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Abstract—The increasing demand for machine learning com-
putation contributes to the convergence of high-performance
computing and cloud computing, in which the virtualization
of Graphics Processing Units (GPUs) becomes a critical issue.
Although many GPGPU virtualization frameworks have been
proposed, their performance is limited by the bandwidth of data
transactions between the virtual machine (VM) and host. In
this paper, we present a virtualization framework, qCUDA, to
improve the performance of compute unified device architecture
(CUDA) programs. qCUDA is based on the virtio framework,
providing the para-virtualized driver and the device module for
performing the interaction with the API remoting and memory
management methods. In our test environment, qCUDA can
achieve above 95% of the bandwidth efficiency for most results
by comparing it with the native. Also, qCUDA has the features
of flexibility and interposition. It can execute CUDA-compatible
programs in the Linux and Windows VMs, respectively, on
QEMU-KVM hypervisor for GPGPU virtualization.

Index Terms—GPGPU Virtualization, GPU, CUDA, QEMU,
KVM, Virtio, Para-virtualization, API Remoting

I. INTRODUCTION

Graphics Processing Units (GPUs) play an important role

to contribute to the recent success of deep learning. The

architecture of GPUs usually equip with thousands of cores

that can perform embarrassingly parallel tasks is especially

suitable for the computation of neural networks and image

processing. Many studies have shown that with GPUs, the

work of model training [1] or inference [2] can be accelerated

significantly. As a result, more and more cloud providers, such

as Amazon EC2 [3], start to support the GPU instances as

the demand for AI work increases.

One of the challenges to enable the GPU in cloud for

infrastructure-as-a-service (IaaS) is virtualization, which can

split hardware resources into several VMs to give features

of sharing, isolation and on-demand. Comparing to the direct

hardware access by the traditional client-server connection,

running on isolated multiple virtual machines (VMs) under the

hypervisor enlarges to facilitate more secure and higher uti-

lization [4]. However, most architecture and system software

of GPUs are not open to the public, which makes efficient

software-based virtualization difficult.

The current solutions for GPU virtualization used in cloud

environments are supported by GPU hardware vendors. For

instance, NVIDIA GRID K1/K2 [3] supports the hardware

virtualization, which can effectively divide a physical GPU

into multiple virtual GPUs. The other product-level GPU

virtualization is Intel GVT-g [5], under the code name XenGT

(gVirt) and KVMGT executing on Intel processor-graphics.

Both NVIDIA GRID solutions and Intel GVT-g use the

“mediated pass-through”. Although each guest in mediated

pass-through has a complete stand-alone virtual GPU, either

its discharge is bounded to the specific GPU vendor or only

with closed-source that could be rigid, awkward and lack of

interposition [6].

To improve the interposition and flexibility of mediated

pass-through, more and more API remoting methods for

general-purpose GPU (GPGPU) virtualization have been pro-

posed, such as GViM, GVirtuS, vCUDA, rCUDA, mrCUDA,

and virtio-CL [7]–[12]. Most API remoting methods focused

on virtualizing GPGPU for solving non-graphical HPC prob-

lems, through which the interaction of wrapping the GPGPU

APIs as a “front-end ”in the guest and mediating all accesses

to the GPU as a “back-end ”in the host. To facilitate the

description of the GPU located in the API remoting method,

we define it as the “local ”or “remote ”GPU. The local GPU

is a dedicated or an integrated device connecting with the host

in the same node via a peripheral device interface or an on-

chip bus, and the remote GPU is linked to the host via the

intermediate connection with different nodes.

However, in API remoting methods, considerable overhead

could occur from the transmissions between the front-end and

back-end. For instance, rCUDA, one of the most popular API

remoting methods for GPGPU virtualization, although can
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Fig. 1: The system architecture of qCUDA.

achieve approximatively native performance under InfiniBand

(IB) interconnection [13]–[17], performs poorly for local GPU

virtualization environment. To show that, we launch rCUDA

in a VM on QEMU-KVM hypervisor and connect it to

the local GPU with only one GbE interface. We measure

the bandwidth between the VM/native and local GPU. In

the native environment, the average bandwidth was 1745.4

MB/sec and 4890.4 MB/sec for pageable memory and pinned

memory respectively. For rCUDA, the average bandwidth for

the local GPU is only 61.2 MB/sec and 273.3 MB/sec for

pageable memory and pinned memory respectively.

