
HiPa: Hierarchical Partitioning for Fast PageRank on NUMA
Multicore Systems

YuAng Chen
The Chinese University of Hong Kong, Shenzhen

yuangchen@link.cuhk.edu.cn

Yeh-Ching Chung
The Chinese University of Hong Kong, Shenzhen

ychung@cuhk.edu.cn

ABSTRACT
PageRank, weighing the importance of vertices in a graph, serves
as an fundamental algorithm for graph-structured tasks in a variety
of domains. However, the processing capacity of multicore systems
is oftentimes poorly utilized for large-scale PageRank due to the
irregular memory accesses and poor cache efficiency. In this paper,
we present HiPa, a novel hierarchical partitioning methodology to
accelerate PageRank by utilizing the memory-cache architecture of
the multicore system. For the shared memory, HiPa subdivides the
graph based on the NUMA characteristics to reduce remote memory
access while ensuring workload balance. For the private cache,
HiPa further splits the graph into cache-able partitions to promote
in-core computing and cache locality. Based on the partitioning
strategy, systematical optimizations are proposed, such as thread
management and new data layout. These effectively alleviate thread
migration and thread contention, thus enhancing the scalability
of HiPa. The integration of NUMA- and cache-aware parallelism
allows HiPa to harness the potential of multicore systems. The
performance of HiPa is evaluated by comparing with the the start-
of-the-art graph frameworks and hand-optimized implementations.
Over the best among them, HiPa achieves accelerations from 1.11×
to 1.45×, and reductions in remote memory accesses from 1.87× to
3.90×. Moreover, we investigate the behaviors of HiPa on different
processor micro-architectures to push its performance closer to
hardware limit.

CCS CONCEPTS
• Computing methodologies→ Shared memory algorithms;
•Computer systems organization→Multicore architectures.

KEYWORDS
graph processing, memory hierarchy, multicore systems

ACM Reference Format:
YuAng Chen and Yeh-Ching Chung. 2021. HiPa: Hierarchical Partitioning
for Fast PageRank on NUMA Multicore Systems. In 50th International Con-
ference on Parallel Processing (ICPP ’21), August 9–12, 2021, Lemont, IL, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3472456.3475737

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP ’21, August 9–12, 2021, Lemont, IL, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9068-2/21/08. . . $15.00
https://doi.org/10.1145/3472456.3475737

1 INTRODUCTION
Graph-structured data are commonly used to model the relation
among a group of entities. It is widely adopted in real-world an-
alytics for diverse purposes, such as social networks analysis [6],
transportation planning[3], financial fraud detection [13]. Analyz-
ing graphs in depth, PageRank is one of the most popular graph
algorithms. It was initially proposed to measure the importance of
a webpage for web search engines [29].

PRnew (v) =
1 − d
|V |
+ d ×

∑
u ∈Ein (v)

PRold (u)

|Eout (u)|
(1)

The mathematical description of PageRank is presented in Eq. 1.
d is a damping factor; |V | is the total number of vertices in a graph;
u are the in-neighbors of v; |Eout (u)| is the number of outgoing
edges of u. During the processing, the adjacency matrix of the
graph is iteratively multiplied with an old rank vector to obtain
a new rank vector. The mathematical representation of a skewed
graph is a sparse adjacency matrix. Therefore, the computation
of PageRank can be interpreted as iterative sparse matrix-vector
multiplications (SpMV) [21]. Our discussions and optimizations
proposed for PageRank can also be applied to SpMV as well as
other graph algorithms.

In recent decades, information grows explosively in size and
complexity. In order to handle large-scale graph data efficiently,
significant research efforts are devoted to high-performance graph
processing on various platforms, e.g., single-machine multicore
systems [20, 32, 38] and multiple-machine distributed systems
[11, 39, 43]. While the distributed graph processing is able to pro-
vide high scalability by utilizing multiple machines, it oftentimes
delivers suboptimal cost efficiency and performance compared with
its shared-memory counterpart running on multicores [43].

Equipped with sufficiently large DRAM, a modern server-class
machine can process large-scale graph tasks within its main mem-
ory. Nevertheless, it still remains as a challenge to maximize the
performance potential of the hardware resource. High memory
latency, random cache accesses, thread divergence and etc., which
are incurred by the irregularity of graph-structured data, restrains
the effectiveness and efficiency of parallelism on multicore systems.

The intrinsic irregularity of graphs are commonly found in nat-
ural graph datasets that profile real-world phenomena, such as
Internet topology [10]. A typical feature to exemplify such irregu-
larity is the skewed power-law distribution of vertex degrees, where
a tiny fraction (e.g., 10 percent) of vertices are responsible for a ma-
jor fraction (e.g., 90 percent) of edges. For instance, a celebrity has
massive social influence in a social network, and a search engine
reaches out to billions of webpages in a web network.

To address the irregularity of graphs and accelerate graph pro-
cessing, a variety of graph processing frameworks are developed

https://doi.org/10.1145/3472456.3475737
https://doi.org/10.1145/3472456.3475737

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Chen and Chung, et al.

[20, 30, 32, 38, 40, 44]. In general, they can be categorized into
three types: vertex-centric, edge-centric, and partition-centric. The
vertex-centric paradigm is broadly implemented in contemporary
frameworks [32, 38], where each thread processes the graph at the
unit of vertex. To promote semi-sequential accesses and alleviate
the burdens of synchronization primitives, edge-centric paradigm
is thereby designed [30, 44]. Threads in this paradigm handle edges
instead of vertices. To further enhance cache utility and eliminate
synchronization overhead, partition-centric paradigm is proposed
in recent works [20, 40]. There, threads operates on partitions,
which are the vertex subsets split from the graph to fit into caches.

Our work in this paper lies in the area of the partition-centric
paradigm with enormous inspirations from the vertex-centric one.
The backbone of our approach is the hierarchical partitioning (HiPa)
with the awareness of memory and cache architecture. Firstly, at the
level of main memory, a graph is coarsely partitioned and placed
within the local Non-Uniform Memory Access (NUMA) node. Then,
at the level of cache, the graph data is further partitioned so that
each subgraph is privately owned by a core. The joint exploitation
of memory and cache allows HiPa to take the advantages of both
vertex- and partition-centric paradigms. The benefits include min-
imizing remote memory accesses, improving cache locality and,
consequently, significant speedup.

The contributions of this paper can be summarized as follows:
• We propose a hierarchical partitioning (HiPa) methodology to
boost the performance of PageRank. Firstly, HiPa subdivides a
graph onto the NUMA nodes to co-locate data and computation.
Then, within each NUMA node, HiPa refines the subsets of data
into disjoint cache-able partitions to promote in-core computing.
• Based on the partitioning strategy above, we further optimize
HiPa by pinning data to threads and differentially placing data
fields. The optimizations eliminate thread contention on hard-
ware resources, reduce memory traffic and enhance scalability.
• Comprehensive experiments validate the effectiveness of HiPa in
comparisonwith state-of-the-art frameworks and hand-optimized
implementations. Outperforming the fastest of them, HiPa yields
speedups by 1.11 − 1.45× (with remote memory reduction by
2.87 − 4.99×). Also, in terms of remote memory accesses, HiPa
achieves reductions by 1.87 − 3.90× against the best alternative.
• We carefully investigate the difference between two generations
of Intel CPUs. The upgrades in micro-architecture lead to non-
trivial impact on the choice of partition size for partition-centric
graph processing.

