is based on min-
imizing the imbalance between the CPU and GPU workloads.

5

The problem is mathematically formulated as:

• Scpu =
∑

i Ncpui · devicei: The total load on the CPU,
where Ncpui is the number of operations assigned to CPU
device i.

• Sgpu =
∑

i Ngpui
· (1 − devicei): The total load on

the GPU, where Ngpui
represents operations assigned to

GPU device i.

By solving for the optimal allocation, the goal is to min-
imize the value of λ = max{Scpu, Sgpu}, which represents
the maximum load across the system. Although solving this
load-balancing problem is NP-complete, the small number of
operations involved makes it computationally feasible.

B. Weight placement

Weight placement is a critical component of optimizing
LLM inference, especially when the model’s parameters ex-
ceed the GPU’s memory capacity. Proper weight placement
strategies help minimize memory transfer overhead, reducing
latency and improving throughput.

In FlexGen, weight placement is managed at the layer
granularity. The method pins parts of the weights for each
layer to the GPU memory, ensuring that frequently accessed
weights are immediately available to the GPU during infer-
ence. This approach minimizes the need for frequent data
transfer between CPU and GPU memory, which can introduce
significant delays due to bandwidth limitations.

• Layer Granularity: Only certain parts of each layer’s
weights are pinned to GPU memory. This allows for
a more flexible and efficient use of the available GPU
memory.

• Zig-Zag Strategy: A technique called zig-zag is used
to reuse weights within the same column across layers,
further optimizing memory usage. This strategy reduces
the memory footprint by ensuring that weights are reused
efficiently without redundant transfers.

TwinPilots introduces a more dynamic approach to weight
placement by using both host memory and GPU memory. The
strategy relies on sparse memory access patterns to improve
memory efficiency (as shown in Fig. 10).

• Embedding Layers: The embedding layers are assigned
to host memory. These layers typically involve sparse
memory access patterns, meaning that they don’t require
the full weight matrix to be loaded at once. Instead, a
row-indexing technique is employed, which allows only
the necessary rows to be accessed during each operation.
This reduces the amount of memory needed on the GPU.

• Transformer Layers: For transformer layers, pinned
weights are placed in GPU memory. The first few trans-
former layers, which are computation-heavy, are placed
in the GPU for fast execution. However, as the model
scales, the un-pinned weights are dynamically loaded
into host memory, allowing the GPU to focus on active
computation while the CPU manages the larger portions
of the model.

These strategies ensure that the system can handle very
large models by effectively distributing the weight matrices
across memory spaces, thereby reducing memory contention
and increasing the processing efficiency of both the CPU and
GPU.

Fig. 10. Data placement of TwinPilots

C. KV Cache Placement

The KV cache is a crucial component in LLMs, especially
in the decoding stage. It stores key-value pairs used during
attention calculations, and its placement is critical for ensuring
low-latency and high-throughput inference.

FlexGen employs a similar strategy for KV cache placement
as it does for weight placement, managing cache at the tensor
granularity. The strategy pins portions of the KV cache ele-
ments to the GPU, ensuring that the most frequently accessed
parts of the cache are readily available to the GPU during
decoding. This minimizes the need for constant memory
transfers between CPU and GPU.

This approach allows for more fine-grained control (tensor
granularity-based) over how the KV cache is placed, with
different parts of the cache being pinned to GPU memory
as needed during the inference process. Furthermore, FlexGen
uses a policy search algorithm to determine the best placement
for the KV cache, balancing the load between the CPU and
GPU to avoid memory bottlenecks and latency issues.

In Llama.cpp, the KV cache is handled by pre-allocating
memory to accommodate the maximum sequence length. This
ensures that there is sufficient space to store the entire KV
cache, but it may not always be the most efficient in terms of
memory usage, especially for shorter sequences.

Llama.cpp reserves a fixed amount of memory for the KV
cache based on the maximum sequence length, which sim-
plifies memory management but may lead to wasted memory
in scenarios where the sequence length is much shorter than
the maximum capacity. However, in some cases, Llama.cpp
dynamically adjusts the size of the KV cache, growing it
as needed based on the current decoding requirements. This
reduces wasted memory but adds some complexity to the cache
management.