To reduce the overhead in this kind of environment men-

tioned above, we propose an alternative approach to GPGPU

virtualization: qCUDA. qCUDA supports the features of the

API remoting method on the KVM-based hypervisor with

para-virtualization, such as accessing the GPU routed via

the front-end/back-end module. In comparison to the prior

work, qCUDA shows its noticeable flexibility and interposition

that the framework of qCUDA could perform on Linux and

Windows in VM. The VM executes the binary file with the

CUDA runtime APIs and GPU code from which is compiled

by NVIDIA CUDA compiler (nvcc); furthermore, qCUDA has

low-overhead interactions between the front-end and back-end,

is leveraged by the virtio framework [18] which provides the

ring buffer to the high efficient control channel.

This paper is organized as follows. In Section II, system

concepts and design of qCUDA for system components,

library interposition, control channel, memory management,

NCVM & CVM and pinned host memory are described. The

experimental results and discussion are shown in Section III.

Section IV and Section V give the related work and conclusion

respectively.

II. SYSTEM ARCHITECTURE AND DESIGN

A. System Components

Figure 1 shows the system architecture of qCUDA. The

framework of qCUDA has three components: qCUlibrary,

qCUdriver and qCUdevice; their functions are described as

follows:

• qCUlibrary - The interposer library in VM (guest OS)

provides CUDA runtime access, the interface of memory

allocation, qCUDA command (qCUcmd), and passing the

qCUcmd to the qCUdriver.

• qCUdriver - The front-end driver is responsible for

the memory management, data movement, analyzing the

qCUcmd from the qCUlibrary, and passing the qCUcmd

by the control channel which is connected to the qCUd-

evice.

• qCUdevice - The virtual device as the back-end is re-

sponsible for receiving/sending the qCUcmd through the

control channel. The virtual device depends on gaining

the qCUcmd to active related operations in the host,

including to register GPU binary, convert guest physical

addresses (GPA) into host virtual addresses (HVA), and

handle the CUDA runtime/driver APIs for accessing the

GPU.

Due to the interaction among components of qCUDA, the VM

(guest) which obtains the profit via GPGPU virtualization for

accessing the GPU by using CUDA runtime APIs.

B. Library Interposition

In the guest VM, the qCUlibrary provided the wrapper

functions that intercepted dynamic memory allocation of CPU

code and CUDA runtime APIs. To achieve the zero-copy

between the host and guest, qCUDA replaced the dynamic

memory allocation function for the policy of converting the

address. For directly passing and replacing CUDA runtime

APIs from the guest to host, qCUDA created the buffer with

384-bits size to store the qCUcmd structure. The qCUcmd

as the argument was passed by the ioctl instruction to the

qCUdriver; the qCUdriver analyzed the qCUcmd from the

qCUlibrary and communicated with the qCUdevice by the

control channel.

The qCUcmd was packaged with the unique function

IDs, function parameters and GPU binary. The GPU binary,

named fat binary (fatbin), which was compiled from the

PTX code by the CUDA driver. To query the GPU bi-

nary, the qCUlibrary found the pointer, fatCubin, pointing

to __fatBinC_Wrapper_t, which was an intermediate

structure of the nvFatBinSegment section of the x86

ELF executable. One member of __fatBinC_Wrapper_t
points to computeFatBinaryFormat_t, which was the

structure containing the members of pointers, pointing to the

fatbin and the size of fatbin. Therefore, the fatbin as the GPU

binary can be passed to host without any modification, then in

the host, depended on different function IDs and parameters

which were loaded from the qCUcmd, the correct processing

of GPU would be completed.

C. Memory Management

In the past studies, the API remoting methods for GPGPU

virtualization required extra data copies between the guest and

host [8]–[10]. In this work, qCUDA provided efficient memory

management for data movements between the guest and GPU.

qCUDA eliminated the extra data copies between the guest and
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host; while the guest was created by the host in the same node,

the allocated memory from the guest can be seen in the host.

The central concept was that the QEMU process allocated the

guest physical memory with the malloc() or mmap() function

call; a contiguous GPA can be shifted as an HVA by the

QEMU process. qCUDA used this mechanism of converting

an address to establish efficient memory management for

accessing the same pages in a real machine.
Figure 2 illustrates the flow of memory management among

the interactions of qCUDA components.

