

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
VEE '16, April 02-03, 2016, Atlanta, GA, USA.
© 2016 ACM. ISBN 978-1-4503-3947-6/16/04...$15.00.
DOI: http://dx.doi.org/10.1145/2892242.2892246

Building a KVM-based Hypervisor for a
Heterogeneous System Architecture

Compliant System
Yu-Ju Huang

Department of Computer
Science, National Chiao Tung

University, Taiwan
gic4107@gmail.com

Hsuan-Heng Wu
Department of Computer
Science, National Taiwan

University, Taiwan
wuxx1279@gmail.com

Yeh-Ching Chung
Department of Computer

Science, National Tsing Hua
University, Taiwan

ychung@cs.nthu.edu.tw

Wei-Chung Hsu
Department of Computer
Science, National Taiwan

University, Taiwan
hsuwc@csie.ntu.edu.tw

Abstract
Heterogeneous System Architecture (HSA) is an architec-

ture developed by the HSA foundation aiming at reducing
programmability barriers as well as improving communica-
tion efficiency for heterogeneous computing. For example,
HSA allows heterogeneous computing devices to share the
same virtual address space. This feature allows programmers
to bypass explicit data copying between devices, as was re-
quired in the past. HSA features such as job dispatching
through user level queues and memory based signaling help
to reduce communication latency between the host and other
computing devices.

While the new features in HSA enable more efficient het-
erogeneous computing, they also introduce new challenges
to system virtualization, especially in memory virtualization
and I/O virtualization. This work investigates the issues in-
volved in HSA virtualization and implements a KVM-based
hypervisor that supports the main features of HSA inside
guest operating systems. Furthermore, this work shows that
with the newly introduced hypervisor for HSA, system re-
sources in HSA-compliant AMD Kaveri can be effectively
shared between multiple guest operating systems.

Keywords Heterogeneous System Architecture; HSA Vir-
tualization; GPU Virtualization; KVM;

1. Introduction
Heterogeneous architectures have become popular in recent
years. Some computing tasks are more suited for GPGPU
while others are a better fit for CPU or FPGA. In a heteroge-
neous computing system, power efficiency can be vastly im-
proved when each job is dispatched to its most suited com-
puting device.

The GPGPU programming model [1], as one example of
heterogeneous computing models, allows programmers to
dispatch computational kernels to GPU. The foremost
GPGPU programming model, CUDA [2] and the older ver-
sion OpenCL [3], (i.e. prior to OpenCL 2.0) see GPU as an
I/O device so there must be data copying between CPUs and
the GPU before a computation job can be launched. Such
explicit data copying has caused significant overhead and
programming inconvenience. Moreover, since GPU is
viewed as an I/O device, every job to be executed has to go
through a system driver. Such job dispatching mechanisms
have resulted in context switch overheads between user
mode and kernel mode.

HSA [4] is an architecture designed to address these inef-
ficiencies and inconveniences. Two major goals of HSA are
to (1) Reduce CPU/GPU communication latency such as
data copying and jobs dispatching overhead, and (2) De-
crease the heterogeneous computing programmability bar-
rier such as the need for programmers to compress compli-
cated data structures into a continuous memory region in or-
der to copy it from CPU to GPU and to decompress it when
the data is transferred back from the GPU. To achieve such
goals, various features are defined as requirements for a
HSA-compliant system. The HSA features and how these
features are implemented on AMD Kaveri [5], our target
platform, will be described in Section 2.

3

http://dx.doi.org/10.1145/2892242.2892246

 This paper presents HSA virtualization and successfully
implements a KVM-based [6] hypervisor. Since HSA is a
new heterogeneous computing architecture, there has not
been much research investigating system virtualization is-
sues for this architecture. We analysed the features provided
by HSA and figured out how to virtualize them so that pro-
cesses inside guest OSes can also benefit from of it. Table 1
shows a comparison of a GPU programming model between
non-HSA and HSA systems. These dissimilar behaviors re-
quire non-conventional GPU virtualization. Considering the
GPU memory, non-HSA systems have a separate address
space for the GPU. To virtualize the GPU so that it may be
shared by multiple guest OSes, GPU memory must be virtu-
alized for isolation and protection. In HSA systems, the vir-
tual address is shared between CPU and GPU. All the ad-
dresses issued by the GPU are guest virtual addresses, which
are the same as what the CPU issues. Thus a table translating
guest virtual address to machine physical address is suffi-
cient to virtualize the GPU memory in a HSA system. As for
job dispatching, HSA supports user mode queues so that ap-
plications can store job attributes inside the queue and the
GPU is able to access it as long as the address of the user
mode queue is set to the GPU. To virtualize job dispatching
in a HSA system, it would only be necessary to set the ad-
dress of the user mode queue of guest process to the GPU
during queue initialization, which is simpler than mapping
the guest GPU channel to a physical GPU channel for every
job dispatched in conventional GPU virtualization.

Our implementation also achieves GPU sharing, which
allows processes of multiple guest OSes to share the same
GPU in the HSA-compliant system. To the best of our
knowledge, this is the first research pertaining to HSA virtu-
alization and implementation of a hypervisor on a physical
HSA-compliant machine. Furthermore, though the imple-
mentation is targeted on an AMD Kaveri machine, general
analysis and insights about how to virtualize HSA features
on other systems are provided. These analyses and insights

can be applied to other architectures with similar features as
well.

The rest of this paper is organized as follows. The tech-
niques of how to virtualize various HSA features are pre-
sented in Section 3. Our implementation of the HSA-aware
hypervisor are described in Section 4. Experiment results
and performance evaluation are shown in Section 5. Section
6 discusses related work and Section 7 concludes.