2 BACKGROUND
2.1 Basic Concepts
Graph Locality. The performance of PageRank on multicore sys-
tems is heavily affected by the data access pattern. We refer to
such pattern as graph locality, which can be classified into two
types: temporal and spatial. A group of vertices (or edges) show
high temporal locality if frequently accessed; they exhibit high
spatial locality if stored in nearby memory allowing for continuous
reading and writing.

For the enhancement of graph locality, numerous optimization
schemes are designed. For instance, via graph partitioning [38]
or blocking [5], threads are limited to access a subset of graph

vertices. The limitation eliminates the remote accesses to the long-
distance vertices, thus enhancing the spatial locality. On the other
hand, to facilitate temporal locality, hot vertices (e.g., whose degrees
are higher than the average) are concentrated together by graph
reordering [9] or semi-sorting [44].

2.2 NUMA Architecture
Modern server-class machines are typically featured with NUMA
memory design. In these machines, a single motherboard utilizes
more than one processors (i.e., sockets or CPUs). Each processor
consists of multiple cores. The cores are connected with a local
memory via a local bus, which together compose a NUMA node.
The NUMA nodes are bound by a interconnect, finally building a
multicore system [2].

Though the local memory of every NUMA node is globally
shared with other nodes, there exists performance variability when
a processor accesses different memory locations. The fastest speed
is achieved if a processor interacts with its local memory within
the same NUMA node. However, if a processor needs to reach out
to a remote memory inside another NUMA node, the request must
go through the remote memory controller of that node [12]. The
indirect access to remote memory causes high memory latency,
therefore leading to severe performance degradation. For instance,
on a multicore systems with two Intel Xeon Silver 4210 CPUs (i.e.,
NUMA nodes), it costs a core 0.06 seconds to sequentially read 1GB
data within its local memory, but 0.40 seconds for the remote one.

To exploit the benefits of NUMA architecture, a genre of NUMA-
aware graph analytics frameworks and techniques are proposed
[36, 38, 43]. In general, these approaches partition the graph into
several subgraphs and allocate them to NUMA nodes. A balanced
partitioning strategy (e.g., by edges or vertices) is required to pro-
mote workload balance among the NUMA nodes. Various optimiza-
tion techniques are utilized, including NUMA-aware data layouts
[38] and work-stealing scheduler [36]. The NUMA-awareness is
typically implemented in vertex-centric graph systems. To the best
of our knowledge, all existing partition-centric works are NUMA-
oblivious [20, 40, 42].

2.3 Partition-centric Graph Processing
The essence of partition-centric paradigm lies in the cache-able
disjoint partitions of a graph. All vertices of a graph are segmented
into vertex subsets, the sizes of which equal the size of caches.
When a graph is processed, the vertex subsets are taken as the
input by threads for user-defined functions (e.g., PageRank).

The optimal partition size is empirically determined based on
the characteristics of cache hierarchy. The cache hierarchy of a
multicore system typically consists of three levels: level 1 (L1) cache,
level 2 (L2) cache, and last level cache (LLC). Among them, L1 cache
provides the fastest speed but the smallest storage, which is exactly
opposite to LLC. As a compromise between speed and storage,
L2 cache is widely selected as the partitioning basis for partition-
centric graph frameworks [20, 21, 42].

By restricting each core to access a subset of graph vertices
within its local L2 cache, the spatial locality is significantly im-
proved as accesses to remote vertices are eliminated. Besides the
vertex subset, each partition also includes a edge subset. If a edge

HiPa: Hierarchical Partitioning for Fast PageRank on NUMA Multicore Systems ICPP ’21, August 9–12, 2021, Lemont, IL, USA

travels from a source vertex in one partition to a destination vertex
in another partition, it is labeled as the inter-edge. Inter-edges incur
core-to-core communication through the LLC or even the memory,
which causes high latency. In comparison, when the source and
destination vertices of a edge reside in the same core, this edge is
labeled as the intra-edge. Intra-edges indict that the operations on
vertices occur in local caches, which benefits the performance.

3 HIERARCHICAL PARTITIONING
Inspired by the NUMA characteristics of multicore systems and the
partition-centric graph analytics, we proposed HiPa, a hierarchical
partitioning methodology that leverages the memory-cache archi-
tecture. The abstraction of HiPa is illustrated in Fig. 1. It is designed
with the goals of reducing remote memory accesses and improving
cache efficiency. The details are described in following sections.

3.1 NUMA-aware Partitioning
The key to utilize a NUMA machine is co-locating the computation
and data within the same NUMA node. Improper data allocation
strategy might cause high overhead and workload imbalance for
parallel graph processing, thus deteriorating the performance [38].
Therefore, it is a crucial task to partition the graph components,
including vertices and edges, for the NUMA nodes.

When partitioning a graph, an intuitive idea is to evenly allocate
vertices over the NUMA nodes. Define the graph as G = (V ,E),
where V is the vertex set and E is the edge set. The disjoint vertex
subsets Vi allocated to N NUMA nodes have the identical size of
|V |/N , where 1 ≤ i ≤ N . It should be emphasized that the vertex

CPU1

NUMA node 0

Cache

Partition nPartition 0

Cache

Core 1 Core 2

... ...

... ...

CPU2

Cache

Core 3

 Cache

Core 0

NUMA node 1

DRAM DRAM

ScatterGather

Figure 1: Conceptual Design of HiPa. HiPa applies hierar-
chical partitioning to a graph based on the characteristics
of NUMA memory and private cache. Node 1 accumulates
data in Gather phase for processing, and node 2 sends out
updated data in Scatter phase.

subsets preserve the vertex order as in the original graph, and fulfill
such conditions: ∩Ni=1Vi = � and ∪Ni=1Vi = V . The same rules
apply to edges too. Nevertheless, for graph algorithms where all
graph edges are engaged in the processing, e.g., PageRank, the
computation complexity mainly replies on the edges instead the
vertices. For the skewed graphs, the even allocation of vertices leads
to workload imbalance, thus slowing down the computation.

To cope with the above issue, previous works prefer to priori-
tizing edges for balanced partitioning [36, 38]. Specifically, each
NUMA node is allocated with the same number of edges |E |/N .
Thereby, the vertices are split into several subsets Vi with varied
size |Vi | holding these edges. In other words, the sum of vertex de-
grees

∑
v ∈Vi D(v) in every subset equals |E |/N , where v is a vertex

and D(v) is the degree of it. The allocations of edges and vertices
on the ith NUMA node can be mathematically described as follows:

|Ei | =
|E |

N

Vi = {v ∈ V |
∑
v ∈VD(v) =

|E |

N
}

(2)

Enlightened by the predecessors, HiPa also adopts the edge-oriented
partitioning approach, but at a coarser granularity of cache-able ver-
tex subsets, for instance, L2-cache-sized partitions (L2-partitions).
The number of vertices allocated to a NUMA node must be a mul-
tiple of L2-partitions. The size of a L2-partition P is fixed to |P |=
{L2 cache size} / {single vertex size}, and the resized vertex subset
is denoted as Ṽi . Then, the number of vertices assigned to each
NUMA node can be written as |Ṽi | = ni · |P |, where ni is the least
succeeding integer of |Vi |/|P |. Due to the resizing of vertex subsets,
the corresponding edge subsets are resized too, which is denoted
as Ẽi . Based on Eq. 2, the number of edges and vertices reallocated
to the ith NUMA node can be formulated as follows:

|Ṽi | = ceil(
|Vi |

|P |
) · |P | = (

|Vi | − 1
|P |

+ 1) · |P | = ni · |P |

|Ẽi | =
∑
v ∈Ṽi

D(v)

(3)

In addition, the last NUMA node is an exception, which accom-
modates the leftover vertices and edges from other nodes. Also, the
edges used for partitioning are either in-edges or out-edges. In this
paper, the out-edges are selected for demonstration.