1) The user application dynamically allocates or releases

memory in the guest VM.

2) The qCUlibrary makes an allocation hook to change the

original behavior of dynamic memory allocation in the

CPU code.

3) The qCUdriver implements the mmap() function that

allocates several 4MB chunks, each containing the pages

within the contiguous GPA.

4) The qCUdriver maps the guest virtual address (GVA) of

each chunk to its corresponding guest physical address

(GPA).

5) The memory logger maintains a doubly linked list to

record each malloc() function call from the user appli-

cation.

6) Control channel. (Sec. 2D).

7) Map GPA to HVA with NCVM/CVM. (Sec. 2E).

8) Handle the functions of pinned memory mapping. (Sec.

2F).

9) Trigger the functions of GPU memory.

10) Access the GPU memory.

In step 5, the related information of each malloc() function

call is packaged in a group Gi inserting into the doubly

linked list L: L = {G0, G1, ..., Gn−1} and G ∈ L; Gi =
{Bi, Si, Ei, Fi, Pi}, where Bi is the number of allocated

chunks; Si and Ei are the start/end positions of the contiguous

GVA, respectively; Fi is the flag data; Pi is the GVA of

head pointer of adjacent pages and Pij represents the GPA

converting from one of the allocated pages.
The mmap() function of qCUdriver maps Pij to corre-

sponding GVA region, so the memory is allocated from a

user space of guest need not copy from user space to kernel

space. If the user application executes the free() function, the

qCUlibrary deliveries the parameter ptr of free() function to

the qCUdriver; ptr is a pointer which points to an allocated

GVA region with malloc() function call. In the qCUdriver, it

could find out which Gi satisfies ptr ∈ [Si, Ei], and removes

Gi from L. Unless the specific functions are triggered for

converting GPA to HVA, Pij can be only accessed from the

guest.
The functions for converting GPA to HVA include cu-

daMemcpy(), cudaMemcpyAsync() and cudaHostRegister();

when the user application executes one of these functions, the

qCUdriver converts Pi to GPA P
′
i ; the qCUdriver incorporates

P
′
i into the qCUcmd and deliveries it to the qCUdevice. The

qCUdevice convertes P i
i to the HVA Ph

i , which denotes a

pointer that can be read from the host and Ph
i pointes to Pi0.

Fig. 2: The flow of memory management in qCUDA.

Therefore, Pij can be queried by the qCUdevice and converted

it to the corresponding HVA Ph
ij . Actually Ph

ij and Pij map

to the same physical frames. With the converting process (Pij

→ Ph
ij), the qCUdevice can access the memory region where

is pointed by Ph
ij ; furthermore, by this converting process,

it can achieve the features of zero-copy in CUDA since the

pointer can be passed and indicated to the same memory region

sharing with the guest and host.

D. Control Channel

qCUDA based on the para-virtualization technique [19]

that took the qCUdriver as a hook interface for the guest-

host communication. qCUDA leveraged the virtio framework

as the control channel (Figure 1); each CUDA runtime

API function took only two transactions of the qCUcmd at

most, which was penetrated by the control channel. qCUDA

provided the qcu send cmd interface, which merely exploited

the qCUcmd to communicate the guest-host via the virtio

framework. Although each CUDA runtime API function call

could accompany some virtio latency, the virtio latency was

the tiny proportion of the execution time; we will discuss this

in Section III.

E. NCVM & CVM

In the host, Ph
ij represented that has the same physical

frames mapping with Pij ; the qCUdevice directly scanned

Ph
ij where pointed to the non-contiguous virtual memory;

the content of memory would be iteratively queried with

different chunks, we call it as the non-contiguous virtual

memory mapping (NCVM). For instance, the qCUdevice

needs to transfer the data to/from the GPU; the transferred

data from/to the memory where Ph
ij pointed, and it would

be split into several pieces with a chunk size (4MB) for

iteratively cudaMemcpy()/cudaMemcpyAsync() function call

due to the NCVM. In addition to NCVM, the qCUdevice

can map each Ph
ij to contiguous virtual memory, named

the contiguous virtual memory mapping (CVM). If qCUDA

adopted CVM, it only required the pointer which pointed
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to the contiguous virtual memory and size of data transfers;

the cudaMemcpy()/cudaMemcpyAsync() function call can be

executed only once. We will compare the performance of

qCUDA with NCVM and qCUDA with CVM in Section III.