This paper makes the following contributions:
 It investigates the issues involved in virtualizing HSA-

compliant systems. It is the first successful implemen-
tation of a hypervisor that virtualizes various HSA fea-
tures to support multiple guest OSes.

 This work achieves GPU sharing among multiple
guest OSes and the host OS.

 It looks into issues on AMD IOMMU’s two-level ad-
dress translation mechanism, and provides insights
and solutions to work around current hardware limita-
tions.

2. Heterogeneous System Architecture
In this section we introduce more details about the HSA sys-
tem architecture. We first describe the distinguishing fea-
tures pertaining to job dispatching and execution in HSA,
and we provide analyses on which features benefit from vir-
tualization, given that some features can be simply achieved
by hardware or runtime without the hypervisor. Then we ex-
plore our target platform, AMD Kaveri, and investigate how
these features are implemented on the target machine. Be-
fore introducing HSA features, two specific terminologies
must be explained.

Architected Queuing Language (AQL): A command in-
terface for dispatching jobs between CPU and HSA devices.
When an application wants to execute a job on an HSA de-
vice, an AQL packet is created and filled with the infor-
mation of that job, such as the size of work-group, address
of GPU kernel program, arguments and so on. AQL packets
are stored inside application queues and the HSA device is
able to access these queues to get the job descriptions and
carry out the computation.

Doorbell: A signal used to notify the computing devices
that there are jobs waiting to be executed. When applications
want to perform computation on a HSA device, it first fills
out the AQL packet with required information then activates
the doorbell signal to notify the computing device. Doorbell
is a notification of the existence of a job. The job’s scheduled
runtime is determined by the device.

2.1 HSA Features

There are many required features for an HSA-compliant sys-
tem [4], we discuss those features that are related to the vir-
tualization effort.

Table 1. Comparison of GPU programming in Non-HSA
and HSA systems.

 Non-HSA systems HSA systems
GPU job
dispatch-
ing

Application calls
system driver to
store commands in
GPU channel

Application stores
AQL packets in user
mode queue and
kicks doorbell to sig-
nal GPU

GPU job
finishing

GPU interrupts
CPU

GPU notifies CPU
via memory-based
signals

GPU
memory

Separate virtual ad-
dress space between
CPU and GPU

Shared virtual ad-
dress space between
CPU and GPU

4

 Shared virtual memory: Heterogeneous computing de-
vices like GPU are integrated on the same bus and share the
same virtual memory address space. Each process’ virtual
address is visible across CPU and other devices. Thus, com-
puting devices can use the virtual address for computation
directly without data copying between devices. This feature
not only eliminates the data copying overhead but also re-
duces the programmer’s burden to compress and decompress
complex data structures as well.

I/O Page faulting: Prior to HSA, device DMA requires
memory to be pinned and it could not be swapped out by the
OS. This constraint is not practical in HSA since shared vir-
tual memory across devices implies that devices may use all
the memory space. If pinned memory is required, all process’
address space must be pinned. Therefore, allowing I/O de-
vices to generate page fault is necessary in HSA.

Cache coherence: Cache coherence is an important factor
concerning a program’s correctness. In HSA, all computing
devices see the same memory space so keeping cache coher-
ent is required, even though each computing device might
have different cache systems.

User mode queuing: As Figure 1 shows, prior to HSA,
every GPU job dispatched by applications must be passed
through the GPU driver to be enqueued for execution. With
user mode queuing, the GPU is aware of the address of the
application queue and applications are allowed to dispatch
jobs to the GPU directly without being trapped to a driver
which reduces the latency of enqueuing jobs.

Memory-based signaling: This feature also aims at re-
ducing the communication latency. An application assigns a
memory address as a job-done listener and writes it into the
AQL packet. With that address, a HSA device can directly
signal the application or HSA runtime when a job is done
rather than going through the traditional interrupt-based sig-
nalling.

The features listed above reduce both data communica-
tion latency and programing barriers. Moreover, the user
mode queuing allows the GPU to access user level queues
directly. Doorbell and memory-based signalling allow job
dispatching and finishing to communicate without interven-
ing with GPU drivers, which also reduces the CPU/GPU
communication overhead as shown in Figure 2.

2.2 AMD Kaveri Model

In this section, we describe how the five introduced features
are implemented in the AMD Kaveri machine.

Shared virtual memory, I/O page faulting, and user mode
queuing are co-implemented by the operating system and
hardware. Cache coherence is implemented by hardware
only in conventional processor designs. Memory-based sig-
nalling is achieved once shared virtual memory is realized.
With shared virtual memory, the GPU is able to use the
memory address designated for the signal (sent via AQL
packet during job dispatching) to notify the user process
when the dispatched job is finished (HSA runtime manages
the function of waiting signals).

This work focuses on the virtualization of features co-im-
plemented by OS and hardware, including the shared virtual
memory, I/O page faulting, and user mode queuing.
There are two additional kernel modules in the OS which
Kaveri runs on, the IOMMU [7] driver and kernel fusion
driver (KFD) [8]. IOMMU is implemented for shared virtual
memory and I/O page faulting. And it provides a mechanism
called peripheral page request service (PPR) for fixing I/O
page faults. KFD, on the other hand, is designed to support
user mode queuing. These functions are discussed in more
detail.

2.2.1 IOMMU in HSA

IOMMU is a hardware component designed to carry out ad-
dress translation for I/O devices. On HSA-based systems,
computing devices communicate with each other using the
shared virtual memory. Since the addresses issued by com-
puting devices are virtual, they must be translated into phys-
ical addresses. IOMMU carries out this address translation
for computing devices like GPU in Kaveri. Furthermore,

Figure 2. User mode queuing and memory based signaling
eliminate GPU driver intervention.

