
Imitation Attacks: Extracting and Exploiting Model
Capabilities

Ziwen Cai
dept. School of Data Science

Chinese University of Hong Kong, Shenzhen
Shenzhen, China

ziwencai@link.cuhk.edu.cn

Abstract—Recent advances in large language models (LLMs)
have significantly expanded their applications in software engi-
neering and other domains. However, training high-performing
LLMs demands substantial resources, including extensive data
collection and annotation efforts, access to proprietary or par-
tially open datasets, and costly GPU clusters. The intellectual
property value of commercial LLMs makes them attractive
targets for imitation attacks, wherein adversaries aim to extract
functionality from black-box models and replicate their capabil-
ities. Despite the high costs associated with creating imitation
models of comparable scale, the risks posed by such attacks are
growing.
This paper investigates the methodologies and evaluations asso-
ciated with model extraction attacks on black-box LLMs, with
a specific focus on architectures like BERT. We analyze the
techniques used to extract and replicate functionality, as well as
the vulnerabilities that facilitate such attacks. Additionally, we
explore potential countermeasures, including the use of lexical
watermarks and other defense mechanisms to mitigate these
risks. By examining both offensive and defensive strategies, this
study aims to provide a comprehensive understanding of the
evolving threat landscape surrounding LLMs and offers insights
into developing more robust defenses for safeguarding AI models
in practice.

Index Terms—Large Language Models, Imitation Attacks,
Security

I. INTRODUCTION

Recent progress in the development of large language mod-
els (LLMs) has greatly accelerated their adoption in software
engineering [1]. Prominent companies, such as OpenAI, have
introduced LLM APIs to enhance the accuracy and efficiency
of writing code and documentation [2]. These models are often
trained on large-scale code corpora paired with related natural
language comments, enabling them to improve programming
productivity. Modern LLMs are positioned as “AI program-
ming assistants,” capable of handling a wide range of code-
related tasks. These include interactive tasks, such as assisting
developers in writing automated scripts [3] or providing code
reviews [4], [5], and complex reasoning tasks, like identifying
vulnerabilities [6], [7]. Moreover, advanced LLMs like Chat-
GPT [8] feature interactive capabilities that allow them to learn
from human interactions and refine their performance across
conversational turns. This makes them particularly effective at
diagnosing and fixing bugs that traditional tools might miss.

Despite the widespread popularity of LLM APIs, it is well-
recognized that training high-performance LLMs demands
extensive human effort for data collection and annotation, as
well as substantial GPU resources [9], [10]. Consequently,
although some LLM architectures are publicly accessible,
the associated model weights and training data are typically
considered proprietary intellectual property (IP). The IP behind
these models is highly valuable, as service providers deploy
them to support a vast user base. However, recent studies
have demonstrated that both computer vision (CV) and natural
language processing (NLP) models are vulnerable to imitation
attacks, also known as model extraction attacks. In such
attacks, adversaries craft targeted queries to a victim model,
collect its outputs, and use the data to train a local imitation
model that closely replicates the behavior of the target model.

Launching an imitation attack on commercial LLMs may
appear infeasible due to the high costs associated with prepar-
ing an imitation model of comparable size and parameters.
However, developers typically require only specific subsets of
an LLM’s capabilities rather than its full range of functional-
ities. For example, tasks such as code translation or summa-
rization are often the primary focus in practical scenarios.

This observation opens up a new and practical direction:
extracting specialized capabilities from commercial, black-box
LLMs using medium-sized backbone models. This approach
aims to demonstrate the feasibility of isolating and replicating
specific code-related abilities, such as “code translation.” Code
translation, which allows for converting source code between
different programming languages, is a highly sought-after
feature in the software development industry and has been
widely integrated into commercial products [11], [12].

The rapid and widespread deployment of deep learn-
ing models across various industries and applications has
prompted significant concerns about their potential misuse,
even when accessed in a restricted manner. This has led
researchers and practitioners to explore a pressing question: is
it possible for an adversary to exploit a deep learning model
when they have access only to its black-box interface? In such
scenarios, the attacker can observe and interact with the model
solely through input-output pairs, without any direct access to
its internal workings, such as its architecture, parameters, or
training data.

This concern has given rise to a range of investigative efforts
focusing on what are known as “inference attacks.” These
attacks aim to extract valuable information or gain insights
into various properties of the model by analyzing its behavior.
For instance, attackers might attempt to deduce details about
the data used to train the model or uncover the specific design
of its architecture. Such capabilities pose significant risks, as
they could enable adversaries to replicate or undermine the
proprietary models, compromising intellectual property and
potentially breaching privacy.

By scrutinizing how models respond to carefully crafted
queries, researchers have shown that even limited black-
box access can provide adversaries with substantial leverage.
This line of inquiry underscores the critical need for robust
defenses and secure deployment strategies to safeguard deep
learning systems against these evolving threats. By leveraging
medium-sized backbone models, adversaries can extract these
specialized capabilities from black-box LLMs more efficiently.
Such imitation attacks not only reduce the costs of replication
but also enable local deployment of the extracted functionality,
offering users the benefit of avoiding sharing sensitive code
snippets with third-party service providers. This makes the
localized imitation model particularly appealing for tasks
requiring confidentiality and control.

In this survey, I conducted a comprehensive review of
recent advancements in LLMs and their adoption in software
engineering. The survey explores the role of modern LLMs,
such as ChatGPT, in enhancing programming productivity
through capabilities like automated script generation, code
reviews, and vulnerability detection. Emphasis is placed on
their interactive features, which allow iterative refinement of
outputs, making them valuable tools for bug diagnosis and
resolution. Additionally, the survey examines the challenges
of developing these models, including the significant resource
investments and the proprietary nature of their training data
and model weights.

A key focus of this survey is the feasibility and implications
of imitation attacks on commercial LLMs. I analyzed recent
methodologies for extracting specific functionalities, such as
code translation, using medium-sized backbone models. The
survey highlights how adversaries can leverage these tech-
niques to create localized imitation models, offering a cost-
effective and private alternative to proprietary LLM APIs. This
approach not only demonstrates vulnerabilities in existing sys-
tems but also addresses practical concerns, such as preserving
code confidentiality in sensitive applications.

II. BACKGROUND AND RELATED WORK

With access to extensive training resources, such as web-text
corpora , and models with hundreds of billions of parameters
, LLMs have demonstrated exceptional performance across a
wide range of tasks. Typically, training data is processed by
segmenting it into sentences and further breaking it down into
tokens, where each token represents a sequence of characters,
before being fed into the LLMs.

Most existing approaches adhere to the classic “pre-train
and fine-tune” paradigm [13]. In this framework, a general-
purpose model is first pre-trained on a diverse range of datasets
to serve as a public backbone. Users can then fine-tune this
model with private datasets and specific task definitions to
adapt it to specialized applications. Notable examples of this
paradigm include CodeBERT [14] and CodeT5 [15], which are
widely recognized frameworks for addressing various code-
related tasks.