3.2 Cache-aware Partitioning
The NUMA-aware partitioning is aimed to minimize cross-node
memory traffic and workload imbalance. Inside each NUMA node,
the partitioning methodology is further refined.

In conventional partition-centric paradigm, threads handle the
L2-partitions (the partitions with size equivalent to L2 cache) on a
many-to-many basis. Any thread can arbitrarily access any partition.
When a graph is being processed, the threads iterate over all graph
partitions according to the first-come-first-serve policy. Threads
have to contend for the ownership of a partition for exclusive
processing within the private cache.

To avoid the potential contention of threads on the same parti-
tion, HiPa deploys a one-to-manymodel to the relationship between
the threads and the partitions. Given Eq. 3, the ith NUMA node
contains ni partitions. These partitions are distributed to local cores
in groups. Each group G contains the same number of edges, which

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Chen and Chung, et al.

P0 P1 P2 P3 P5 P6

P0 P1 P2 P4 P5 P6

P0 P1 P2 P4 P5 P6Graph

NUMA Node 1

NUMA Partitioning

Cache Partitioning

Partition Pining

NUMA Node 0

Core 0 Core 1 Core 2 Core 3

P3

P4

P3

Figure 2: Partitioning result of HiPa. The boxes represent
cache-able partitions of the graph data. Respectively, P0-2
hold 10 edges, P3-4 hold 15 edges, and P5-6 hold 30 edges.
The final output of HiPa is that the cores are allocated with
unequal numbers of partitions but equal number of edges.

applies edge-oriented partitioning again. When the graph is be-
ing processed, the access of a thread is confined to its belonging
group of partitions. For example, assuming the ith NUMA node
consists of C cores, every thread (i.e., working core) in this node is
assigned with a group ofmj partitions, where 1 ≤ j ≤ C . Following
conditions are satisfied:

ni =
∑C
j=1mj

|G j | =mj · |P |

|Ẽi |

C
=
∑
v ∈G jD(v)

(4)

In brief, the partitioning methodology of HiPa imposes a two-
level constraints on the working cores. Firstly, a graph is coarsely
partitioned based on the NUMA design of memory, such that graph
data can be processed by local processors. Secondly, within individ-
ual NUMA node, the accessibility of cores are further restricted to
a group of cache-able partitions to eliminate thread contention.

Fig. 2 exemplifies the partitioning result of HiPa. Assume a graph
can be subdivided into 7 cache-able partitions with equal number
of vertices. In the first stage, the first five partitions and the last two
are allocated to the NUMA node 1 and 2 respectively for workload
balance (e.g., n1 = 5 and n2 = 2). Then, in the second stage, the
first 3 sparse partitions are separated and fed into core 0. The
results of cache-level partitioning are m1 = 3,m2 = 2,m3 = 1,
andm4 = 1. Also, to deal with real-world graphs that cannot be
precisely partitioned according to Eq. 4, we loosen the condition
by allowing:

∑
v ∈G j D(v) ≥ |Ẽi |/C .

3.3 Thread Management
3.3.1 Problem: Thread Contention. The Hyper-Threading is a pop-
ular technology offered by various modern CPUs [12]. It improves
the parallelism of a multicore system by creating two logic cores
from every physical core in the system. Each pair share the same
hardware resources, including caches and bus, and incur light-
weight overhead between context switches. Hence, the cooperation
between the paired logic cores is more efficient than that of two
physical cores. In addition, the number of logic cores stands for the
maximum number of threads available for multithreading, which
doubles the number of physical cores.

The Hyper-Threading is enabled by default in almost all graph
processing frameworks to boost parallelization for speedup [20,
32, 38, 44]. Nevertheless, in the partition-centric paradigm, full
utilization of logic cores often leads to a performance decline [20,
21, 40, 42]. In Section 3.3, experimental results show that existing
partition-centric graph methodologies scales poorly once the num-
ber of working threads exceeds the number of physical cores. When
all logic cores are utilized, the processing of graph is nearly slowed
down by 2× (see Fig. 6).

The poor scalability results from the intensive contention among
threads on hardware resources, including caches and memory bus
[21]. In prior partition-centric works, each thread is allocated with
L2-cache-sized data for computation, which requires full occupation
of the private cache. This intensifies the thread contention, because
the dual threads (i.e., logic cores) on the same physical core have
to compete for the usage of L2 cache. Furthermore, the memory
bandwidth is designed to scale with the physical core instead of
logic cores [12]. The bandwidth is heavily congested when all logic
cores are flushing the L2 caches [20].

To alleviate the thread contention, prior works simply use only
half of available threads, which equates the number of physical
cores [20, 21, 40, 42]. However, the problem of contention still exists
due to the randomness of thread creation.Whenmultithreading, the
operating system (OS) arbitrarily generate threads from the pool of
logic cores, regardless of the status of physical cores. Therefore, it
might occur that two selected logic cores corresponds to the same
physical core and thus contend for resources. Moreover, the threads
schedule the processing of partitions on a first-come-first-serve
policy. The competition amongst multiple threads for the ownership
of a partition would further intensify the thread contention.

In order to alleviate the thread contention and enhance the scal-
ability of partition-centric paradigm, we propose a thread-data
pinning scheme for the coordination between data and threads on
multicores. It consists of two steps: (1) bind the threads to NUMA
nodes, and (2) pin the partitions to the bound threads. The details
of this scheme are discussed in next section.

3.3.2 Solution: Thread-data Pinning. As outlined in Algorithm 1,
the partition-centric processing of a graph can be generalized into a
scatter-gather model that iteratively updates a graph [20]. The com-
putation in every iteration envelops a scatter phase and a gather
phase, where the updates of local vertices are propagated to or
collected from neighbors. Within each phase, multiple threads are
created to parallelize the task. In other words, one phase, either scat-
ter or gather, includes the complete lifecycles of threads. A phase
represents a parallel region. As a result, the graph computation is
decomposed into numerous parallel regions

For instance, assuming a graph algorithm finishes in 10 iterations
on a multicore system consisting of 2 NUMA node with 4 physical
cores (i.e., 8 logic cores) per node. Within each iteration, the scatter
and gather phases are respectively parallelized into discrete parallel
regions. To avoid thread contention, only half of the logic cores
are used. Therefore, inside each region, a thread pool that contains
8 threads are initialized to scatter/gather all graph partitions and
then terminated after synchronization. Therefore, the overall com-
putation, which consists of 10 iterations of scatter-gather phases,
creates 10 × 2 × 8 threads in an interleaved routine.