Figure 1. Job enqueuing steps in non-HSA (left) and HSA
systems (right).

5

since the virtual address space is shared between CPU and
devices, the page table walked by IOMMU is the same as
what is used by the CPU MMU.

When an application tries to use HSA computing devices,
the driver gets the process page table and sets it to IOMMU.
After proper configuration of the page table, computing de-
vices are able to access process virtual address, as required
by the shared virtual memory feature.

2.2.2 Peripheral Page Service Request (PPR)

Peripheral Page service Request (PPR) is introduced in
AMD IOMMU to handle I/O page faulting in Kaveri. PPR
is a mechanism that allows peripheral devices to issue re-
quests to CPU for handling I/O page fault.

IOMMU performs a permission check and address trans-
lation when I/O devices attempt to access memory. If the
page is not in the memory or the device does not have suffi-
cient permission, IOMMU writes the faulting address, the
faulting process ID and flags to PPR’s log and issues a PPR
interrupt to CPU. The PPR handler, which is called by the
interrupt handler, reads PPR logs to find the corresponding
process’ memory control context. With the faulting address
and memory control context, Linux API’s get_user_pages
can be used to grab the faulting page into memory. After the
page fault is fixed, the PPR handler sends COM-
PLETE_PPR_REQUEST [7] command to IOMMU to finish
this I/O page fault.

2.2.3 Kernel Fusion Driver (KFD)

KFD is implemented as a GPU driver for Kaveri to support
the user mode queuing feature. The key point of this feature
is to allow HSA computing devices, such as GPU, to know
where the application queues are. One simple approach, as
implemented in KFD, is to send the address of the applica-
tion queue to GPU, and let the hardware manage the queue
binding. Whenever an application wants to perform a com-
putation on a computing device, it creates a user mode queue
and sends the address of that queue to KFD. KFD, acting as
an agent between application and GPU hardware, then writes
the receiving address to GPU’s configuration register. This
process eventually binds user mode queue to GPU hardware.
This queue binding process executes only once for each user
mode queue. After queue binding, GPU knows the exact ad-
dress of the application queue and is therefore able to access
the queue without driver’s intervention.

One more thing KFD does during queue initializing is re-
mapping a doorbell from physical address to virtual address.
Since the doorbell is a hardware signal, which is located in a
fixed memory-mapped I/O (MMIO) region, a memory re-
mapping has to be done so the user-space application can
kick the doorbell directly. With this memory remapping
mechanism, application programs would not be constrained
by the OS for dispatching GPU jobs.

After these initialization, the application can kick the
doorbell to notify the GPU to work and the GPU can get
AQL packets from user level queues to execute jobs. The
driver’s interventions are eliminated in the job dispatching
path, which effectively reduces the CPU/GPU communica-
tion latency.

3. Design of a HSA-aware Hypervisor
In this section, we discuss how to virtualize the three HSA
features mentioned in Section 2.2, the shared virtual memory,
I/O page faulting, and user mode queuing,

The focus of this work is on memory and I/O virtualiza-
tion techniques in the hypervisor design since the shared vir-
tual memory and I/O page faulting features are the main con-
cerns. I/O virtualization helps to realize communication be-
tween guest application and the computing device such as
the queue binding process.

We adopt the shadow page table approach to carry out
memory virtualization and the VirtIO framework [9] to im-
plement I/O virtualization. Modification is required for both
KFD and IOMMU drivers. The system architecture and de-
tailed implementation are presented in Section 4. Discus-
sions about why shadow page table is chosen rather than the
two-level address translation [10] and why KFD needs to be
modified are also explained in Section 4.4 and 4.3 respec-
tively.

3.1 Shared Virtual Memory Virtualization

As described in Section 2.2.1, IOMMU inside Kaveri sup-
ports shared virtual memory between the CPUs and the GPU.
Kernel programs executing on GPU reside in virtual address
space and IOMMU is responsible for translating the virtual
addresses issued by GPU into physical addresses.

In a non-virtualized environment, IOMMU shares the
same process page table with CPU MMU to conduct the vir-
tual address to physical address translation. In a virtualized
environment, however, the addresses issued by GPU are ac-
tually in the Guest Virtual Address (GVA) space, hence re-
quiring IOMMU to translate the issued GVA into Machine
Physical Address (MPA). Two common techniques used to
construct this GVA-to-MPA translation are Shadow Page
Table (SPT) and two-level address translation (such as the
Extended Page Table approach used in Intel VT-x and
Nested Page Table in AMD-V). In this work the shadow
page table mechanism is adopted due to some limitations in
Kaveri which will be discussed in Section 4.4 that forbids
the use of the two-level address translation mechanism, de-
spite its popularity.

Shadow page table has already been implemented in the
original KVM code. SPT of each guest OS is constructed by
the hypervisor as soon as the guest OS is started. CPU MMU
walks the SPT to translate GVA to MPA during the guest OS

6

execution. The key to allow computing devices to support
the shared virtual memory feature is to let IOMMU walk the
same SPT used by the CPU MMU, where all necessary in-
formation for computing devices to perform GVA to MPA
translation is provided.

3.2 I/O Page Faulting Virtualization

PPR, as described in Section 2.2.2, is a mechanism that I/O
devices use to request page fault handling. PPR logs contain
the faulting address and faulty process attributes.