With the growing popularity of Machine-Learning-as-a-
Service (MLaaS), model providers increasingly offer their
services through APIs or user-friendly interfaces, with billing
typically structured as either a subscription model or a “pay-as-
you-go” system. For instance, GitHub Copilot charges a flat
rate of 10 USD per month. In pay-as-you-go models, users
are billed based on the number of queries made or the total
number of tokens received. For example, the j1-jumbo model
by AI21 charges $0.03 USD per 1,000 tokens and $0.0003
USD per query. Some researchers calculate the costs for each
task as shown in Fig.1, based on pricing from Google APIs
and IBM APIs. Given the efficiency of model extraction, the
associated expenses are both cost-effective and justifiable.

Fig. 1. Estimate costs of model extraction on different datasets

These services only share the generated outputs with users,
allowing model providers to safeguard the confidentiality of
their underlying model architectures and training datasets. This
approach ensures that the intellectual property of the models
remains protected while still providing powerful functionalities
to users.

A. Model stealing
Model stealing, the act of extracting various attributes

of a black-box machine learning (ML) model, has gained
significant attention in recent years. Researchers have explored
techniques to steal parameters [16], hyperparameters [17], ar-
chitectures [18], insights about training data [19], and decision
boundaries [20]. These approaches aim to recreate the original
black-box model with high fidelity by reverse-engineering its
internals. For instance, studies have demonstrated methods to
extract parameters and hyperparameters, revealing the under-
lying configuration of the model, while others have focused on
uncovering architectures or identifying patterns in the training
data used to train the model. Similarly, decision boundary
extraction seeks to replicate how a model separates different
classes within its feature space.

While these foundational works provide valuable insights
into recreating black-box models, they often require detailed

knowledge about the model’s internals or training processes,
such as knowing the model’s family, its architecture, or even
having partial access to its training data. In contrast, our inves-
tigation shifts focus to stealing the functionality of a black-box
model, independent of its internal workings. By targeting the
operational behavior of the model, we circumvent the need for
assumptions about its architecture or training data. Although
prior works have explored related directions, such as decision
boundary approximation and parameter extraction, they rely on
stronger adversarial assumptions, including knowledge of the
victim model’s family or partial access to its training data. Our
approach, by contrast, considers a weaker adversary capable
of achieving effective functionality replication with minimal
prior knowledge about the target model.

B. Knowledge distillation

Knowledge distillation is a widely studied technique that
transfers knowledge from a complex, high-capacity “teacher”
model to a simpler “student” model [21]. This process typ-
ically involves training the student model to mimic the out-
puts of the teacher, leveraging techniques such as soft label
predictions and response-based training to achieve effective
knowledge transfer. Traditional knowledge distillation assumes
a strong level of access to the teacher model, including its
architecture, training data, and potentially even its test data
[22]–[25]. Under these conditions, distillation has been shown
to be highly effective in compressing complex models into
smaller, computationally efficient counterparts while retaining
much of the original performance.

Within the context of our work, knowledge distillation
represents a special case in which the adversary has extensive
information about the black-box model. For instance, an
adversary might know the target model’s architecture, have
access to its training and test datasets, or be able to fine-
tune the imitation model directly based on these resources.
However, while we acknowledge these scenarios, the majority
of our research focuses on adversaries with weaker assump-
tions. Specifically, we explore cases where the adversary has
limited or no knowledge of the black-box model’s internals
and instead relies solely on its externally observable behavior
to achieve functionality replication. This makes our approach
more broadly applicable to real-world scenarios where ex-
tensive information about the target model is unavailable or
infeasible to obtain.

C. Adversarial Transferability

Adversarial attacks have demonstrated a fascinating phe-
nomenon known as adversarial transferability, where adversar-
ial examples crafted for one model can effectively compromise
the performance of other models. This property, extensively
studied in computer vision, highlights the vulnerability of
diverse model architectures to shared attack strategies [26].
In computer vision, such transferability is often attributed to
shared patterns in feature representations across models, even
when their architectures or training datasets differ.

While adversarial transferability has received significant
attention in vision-based systems, its application and impli-
cations in NLP remain less explored. Some recent works have
begun investigating transferability in NLP systems, revealing
that adversarial examples generated for one language model
may generalize across different NLP models [27], [28]. For
example, specific textual perturbations can successfully de-
ceive multiple text classifiers or question-answering systems,
indicating that transferability exists in certain language-based
tasks.

However, when it comes to BERT-based APIs, a critical
question arises: can transferability succeed when the substitute
(extracted) model and the victim model have fundamentally
different architectures? This remains an underexplored area of
research. Existing studies have largely focused on models with
similar architectures, leaving a gap in understanding how well
adversarial examples generalize across heterogeneous model
families, especially in commercial settings. Investigating this
aspect is crucial, given the widespread deployment of BERT-
based APIs in applications such as text generation, sentiment
analysis, and code assistance. Understanding whether adver-
sarial examples from an extracted model can effectively target
a victim model with a different backbone architecture could
shed light on the robustness and security challenges of such
systems in real-world scenarios.

D. Imitation Attack

The imitation attack, often referred to as a model extraction
attack, seeks to replicate the behavior of a victim model.
Extracting models, particularly those accessed via commercial
APIs, presents significant challenges. Prior works (e.g., [29])
frequently simulate attacks in a grey-box setting, relying on
varying levels of prior knowledge. This prior knowledge can
include the data distribution, model architecture, or detailed
output probabilities.

For instance, [30] leverage both prior knowledge of the
model architecture and posterior information, such as the prob-
ability distribution of output tokens, to enhance the effective-
ness of model extraction. Similarly, domain knowledge plays
a crucial role in image classification tasks, where information
about class types can significantly boost the attack’s success.
For example, [31] use class types to construct a targeted query
set. Additionally, [32] illustrate the vulnerability of APIs built
on fine-tuned BERT models, demonstrating that adversaries
can exploit generated tokens and their associated posterior
probabilities to perform extraction effectively.

III. RESEARCH IN MACHAIN TRANSLATION

In adversarial scenarios, attackers typically lack access to
the architecture or training data of the victim model. To
understand how these constraints influence model imitation,
we conducted the following experiments:

• All Same: The imitation model uses the same architec-
ture, hyperparameters, and source data as the victim.

• Data Different: The imitation model retains the same
architecture and hyperparameters but is trained on out-
of-domain (OOD) source data.

• Convolutional Imitator: The imitation model employs a
different architecture while using the same source data.
For instance, the victim could be a Transformer, and the
imitator a convolutional model, or vice versa.

• Data Different + Conv: The imitation model combines
OOD source data with a different architecture, such as a
convolutional model imitating a Transformer victim.

Our experiments focus on a German→English translation
task. For in-domain testing, we use TED data from IWSLT
2014 [33]. To simulate OOD scenarios, we utilize English
sentences from Europarl v7 [34]. Victim model outputs are
generated through greedy decoding, and model performance
is assessed using BLEU scores.