F. Pinned Host Memory

By default, memory allocations (C library function malloc())

are pageable, which cannot be accessed directly by GPU. It is

essential to move the pageable data to pinned (page-locked)

memory for a DMA copy. When a data transfer occurred from

pageable host memory to device memory, the CUDA driver

must allocate the temporary pinned buffer and copy the host

data to the pinned buffer. Therefore, a pageable data allocation

could cause a copy twice when a data transfer from the host to

the device. To avoid the cost of the data copy from the page-

able memory, allocating pinned memory in CUDA runtime

APIs by using cudaMallocHost() or cudaHostAlloc() function

call, and deallocating pinned memory by using cudaFreeHost()

function call.

In qCUDA, it cannot directly use the cudaMallocHost()/

cudaHostAlloc() function call to allocate pinned memory since

the pinned memory must be seen in the host. Hence, the qCUli-

brary intercepted the pinned memory allocation and provided

the host-register function. The central concept of host-register

was that qCUDA registered the memory regions, converting

from the guest to host, and in the host, the qCUdevice can

directly use these pinned host regions for data transfers by

using DMA.

III. EXPERIMENTAL RESULTS AND DISCUSSION

The host as native testing was conducted on a supermicro

2028GR-TRH server with Xeon E5-2600, 64 GB of memory,

four slots of PCI-E 3.0 X16, and Intel I350 GbE controller

running Linux OS (Ubuntu 14.04.3). The GPU device was

the NVIDIA Tesla K20m GPU with 2496 CUDA streaming

processors and 5 GB DDR5 RAM. The hypervisor was based

on QEMU 2.4.0, KVM of the Linux kernel for version

3.19.0-25-generic on 64-bit and the virtio framework for para-

virtualized network device [20].

In our qCUDA framework, each VM (guest) was configured

with two vCPU cores, 4 GB of RAM, 32 GB of qcow2

image format running Ubuntu 14.04.3. We installed the CUDA

Toolkit 8.0 on the host. The guest was also introduced the

CUDA Toolkit 8.0 except the NVIDIA drivers since we would

install the third-party packages such as qCUDA or rCUDA

for indirectly forward related commands to the host. The

implementation of qCUDA on Linux VM can be entirely

transplanted to the Windows VM environment, as long as

replacing the corresponding APIs from the Linux system call

to Windows. This paper didn’t show the results of Windows

VM, because to compare the overheads between the APIs of

Windows and Linux are not the focus of this paper. The results

would be very similar between Windows and Linux VM due

to the same mechanism of memory management.

Many API remoting methods proposed in the past studies,

such as GvirtuS and vCUDA (mentioned in the Section I and

Section V), but most of them lacked source or were not able to

operate correctly in our computing environment; only rCUDA

can perform on our computing environment, basing on its

client-server architecture between VM and host. Therefore, we

adopted the rCUDA v15.07 as our subject for comparisons. Al-

though fairness was concerned to compare with rCUDA only

focus on the same computing environment, we emphasized

that in our local GPU virtualization environment should be

a shortcut to reduce virtualization overheads. Moreover, our

work also explored how to improve API remoting in local

GPU virtualization.

Due to limited space, this paper only showed the results

of the benchmarks of data movements which caused the

main bottleneck in GPGPU computing. There were the same

performance outcomes whatever the guest or host launches

the GPU kernel function. Both of them also delivered the GPU

binary to the device. In our measurement, we gave two bench-

marks of memory copy: bendwidthTest and simpleStreams.

Furthermore, we compared qCUDA with rCUDA and native

in detail. To avoid obscuring the comparisons among qCUDA,

rCUDA, and native, we all used the Ubuntu 14.04.3 as the

guest OS of GPGPU virtualization.

A. Bandwidth of Data Transaction

The data movements between the host memory and the

device memory of GPU were through PCI-E communication,

which was a performance bottleneck of whole GPGPU com-

puting. In native, we measured the memory bandwidth from

bandwidthTest; the data transactions from the host to device

(H2D) or the device to host (D2H). The average bandwidth

by allocating host pageable memory and host pinned memory

were 1745.4 MB/sec and 4890.4 MB/sec, respectively, where

the range of testing datasets were from 32 KB to 1 GB size

of data movements.