When the GPU executes a guest process’ kernel program,
IOMMU walks its SPT to carry out the address translation.
If a page does not exist in system memory or there is a per-
mission violation, a PPR is issued and the faulty GVA is
written into PPR logs. Our hypervisor will first notify the
corresponding guest OS to get the faulty GVA as well as the
process information, and ask the guest OS to fix the guest
level page table. After the guest level page table is fixed, the
SPT page fault handler is called to fix the SPT (which
IOMMU actually walks). Finally, a finishing command is
sent to IOMMU to complete the handling of a guest I/O page
fault.

Shadow PPR and VirtIO-IOMMU are implemented in our
hypervisor to construct the guest I/O page fault handler.
These two modules will be presented in Section 4.2.

3.3 User Mode Queuing Virtualization

As described in Section 2.2.3, KFD sets the address of ap-
plication queue to GPU device and remaps the doorbell from
physical address to the process virtual address. After these
initializations, the job dispatching can be conducted by kick-
ing the doorbell.

With the user mode queuing feature, the virtualization of
GPU job dispatching is simpler than normal GPU virtualiza-
tion. Traditionally, GPU virtualization needs to map guest
process queues to the hardware queue and is trapped every
time a guest process dispatches a job to GPU.

For HSA, there are no hardware queues, only the user
mode queues, so the hypervisor does not need to take care of
the queue mapping. A hypervisor only needs to set the GVA
of a guest application’s queue to GPU and remaps the door-
bell MPA back to GVA. Since the shadow page table has
been set to IOMMU, GPU can therefore access GVA of
guest application queues. After this queue binding, guest ap-
plications and the GPU can communicate through the appli-
cation queue, doorbell and job-done signals without being
limited to the hypervisor.

In this work a VirtIO-KFD module is implemented,
which cooperates with the native KFD to manage guest ap-
plication queue binding. The implementation details will be
presented in Section 4.3.

3.4 GPU Sharing

For GPU sharing, two prerequisites have to be met: (1) All
processes in multiple guest OSes should be able to dispatch
jobs and (2) GPU kernel programs from processes of differ-
ent guest OSes can be fairly executed, or at least behave like
multiple host processes sharing a GPU. We will show how
these two requirements are achieved in our design.

To begin, the user mode queuing feature implies the GPU
will record information about the user mode queues and
which processes they belong to. In a virtualized environment,
multiple queues from different guest OSes are simply
viewed as different queues on a normal host system. As long
as the doorbell addresses are correctly remapped to guest
processes’ address space, applications from multiple guest
OSes can notify the GPU about dispatching jobs.

When the doorbell is kicked, the GPU tries to access the
application queue and gets AQL packets from it. An
IOMMU page table walk on a properly set page table (the
queue address binding to GPU is in virtual address space)
allows the GPU to access the application queues. Also, since
the SPTs belonging to each guest process are visible to
IOMMU, kernel programs from processes of multiple guest
OSes can be successfully executed. Figure 3 depicts the il-
lustration of GPU sharing.

As described above, GPU can be shared between pro-
cesses in different guest OSes and even the host OS, and the
job scheduling is managed by the GPU hardware. In Section
5, the experiment shows the performance of multiple jobs
dispatched simultaneously by processes from different guest
OSes and from the host OS.

Figure 3. Illustration of GPU executing kernel programs
from different systems.

7

4. Implementation
Figure 4 shows the system architecture of our implementa-
tion. Several modules are modified or created for the hyper-
visor such that guest OSes can benefit from HSA. In this sec-
tion, a brief overview of the role of each component is given.
The implementations of the three necessary virtualized HSA
features are then presented.

 KFD acts as an interface between HSA runtime and HSA
devices. We implemented a VirtIO-KFD module inside the
guest OS. Guest applications and runtime see VirtIO-KFD
as how they see KFD in a native environment. The VirtIO-
KFD collaborates with native KFD to virtualize the user
mode queuing feature.
 KVM, the hypervisor that our implementation is based on,
manages the SPTs for every processes in guest OSes. The
IOMMU driver gets SPTs from KVM and sets it to IOMMU
when guest processes are initialized in order to virtualize the
shared virtual memory.
 Shadow PPR is a newly created module that preserves
PPR (peripheral page request) logs pertaining to the I/O page
faults caused by guest processes’ kernel programs and coop-
erates with VirtIO-IOMMU as the guest I/O page fault han-
dler. Since PPR logs are stored in a MMIO region, the guest
system cannot access it directly. Therefore, the shadow PPR
is required for the I/O page faulting feature.

4.1 Shared Virtual Memory Virtualization

Shadow page tables are created and maintained by KVM.
Basically, the page table structure is consistent between
MMU and IOMMU (the second level page table, translating
GPA to MPA, in two-level translation techniques is a little
different but does not matter in our implementation since
SPT is adopted). Both the page tables of host processes and
the SPT use the same page table structure so the only thing
that needs to be changed is to get the address of the shadow

page table from KVM and pass it to the driver for setting to
IOMMU.

We slightly modify KVM by creating an interface for
IOMMU to acquire SPTs of guest processes that attempt to
use GPU. Also the IOMMU driver is modified to query SPTs
when the guest processes are initialized.

4.2 I/O Page Faulting Virtualization

The VirtIO-IOMMU and Shadow PPR are implemented in
order to handle guest I/O page faults. We’ll describe how
these components are initialized and a detailed flow of guest
I/O page fault handling follows.

When a guest OS is ready to boot up, Shadow PPR allo-
cates a region inside the host kernel for storing PPR logs for
guest I/O page faults. VirtIO-IOMMU also allocates a region
and does memory mapping from this region to the Shadow
PPR region inside the host kernel. After this memory map-
ping, VirtIO-IOMMU can access Shadow PPR region to get
logs without any trap.