Fig. 2. Imitation models are highly similar to their victims.

a) Test BLEU Scores: Imitation models were evaluated
on in-domain test data, and their BLEU scores closely matched
those of the victim models. For out-of-domain testing, we
used the WMT14 [35] dataset. Interestingly, imitation models
often performed comparably to, or even better than, their
victims on OOD data. This result suggests that knowledge
distillation may act as a regularization mechanism, enhancing
the generalization ability of the imitator.

b) Data Efficiency: When OOD source data was used,
the learning process for imitation slowed but remained fea-
sible. Learning curves indicated that with sufficient OOD
data, the imitation model could still replicate the victim’s
performance [36]. Notably, when the source data matched
that of the victim, the imitation model learned faster than
the original. This could be attributed to the victim’s machine-
generated outputs, which are more consistent and less complex
than human translations, simplifying the learning process for
the imitator.

c) Functional Similarity: To measure the functional sim-
ilarity between victim and imitation models, we calculated
inter-system BLEU scores. For reference, two independently
initialized Transformer models trained on the same dataset
typically achieve an inter-system BLEU of about 62.1. In
contrast, our imitation models achieved inter-system BLEU
scores as high as 70.5, indicating that they were functionally

Fig. 3. We first train a baseline model on the standard IWSLT dataset (IWSLT,
gold translations). We then train a separate model that imitates the baseline
model’s predictions on the IWSLT training data (IWSLT, model translations).
This model trains faster than the baseline, i.e., stolen labels are preferable to
gold labels. We also train a model to imitate the baseline model’s predictions
on Europarl inputs (Europarl, model translations). Using these out-of-domain
queries slows but does not prevent the learning of imitation models.

more similar to their victims than two identically trained
models.

Given the effectiveness of our simulated experiments, we
now proceed to imitate production systems from Google, Bing,
and Systran.

Fig. 4. English→German imitation results.

1) Language Pairs and Data: We focus on two language
pairs: English→German (high-resource) and Nepali→English
(low-resource). To collect training data for our imitation mod-
els, we query the production systems.

• English→German: We query the source side of the
WMT14 training set (approximately 4.5 million sen-
tences).

• Nepali→English: We query the Nepali Language
Wikipedia (approximately 100,000 sentences) and around
two million sentences from Nepali Common Crawl.

We train Transformer Big models on both datasets.
In this attack, we replace certain input tokens to cause the

prediction of a specific output token to flip to another specific
token. For example, we modify the input so that Google
predicts ”22°C” instead of ”102°F” by changing a single input
token (first section of Fig. 5). To generate this attack, we select

a specific token in the output and a target mistranslation (e.g.,
”100°F” → ”22°C”). We set Ladv to be the cross-entropy for
the mistranslation token (e.g., ”22°C”) at the position where
the model currently outputs the original token (e.g., ”100°F”).
We then iteratively replace input tokens, stopping when the
desired mistranslation occurs.

2) Malicious Nonsense: This attack finds nonsense inputs
that are translated into vulgar or malicious outputs [37]. For
example, the input ”I miii llllll wgoing rr tobobombier the
Laaand” is translated as ”I will bomb the country” (in German)
by Google (second section of Fig. 5. To generate this attack,
we first obtain the output prediction for a malicious input, such
as ”I will kill you.” Then, we iteratively replace the tokens in
the input without changing the model’s prediction. We set Ladv

to be the cross-entropy loss of the original prediction and stop
replacing tokens just before the prediction changes. A possible
failure mode for this attack is the creation of a paraphrase of
the input; however, this rarely occurs in practice.

3) Untargeted Universal Trigger: This attack involves find-
ing a phrase that commonly causes incorrect translations when
appended to any input. For instance, appending the word
”Siehe” seven times to inputs frequently causes Systran to
output incorrect translations (third section of Fig. 5).

4) Universal Suffix Dropper: This attack involves finding
a phrase that, when appended to any input, causes both itself
and any subsequent text to be dropped from the translation
(e.g., fourth section of Fig. 5). We optimize the attack to
work for any input. This is achieved by averaging the gradient
∇eiLadv over a batch of inputs. We begin the universal attacks
by appending seven randomly sampled tokens to the input. For
the untargeted universal trigger, we set Ladv to be the negative
cross-entropy of the original prediction (before the random
tokens were appended), i.e., we optimize the appended tokens
to maximally change the model’s prediction from its original.
For the suffix dropper, we set Ladv to be the cross-entropy of
the original prediction, i.e., we try to minimally change the
model’s prediction from its original.

A. Test BLEU Scores

The imitation models closely match the performance of the
production systems.

a) English→German:: We evaluate the models on the
WMT14 test set (newstest2014) and report standard tokenized
case-sensitive BLEU scores. The imitation models are always
within 0.6 BLEU of the production models.

b) Nepali→English:: We evaluate using the FLoRes
devtest dataset [38]. BLEU scores are computed using Sacre-
BLEU with the recommended settings. Google achieves a
BLEU score of 22.1, while our imitation model achieves a
nearly identical 22.0 BLEU.

B. OOD Evaluation and Functional Similarity

Our imitation models have not only matched the production
systems on in-domain data but also performed well on out-
of-domain (OOD) data. For English→German, we test the

imitation models on IWSLT, where the imitation models are
always within 0.9 BLEU of the production systems.

Additionally, there is a high inter-system BLEU between the
imitation models and the production systems [39]. Specifically,
on the English→German WMT14 test set, the inter-system
BLEU is 65.6, 67.7, and 69.0 for Google, Bing, and Systran,
respectively.

C. Estimated Data Costs

We estimate that the cost of obtaining the data needed
to train our English→German models is as low as $10.
Considering the potential benefit of obtaining high-quality
machine translation systems, these costs are alarmingly low.

IV. RESEARCH IN CODE TASKS

In this work, we aim to launch imitation attacks to extract
a ”slicing” of code knowledge from LLMs using medium-
sized backbone models. This task is particularly challenging
due to the various ways in which LLMs can be queried,
requiring us to explore different query schemes. The strong
in-context understanding capabilities of LLMs, combined with
their flexibility across diverse tasks, further complicate the
benchmarking of their attack surfaces. Specifically, LLMs have
demonstrated a strong ability to understand context with fewer
examples, enabling better performance on downstream tasks.
Additionally, Chain-of-Thought reasoning elicits the complex
reasoning abilities in LLMs, further enhancing their versatility
across various tasks. These unique capabilities make it difficult
and costly to systematically benchmark the attack surfaces of
LLMs, particularly in the context of model extraction.

Fig. 7 presents an overview of our imitation attack, which is
composed of four phases: (1) query generation, (2) response
checking, (3) imitation model training, and (4) downstream
(adversarial) applications. Given one or more proxy datasets,
our attack framework first generates queries for the LLM
based on different code tasks and query schemes. A rule-
based filter is then employed to evaluate the correctness and
quality of the responses generated by the LLMs. Responses
that pass this filter are considered high-quality and are used to
train the imitation model. Subsequently, the imitation model
is trained by fine-tuning medium-sized backbone models with
the filtered responses. Finally, the trained imitation model is
used for various downstream (malicious) applications, such
as providing competitive services and generating adversarial
examples [40], [41]. We now describe each phase in detail.