Dynamically allocating is an efficient and sophisticated
method to manage data. vLLM [20] is a wonderful example.
It takes an excellent approach to KV cache management by
dynamically allocating and managing the KV cache. Fig.
11 shows an example. This dynamic allocation is done at
the block granularity, similar to how memory management
works in operating systems using virtual memory pages. The

6

TABLE II
HARDWARE SETTINGS.

CPU AMD EPYC 7R32 2.8GHz, 24 cores [1]
SIMD AVX256 [10]
Memory 256GB DDR4
GPU 4× NVIDIA A10G 24G GDDR6
Interconnect PCIe 3.0×16

KV cache is divided into blocks, and each block is man-
aged independently. This allows for more efficient memory
allocation and deallocation, reducing the chance of memory
fragmentation.

Fig. 11. Block table translation in vLLM

Similar to vLLM, TwinPilots introduces the idea of dy-
namically allocating and managing the KV cache with block
granularity. The dynamic allocation of the KV cache enables
better memory utilization during inference, as the system can
adapt to varying memory needs depending on the current
sequence length and workload. TwinPilots uses FIFO buffers
to store partial KV cache blocks on the GPU. This helps to
maintain a steady flow of data between the CPU and GPU,
preventing the system from being bottlenecked by memory
transfer delays. The system can allocate additional memory for
the KV cache as required, based on the current sequence length
and decoding stage. This dynamic allocation ensures that
memory is used efficiently, particularly for long sequences.

V. EVALUATION

This section evaluates the above three methods’ perfor-
mance, and presents corresponding analysis for experiment
results.

The evaluation is conducted on a system with the following
configurations, and hardware setting is shown in table II:

• CPU: PyTorch 2.3 with Intel-MKL and OpenMP for
parallelism.

• GPU: Linux 6.5 with CUDA 12.1.
• LLM Models: The models used for evaluation include

OPT-30B, OPT-66B, and Llama-30B, all represented in
FP16 format, with varying batch sizes and sequence
lengths.

This setup ensures that the three methods can be fairly com-
pared on the same hardware and software platform, simulating
real-world deployment conditions for large-scale LLMs.

A. Decoding Throughput
The decoding throughput is a critical metric for evaluating

inference performance. It is calculated as the ratio of the
decoding length to the decoding time, which reflects how
quickly the system can process a sequence.

FlexGen operates with a pipeline inference across three
consecutive transformer layers. This design allows the model
to process multiple layers in parallel, reducing the overall
inference time. However, its throughput performance heavily
depends on the efficiency of the pipeline and the memory
bandwidth between CPU and GPU.

Llama.cpp exhibits high throughput for smaller batch sizes
and shorter sequence lengths, as it minimizes the communica-
tion overhead between CPU and GPU. However, as the batch
size and sequence length increase, Llama.cpp’s throughput
drops sharply. This is due to the increasing CPU bottleneck
and insufficient GPU memory, which becomes strained as
larger models and batches are used.

TwinPilots consistently outperforms FlexGen in terms of
throughput. This improvement is attributed to higher CPU
utilization, which reduces bottlenecks caused by GPU under-
utilization. Despite the unchanged GPU execution time, the
additional CPU load results in higher throughput due to better
load distribution and efficient resource utilization.

Fig. 12. Decoding throughput on various LLMs

Fig. 12 shows the results, where TwinPilots provides a sig-
nificant improvement in throughput over FlexGen due to better
load distribution between CPU and GPU. While FlexGen relies
heavily on GPU-centric pipelining, TwinPilots leverages both
CPU and GPU in parallel, allowing for better overall system
utilization.

Llama.cpp excels in throughput for smaller batches and
sequence lengths. Its optimized CPU-GPU communication
allows it to outperform other methods in scenarios with lower
computational demand. However, TwinPilots consistently de-
livers better results across a range of batch sizes and sequence
lengths. While Llama.cpp’s throughput decreases significantly
with larger batches (due to CPU bottlenecks), TwinPilots
maintains its performance due to dynamic scheduling and
efficient load balancing.

Llama.cpp experiences significant increases in response
latency when batch sizes exceed four (as shown in Fig.