The guest I/O page fault handling flow is illustrated in
Figure 5. (a) When PPR happens, CPU is interrupted by
IOMMU and ends up calling the PPR handler. The handler
then fetches PPR logs to obtain the faulting process attrib-
utes and the faulting address. (b) The process attributes will
be used to identify whether this fault is caused by the guest
process. If so, the PPR handler stores the logs into the log
region of Shadow PPR. (c~d) Sends a virtual interrupt to the
guest OS by the IRQFD [11] mechanism, which allows the
host kernel module to send an interrupt to the guest OS via
KVM. (e) The guest PPR handler implemented inside Vir-
tIO-IOMMU will be called by the guest interrupt handler. It
gets PPR logs from Shadow PPR. This part does not cause
traps as previous described. Given these logs, Linux API
get_user_pages will be used to fix the I/O page fault. (f~i)
After fixing the page fault, a finishing command is sent to
Shadow PPR via VirtIO-IOMMU back-end driver. Shadow

Figure 4. System architecture of our hypervisor implemen-
tation.

Figure 5. Flow of guest I/O page fault handling.

8

PPR will first call KVM to synchronize the shadow page ta-
ble, since only the guest side page tables are fixed in previ-
ous steps, and then Shadow PPR calls the IOMMU driver to
send the COMPLETE_PPR_REQUEST command to
IOMMU to finish this guest I/O page fault.

4.3 User Mode Queuing Virtualization

All HSA related configurations, such as queue creation and
destroying, are using Linux IOCTL commands passed to
KFD and set to HSA devices. We implemented a VirtIO-
KFD front-end driver to replace the original KFD inside a
guest OS and receive commands sent from guest user-space.
There are front-end and back-end drivers in the VirtIO
framework. The front-end driver receives I/O requests from
the guest OS and passes them to the back-end driver. Usually
the back-end driver calls the host’s driver to satisfy the
guest’s I/O requests.

The implementation of VirtIO-KFD is not complex: the
IOCTL commands sent from the user-space will carry argu-
ments, such as the address of application queues for a queue-
creation command, are passed to the host KFD via the VirtIO
framework. The host KFD, with our modification to accept
commands sent from guest processes, will then set these con-
figurations to the GPU hardware. The host KFD will also
call the IOMMU driver to get the shadow page table of the
related guest process from KVM and set it to IOMMU. An-
other major concern is the doorbell address mapping. Since
the major advantage of user mode queuing is to eliminate the
driver’s intervention after process initialization, the doorbell
address is memory remapped from MPA to GVA. This in-
volves two memory mappings, from MPA to the host virtual
address (HVA), which is conducted by the host KFD, and
from GPA (can be obtained simply by a linear address trans-
lation from HVA) to GVA, which is carried out by VirtIO-
KFD. With such efforts, the user mode queuing feature can
be successfully virtualized.

Finally, our modification to the host KFD is described. In
the original design, the host KFD assigns a unique process
address space ID (PASID) to each process that uses it.
PASIDs are tied up with page tables in IOMMU to achieve
the shared virtual memory feature, as previously illustrated
in Figure 3.

In our virtualized environment, it is the VirtIO-KFD
back-end driver that calls the host KFD on the behalf of the
guest processes, and only one VirtIO-KFD back-end process
per guest OS gets an assigned PASID. However, there may
be multiple guest processes in a single guest OS that tries to
use HSA devices. This causes an asymmetric mapping prob-
lem between PASID and the guest processes. To solve this
issue, a supplementary VM_CREATE_PROCESS com-
mand is appended to create PASIDs for guest processes.

Moreover, the host KFD uses the process memory control
context, mm_struct in Linux, to identify the relation between

process and PASID. Whenever the host KFD gets an IOCTL
command, it gets the mm_struct of the demanding process
to figure out the corresponding PAISD. Under this design,
the guest application’s PASID cannot be recognized since
only the VirtIO-KFD back-end process is able to call the host
KFD, and the VirtIO-KFD’s memory control context will be
obtained rather than that of the guest process. To fix this
problem, we added a set of new IOCTL commands for the
guest-process-related configurations. For instance,
VM_CREATE_QUEUE and VM_SET_MEMORY_POL-
ICY are the commands corresponding to CREATE_QUEUE
and SET_MEMORY_POLICY commands in the original
code. The guest process’ memory control context will be car-
ried with these newly created commands so the host KFD
can obtain the PASIDs belonging to guest processes and
bind it to GPU and IOMMU.

4.4 Issues about Implementing IOMMU Two-level
Address Translation

In the early stage of this work, we planned to use two-level
address translation instead of shadow page table for virtual-
izing the shared virtual memory feature. Two-level address
translation is supported by hardware, yields lower latency in
general, is more advanced in virtualization designs, and is
more widely adopted by mainstream hypervisors. As for our
target machine, the IOMMU in Kaveri supports two-level
address translation as it has been supported in AMD-v, the
hardware virtualization extension of AMD processors. So
two-level address translation seems feasible and is the first,
and may be the best, choice to implement this work.

However, some limitations in the Kaveri machine prevent
this approach from working. In Kaveri there are two differ-
ent paths for translating a GPU virtual address: the IOMMU,
and the GPUVM, as illustrated in Figure 6. A basic differ-
ence between these two paths is that IOMMU is used to
translate the user space address while GPUVM is used to
translate kernel space address.

User space address translation can be comprehended eas-
ily. The user level queues and GPU kernel programs reside
in the user address space. On the other hand, in the kernel
space address, the memory queue descriptor (MQD) is allo-
cated and manipulate by KFD inside the host kernel. The
MQD is used for user mode queue binding. It contains at-
tributes of user level queues, such as address of queue and
size of queue and will be sent to GPU for bind user mode
queues. In our implementation, the host KFD is responsible
for creating MQDs for both the guest and host user queues
since only the host KFD can communicate with GPU. There
is also a possible device pass-through [12] like approach dis-
cussed later to let guest OS manipulates GPUVM and creates
MQD itself.