HiPa: Hierarchical Partitioning for Fast PageRank on NUMA Multicore Systems ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Algorithm 1: NUMA-oblivious scatter-gather model
Input: partitions → set of partitions
Output: Graph

1 for i ← 0 to iteration do
2 for p ∈ partitions do in parallel ▷ parallel region
3 дather (p) ;
4 for p ∈ partitions do in parallel ▷ parallel region
5 scatter (p);
6 Graph ← concatenate (partitions);

In the context of NUMA-aware processing, additional overheads
are involved for thread manipulations, including thread binding
and thread migration. To place the computation together with data
on the same NUMA node, the computing threads are bound to the
particular NUMA node where the data are stored. When a thread is
initialized on a wrong NUMA node, thread binding would invoke
thread migration, where a thread is migrated from current core to
another core on the correct NUMA node. Thread migration incurs
high latency as the thread context is transferred via memory. Such
latency is increased in NUMA systems, because the transfer across
NUMA nodes always proceeds through remote memory [1].

If we deploy NUMA-aware multithreading on the processing
model of Algorithm 1, every threads created inside the parallel
region have to be bound to a NUMA node. In the worst case, where
all threads are initialized in the wrong NUMA nodes, the thread
migration occurs up to 160 times, since there are 160 threads created
during 10 iterations. The problem of thread migration is amplified
by the massive production of threads.

In order to minimize the expensive thread migrations, a new
processing model is proposed as in Algorithm 2. It reduces the fre-
quency of thread creation by extending the functionality of threads.
The lifetime of a thread covers the whole period of graph processing.
Also, according to the one-to-many partitioning result obtained in
Section 3.2, the cache-able partitions are pinned to threads (line
8). As a result, each thread is able to perform complete iterative
scatter-gather computation over the fixed group of partitions.

Algorithm 2: Numa-aware scatter-gather model
Input: numa_Partitions → numa-ly allocated partitions
Input: numa_Threads → numa-ly bound threads

1 Function Th_Func(numa_part)
2 for i ← 0 to iter do
3 scatter (numa_part);
4 synchronize with other threads;
5 дather (numa_part);
6 for th ∈ numa_Threads do in parallel ▷ parallel region
7 match th with p ∈ numa_Partitions;
8 th calls Th_Func(p);
9 Graph ← concatenate (numa_Partitions)

By pinning the partition to the thread on NUMA nodes, data traf-
fic is mainly restricted within local memory, and thread contention
are effectively eliminated. Hence, we can now take the advantage
of Hyper-Threading and utilize all logic cores. In NUMA-aware

model of Algorithm 2, the number of created threads during the
overall graph processing equals to the number of available logic
cores, which is 8 × 2. Hence, in the worst case of thread binding,
the thread migration occur at most 16 times, which is significantly
lower than the 160 times for Algorithm 1.

Finally, we summarize the advantages of theNUMA-aware thread-
data pinning. (1) Remote memory accesses are reduced. (2) Thread
migration is minimized. (3) Thread contention is alleviated. (4)
Scalability is enhanced.

3.4 NUMA-aware Partition-based Data Layout
In order to facilitate the pinning between threads and data, an
lookup table is constructed. It allows HiPa to identify the coverage
of each thread on the graph data. As depicted in Fig. 3, it is a 2-layer
tree that records the range of partitions permitted for every thread,
and subsequently, the range of vertices covered by each partition.
This table is globally accessible for all threads.

Furthermore, HiPa adopts the edge compressing technique pro-
posed by the partition-centric work [21]. As previously discussed,
the inter-edge, whose source and destination vertices reside in two
different cores, induces expensive memory traffic. To reduce the
cross-core communication, the inter-edges pointing to multiple ver-
tices inside the same partition are compressed into single inter-edge.
After the data is transferred via the compressed edge, it is then
locally propagated to the destination vertices.

For the instance of Fig. 4, originally there are two inter-edges,
(v1,v6) and (v1,v7), incurring two cross-core messages that carry
the updated data from v1. Since the two inter-edges share the
same source vertex, carry the same data and also reach to the same
destination partition, it is redundant to keep both them. Hence, they
are compressed into a single inter-edge, holding the data from one
vertex to one partition, e.g, (v0,p1). After received, this message is
decoded and locally propagated to multiple vertices via the intra-
edges (p1,v6) and (p1,v7) inside the destination partition [21].

However, unlike the predecessor, HiPa ensures the contiguous
virtual address space for the graph data. Based on the partitioning
result, graph vertices, edges and attributes (e.g., rank values and
vertex degrees) are subdivided into discrete physical pages on dif-
ferent NUMA node. Since discrete address space (e.g., two arrays
allocated on two NUMA nodes) requires additional overhead for
indirect accesses, the attributes are mapped to contiguous virtual
address to seamlessly access cross-node data. Also, within the same
NUMA node, vertices as well as edges are placed in the contiguous
physical (and virtual) address spaces, though they might belong to
different partitions. This reduces the cost for a thread to iteratively

P1 P2 P3 P5

T0 T1 T2 T3

P4 P6

v0 v1 v2 v3 v4 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20

P0

v5

Figure 3: 2-level hierarchical lookup Table. The first level
records the partition range for each thread, and the second
level records the vertex range for each partition.

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Chen and Chung, et al.

v1 P1

Inter‐edges

v6

v7

Intra‐edges Intra‐edges

private cache
Core 0

DRAM private cache
Core 1

v1
v6

v7

Edge (v1, p1)

Edge(v1, v6)

Edge(v1,v7)

v2

v2

Edge(v1, v2)

Edge(v1, v2) Edge(p1, v6)

Edge(p1, v7)

Figure 4: Scatter via inter-edges and intra-edges

process over multiple partitions, and avoid the risk of memory leaks
due to multi-dimensional dynamic memory allocation1.

4 EVALUATION
In this section, we evaluate the effectiveness of HiPa by comparing
the performance of PageRank implemented under different method-
ologies/frameworks. Also, extensive experiments are conducted in
order to study its impact on the multicore systems.

4.1 Experimental Setup
We perform experiments on a multicore machine with two Intel
Xeon Silver 4210 processors (i.e., NUMA nodes). Each processor
consists of 10 physical cores (contributing to 20 logic cores) and
equipped with a 128GB local DRAM. The private L1 and L2 sizes
per core are 64KB and 1MB respectively, and the shared L3 cache
size is 13.75MB. The data types for vertices, edges and PageRank
value are set to 4 bytes.

The code of HiPa is written in C++ and compiled using g++
10.2.0 with optimization level O3. The partition size is empirically
decided to 256KB (see Section 4.5) and 40 threads are fully utilized
for multithreading. The results relating to execution time are re-
ported using the average value over 5 executions, each of which
runs for 20 iterations. To neutralize the effects of preprocessing
on memory performance, such as loading graphs from disk, the
experiments regarding memory and cache utilization are executed
for 60 iterations.

Frameworks: We use the source codes of state-of-the-art frame-
works, Polymer [38] and GPOP [20], for comparison. Polymer fol-
lows the vertex-centric paradigm, and is particularly designed for
NUMA machines. GPOP follows the partition-centric paradigm. To
our best knowledge, GPOP is the framework providing the fastest
execution of PageRank [20]. Following authors’ instruction, we
set the partition size to be 1M and only use 20 threads for GPOP.
However, many frameworks are designed with a trade-off between
productivity (i.e., ease of use) and performance [31]. It is often pos-
sible for framework-based implementations to perform worse than
well-tuned hand-optimized codes (see Section 4.2).