Figures 3 and 4 illustrate the experimental results. The

former and the latter allocate the pageable memory and pinned

memory in the host, respectively. The KERNEL COPY in

Figures 3 and 4 represent the data movement without the

memory mapping (GVA to GPA) from user space to kernel

space in the guest, but copies the data from user space to

kernel space, and vice versa. Figures 3(a) and 4(a) show

the memory bandwidth results of the Y-axis. Figures 3(b)

and 4(b) show the bandwidth efficiency is computed by the

formula:
bandwidth of qCUDA

bandwidth of native
× 100%

of the Y-axis. The X-axis of Figures 3 and 4 is the testing

datasets of size per transfer; the line graph and bar chart

correspond with the results of Y-axis. The bar chars display

the bandwidth with size per transfer, and the line graphs show

the percentage of bandwidth efficiency for the ratios to native.

It can be seen that the best performance of GPGPU vir-

tualization is qCUDA with NCVM, and the second-best is

qCUDA with CVM. Since the performance by qCUDA with

KERNEL COPY has extra copies between user space and

kernel space in the guest, it is weaker than qCUDA with
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NCVM/CVM in bar chars. Although qCUDA with CVM does

not have the extra iteratively function calls as qCUDA with

NCVM, it could take many minor page faults due to the first

time that the qCUdevice accessed the shared pages. Also, the

minor page faults in qCUDA with CVM cause the reason of

poor performance than that of qCUDA with NCVM in most

cases (it could be a tradeoff issue due to the extra iterations

and minor page faults. But in most cases, qCUDA with NCVM
are better than qCUDA with CVM).

In Figure 3, the general trend appears to be increased

in qCUDA; when the size per transfer achieves 1 GB, the

bandwidth efficiency can reach 90.23% in the H2D with

NCVM and 98.45% in the D2H with NCVM. In Figure 4,

the bandwidth efficiency has risen above 95% after 128 KB

size per transfer with NCVM and remained stable. Figures 3

and 4 also show that the performance is weaker during the

transactions of smaller size, but the line graphs of qCUDA

with NCVM in Figure 4 upturn more rapidly than those in

Figure 3. Since qCUDA with NCVM in pinned memory

allocations can asynchronous copy several chunks with 4

MB size for the H2D/D2H, it can enhance the utilization of

PCI-E communication bandwidth to cover some overheads of

virtualization.

As seen from Figures 3 and 4, the average bandwidth of

rCUDA in pageable memory allocations and pinned memory

allocations are 61.2 MB/sec and 273.3 MB/sec, respectively.

The average bandwidth in qCUDA can achieve 1358.72

MB/sec in pageable memory allocations and 4463.66 MB/sec

in pinned memory allocations.

Figure 5 shows the evidence of smaller size per transfer

that the time of transaction decreases in bandwidthTest. From

Figure 5, the ratios of the overheads of bandwidthTest,

including the qCUlibrary call, qCUdriver call, virtio latency

and memory copy of H2D/D2H in the qCUdevice with NCVM.

We can see that the virtio latency is the main reason causing

the extra overhead of virtualization in qCUDA with a smaller

size per transfer. Therefore, the efficiency is susceptible to the

system’s initialization or regular overheads of virtualization

in qCUDA during the smaller time of data transfers. The

bandwidth measurements by rCUDA did not appear to be well

as qCUDA in our testing, as reported in [21].

B. Multiple Streams

The CUDA functions from which the host code issued

the runtime APIs can be overlapped for performing simul-

taneously; for instance, the functions included CUDA kernel,

cudaMemcpyAsync H2D and cudaMemcpyAsync D2H. The

stream denoted a sequence of CUDA functions that execute

on the GPU in order. Multiple streams may run concurrently

with CUDA functions for overlapping kernel execution and

data transfers. We adopted the benchmark simpleStreams to

measure the performance of single and multiple streams. It

can be anticipated to improve whole performance when data

transfers and kernel launch overlapping execution by multiple

streams.

TABLE I: Elapsed time of multiple streams.