During user mode queue initializing, the host KFD first
fills the attributes of a user queue to MQD and then performs

9

a memory mapping from the host kernel space address of
MQD to GPUVM virtual address space and then sets the
GPUVM virtual address (GPUVM VA) to GPU. Once GPU
is kicked to execute, it tries to access the MQD correspond-
ing to the process who kicks it and issues the GPUVM VA
of that MQD. GPUVM hardware translates the GPUVM VA
to a physical address so the GPU can access the MQD and
get the address of a user level queue from it. After this, GPU
is then able to access the user queue and get AQL packets
for execution.

For implementing HSA virtualization with two-level ad-
dress translation technique, the two-level translation of
IOMMU must be enabled. Both of the outputs of GPUVM
and IOMMU’s first level translation go through the second
level translation of IOMMU as shown in Figure 7. This
means that if IOMMU two-level translation is enabled, both
of the inputs of GPUVM and IOMMU are translated twice.
It is reasonable that the input of IOMMU is translated twice,
since the guest virtual address needs a GVA-to-GPA-to-
MPA translation. For GPUVM, however, the input is
GPUVM VA and it should only be translated into MPA with
one level translation. If two-level translation is enabled, the
GPUVM side translation will cause failures, and this is why

two-level translation does not work in this implementation,
as shown in the left-most figure of Figure 8.

The problem described above is caused by setting
GPUVM VA of MQDs to GPU. However, if the guest OS is
able to control GPUVM and create MQDs as shown in the
rightmost figure of Figure 8, then the address of MQDs set
to GPU are in the guest GPUVM virtual address space
(GPUVM GVA), and it would need two-level address trans-
lation. The approach that lets the guest OS control the
GPUVM is basically a device pass-through technique, but
device pass-through is unsuitable for fair GPU sharing, so
the shadow page table approach was adopted in this work.
The implementation of device pass-through and the evalua-
tion of its impact on performance are planned for future work.

5. Evaluation
In this section, we present the results of our HSA-aware hy-
pervisor. The evaluation mainly focus on the performance
comparison between native and guest’s computation on
GPU. The results are classified into queue initialization time
and GPU kernel execution time. Overheads of VirtIO-KFD
are measured by initialization time and the overheads of the
shadow page table and guest I/O page fault handling are

Figure 8. Comparison between different approaches

Figure 6. Kaveri GPU address translation components. Figure 7. Kaveri GPU address translation path.

10

measured by GPU kernel execution time. Furthermore, the
performance of GPU programs dispatched simultaneously
by processes from different guest OSes and the host process
are also provided.

5.1 Experiment Configuration

The experiment hardware platform chosen for this experi-
ment is AMD Kaveri A10-7850K APU, the first HSA-com-
pliant machine, including the AMD steamroller processor
with 4 CPU cores (running at 3.7Ghz), 8G system memory,
and Radeon R7 GPU with 512 cores. Both the host and guest
OS ran 64bit Ubuntu 14.04 LTS with a Linux 3.14.11 kernel
released by HSA foundation and modified by us. The guest
OSes were allocated with 1 VCPU and 4G system memory.

We used the AMD OpenCL SDK [13] as our test suite.
The benchmarks and input parameters are listed in Table 2.
The POCL-HSA [14] was adopted as an OpenCL runtime
implementation that end up calling HSA runtime.

5.2 Queue Initialization Time

Figure 9 shows the time spent on HSA-related initialization
and user mode queue creation, from the HSA runtime API
hsa_init to hsa_queue_create. In this process, many attrib-
utes are sent to KFD and configured to GPU.

The performance drop of the guest system is around 30%
in every benchmark. This is due to the propagation delay of
KFD IOCTL commands from VirtIO-KFD front-end to
back-end and then to the host KFD. This path also incurs
overhead of VM world switch from the guest mode to the
host mode. Moreover, the guest doorbell memory mapping
from MPA to GVA takes more time than only MPA to HVA
in the native scenario.

However, this initialization process only performs once
for every user mode queue. As long as the queues exist, the
application can dispatch jobs without paying such overhead.

In comparison with GPU execution, the performance drop
during initialization time would not be a great concern.

5.3 GPU Execution Time

In the shadow page table implementation, both the guest and
the native GPU execution go through one level address
translation in IOMMU. The factor that may cause perfor-
mance difference is the I/O page fault handling. The GPU
execution time and the I/O page fault handling time of every
benchmark are presented in Table 3. Figure 10 shows the
GPU virtualization performance normalized against the na-
tive run.

To analyze the performance overhead caused by PPR han-
dling, Table 3 shows that native PPR time account for almost
0% of native GPU execute time and guest PPR time accounts
for 0~5% for every benchmark. Though the guest PPR han-
dling incurs more overhead than native PPR, the perfor-
mance influence is still marginal. For Figure 10, it shows that
the guest GPU execution achieves nearing 95% of native
GPU performance in most benchmarks. The two anomalies,
FastWalshTransform and BitonicSort, however, give around
88% of native performance. This is caused by the overhead
of multiple job enqueuing and dispatching. Recall the GPU
jobs execution flow in Figure 2. There is theoretically neither
trap nor VM world switch during job dispatching and finish-
ing because of the user mode queuing and memory-based
signalling features. While taking a deeper look inside the job
finishing situation, VM world switches may occur due to
prolonged signal waiting which may make VM idle or ex-
haust the time slice allocated. As Figure 11 shows, these
world switches do not affect the performance of GPU pro-
grams but do slow down the process when the guest applica-
tion gets signalled and enqueues the next job.