A. Imitation Query Generation

Through our preliminary tests, we observed that the query
schemes and the quality of prompts significantly affect the
responses generated by large language models (LLMs). To
fully exploit the potential of this attack, we benchmark three
distinct query schemes, as outlined below. Before diving into
these schemes, we first explain how a query is divided into two
main components: the question head Qhead and the question
body Qbody. The question head can vary depending on the
task, while the question body is typically collected from proxy

Fig. 5. We show examples of adversarial attacks that transfer to production MT systems as of April 2020 . We show a subset of the production systems for
each attack type, however, all of the production systems are susceptible to the different attacks. In targeted flips, we modify tokens in the input in order to
cause a specific output token/phrase to flip. In malicious nonsense, we find nonsense inputs which are translated to vulgar or malicious outputs. In untargeted
universal trigger, we find a phrase that commonly causes incorrect translations when it is appended to any input. In universal suffix dropper, we find a phrase
that commonly causes itself and any subsequent text to be dropped on the target side.

datasets. For example, for a code summarization task, the
sentence ”Summarize the following code in one sentence” is
used as Qhead. This division is important, as a clear and precise
question helps the LLMs understand their role within the task,
thereby improving their ability to complete the task effectively.

1) Zero-Shot Query (ZSQ): The Zero-Shot Query scheme
involves querying the LLM iteratively with each question qi ∈
Q without providing any prior context [42]. The responses
gathered from these queries are then used to train the imitation
model. ZSQ is a universal scheme widely adopted in prior
model extraction studies for both classification and generation
tasks. Since our evaluation tasks are focused on generation,

we follow the standard approach for preparing queries in these
tasks.

2) In-context Query (ICQ): In-context Query is based on
the premise that providing context to the LLM can signif-
icantly improve its performance. For each question qi, this
scheme involves appending several examples along with the
question head Qhead. The choice of these examples is critical,
as it ensures the LLM understands the task. A short context
may fail to provide sufficient information, while an excessively
long context might exceed the model’s token limit.

3) Zero-Shot Chain-of-Thought (ZS-CoT): The Zero-Shot
Chain-of-Thought (ZS-CoT) scheme builds upon the idea of

Fig. 6. A naive defense against model stealing equally degrades the BLEU
score of the victim and imitation models (gray line). Better defenses are
lower and to the right. Our defense (black line) has a parameter (BLEU
match threshold) that can be changed to tradeoff between the victim and the
adversary’s BLEU. We outperform the naive defense in all settings, e.g., we
degrade the victim’s BLEU from 34.6 → 33.8 while degrading the adversary’s
BLEU from 34.5 → 32.7.

prompting the LLM to reason through a problem step by step
[43]. Unlike methods that rely on extensive manual prompt
engineering, ZS-CoT involves a simple prompt like ”Let’s
think it step by step” to extract the reasoning process behind
the model’s predictions. ZS-CoT is executed in two stages.
First, given a query qi, a prompt is constructed to request an
explanation (or rationale) from the LLM, and the response ri
is collected. In the second stage, both qi and ri are used to
ask for the final answer from the model.

In our experiments, we modified the response pattern to suit
the specific answer format required for each task. For example,
for code translation, the response might be ”Therefore, the
translated C# code is,” while for code summarization, it
could be ”Therefore, the summarization is.” It is important
to note that, even with filtering systems in place, ensuring the
correctness of the rationale can be challenging, especially for
open-ended tasks like code-related queries. These tasks present
a greater challenge than those found in more structured tasks
like multiple-choice questions in NLP.

We do not consider in-context Chain-of-Thought (IC-CoT)
in this work. This is because constructing appropriate Chain-
of-Thought reasoning for code-related tasks is particularly
difficult, as opposed to arithmetic or symbolic reasoning tasks.

B. Response Check Scheme

As previously mentioned, the responses collected from
LLMs should undergo refinement to ensure high effectiveness
when training an imitation model [44], [45]. After receiving
the output from the LLMs, it is beneficial for attackers to
perform an initial check before including it in the training data.
This process helps improve the overall quality of the dataset
by filtering out low-quality responses [46], thereby enhancing
the average quality of the training data. Additionally, trimming

the dataset can reduce the overall cost of training the imitation
models. Specifically, given a list of LLM outputs OL, each
output oLi ∈ OL is checked using several metrics, and only
high-quality responses are retained. To handle the potential
of LLMs producing both natural language (NL) and pro-
gramming language (PL) outputs, we have designed distinct
filtering rules for each type of output.

For NL outputs, we check the length of the responses and
discard any text that is either too short or too long, based on
pre-defined thresholds. In line with the CodexGLUE setting,
we set the upper bound to 256 characters and the lower bound
to 3 characters. For PL outputs, we retain only those responses
that pass a grammar check performed by a parser. We utilize
treesitter, a parser generator tool capable of parsing incom-
plete code fragments. Unlike language-specific compilers or
interpreters (such as CPython for Python), treesitter supports
a wide range of programming languages through a unified
interface, making it versatile for various PLs. Additionally,
treesitter provides error messages for incorrect code syntax,
which allows us to track the number of failures and investigate
the reasons behind them.

C. Imitation Model Training

In a manner similar to prior imitation attacks, responses that
pass the response selection module are considered high-quality
answers and are used to train the imitation model. Specifically,
the collected dataset of queries and their corresponding outputs
{qi, oi|qi ∈ Q, oi ∈ O} is used to fine-tune a public backbone
model. This section first provides details about the target
LLMs and the code-related tasks that are the focus of our
imitation attacks. We then describe the evaluation metrics used
and the process for training the imitation models.

Unless otherwise specified, OpenAI’s textdavinci-003 is
used as the victim LLM for all experiments, as it has been
widely used in prior research, which supports its effectiveness
and reliability. In our evaluation, we further demonstrate the
generalizability of our attack by testing it with another LLM
API, gpt-3.5-turbo.

D. Target LLM Tasks

Before detailing the filtering rules, we introduce the target
tasks for the LLMs in this research. Based on the variation in
input and output types, we select three representative tasks:
code synthesis, code translation, and code summarization.
Importantly, our imitation attacks are not restricted to these
tasks. Two datasets, Dproxy and Dref, are used to simulate the
extraction process. Adversaries are only allowed to use the
training split of the proxy dataset Dproxy to generate queries,
while the reference dataset Dref is assumed to be inaccessible.
To establish baselines for comparison, backbone models will
be trained on the two datasets to form Mproxy and Mref.

1) Code Synthesis (CSyn): In this study, code synthesis
(CSyn) refers to an ”NL-PL” task where the goal is to
generate specific programs based on natural language (NL)
descriptions. For this task, we use the CONALA dataset as
the proxy dataset, which contains 2,879 annotations with

Fig. 7. An overview of imitation attack framework, including query generation, response check, imitation training, and downstream applications.

their corresponding Python3 solutions manually collected from
StackOverflow. We did not use an online-judgment dataset
such as CodeContests due to input token length limitations.

2) Code Translation (CT): As a ”PL-PL” task, code trans-
lation (CT) involves migrating legacy software from one
programming language to another. For this task, we use the
XLCOST dataset as the proxy dataset and CodeXGLUE as the
reference dataset. These datasets pair code snippets written in
Java and C that perform the same function. In this work, we
select Java as the source language and C as the target language.