Non-Streamed 4 Streams
Array Size, MBs Elapsed Time, msec Elapsed Time, msec

Native rCUDA qCUDA Native rCUDA qCUDA
64 14.71 626.5 14.88 10.42 597.2 10.46

128 29.41 1223.49 29.69 20.86 1215.93 20.9
192 44.01 1847.18 44.54 31.06 1804.23 31.22
256 58.91 2454.42 59.39 41.64 2388.11 41.61
320 73.32 3060.34 74.22 51.75 3005.96 51.98
384 87.99 3613.95 89.05 62.1 3585.74 62.17
448 102.66 4285.77 103.93 72.35 4224.14 72.42
512 118.12 4883.1 118.63 83.77 4839.5 82.77
576 131.98 5478.32 133.56 93.23 5399.98 93.07
640 146.64 6006.64 148.35 103.73 5963.65 103.38
704 161.29 6436.04 163.26 114.09 6464.54 113.51
768 175.96 7377.23 178.06 124.48 7335.32 123.8
832 190.63 7877.15 192.85 134.86 7895.53 134
896 205.29 8693.09 207.78 144.97 8610.51 144.34
960 219.93 9364.58 222.63 155.46 9263.99 154.65

1024 235.73 9942.98 237.38 167.42 9853.03 164.61

Table I shows the results of simpleStreams. We executed the

simpleStreams by the option “–use cuda malloc host”which

internally called cudaHostRegister() function. While sim-

pleStreams simultaneously copied the input array to GPU and

did some functions for initializing the input array in the kernel

function, asynchronous array copied from the GPU to host. As

shown in Table I, the elapsed time of qCUDA in all datasets is

very close to native. The low latency involving pinned memory

in qCUDA takes the credit for better performance than rCUDA

in our test environment. In Table I, we find that some results

are not only very close to native but are even better than

native. For instance, when the array size is greater than 512

MB in 4 streams, qCUDA has a slight gap of elapsed time

over native (the differences of elapsed time are about 0.16

to 2.81 ms). The reason for these results could be referred

to as the NCVM strategy since the data is split into small

chunks and each chunk is transferred asynchronously from

the H2D/D2H, in multiple streams, there are opportunities

to increase the bandwidth utilization when the data transfer

overlapped with kernel launch. The different sizes of chunks

and the iteration times for asynchronously CPU-to-GPU data

movements to change the overhead is a tradeoff issue [22].

The results show that the default configuration (4 MB chunk

size) of qCUDA can achieve robust performance.

IV. RELATED WORK

Prior studies have attempted to adopt the API remoting

methods for GPGPU virtualization, which can execute HPC

applications with CUDA or OpenCL on the VM, such as

GViM, GVirtuS, vCUDA, rCUDA, mrCUDA, and virtio-

CL [7]–[12]. Each of these studies achieved the features

of GPGPU virtualization within their defined scopes. Most

ideas of these studies are similar, instead of GViM [7],

others with channels between the back-end and front-end are

TCP/IP based communicators. GViM performs on the Xen-

based hypervisor, supports CUDA 1.1 runtime APIs on the

VM and installs NVIDIA driver in Dom0. The XenStore [23]

is used to establish event channels between both domains

connecting the front-end and back-end. GViM is similar to our
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Fig. 3: bandwidthTest using pageable memory.

work that it calls mmap() function replacing malloc() function

in a user space of VM and then uses XenStore to share a

page directory structure within the front-end and back-end.

Although GViM can also remap the page by the back-end for

accessing in the host without extra copies, the approach in

GViM is similar to the CVM we proposed. According to our

memory management, the NCVM we offer for reducing the

minor page faults. GVirtuS [8] is based on the QEMU-KVM

hypervisor supporting CUDA 3.x runtime APIs in VM and

NVIDIA driver in the host. Their communicator in the client-

server architecture can be replaced by several subclasses such

as TCP/IP, Unix sockets, VMSocket, and VMCI. vCUDA [9]

is based on the Xen hypervisor supporting CUDA 3.2 runtime

APIs and installs the NVIDIA driver on Dom0. They proposed

the VMRPC for transferring data between the client and server

via TCP/IP communications.