Hand-coded implementation: To provide a fair comparison,
we use two hand-coded optimized variants of PageRank. One is a
pull-based vertex-centric version (v-PR), where each vertex pulls
the value from its in-neighbors for accumulation. This enables all

1we find such issue in [21] and report it to the authors.

Table 1: Graph Descriptions (K: Thousand, M:Million, B: Bil-
lion). Intra and inter stands for the intra-edges and the inter-
edges per partition if size equals 1MB.

Graphs Descriptions #Vertices #Edges Intra Inter

journal Live Journal[22] 4.8M 68.5M 30.8K 7.9M
pld Pay-Level-Domain[26] 42.9M 0.6B 7.2K 1.6M
wiki Wiki Links[17] 18.3M 0.2B 74.9K 0.5M
kron Synthetic Graph[4] 67M 2.1B 11.3K 2.8M
twitter Twitter Follower[18] 41.7M 1.5B 10.5K 2.3M
mpi Twitter Influence[7] 52.6M 2.0B 0.2M 1.6M

columns of an adjacency matrix to be traversed asynchronously
in parallel without storing the partial sum. The other variant is
partition-centric PageRank (p-PR) with finely-tuned parameters,
e.g., partition size 256KB and 20 threads. The sensitivity analysis
regarding these parameters are provided in Section 4.4 and 4.5. We
re-implement the source code offered by [21] with enhancement
in memory safety. Additionally, Neither v-PR nor p-PR applies
NUMA-awareness.

Six graph datasets with varied features are used for performance
evaluation. journal, twitter and mpi are social networks illustrating
the follower relationships among users. pld and wiki are hyperlink
graphs extracted from the web pages by web crawlers. kron is
generated by Graph500 Kronecker generator with scale of 23 [4].
Their statistic information is summarized in Table 1. In this work,
we select the out-degree as the basis for graph partitioning.

4.2 Execution Time
Table 2 presents the execution time of PageRank following different
implementing methodologies. We observe that HiPa consistently
outperforms other methodologies on all graphs. It achieves the
highest speedup against Polymer on graph kron by 10.65×. For p-
PR, v-PR and GPOP, HiPa outperforms them by up to 1.45×, 4.56×,
3.62× respectively.

On the majority of graphs, the hand-coded implementations
(e.g., HiPa, p-PR and v-PR) provide better performance than the
framework-based ones (e.g, GPOP and Polymer) due to lightweight
designs. For example, graph frameworks typically employ a f rontier
for recording the active vertices in each iteration. It is used to avoid
unnecessary accesses to the inactive vertices that do not participate
in computation. However, the frontiers are completely redundant
to PageRank since every vertex is processed in every iteration. In
GPOP, this additional layer of can be disabled for PageRank. Hence,
we only report the performance of simplified GPOPwithout frontier
for evaluation in this paper, such as in Table 2.

Table 2: Execution time (in seconds) of PageRank with vari-
ous implementations.

HiPa p-PR v-PR GPOP Polymer
journal 0.31 0.41 0.54 1.14 1.72
pld 2.43 3.37 8.44 4.18 22.27
wiki 1.74 1.80 1.96 3.90 4.63
kron 7.20 10.06 32.82 11.29 76.62
twitter 8.43 9.83 12.09 14.91 41.06
mpi 13.93 17.54 24.41 33.90 64.00

HiPa: Hierarchical Partitioning for Fast PageRank on NUMA Multicore Systems ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Also, on the same design basis (e.g., hand-coded or framework-
based), the partition-centric paradigm substantially outperforms its
vertex-centric counterpart. For instance, HiPa and p-PR are faster
than v-PR; GPOP is faster than Polymer. The acceleration results
from the aggressive memory reduction promoted by the partition-
centric paradigm, which is to be discussed in the next section.

Lastly, the overhead introduced by HiPa consists of graph parti-
tioning and NUMA-aware data binding, but excludes the loading of
graphs. The overheads for graphs journal, pld,wiki, kron twitter,mpi
are 0.22s, 1.62s, 0.66s, 5.17s, 5.50s, 8.52s respectively. On average,
they can be amortized by 12.7 iterations of PageRank in HiPa, while
the normalized overheads for GPOP and p-PR are 9.61 and 12.44
iterations respectively. Plus the overheads, HiPa still delivers better
end-to-end performance than other implementations on most of
graphs, except v-PR on graphs wiki and twitter.

4.3 Memory Utility
With the optimizations of in-core computing and edge compressing,
we expect HiPa to incur insignificant memory consumption com-
pared with the vertex-centric methodologies. Moreover, in favor of
the NUMA architecture, the remote memory traffic generated by
HiPa is to be minimized as well.

Fig. 5 illustrates the memory accesses normalized by the number
of edges in graphs. We refer to the memory accesses per edge as
MApE. The percentages of remote MApE are significantly reduced
in NUMA-aware designs, including HiPa and Polymer, which are
13.80% and 10.11% respectively. As for the NUMA-oblivious designs,
such as p-PR, v-PR, and GPOP, the percentages of MApE are re-
markably higher, which are 48.92%, 50.86%, and 53.00% respectively.
Among all implementations, HiPa achieves the least number of re-
mote memory accesses. The reduction in remote memory accesses
allows HiPa to perform as the fastest methodology.

j o u r n a l p l d w i k i k r o n t w i t t e r m p i
0

5

1 0

1 5

2 0

1 6 %

1 2 %
1 7 %

1 4 % 1 1 %
1 3 %

3 5

Me
mo

ry
ac

ce
sse

s p
er

ed
ge

 (B
yte

s)

2 8 4 1 3 93 64 97 3 7 4

 H i P a p - P R G P O P v - P R P o l y m e r

Figure 5: Memory accesses (normalized with graph edges) of
PageRank in different implementing methodology. The to-
tal bar is the total accesses including remote and local mem-
ory accesses. The lower, shadowed bar segment is the remote
memory accesses. The ratio of remote access for HiPa is de-
noted on top the total bar.

The partition-centric paradigm, deployed by HiPa, p-PR and
GPOP, effectively reduces the memory traffic during graph pro-
cessing. On average of all graphs, HiPa, p-PR and GPOP generate
9.57, 9.37 and 8.89 MApE respectively. The results are substantially
lower than those of Polymer and v-PR, which are 26.66 and 47.31.

Among the partition-centric methodologies, GPOP produces the
fewest total memory accesses, because of its largest partition size
(i.e., 1MB) in comparison with HiPa and p-PR (i.e., both 256KB).
The larger a partition, the better the compression (see Section 4.5).
HiPa generates slightly higher memory accesses than p-PR, which
are 9.57 vs. 9.37 MApE, due to the overhead of NUMA-aware opti-
mizations. However, the remote memory accesses of p-PR account
for 48.92%, which is notably higher than HiPa’s 13.80%. As a result,
HiPa delivers a considerably faster speed.

Polymer achieves the lowest ratio of remote memory accesses
on the average of all graphs, which is 10.11% and even lower than
HiPa’s 14.17%. Nevertheless, the total memory accesses of Poly-
mer is too high to justify the reduction in remote accesses. The
inefficiency of Polymer (and also p-PR) results from the intrinsic
disadvantages of vertex-centric paradigm. Suffering from atomic
operations, low graph locality and irregular memory accesses [20],
the performance of Polymer is severely limited.