In our test suite, FastWalshTransform, BitonicSort,
FloydWarshall, and MonteCarloAsian enqueue and kick
GPU many times while BinarySearch, MatrixMultiplication,
and MatrixTranspose only activate once. The delay of the
application which enqueues the next job is so negligible that

Figure 9. Performance comparison in queue initialization
time, normalizing against the native scenario.

Table 2. The set of benchmarks in our experiments.
Benchmark Name Input Parameters

BinarySearch array-length=100,000,000
FastWalshTransform array-length=65536

BitonicSort array-length=65536
FloydWarshall nodes=3000

MatrixMultiplication
(long)

matrix-a-height=5000
matrix-a-width=5000
matrix-b-width=5000

MatrixMultiplication
(short)

(only use in Section 5.4)

matrix-a-height=2000
matrix-a-width=2000
matrix-b-width=2000

MatrixTranspose matrix-height=8192
matrix-width=8192

MonteCarloAsian steps=512

11

only the benchmarks with short execution time, FastWal-
shTransform and BitonicSort, may suffer from it. The over-
head of delayed job enqueuing is amortized in the cases for
benchmarks with longer execution time.

To sum up, the GPU job dispatched by guest processes
on our hypervisor achieve around 95% of native GPU per-
formance in the long-running benchmarks. Though some
overhead incurs in short-running benchmarks, it can still
achieve near 88% of native performance.

5.4 Multiple GPU Execution

In this subsection, we present multiple GPU execution in the
following three scenarios, where the first two scenarios are
conducted with process numbers of 1, 2 and 4: (1) All pro-
cesses execute the MatrixMultiplication with same input pa-
rameters. (2) Same benchmark is used but with different in-
put parameters. (3) Two processes execute a long-running
and a short-running job respectively. We analyse the virtu-
alization overhead in sharing a GPU in the first scenario and
where the degree of sharing of GPU is evaluated in the last
two scenarios.

Two process configuration groups are tested: (1) Combi-
nation of guest processes from different guest OSes and a

host process (2) Mix of all host processes. Through the first
configuration group we demonstrate that a GPU can be
shared between multiple guest OSes and the host OS. The
result of the second configuration group is used as a refer-
ence to compare the GPU performance across native and
guest execution environments.

In Figure 12, 13 and Table 4, 5 the VM{N} means the
process of the Nth guest OS and Host represents process of
the host OS. The Native{N} also stands for the process of
the host OS but it is in different groups with the Host bar.

The results of the first scenario are shown in Figure 12. It
is observed that the GPU execution time scales up as the
number of process increases. This corroborates that the GPU
in Kaveri is able to compute multiple kernel programs sim-
ultaneously and fairly (some limits are discussed in later two
experiments). As for the virtualization overhead, the relative
performance drop between group 1 and group 2 is within 5%,
which remains the same as the result in single kernel pro-
gram execution scenario described in Section 5.3. This
shows that there is almost no additional overhead in sharing
GPU between multiple guests OSes based on our implemen-
tation.

Figure 11. The delay (depicted in red arrow) of enqueuing
next job caused by unintentionally world switch.

Table 3. GPU execution time and I/O page fault handling time.
Benchmark Name GPU Execution

Time (sec)
Number of I/O

Page Fault
I/O Page Fault Handling

Time (sec)
I/O Page Fault Handling
Time of GPU execution

time (%)
Native Guest Native Guest Native Guest Native Guest

BinarySearch 0.011 0.011 0 0 0 0 0.00% 0.00%
FastWalshTransform 0.002 0.002 0 1 0 0.00004 0.00% 1.95%
BitonicSort 0.014 0.016 0 1 0 0.00014 0.00% 0.85%
FloydWarshall 16.094 16.603 75 4730 0.00037 0.30053 0.00% 1.81%
MatrixMultiplication 8.012 8.286 52 167 0.00027 0.00852 0.00% 0.09%
MatrixTranspose 0.502 0.538 114 366 0.00032 0.02485 0.06% 4.62%
MonteCarloAsian 17.458 18.342 6 113 0.00024 0.04454 0.00% 0.24%

Figure 10. Performance comparison in GPU kernel execu-
tion time, normalizing against the native scenario.

12

 In the second scenario, we first launched the MatrixMul-
tiplication with large input parameters, and then launched
that with small input parameters (the inputs are listed in Ta-
ble 2). The result in Table 4 and Figure 13 shows that though
a longer job is dispatched and executed beforehand, the
shorter job can still be computed and finish earlier, meaning
that the GPU computation power is indeed shared by multi-
ple processes.

The last scenario is conducted by the launch of Ma-
trixMultiplication, a longer job, followed by the launch of
MatrixTranspose, a shorter job. As Table 5 shows, the GPU
execution time of MatrixTranspose is about the time Ma-
trixMultiplication runs plus the time MatrixTranspose runs.
This means that the MatrixTranspose job is blocked by the
previously launched MatrixMultiplication. From Table 5,
we can also observe that the blocking of GPU job not only
happens in configuration group 2 but group 1 as well, which
means that the GPU hardware does not fully support fair job
scheduling.