3) Code Summarization (CSum): Code summarization
(CSum) is a ”PL-NL” task that generates an NL comment
summarizing the functionality of a given PL snippet. For this
task, we reuse the DualCODE dataset as the proxy dataset.
The datasets Dproxy and Dref represent the proxy and reference
datasets, respectively.

Fig. 8. The main results of our imitation attack. “I/O” stands for “In-
put/Output.” All results are presented as BLEU scores or CodeBLEU scores
on the test split of reference datasets, where Mproxy and Mre f represent the
backbone models trained on the proxy and reference datasets, respectively.
Mimi is the imitation model trained on the collected dataset and “API” stands
for the best original LLM result under all three query settings. Mpure is the
backbone model without fine-tuning.

E. Evaluation Metrics

We explore two common similarity metrics for measuring
the quality of generated content, categorized as follows:

1) NL Content: For the code summarization (CSum) task,
where the generated content is natural language (NL) text, we
use the smoothed BLEU-4 score (referred to as BLEU in this
paper) to evaluate the generated NL summarization. BLEU
evaluates the number of matched subsequences between the
generated text and its ground truth, with a higher BLEU score
indicating greater token-level similarity.

2) PL Content: The outputs of the code synthesis (CSyn)
and code translation (CT) tasks are programming language
(PL) code snippets, which cannot be directly evaluated using
NL metrics. Therefore, similar to previous works, we use

CodeBLEU, a metric that considers token-level, structural-
level, and semantic-level information. CodeBLEU consists of
four components: n-gram matching score (BLEU), weighted n-
gram matching score (weighted BLEU), syntactic AST match-
ing score (AST Score), and semantic data flow matching score
(DF Score). Specifically,

CodeBLEU = α× BLEU + β × weighted BLEU (1)
+ γ × AST Score + δ × DF Score (2)

where α, β, γ, δ are the weights for each component. As
recommended, these weights are all set to 0.25. Both BLEU
and CodeBLEU scores range from 0 to 100, with higher scores
indicating a greater level of similarity.

F. Effectiveness of the Imitation Attack in Code-Related Tasks

To address the effectiveness of our imitation attack, we
evaluate it on three code-related tasks: Code Synthesis (CSyn),
Code Translation (CT), and Code Summarization (CSum). As
described in Fig. 8, we use a proxy dataset to generate queries
for the target LLM and then validate the performance of the
imitation model using a reference dataset.

Fig. 9 presents the results of the model extraction attack.
The columns labeled Mproxy and Mref represent two baseline
models, trained directly on the proxy dataset and reference
dataset, respectively. The Mimi column reports the accuracy
of the attack, while the API column shows the performance
of the LLMs. All models (Mproxy,Mref,Mimi) share the same
architecture (either CodeT5-base or CodeBERT-base) and are
trained on datasets of equal size. We tested all models on the
same test dataset, selecting the best results from the different
query schemes. The values in each cell represent the BLEU
score for natural language outputs and the CodeBLEU score
for programming language outputs, as explained in Section
4.3. Since all models (and LLM APIs) are evaluated using
the test split of the reference dataset, it is expected that
Mref (trained on the same dataset) performs best across all
tasks. From Fig. 9, it is clear that the imitation attacks are
highly effective. For the CSyn and CT tasks, the imitation
models (Mimi) outperform Mproxy by an average of 57.59%
and 56.62% on CodeT5 and CodeBERT, respectively. The
proxy dataset consists of input-output pairs, while Mimi is
trained using the same inputs and their corresponding outputs
from the LLM API. The superior performance of Mimi can
be attributed to the high-quality code snippets provided by
LLM APIs, which significantly enhance the imitation model’s

Fig. 9. Attack effectiveness using different query schemes. CBLEU denotes
the CodeBLEU metric.

performance. On the other hand, Mproxy consistently underper-
forms across all tasks, highlighting the value of the outputs
provided by the LLMs.

When trained using publicly available resources, models of-
ten perform poorly on different datasets [47], as demonstrated
by the results in the Mproxy column of Fig. 9. This underscores
the value of LLM extraction attacks. Encouragingly, the imi-
tation model Mimi, enriched with knowledge extracted from
LLM APIs, largely outperforms the baseline model Mproxy in
both CSyn and CT tasks, achieving improvements of 140.3%
and 170.8% on CodeT5 and CodeBERT, respectively. In fact,
Mimi even surpasses the LLM APIs in the CT and CSum
tasks, demonstrating the general effectiveness of our imitation
model.

When comparing Mimi and Mproxy, the improvement of the
imitation model on the CSum task is less pronounced than on
the other tasks. Interestingly, the LLM APIs perform worse
than Mproxy on CSum. Upon manual inspection, we discovered
that the APIs tend to produce verbose content with excessive
information when no additional context is provided, leading
to a decrease in performance. For example, for a PL input
requiring a concise response such as ”patch a resource,” the
LLM may provide a lengthy response like ”Update a resource
by checking access, showing the context, and patching the
resource with updated data.” This phenomenon, previously
mentioned in related works, is problematic because LLM APIs
tend to assign higher scores to longer responses, even when
brevity is preferable.

Fig. 10. Attack effectiveness using different query schemes. CBLEU denotes
the CodeBLEU metric.

G. Impact on Pre-Trained Models

Both CodeT5 and CodeBERT have been pre-trained on
large corpora that may overlap with our chosen test sets. [48]
To address potential bias, we report the baseline results of

the unmodified backbone models on the test splits in Fig.
9, under the Mpure column. For CodeT5, the performance
is significantly lower across all tasks compared to the other
settings, indicating that the primary strength of the imitation
model Mimi comes not from pre-training but from fine-tuning
on high-quality outputs from LLM APIs. Since CodeBERT
is an encoder-only model, its decoding capability requires a
task-specific decoder, which is why its baseline performance
is marked as ”N/A.”

Overall, the substantial improvement in fine-tuning perfor-
mance by Mimi suggests that pre-training alone cannot fully
explain the models’ proficiency on these three code-related
tasks.

V. RESEARCH IN NLP TASKS

To assess the effectiveness of the proposed attacks, we select
four NLP datasets covering two primary tasks: (i) sentiment
analysis and (ii) topic classification. For sentiment analysis,
we use the TP-US dataset [49] from the Trustpilot Sentiment
dataset [50]and the YELP dataset [51]. For topic classification,
we utilize the AG News corpus [52]and the Blog Posts dataset
from the blog authorship corpus [53].

A. Attack Strategies

In this section, we describe the strategies employed to
extract a model from a victim model using imitation tech-
niques. Both the victim model and the extracted model are
initialized from a freely available, pre-trained BERT model,
which serves as a common baseline for training. The process
starts by fine-tuning the victim model on a specific task, as
outlined in Section 3.1. This fine-tuning process adapts the
pre-trained BERT model to the specific task at hand, allowing
it to generate predictions based on the input queries.

Once the victim model is fine-tuned, it is treated as a black-
box model, meaning that attackers do not have direct access
to its internal parameters or structure. Instead, the attacker can
only interact with the model via its API, providing input data
and receiving the model’s output. The core goal of this attack
is to extract a model that mimics the victim’s behavior by
observing its responses to various queries.