7

13). For very large batch sizes, the latency can extend to
several hours, as the system struggles to manage both CPU
and GPU resources effectively. While TwinPilots consistently
achieves much lower response latency across all batch sizes.
Its ability to dynamically allocate resources between CPU and
GPU results in more efficient inference processing and faster
response times, even as batch sizes grow.

Fig. 13. First token latency comparison betweenLlama.cpp and TwinPilots

B. CPU-GPU Load Balance

The evaluation also measures the CPU-GPU load balance,
which reflects how evenly tasks are distributed between the
CPU and GPU. A well-balanced load distribution leads to
more efficient utilization of the system’s resources.

Fig. 14. GPU-CPU load (prompt length = 896, decode length = 128)

The result for loading balance has been demonstrated in
Fig. 14. It is obvious that TwinPilots achieves a balanced load
distribution by dynamically adjusting the allocation of tasks
based on real-time statistics. The system adjusts the workload
between the CPU and GPU so that neither component is
underutilized or overwhelmed.

C. Multiple GPU Evaluation

The evaluation also includes tests on multiple GPUs, specif-
ically Llama-70B with both pipeline model parallelism and
tensor model parallelism configurations. The primary focus is
on scalability and how well the methods can handle increasing
data loads across multiple GPUs.

For FlexGen each GPU handles several consecutive trans-
former layers. This method has limited scalability, as each
GPU is assigned a fixed portion of the model. While it works
well with multiple GPUs, it faces challenges in handling very
large models efficiently due to the fixed layer assignments.

TABLE III
COMPARISON OFUSER RESPONSE LATENCY FOR MULTIPLE GPUS (IN

SECONDS). BATCH SIZE=4.

#GPUs FlexGen TwinPilots-PP TwinPilots-TP
1 11.799 5.435 5.952
2 8.154 5.287 3.454
3 7.290 4.386 2.429
4 7.185 3.566 2.033

TwinPilots uses pipeline model parallelism (PP) and tensor
model parallelism (TP). In PP, each GPU processes a portion
of the model’s layers, while in TP, tensors are partitioned along
the row or column dimension, enabling finer granularity. This
dynamic approach allows for better scalability and flexibility,
reducing idle times and improving load balancing across
GPUs.

Fig. 15. Throughput for Multi-GPU on Llama-70B.

From Fig. 15 we can find, TwinPilots-PP offers higher
throughput and better scalability compared to FlexGen. This
is because it transfers less data between GPUs, thanks to the
efficient partitioning and memory management.

What’s more, TwinPilots-TP demonstrates lower response
latency (Table III) due to finer-grained tensor partitioning,
which reduces idle time and ensures faster processing of each
batch.

VI. CONCLUSION

From the experimental results, we can emphasize the im-
portance of balancing heterogeneous systems for efficient
LLM inference. The key takeaway is that leveraging both
GPU and CPU collaboratively enhances performance, partic-
ularly for large models. On the other hand, the GPU-CPU
communication bandwidth remains a significant bottleneck.
A new architecture with shared memory management and
novel data transfer methods is proposed to address this issue.
We have witnessed the potential of the TwinPilots approach,
which optimizes resource utilization, minimizes latency, and
ensures scalability, making it a promising solution for high-
performance LLM inference.

REFERENCES

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017.
Attention is All You Need. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (Long Beach,
California, USA) (NIPS’17). Curran Associates Inc., Red Hook, NY,
USA, 6000–6010.

[2] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. 2019. Language models are unsupervised multitask
learners. OpenAI blog 1, 8 (2019), 9.

8

[3] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma,
Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal ofMachine Learning Research 24, 240
(2023), 1–113.

[4] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet,
MarieAnne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman
Goyal, Eric Hambro, Faisal Azhar, et al. 2023. Llama: Open and efficient
foundation language models. arXiv preprint arXiv:2302.13971 (2023).