rCUDA [10], [13]–[17], [24] supports CUDA runtime APIs

in the VM, a KVM-/Xen-based hypervisor and the NVIDIA

driver in the host. rCUDA exhibits the low latency overhead

through the IB for client-server interconnections; it also is

the only GPGPU virtualization framework can be performed

on newer CUDA runtime APIs and executed in our testing

environment. Unfortunately, if the VM and remote GPU in

the same heterogeneous computing node with the powerless

physical ethernet interface, which the lack of high-speed and

hardware virtualization support, could cause a considerable

latency by using rCUDA. mrCUDA [11] is a middleware that

incorporates the rCUDA framework for migrating the GPGPU

resources to the local.

virtio-CL [12] is similar to our work that they leverage the

virtio framework [18] to construct the connections between

the front-end and back-end; it based on the QEMU-KVM

hypervisor, supports the OpenCL runtime APIs in the VM

and the NVIDIA driver in the host. However, virtio-CL cannot

directly share the memory pages or regions between the VM

and host; it could cause the extra copies between them; The

source code with openCL in the VM could be modified to

suit the virtio-CL. Furthermore, the features of zero-copy of

which sharing the same memory region between the VM

and hypervisor cannot be supported on virtio-CL. Besides

virtio-CL, GVirtuS and vCUDA also seem not to provide

the features of zero-copy. addition to these API remoting

methods in GPGPU virtualization as mentioned above, DS-

CUDA, GridCUDA, VOCL, SnuCL, and dOpenCL [25]–[29]

are also API remoting methods via the client-server based

on the TCP/IP communication with CUDA/OpenCL runtime

APIs. However, these API remoting methods don’t emphasize

that if it exists the VM handling by the hypervisor.

In addition to the API remoting methods in GPGPU virtual-

ization, the device emulation and mediated pass-through could
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Fig. 4: bandwidthTest using pinned memory.

also provide GPGPU virtualization. GPUvm [30] proposed

the concept of the aggregator in the hypervisor involving the

emulation of some GPU hardware resources. GPUvm is based

on Xen hypervisor [30] running the nouveau module as GPU

device driver and using Gdev [31] as the CUDA runtime APIs.

The proposed resource management providing with both full-

and para-virtualization approaches for GPU virtualization and

design a GPU access aggregator for isolating and multiplex

multiple VMs accessing the GPU resources, memory areas,

PCI-E BARs, and GPU channels by GPU shadow page tables

and fair-share scheduler among VMs. However, executing

the nouveau driver and emulating with GPU resources could

hardly bring full performance in the NVIDIA GPU. G-KVM

[32] is a similar framework on KVM for full GPU emulation.

The NVIDIA GRID K1/K2 [3] and Intel GVT-g [5] are the

product level for mediated pass-through. Although these com-

mercial packages can divide a GPU into several virtual GPUs

and take advantage of full virtualization, it must be executed

in some specific GPU hardware and hypervisor. Therefore,

their flexibility and interposition are weaker than those of

qCUDA. Besides, as the product level solution mentioned

above, Windows VM also can be supported on qCUDA.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a robust API remoting frame-

work, qCUDA, to improve the performance of GPGPU virtu-

alization. qCUDA is based on the virtio framework for para-

virtualization on QEMU-KVM hypervisor. qCUDA provides

the ways for eliminating the times of data movements and

reduces the latency between the VM and GPU by the memory

management methods. Comparing to the prior work, it doesn’t

require any specific network interface, such as InfiniBand

or SR-IOV support. Therefore, in the usual heterogeneous

architecture, qCUDA offers a low latency solution for data

transfer between GPU and VM. In the bandwidthTest, most

results compared with native achieved above 95% of the

bandwidth efficiency; furthermore, when the data transfer size

is greater than 128 KB, the bandwidth efficiency in the average

of H2D and D2H achieved 97.47% and 99.51%, respectively.
We have released the beta version of qCUDA

(https://github.com/coldfunction/qCUDA) that could promote

the research community to study or improve our work to

apply more applications. In the future, we will increase

the GPGPU coverage in our framework which gives more

GPGPU functionality, schedule the computing resource

of multiple GPUs, and incorporate a middleware, rapidly

migrating the GPGPU resources from the remote to local.

Then it can be expected to run more CUDA applications and
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Fig. 5: The overhead ratios of bandwidthTest.

being a more powerful solution of GPGPU virtualization in

the heterogeneous cloud environment.
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