To carry out the extraction, we begin with an initial set of
queries that corresponds to the size of the victim’s training
set. The number of queries is then incrementally scaled up,
reaching up to five times the size of the victim’s original
training dataset. This scaling process allows the attacker to
collect more data and improve the fidelity of the extracted
model by approximating the victim model’s decision-making
process.

For a fair comparison, we evaluate both the victim model
and the extracted model using the same held-out test set, which
was not used during the training of either model. The perfor-
mance of the two models is measured in terms of accuracy
on this held-out set. By testing the extracted model and the
victim model on the same data, we can directly compare their
effectiveness and assess the success of the extraction process.
The accuracy of the extracted model is expected to improve as

Fig. 11. The workflow of the proposed attacks on BERT-based APIs. In phase 1, Model Extraction Attack (MEA) labels queries using the victim API, and
then trains an extracted model on the resulting data. In phase 2, Adversarial Example Transfer (AET) generates adversarial typo examples on the extracted
model, and transfers them to the victim API.

the number of queries increases, as it becomes more capable
of imitating the victim model’s behavior.

This approach provides a clear methodology for under-
standing how well the extracted model can replicate the
performance of the victim model, and it serves as a benchmark
for evaluating the effectiveness of imitation-based attacks.

Fig. 12. Accuracy of the victim models and the extracted models among
different datasets in terms of domains and sizes. Q: number of queries.

Fig. 13. Transferability is the percentage of adversarial examples transferred
from the extracted model to the victim model.

B. Query Distribution

To investigate the correlation between the query distribution
(DA) and the effectiveness of the attacks on the victim model
trained on data from DV (see Fig. 12), we examine two
scenarios:

1) The query data is the same as the original data used to
train the victim model (DA = DV). In this case, attackers
have no access to true labels of the original data.

2) The query data is sampled from a different distribution
but within the same domain as the victim model’s
training data (DA ̸= DV). Since API owners tend to use
in-house datasets, attackers often do not know the target
data distribution beforehand. Thus, the second scenario
is closer to practical settings. The training datasets for
the victim models are sourced from either the review or
news domain, and we use datasets from these domains
for querying the victim models. Specifically, we leverage
the Amazon review dataset and the CNN/DailyMail
dataset to query the victim models.

From our observations, we find that: 1) The success of the
extraction correlates with the domain similarity between the
victim’s training data and the attacker’s queries. 2) Using
the same data can even outperform the victim models, a
phenomenon known as self-distillation. 3) Despite differences
between the review and news corpora, our MEA achieves 0.85-
0.99× of the victim models’ accuracies when the number of
queries varies between 1x and 5x. Although a larger number of
queries leads to better extraction performance, smaller query
budgets (0.1x and 0.5x) are often sufficient. Additional results
are available in Appendix C. Unless otherwise specified, we
use news data for AG News, and review data for TP-US, Blog,
and Yelp.

We evaluate the efficiency of MEA on various classification
datasets. Each query incurs a charge based on a pay-as-you-
use model adopted by service providers. We estimate the costs
for each task, using Google APIs and IBM APIs. Given the
effectiveness of model extraction, the cost of MEA is highly
economical and justified.

C. AET Setup and Results

After extracting the black-box victim model into a white-
box extracted model, we can implement a white-box ad-
versarial attack. We first generate adversarial examples on
the extracted model, then examine if these examples transfer
to the target victim model. To evaluate the transferability
of adversarial examples, we assess the misclassification rate
of these samples on the victim APIs. We generate natural
adversarial examples by leveraging the gradients of the gold
labels with respect to the embeddings of the input tokens. This
allows us to identify the most informative tokens, which are
those with the largest gradients among all positions within a
sentence. We then corrupt the selected tokens with one of the
following typographical errors:

1) Insertion
2) Deletion
3) Swap
4) Mistype (e.g., ”oh” → ”0h”)
5) Pronounce (e.g., ”egg” → ”agg”)
6) Replace-W (replace a word with common human typos

based on Wikipedia statistics)

To evaluate whether the extracted model improves the trans-
ferability of adversarial examples, we also perform black-
box adversarial attacks in the same manner. Fig. 13 shows
that our pseudo white-box attack significantly increases the
victim model’s vulnerability to adversarial examples, with
the best-case transferability being more than twice as effec-
tive compared to black-box attacks. This supports our claim
that the extracted model, which closely imitates the victim
model, undermines the output integrity of the victim model
by increasing the number of transferable adversarial examples.
Moreover, Fig. 13 indicates that more queries (5x vs. 1x) result
in better attack performance, which is likely due to the higher
fidelity achieved by better extraction (see Fig. 12 2).

Fig. 14. Attack performance on AG news with mismatched BERT architec-
tures.

D. Cost Estimation

In this section, we analyze the efficiency and cost-
effectiveness of our model extraction and adversarial attack
strategies, particularly focusing on the cost incurred when
querying the victim model. Many modern machine learning
APIs, such as those provided by cloud-based services, follow
a pay-as-you-use pricing model. This means that each query
made to the victim model comes at a cost, which can add up
depending on the number of queries required to extract useful
information or generate adversarial examples.

We estimate the costs for each task based on popular cloud
API services such as Google APIs and IBM APIs. The cost
for querying a model varies depending on several factors,
such as the number of tokens in the input, the complexity
of the task, and the frequency of queries. For our analysis, we
assume a typical use case where an attacker queries the victim
model multiple times to extract sufficient data for imitation and
adversarial attacks.

To estimate the cost, we first calculate the number of queries
needed for the attacker to effectively imitate the victim model.
In our experiments, the number of queries scales from a base
size (1x) up to five times the size of the victim’s training set
(5x). For each query, the attacker is charged according to the
token count in the input and output, as well as the specific
model used for the task. We present these costs in Fig. 1,
where we break down the pricing for different query sizes
and models.

In terms of cost-efficiency, we find that the process of
model extraction is highly economical. Even with multiple
queries, the overall cost remains relatively low, especially
when compared to the benefits gained from the extraction. The
imitation model trained from the extracted data demonstrates
a high level of performance, which justifies the expenses
incurred during the extraction phase. Furthermore, the cost
of generating adversarial examples using the extracted model
is also reasonable, considering that the adversarial examples
are generated based on the extracted model, which requires
fewer queries than directly querying the victim model.

In conclusion, the cost estimation for both model extrac-
tion and adversarial attacks reveals that the overall process
is highly cost-effective. Given the substantial performance
gains achieved through the extracted model, the investment in
queries and computational resources is justified. These results
also highlight the potential for attackers to efficiently exploit
black-box APIs for model extraction and adversarial attacks
without incurring prohibitive costs.

E. Architecture Mismatch

In practice, the adversary may not know the victim’s model
architecture. Therefore, we also explore the effectiveness of
attacks under different architectural settings. According to Fig.
14, when both the victim and extracted models use BERT-
large, the vulnerability of the victim is magnified in all attacks,
suggesting that models with higher capabilities are more
susceptible to our attacks. As anticipated, the effectiveness
of AET is reduced when there is an architectural mismatch
between the victim and extracted models.