4.4 Scalability
The scalability of HiPa as well as other methodologies is examined
on graph journal by varying the number of threads for parallel
processing. For each methodology, the results are normalized by
its execution time using 40 threads to locate the peak-performance
point (i.e., the lowest point). As depicted in Fig. 6, all plots finally
converge to 1.

HiPa and other two vertex-centric implementations, Polymer
and v-PR, exhibit high scalability. As the number of threads in-
crease, the their performances show the tendency of improvement.
When scaling from 2 to 20 threads, there is a sharp decrease in
execution time. The scaling behavior become weak as more threads

2 4 8 1 6 2 0 2 4 3 0 3 2 3 6 4 0

1

2

3

4

5

6

No
rm

aliz
ed

 ex
ec

uti
on

 tim
e

N u m b e r o f t h r e a d s

 H i P a
 p - P R
 v - P R
 G P O P
 P o l y m e r

Figure 6: Execution time (normalized by the performance of
40 threads) with varied numbers of threads on journal.

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Chen and Chung, et al.

are employed, e.g., from 20 to 40. The best performance is achieved
when all 40 threads are utilized.

By contrast, the two partition-centric methodologies, p-PR and
GPOP, demonstrate relatively poor scalability. Their best perfor-
mance is obtained when using 16 threads and 20 threads respec-
tively. When 40 threads are fully utilized, the execution time will be
nearly doubled. This is because the conventional partition-centric
methodologies cause high consumption of memory bandwidth
when the cores load and offload partitions [21]. The bandwidth
is saturated with approximately half of total threads [20]. Any fur-
ther addition of threads would only aggregate the contention on
bus and cache resources, and thus deteriorates the performance.

Though HiPa is built under the partition-centric paradigm, it
still scales well on the multicore system because it forces two-level
constrains for a thread to access a partition. Firstly, the NUMA-
awareness of HiPa limits about 85% of memory traffic to occur
within the local memories. It effectively avoids cores contending
for interconnect bus between different NUMA nodes. Inside each
NUMA node, the data of every partition are further pinned to a
thread, so the conflicts of threads on the same partition are elimi-
nated. As a result, the limitation of conventional partition-centric
methodology is overcome, and hence the scalability of HiPa is con-
siderably enhanced.

4.5 Sensitivity Analysis of Partition Size
The partition size plays an important role in the the effectiveness
of partition-centric paradigm. Fig. 7 illustrates the impact of varied
partition sizes on the execution time and LLC. In general, as the
partition sizes become larger, the LLC hits and hit ratios contin-
uously grow, which indicates the data accesses are increasingly
concentrated in LLC. The best performance of HiPa is achieved
when the partition size equals (or slightly less than) a quarter of L2
cache size, i.e., 256KB.

1 6 K 3 2 K 6 4 K 1 2 8 K 2 5 6 K 5 1 2 K 1 M 2 M 4 M 8 M
0
1
2
3
4
5
6

2 E + 8
4 E + 8
6 E + 8
8 E + 8
1 E + 9

1 . 2 E + 9
1 . 4 E + 9
1 . 6 E + 9

LL
C H

its

 H i P a
 p - P R
 G P O P

22
%

24
%

26
% 33
% 39
% 51

% 59
%

66
%

72
%

77
%

Ex
ec

uti
on

 Ti
me

 (s
)

P a r t i t i o n S i z e (B y t e)

 H i P a
 p - P R
 G P O P

Figure 7: LLC cache hits (upper) and execution time (lower)
with different partition sizes on graph journal. LLC hit ra-
tios of HiPa are denoted.

When deciding the proper size for graph partitioning, there ex-
ists a tradeoff between cache locality and inter-edge compression.
If the partition size is small (e.g., size ≤ 256KB), high spatial locality
is ensured as random accesses are confined within the partitions in
private caches. On the other hand, (too) small partitions, such as
size=16KB, preserve a large number of inter-edges, which leads to
high workloads and substantial memory traffic. Notice that GPOP
incurs high LLC accesses, when the number of partitions is ex-
ceptional high with size = 16KB. This is because GPOP requires
additional data fields for each partitions, such Flags, State [20].

As the partition size increases from 16KB to 256KB, inter-edges
are continuously compressed, and workloads are accordingly re-
duced. Hence, the execution time keeps a steady decline. Neverthe-
less, once the size exceeds the threshold of 256KB, the intra-edge of
a partition spill over from L2 cache to LLC. Cache spatial locality is
not promised anymore. As Fig. 7 presents, there is a drastic surge
in LLC hits (and hit ratios) for all partition-centric implementa-
tions when the partition size grows from 256KB to 8MB. Since LLC
provides the highest latency in cache hierarchy, the execution is
significantly decelerated.

Our experimental results show that the optimal partitioning size,
or alternatively the threshold, is 256KB, which is a quarter of L2 size.
This finding contrasts with the results in prior partition-centric
works [20, 40]. In their settings, the partitions are usually set to fit
into LLC or L2, which are 20MB or 1MB in our environment.

The conflict mainly originates from two factors. First of all, as
mentioned beforehand, besides the vertex subset, a partition also
contains an edge subset (including intra- and inter-edges). Their
sizes are unequal for each partition. Both the edge subset and the
buffer require additional memory and cache space for writing and
reading. Hence, to allow a partition to be privately accommodated
by a core, the size of a vertex subset is supposed to be smaller than
the L2 cache size, so that the edge subset and buffer are co-located
with the vertex subset within the same L2 cache.

Secondly, the micro-architectures of processors are different. our
experiments in this paper are conducted on Intel 6th generation
CPUs based on 14nm Skylakemicro-architecture. All prior partition-
centric methodologies were proposed according to the Intel 22nm
Haswell micro-architecture, which is 2 generation older than Sky-
lake. Architectural upgrades are deployed on Skylake, a major part
of which relates to the cache hierarchy. For instance, in Haswell,
the L2 cache is 256KB per core and the LLC is shared with 2.56MB
per core. The LLC is inclusive, which guarantees every data exists
in L2 cache must also exist in LLC. Skylake provides larger L2 cache
of 1MB per core, and smaller shared LLC of 1.375MB per core. The
LLC in Skylake is non-inclusive, which allows data in memory to
be directly loaded to the L2 cache without through the LLC.

The new hardware characteristics lead to a variability in deter-
mining the size of cache-able partitions. To find the proper size on
different micro-architectures, we extend the sensitivity analysis by
examining the all partition-centric methodologies on Haswell and
Skylake. All graphs except kron and mpi are tested, because these
two exceed the memory capacity of our Haswell machine - Intel
Xeon CPU E5-2667 with two NUMA nodes, 64GBmain memory and
256KB L2 caches. To clearly present the trends of change around
the threshold point, we normalize the execution time of each graph
by the result of a particular size, for example, 128K on Haswell

HiPa: Hierarchical Partitioning for Fast PageRank on NUMA Multicore Systems ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Table 3: Normalized execution time using different partition
sizes on Haswell and Skylake micro-architectures

Method. Skylake Haswell

64K 128K 256K 512K 64K 128K 256K 512K

HiPa 1.04 1.04 1.00 1.25 1.08 1.00 1.18 1.29
p-PR 0.85 0.89 1.00 1.30 1.00 1.00 1.08 1.25
GPOP 1.34 1.03 1.00 1.25 1.18 1.00 0.98 1.13

Average 1.08 0.99 1.00 1.27 1.09 1.00 1.08 1.22

and 256K on Skylake. The normalized time of all tested graphs are
averaged and then listed in Table 3.