[5] Machine Learning Compilation. 2024. MLC LLM. https://llm.mlc.ai/
[6] BentoML. 2024. OpenLLM. https://github.com/bentoml/OpenLLM
[7] Pope, R., Douglas, S., Chowdhery, A., Devlin, J., Bradbury, J., Levskaya,

A., Heek, J., Xiao, K., Agrawal, S., and Dean, J. Efficiently scaling
transformer inference. arXiv preprint arXiv:2211.05102, 2022

[8] NVIDIA. Fastertransformer. https://github.com/
NVIDIA/FasterTransformer, 2022.

[9] Yu, G.-I., Jeong, J. S., Kim, G.-W., Kim, S., and Chun, B.G. Orca: A
distributed serving system for TransformerBased generative models. In
16th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pp. 521–538, 2022.

[10] Wang, X., Xiong, Y., Wei, Y., Wang, M., and Li, L. Lightseq: A high
performance inference library for transformers. In Proceedings ofthe
2021 Conference ofthe North American Chapter ofthe Association for
Computational Linguistics: Human Language Technologies: Industry
Papers, pp. 113–120, 2021.

[11] Fang, J., Yu, Y., Zhao, C., and Zhou, J. Turbotransformers: an efficient
gpu serving system for transformer models. In Proceedings ofthe 26th
ACM SIGPLAN Symposium on Principles and Practice ofParallel
Programming, pp. 389–402, 2021.

[12] Aminabadi, R. Y., Rajbhandari, S., Awan, A. A., Li, C., Li, D., Zheng, E.,
Ruwase, O., Smith, S., Zhang, M., Rasley, J., et al. Deepspeed-inference:
Enabling efficient inference of transformer models at unprecedented
scale. In 2022 SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pp. 646–660. IEEE
Computer Society, 2022.

[13] HuggingFace. Hugging face accelerate.
https://huggingface.co/docs/accelerate/index, 2022.

[14] Borzunov, A., Baranchuk, D., Dettmers, T., Ryabinin, M., Belkada,
Y., Chumachenko, A., Samygin, P., and Raffel, C. Petals: Collab-
orative inference and fine-tuning of large models. arXiv preprint
arXiv:2209.01188, 2022.

[15] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., and Peste, A. Sparsity
in deep learning: Pruning and growth for efficient inference and training
in neural networks. J. Mach. Learn. Res., 22(241):1–124, 2021.

[16] Kwon, S. J., Kim, J., Bae, J., Yoo, K. M., Kim, J.-H., Park, B.,
Kim, B., Ha, J.-W., Sung, N., and Lee, D. Alphatuning: Quantization-
aware parameter-efficient adaptation of large-scale pre-trained language
models. arXiv preprint arXiv:2210.03858, 2022.

[17] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin,
Beidi Chen, Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang.
2023. FlexGen: High-Throughput Generative Inference of Large Lan-
guageModels with a Single GPU. In Proceedings ofthe 40th International
Conference on Machine Learning (Honolulu, Hawaii, USA) (ICML’23).
JMLR.org, Article 1288, 23 pages.

[18] Huang, C.-C., Jin, G., and Li, J. Swapadvisor: Pushing deep learning
beyond the gpu memory limit via smart swapping. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 1341–1355, 2020.

[19] Jia-Wei, H. and Kung, H.-T. I/o complexity: The red-blue pebble game.
In Proceedings of the thirteenth annual ACM symposium on Theory
ofcomputing, pp. 326–333, 1981.

[20] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion
Stoica. 2023. Efficient Memory Management for Large Language Model
Serving with PagedAttention. arXiv:cs.LG/2309.06180

[21] Aminabadi, R. Y., Rajbhandari, S., Awan, A. A., Li, C., Li, D., Zheng, E.,
Ruwase, O., Smith, S., Zhang, M., Rasley, J., et al. Deepspeed-inference:
Enabling efficient inference of transformer models at unprecedented
scale. In 2022 SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pp. 646–660. IEEE
Computer Society, 2022.

[22] Chengye Yu, Tianyu Wang, Zili Shao, Linjie Zhu, Xu Zhou, and Song
Jiang. 2024. TwinPilots: A New Computing Paradigm for GPU-CPU
Parallel LLM Inference. In Proceedings of the 17th ACM International

Systems and Storage Conference (SYSTOR ’24). Association for Com-
puting Machinery, New York, NY, USA, 91–103.

9