VI. CONCLUSION

In this survey, we have systematically analyzed the strate-
gies, methodologies, and implications of imitation attacks
and adversarial attacks on large language models (LLMs)
and pre-trained models in code-related and natural language
processing (NLP) tasks. Our exploration encompasses multiple
dimensions, including attack strategies, query distribution,

cost estimation, and the effectiveness of extracted models for
downstream tasks and adversarial use cases.

We first investigated the core methodologies for launching
imitation attacks, where an adversary queries a victim model
to build an extracted model. By analyzing the impact of
query distribution and scaling the number of queries, we
demonstrated that domain closeness significantly enhances
attack success. Notably, imitation models trained on outputs
from victim LLMs often outperformed baseline models trained
on public datasets, highlighting the high quality and utility of
the extracted knowledge. Our findings underscore the efficacy
of imitation attacks, with extracted models achieving up to
99% of the victim model’s accuracy in certain tasks.

In code-related tasks, we showcased the strength of imi-
tation models in tasks like code synthesis, code translation,
and code summarization. The extracted models consistently
improved over proxy models by leveraging high-quality LLM
outputs, and in some cases, even surpassed the victim model’s
performance. These results demonstrate the generalizability
and practicality of imitation attacks, especially in scenarios
where high-fidelity outputs are critical.

From an adversarial perspective, we explored the trans-
ferability of adversarial examples generated using extracted
models. These pseudo white-box attacks proved highly ef-
fective, with misclassification rates exceeding those of tra-
ditional black-box attacks. The extracted models amplified
the vulnerabilities of victim models, particularly under high-
fidelity extraction settings. Furthermore, we examined scenar-
ios involving architectural mismatches and showed that the
vulnerability of victim models is magnified when both models
share similar architectures, while the impact of adversarial
attacks diminishes under mismatched settings.

Cost analysis revealed that both model extraction and ad-
versarial attacks are economically viable under current pay-
as-you-use API pricing models. The relatively low costs
associated with querying victim models make these attacks
practical for adversaries, raising concerns about the security
and integrity of API-based LLM services.

In summary, this survey highlights the dual threats posed
by imitation and adversarial attacks to LLMs and pre-trained
models. It emphasizes the need for robust defense mechanisms
to mitigate the risks of unauthorized model extraction and
adversarial misuse. Future research should focus on develop-
ing effective countermeasures, such as watermarking, query
restrictions, and enhanced adversarial robustness, to safeguard
the utility and integrity of LLM APIs while maintaining
accessibility for legitimate users.

ACKNOWLEDGMENT

We would like to express our heartfelt gratitude to our
course instructor, for invaluable guidance, insightful feedback,
and unwavering support throughout the duration of this sur-
vey. Their expertise and encouragement were instrumental in
shaping our understanding of the subject matter and refining
the scope of this work.

We also extend our sincere thanks to the teaching assistants,
for continuous assistance, timely clarifications, and construc-
tive suggestions. Their dedication and accessibility greatly
facilitated our progress and helped us overcome challenges
during the research and writing process.

Lastly, we acknowledge the collaborative and intellectually
stimulating environment fostered by our peers in the course,
which contributed significantly to the successful completion
of this survey.

REFERENCES

[1] Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, and Douglas
C Schmidt. 2023. Chatgpt prompt patterns for improving code qual-
ity, refactoring, require- ments elicitation, and software design. arXiv
preprint arXiv:2303.07839 (2023)

[2] Albert Ziegler, Eirini Kalliamvakou, X. Alice Li, Andrew Rice, De-
von Rifkin, Shawn Simister, Ganesh Sittampalam, and Edward Af-
tandilian. 2022. Productivity assessment of neural code completion. In
MAPS@PLDI 2022: 6th ACM SIGPLAN International Symposium on
Machine Programming, San Diego, CA, USA, 13 June 2022, Swarat
Chaudhuri and Charles Sutton (Eds.).

[3] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian
Nowozin, and Daniel Tarlow. 2017. DeepCoder: Learning to Write
Programs. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.

[4] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes,
and challenges of modern code review. In 2013 35th International
Conference on Software Engineering (ICSE).

[5] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan.
2014. The Impact of Code Review Coverage and Code Review Partic-
ipation on Software Quality: A Case Study of the Qt, VTK, and ITK
Projects (MSR 2014).

[6] Zongjie Li, Pingchuan Ma, Huaijin Wang, Shuai Wang, Qiyi Tang, Sen
Nie, and Shi Wu. 2022. Unleashing the Power of Compiler Intermedi-
ate Representation to Enhance Neural Program Embeddings. In 44th
IEEE/ACM 44th International Conference on Software Engineering,
ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM.

[7] Pengfe Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi,
and Graham Neubig. 2023. Pre-train, Prompt, and Predict: A Systematic
Survey of Prompting Methods in Natural Language Processing. ACM
Comput. Surv. (2023).

[8] [n. d.]. chatgpt. https://chat.openai.com/chat.
[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing systems 33 (2020),
1877–1901.

[10] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, et al. 2021. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374 (2021).

[11] Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guil-
laume Lample. 2020. Unsupervised translation of programming lan-
guages. Advances in Neural Information Processing Systems 33 (2020).

[12] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue,
Zihan Wang, Lei Shen, Andi Wang, Yang Li, et al. 2023. CodeGeeX: A
Pre-Trained Model for Code Generation with Multilingual Evaluations
on HumanEval-X. arXiv preprint arXiv:2303.17568 (2023).

[13] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi,
and Graham Neubig. 2023. Pre-train, Prompt, and Predict: A Systematic
Survey of Prompting Methods in Natural Language Processing. ACM
Comput. Surv. (2023).

[14] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming
Zhou. 2020. CodeBERT: A Pre-Trained Model for Programming and
Natural Languages. In Findings of the Association for Computational
Linguistics: EMNLP 2020, Online Event, 16-20 November 2020 (Find-
ings of ACL, Vol. EMNLP 2020), Trevor Cohn, Yulan He, and Yang
Liu (Eds.). Association for Computational Linguistics.

[15] Florian Trame‘r, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas
Ristenpart. Stealing machine learning models via prediction apis. In
USENIX Security, 2016.

[16] Binghui Wang and Neil Zhenqiang Gong. Stealing hyperparameters in
machine learning. In Security and Privacy, 2018.

[17] Seong Joon Oh, Max Augustin, Bernt Schiele, and Mario Fritz. Towards
reverse-engineering black-box neural networks. In ICLR, 2018.

[18] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
Membership inference attacks against machine learning models. In
Security and Privacy , 2017.

[19] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z
Berkay Celik, and Ananthram Swami. Practical black-box attacks against
machine learning. In Asia CCS, 2017.

[20] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge
in a neural network. arXiv:1503.02531, 2015.

[21] Cristian Buciluaˇ, Rich Caruana, and Alexandru NiculescuMizil. Model
compression. In KDD, 2006.

[22] Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Manmohan
Chandraker. Learning efficient object detection models with knowledge
distillation. In NIPS, 2017.