As Table 3 shows, the optimal partition size on Skylake strikes at
256KB for HiPa and GPOP, which enables the fastest execution. For
p-PR, the best performance is at 128KB. The performance difference
between 256KB and 128KB is minute, since the average of them are
1.00 and 0.99 respectively. As for the Haswell, the optimal sizes for
three methodologies all hit at 128KB. When the size become larger
than 256KB, both Skylake and Haswell are sharply decelerated due
to the spillover of vertices into LLC.

In addition, the performance of HiPa deteriorates when deployed
on single NUMA node with 20 threads, because all contentions are
concentrated on one node. For instance, on graph journal, single-
node HiPa costs 0.44s to finish 20 iterations of PageRank. With the
same number of threads, 2-node HiPa, p-PR and GPOP cost 0.39s,
0.41s and 1.14s respectively to end the executions. Nevertheless,
we expect the performance of HiPa to be further boosted in 4-node
and 8-node machines.

5 RELATEDWORK
Graph partitioning. The partitioning of a graph can be consid-
ered equivalent to the task allocation of a graph parallel computing
system. There exist two essential types of lightweight partitioning
schemes: vertex-based and edge-based. In the former case, vertices
are assigned to disjoint segments. It is an intuitive method of parti-
tioning and adopted in early graph frameworks such as GraphLab
[23] and Pregel [24]. As for the latter, edges of a vertex are detached
to different segments, and the vertex is accordingly replicated. This
scheme gains its popularity in edge-centric frameworks, such as
GridGraph [44] and X-stream [30]. For better performance, hybrid
partitioning approaches are proposed to take advantages of the
two, for example, PowerLyra [8] and CUBE [39]. The partitioning
methodology proposed in our work falls into the hybrid category.

Moreover, numerous sophisticated partitioning algorithms are
developed in order to obtain high-quality results, for example
METIS [14, 15], KaHIP [27] and PULP [33]. Those algorithm exten-
sively analyze the internal structure of the graphs. High-quality
graph partitioning facilitates workload balance for parallel compu-
tation and reduces the communication volume between working
units. As a result, it leads to a substantial performance boost for
downstream applications [34].

Nevertheless, comparedwith the lightweight counterpart, sophis-
ticated partitioning methods incurs high overhead and complicated
implementation procedure. To this end, high-performance parti-
tioning algorithms are designed, such as ParMETIS [16], ParHip

[28] and XtraPULP [35]. In these partitioners, various optimization
techniques are exploited, for instance, hierarchical partitioning [28]
and distributed parallelism [35].

HiPa absorbs the nutrition from both lightweight and sophis-
ticated partitioning strategies. It leverages the prior knowledge
of vertex degrees for graph partitioning without investigating the
structural property, so the analysis is simplified. For high quality
and high performance, the hierarchical partitioning methodology
is deployed in accordance with the memory hierarchy of multi-
core systems. As a result, HiPa achieves remarkable advantages in
efficiency and effectiveness over contemporary works.

Graph analytics frameworks. HiPa is inspired by the graph
frameworks designed for shared-memory multicore machines, such
as Ligra [32], Ploymer [38] and GPOP [20]. Besides the shared-
memory, there are a variety of hardware platforms targeted for the
design of graph frameworks. GraphChi [19] and GridGraph [44]
are proposed to handle large-scale graphs on a disk-based platform
whose computing resource is rather limited, for instance, a laptop
with 16 GB memory. Medusa [41] and Gunrock [37] exploits the
massive parallelism from GPU to accelerate graph analytics.

When the graph data size is too large (e.g., terabytes) to fit into
a single machine, the graph processing scales out to a cluster of
distributed machines, for instance, Pregel [24] and GraphX [11].
The distributed platform imposes considerable overheads for inter-
machine communication. Therefore, a major focus for distributed
graph frameworks is to reduce network traffic, such as CUBE [39],
Gemini [44]. However, the scalability of many distributed graph
processing systems is established at the sacrifice of efficiency. Com-
pared with their shared-memory counterparts, they oftentimes
yield unsatisfactory cost efficiency as well as performance [43].
Furthermore, a study [25] showcases that, with optimizations, even
single-threaded implementations are able to outperform many
graph frameworks running on a cluster.

6 CONCLUSION AND FUTUREWORK
In this paper, we present HiPa, a hierarchical partitioning methodol-
ogy that boosts the performance of PageRank on multicore systems.
HiPa deploys two-level partitioning strategy based on the memory-
cache architecture of the systems. Firstly, it subdivides the graph
data into coarse-grained subsets according to the NUMA charac-
teristics of the memory. Then, the graph subset in each NUMA
node is refined into cache-able disjoint partitions to enable in-core
computing. Furthermore, to co-locate computations and data, new
data layout is designed and pinned to threads.

Extensive experiments are conducted to evaluate the perfor-
mance of HiPa. In comparison with the state-of-the-art frameworks
as well as hand-optimized implementations, it achieves the fast
execution speed and the least remote memory accesses. Moreover,
HiPa exhibits high scalability, because it effectively alleviates the
thread contention on hardware resources, e.g., bus and caches.
Also, we find that the optimal partitioning size for Skylake micro-
architecture equals a quarter of L2 cache size, while for Haswell it
is half of L2 cache size.

Albeit we use PageRank to demonstrate the effectiveness of HiPa,
the methodology of HiPa can be deployed to more generic use
scenarios. In the future work, we will explore the design space for

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Chen and Chung, et al.

the extension of HiPa to diverse algorithms, e.g., SpMV, PageRank
Delta and BFS.

ACKNOWLEDGMENTS
This work is supported by the National Key Research and Develop-
ment Program of China (No. 2018YFB1003505)

REFERENCES
[1] 2011. Intel® VTune™ Profiler Performance Analysis Cookbook .

https://software.intel.com/content/www/us/en/develop/documentation/vtune-
cookbook/top/tuning-recipes/os-thread-migration.html. [Online; accessed
22-April-2021].

[2] 2011. Optimizing Applications for NUMA. https://software.intel.com/content/
www/us/en/develop/articles/optimizing-applications-for-numa.html. [Online;
accessed 21-April-2021].

[3] Chris Barrett, Keith Bisset, Martin Holzer, Goran Konjevod, MadhavMarathe, and
DorotheaWagner. 2006. Implementations of routing algorithms for transportation
networks. In DIMACS Workshop on Shortest-Path Challenge. Citeseer.

[4] Scott Beamer, Krste Asanović, and David Patterson. 2015. The GAP benchmark
suite. arXiv preprint arXiv:1508.03619 (2015).

[5] Scott Beamer, Krste Asanović, and David Patterson. 2017. Reducing pagerank
communication via propagation blocking. In 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 820–831.

[6] Peter J Carrington, John Scott, and StanleyWasserman. 2005. Models and methods
in social network analysis. Vol. 28. Cambridge university press.

[7] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and Krishna P Gummadi.
2010. Measuring user influence in twitter: The million follower fallacy. In fourth
international AAAI conference on weblogs and social media.