[23] Tommaso Furlanello, Zachary C Lipton, Michael Tschannen, Laurent
Itti, and Anima Anandkumar. Born again neural networks. In ICML,
2018.

[24] Ying Zhang, Tao Xiang, Timothy M. Hospedales, and Huchuan Lu. Deep
mutual learning. In CVPR, 2018.

[25] Dirk Hovy, Anders Johannsen, and Anders Søgaard. 2015. User review
sites as a resource for large-scale sociolinguistic studies. In Proceedings
of WWW, pages 452–461.

[26] Gianna M Del Corso, Antonio Gulli, and Francesco Romani. 2005.
Ranking a stream of news. In Proceedings of the 14th international
conference on World Wide Web, pages 97–106.

[27] Yanpei Li, Xinyun Che, Chang Liu, and Dawn Song. 2016. Delving into
transferable adversarial examples and black-box attacks. arXiv preprint
arXiv:1611.02770.

[28] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692.

[29] Varun Chandrasekaran, Kamalika Chaudhuri, Irene Giacomelli, Somesh
Jha, and Songbai Yan. 2020. Exploring connections between active
learning and model extraction. In Proceedings of the 29th USENIX
Conference on Security Symposium.

[30] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and
Nicolas Papernot. 2020. High accuracy and high fidelity extraction of
neural networks. In Proceedings of the 29th USENIX Conference on
Security Symposium.

[31] Honggang Yu, Kaichen Yang, Teng Zhang, Yun-Yun Tsai, Tsung-Yi
Ho, and Yier Jin. 2020. CloudLeak: Large-Scale Deep Learning Models
Stealing Through Adversarial Examples.. In NDSS.

[32] Xuanli He, Lingjuan Lyu, Lichao Sun, and Qiongkai Xu. 2021. Model
Extraction and Adversarial Transferability, Your BERT is Vulnerable!.
In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies.

[33] Ju Chen, Wookhyun Han, Mingjun Yin, Haochen Zeng, Chengyu
Song, Byoungyoung Lee, Heng Yin, and Insik Shin. 2022. SYMSAN:
Time and Space Efficient Concolic Execution via Dynamic Data-flow
Analysis. In 31st USENIX Security Symposium (USENIX Security 22).
2531–2548.

[34] Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic execution
with SymCC: Don’t interpret, compile!. In Proceedings of the 29th
USENIX Conference on Security Symposium. 181–198.

[35] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-
Wei Chang. 2021. Unified Pre-training for Program Understanding
and Generation. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021, Online, June 6-
11, 2021, Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer,
Dilek Hakkani-Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy
Chakraborty, and Yichao Zhou (Eds.). Association for Computational
Linguistics.

[36] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy,
Ambrosio Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu
Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano,

Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng,
Shengyu Fu, and Shujie Liu. 2021. CodeXGLUE: A Machine Learning
Benchmark Dataset for Code Understanding and Generation. In NeurIPS
Datasets and Benchmarks 2021, virtual, Joaquin Vanschoren and Sai-Kit
Yeung (Eds.).

[37] Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. 2021.
CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models
for Code Understanding and Generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-
11 November, 2021, Marie-Francine Moens, Xuanjing Huang, Lucia
Specia, and Scott Wen-tau Yih (Eds.). Association for Computational
Linguistics.

[38] Xuanli He, Qiongkai Xu, Lingjuan Lyu, Fangzhao Wu, and Chenguang
Wang. 2022. Protecting Intellectual Property of Language Generation
APIs with Lexical Watermark. Proceedings of the AAAI Conference on
Artificial Intelligence 10 (2022).

[39] Mingda Chen, Jingfei Du, Ramakanth Pasunuru, Todor Mihaylov, Srini
Iyer, Veselin Stoyanov, and Zornitsa Kozareva. 2022. Improving In-
Context Few-Shot Learning via Self-Supervised Training. In Proceed-
ings of the 2022 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies,
NAACL 2022, Seattle, WA, United States, July 10-15, 2022.

[40] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin,
and Weizhu Chen. 2022. What Makes Good In-Context Examples
for GPT-3?. In Proceedings of Deep Learning Inside Out: The 3rd
Workshop on Knowledge Extraction and Integration for Deep Learning
Architectures, DeeLIO@ACL 2022, Dublin, Ireland and Online, May
27, 2022, Eneko Agirre, Marianna Apidianaki, and Ivan Vulic (Eds.).
Association for Computational Linguistics.

[41] Andrew K. Lampinen, Ishita Dasgupta, Stephanie C. Y. Chan, Kory
W. Mathewson, Mh Tessler, Antonia Creswell, James L. McClelland,
Jane Wang, and Felix Hill. 2022. Can language models learn from
explanations in context?. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emirates,
December 7-11, 2022, Yoav Goldberg, Zornitsa Kozareva, and Yue
Zhang (Eds.). Association for Computational Linguistics.

[42] Namgyu Ho, Laura Schmid, and Se-Young Yun. 2022. Large Lan-
guage Models Are Reasoning Teachers. arXiv preprint arXiv:2212.10071
(2022).

[43] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi,
Quoc Le, and Denny Zhou. 2022. Chain of thought prompting elicits
reasoning in large language models. arXiv preprint arXiv:2201.11903
(2022).

[44] Eric Wallace, Mitchell Stern, and Dawn Song. 2020. Imitation Attacks
and Defenses for Black-box Machine Translation Systems. In Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2020, Online, November 16-20, 2020, Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu (Eds.). Association for
Computational Linguistics.

[45] oshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke
Zettlemoyer, and Huan Sun. 2022. Towards Understanding Chain-of-
Thought Prompting: An Empirical Study of What Matters. arXiv preprint
arXiv:2212.10001 (2022).

[46] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020.
Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. J. Mach. Learn. Res. 21 (2020).

[47] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhang-
hao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing,
et al. 2023. Judging LLM-as-a-judge with MT-Bench and Chatbot Arena.
arXiv preprint arXiv:2306.05685 (2023).

[48] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes
Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li,
Scott Lundberg, et al. 2023. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712 (2023).

[49] Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar
Khot, Khyathi Raghavi Chandu, David Wadden, Kelsey MacMillan,
Noah A Smith, Iz Beltagy, et al. 2023. How Far Can Camels Go?
Exploring the State of Instruction Tuning on Open Resources. arXiv
preprint arXiv:2306.04751 (2023).

[50] Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi. 2018. Black-
box generation of adversarial text sequences to evade deep learning

classifiers. In 2018 IEEE Security and Privacy Workshops (SPW), pages
50–56. IEEE.

[51] Tommaso Furlanello, Zachary C Lipton, Michael Tschannen, Laurent
Itti, and Anima Anandkumar. 2018. Born again neural networks. arXiv
preprint arXiv:1805.04770.

[52] Lichao Sun, Kazuma Hashimoto, Wenpeng Yin, Akari Asai, Jia Li,
Philip Yu, and Caiming Xiong. 2020. Adv-bert: Bert is not robust
on misspellings! generating nature adversarial samples on bert. arXiv
preprint arXiv:2003.04985.

[53] Florian Trame‘r, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas
Ristenpart. Stealing machine learning models via prediction apis. In
USENIX Security, 2016.