[8] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. PowerLyra: differ-
entiated graph computation and partitioning on skewed graphs. In Proceedings
of the Tenth European Conference on Computer Systems. 1–15.

[9] Priyank Faldu, Jeff Diamond, and Boris Grot. 2019. A closer look at lightweight
graph reordering. In 2019 IEEE International Symposium on Workload Characteri-
zation (IISWC). IEEE, 1–13.

[10] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. 1999. On power-law
relationships of the internet topology. ACM SIGCOMM computer communication
review 29, 4 (1999), 251–262.

[11] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J
Franklin, and Ion Stoica. 2014. Graphx: Graph processing in a distributed dataflow
framework. In 11th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 14). 599–613.

[12] R Intel. 2014. Intel 64 and ia-32 architectures optimization reference manual.
Intel Corporation, Sept (2014).

[13] N Kannan and S Vishveshwara. 1999. Identification of side-chain clusters in
protein structures by a graph spectral method. Journal of molecular biology 292,
2 (1999), 441–464.

[14] George Karypis and Vipin Kumar. 1997. METIS: A software package for parti-
tioning unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices. (1997).

[15] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on scientific Computing 20, 1
(1998), 359–392.

[16] George Karypis and Vipin Kumar. 1999. Parallel multilevel series k-way parti-
tioning scheme for irregular graphs. Siam Review 41, 2 (1999), 278–300.

[17] Jérôme Kunegis. 2013. Konect: the koblenz network collection. In Proceedings of
the 22nd International Conference on World Wide Web. 1343–1350.

[18] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a social network or a news media?. In Proceedings of the 19th international
conference on World wide web. 591–600.

[19] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. Graphchi: Large-scale
graph computation on just a {PC}. In 10th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 12). 31–46.

[20] Kartik Lakhotia, Rajgopal Kannan, Sourav Pati, and Viktor Prasanna. 2020. GPOP:
A Scalable Cache-and Memory-efficient Framework for Graph Processing over
Parts. ACM Transactions on Parallel Computing (TOPC) 7, 1 (2020), 1–24.

[21] Kartik Lakhotia, Rajgopal Kannan, and Viktor Prasanna. 2018. Accelerating
pagerank using partition-centric processing. In 2018 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 18). 427–440.

[22] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford large network
dataset collection.

[23] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and JosephMHellerstein. 2012. Distributed GraphLab: A Framework for Machine
Learning and Data Mining in the Cloud. Proceedings of the VLDB Endowment 5,
8 (2012).

[24] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. 135–146.

[25] Frank McSherry, Michael Isard, and Derek G Murray. 2015. Scalability! But at
what {COST}?. In 15th Workshop on Hot Topics in Operating Systems (HotOS
{XV}).

[26] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. 2015.
The graph structure in the web–analyzed on different aggregation levels. The
Journal of Web Science 1 (2015).

[27] Henning Meyerhenke, Peter Sanders, and Christian Schulz. 2014. Partitioning
complex networks via size-constrained clustering. In International Symposium
on Experimental Algorithms. Springer, 351–363.

[28] Henning Meyerhenke, Peter Sanders, and Christian Schulz. 2017. Parallel graph
partitioning for complex networks. IEEE Transactions on Parallel and Distributed
Systems 28, 9 (2017), 2625–2638.

[29] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[30] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream: Edge-
centric graph processing using streaming partitions. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. 472–488.

[31] Nadathur Satish, Narayanan Sundaram, Md Mostofa Ali Patwary, Jiwon Seo,
Jongsoo Park, M Amber Hassaan, Shubho Sengupta, Zhaoming Yin, and Pradeep
Dubey. 2014. Navigating the maze of graph analytics frameworks using massive
graph datasets. In Proceedings of the 2014 ACM SIGMOD international conference
on Management of data. 979–990.

[32] Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph processing
framework for shared memory. In Proceedings of the 18th ACM SIGPLAN sympo-
sium on Principles and practice of parallel programming. 135–146.

[33] George M Slota, Kamesh Madduri, and Sivasankaran Rajamanickam. 2014. PuLP:
Scalable multi-objective multi-constraint partitioning for small-world networks.
In 2014 IEEE International Conference on Big Data (Big Data). IEEE, 481–490.

[34] George M Slota, Sivasankaran Rajamanickam, Karen Devine, and Kamesh Mad-
duri. 2017. Partitioning trillion-edge graphs in minutes. In 2017 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 646–655.

[35] George M Slota, Cameron Root, Karen Devine, Kamesh Madduri, and
Sivasankaran Rajamanickam. 2020. Scalable, Multi-Constraint, Complex-
Objective Graph Partitioning. IEEE Transactions on Parallel and Distributed
Systems 31, 12 (2020), 2789–2801.

[36] Jiawen Sun, Hans Vandierendonck, and Dimitrios S Nikolopoulos. 2017. Graph-
grind: Addressing load imbalance of graph partitioning. In Proceedings of the
International Conference on Supercomputing. 1–10.

[37] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and
John D Owens. 2016. Gunrock: A high-performance graph processing library on
the GPU. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. 1–12.

[38] Kaiyuan Zhang, Rong Chen, and Haibo Chen. 2015. NUMA-aware graph-
structured analytics. In Proceedings of the 20th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. 183–193.

[39] Mingxing Zhang, Yongwei Wu, Kang Chen, Xuehai Qian, Xue Li, and Weimin
Zheng. 2016. Exploring the hidden dimension in graph processing. In 12th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
16). 285–300.

[40] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Amarasinghe, and
Matei Zaharia. 2017. Making caches work for graph analytics. In 2017 IEEE
International Conference on Big Data (Big Data). IEEE, 293–302.

[41] Jianlong Zhong and Bingsheng He. 2013. Medusa: Simplified graph processing
on GPUs. IEEE Transactions on Parallel and Distributed Systems 25, 6 (2013),
1543–1552.

[42] Shijie Zhou, Kartik Lakhotia, Shreyas G Singapura, Hanqing Zeng, Rajgopal
Kannan, Viktor K Prasanna, James Fox, Euna Kim, Oded Green, and David A
Bader. 2017. Design and implementation of parallel pagerank on multicore
platforms. In 2017 IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 1–6.

[43] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A computation-centric distributed graph processing system. In 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16). 301–
316.

[44] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-scale
graph processing on a single machine using 2-level hierarchical partitioning. In
2015 {USENIX} Annual Technical Conference ({USENIX}{ATC} 15). 375–386.

https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/tuning-recipes/os-thread-migration.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/tuning-recipes/os-thread-migration.html
https://software.intel.com/content/www/us/en/develop/articles/optimizing-applications-for-numa.html
https://software.intel.com/content/www/us/en/develop/articles/optimizing-applications-for-numa.html

	Abstract
	1 Introduction
	2 Background
	2.1 Basic Concepts
	2.2 NUMA Architecture
	2.3 Partition-centric Graph Processing

	3 Hierarchical Partitioning
	3.1 NUMA-aware Partitioning
	3.2 Cache-aware Partitioning
	3.3 Thread Management
	3.4 NUMA-aware Partition-based Data Layout

	4 Evaluation
	4.1 Experimental Setup
	4.2 Execution Time
	4.3 Memory Utility
	4.4 Scalability
	4.5 Sensitivity Analysis of Partition Size

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