To conclude these experiments, the results show that the
GPU in Kaveri seems able to compute jobs simultaneously

with fair scheduling if the jobs are in the same kernel pro-
gram. Otherwise, successive jobs will be blocked by previ-
ously dispatched jobs. The scheduling mechanism of the
GPU in Kaveri is undocumented so we cannot verify its pre-
cise job scheduling policy. But regarding the goal of system
virtualization, our implementation allows multiple guest
OSes to share the GPU in a way identical to how multiple
host processes behave with nearing no additional overhead.
Moreover, we believe our work can be applied to other ma-
chine that supports full GPU job scheduling mechanism so
that guest processes can get more benefits from GPU virtu-
alization.

6. Related Work
Most of the GPU virtualization works are implemented in
device pass-through and API forwarding. Device pass-
through is a naïve approach that allows a guest system to ac-
cess one dedicated GPU directly without modifying the
guest GPU driver. The I/O virtualization hardware extension
such as Intel VT-d [15] or AMD IOMMU [8] are required
for the implementation of the pass-through approach. How-
ever, device pass-through suffers from an inability to share
GPU in a fair manner. To solve this problem, Intel gVirt [16]
and NVIDIA VGX [17] were recently proposed to not only
allow virtual machines to directly access GPU, but also share
it as well. These two approaches, however, require proprie-
tary GPU information and additional hardware design so it
is hard to be implemented by non-vendor developers.

Figure 12. Multiple GPU execution time, all processes exe-
cute MatrixMultiplication with large input parameter.

Table 4. Multiple GPU execution in short MatrixMultiplication (with blue background color) and long MatrixMultiplication.

GPU Execution
Time (sec)

Group 1 Group 2
VM1 VM2 VM3 Host Native1 Native2 Native3 Native4

1 Process 0.55 0.53
2 Processes 3.03 12.63 2.98 12.57
4 Processes 5.31 5.27 24.81 24.49 5.13 5.06 23.85 23.81

Figure 13. Multiple GPU execution time, left bars in one
group are the execution time of short MatrixMultiplication,
right bars in another group are that of long MatrixMultipli-

cation. Table 5. Multiple GPU execution time in MatrixTranspose
(with blue background color) + MatrixMultiplication.

GPU Execution
Time (sec)

Group 1 Group 2

VM1 VM2 Native
1

Native
2

1 Process 0.54 0.50
2 Processes 11.35 10.74 11.29 10.70

13

API forwarding, on the other hand, modifies the guest
runtime library to forward API calls to the hypervisor for
further virtualization. The rCUDA [18], vCUDA [19],
GViM [20] forward guest level CUDA APIs to the underly-
ing simulation stack. The virtio-CL [21] is another API for-
warding implementation for OpenCL. Xen3D [22] and
VMGL [23] are implementations for OpenGL. The difficulty
of API forwarding is its lack of fidelity, where the descrip-
tion of whether the features supported in virtualized and na-
tive environment should be consistent [24]. Since it is diffi-
cult to virtualize all APIs inside a guest system, to maintain
the consistency is a great challenge.

Our implementation is a para-virtualization that forwards
OS level commands only, without modification to the
runtime library. Since OS level commands are used only dur-
ing user mode queue initialization, it is simpler to virtualize
GPU at this layer. Furthermore, indebted to user mode queu-
ing, applications can forward their jobs to GPU directly
without additional virtualization effort. GPUvm [25] pro-
vides full- and para-virtualization design that virtualize the
GPU in hypervisor level. It virtualizes the GPU command
channel and GART table so that GPU can be shared between
multiple guest OSes. The virtualization of GART table re-
quires guest GPU virtual address to be translated to GPU
physical address. The main difference between our work and
GPUvm is in virtual memory management: how page table
and I/O page faults are handled. For page table, since HSA
is a shared virtual memory architecture, the shadow page ta-
ble is updated along with guest process execution. On the
other hand, GPUvm’s shadow page table is updated when
data copy commands are sent. As for I/O page faults,
GPUvm needs to scan the entire page tables upon TLB flush
since it does not support I/O page faults, where our work
does include a framework to support I/O page faults.

7. Conclusion
This work presents the concept, the design and a KVM-
based implementation of HSA system virtualization. Though
our implementation targets at the AMD Kaveri machine, we
believe this work can be applied to other architectures with
similar features like the shared virtual memory, the user level
queues and the memory-based signals. Moreover, we
demonstrate that the sharing of a GPU between multiple
guest OSes and the host OS under the HSA compliant system
can be accomplished with minor virtualization overhead.
The results show that the performance of guest’s kernel pro-
grams achieves near 95% of native GPU performance in
most of the tested benchmarks, especially those with longer
execution time.

As for future work, the device pass-through approach and
performance comparison are planned. We will also port our
work into the latest KFD version and run our hypervisor on
the new HSA machine, AMD Carrizo, to measure the effort

of applying our implementation to other HSA machines and
conduct more investigation on GPU sharing issues.

References
[1] General-Purpose Computation on Graphic Hardware,

http://gpgpu.org/.

[2] Nvidia CUDA, http://www.nvidia.com/ob-
ject/cuda_home_new.html.

[3] J.E. Stone, D. Gohara, G. Shi, OpenCL: a parallel program-
ming standard for heterogeneous computing systems, Comput.
Sci. Eng. 12 (2010) 66–73.

[4] Heterogeneous System Architecture (HSA),
http://www.hsafoundation.com/

[5] AMD Kaveri, http://www.amd.com/en-us/products/proces-
sors/desktop/a-series-apu.

[6] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm:
the Linux virtual machine monitor. In OLS 2007: Proceedings
of the 2007 Ottawa Linux Symposium.

[7] AMD I/O Virtualization Technology (IOMMU) Specification,
http://developer.amd.com/wordpress/me-
dia/2012/10/488821.pdf, 2012.

[8] Kernel Fusion Driver source code,
https://github.com/HSAFoundation/HSA-Drivers-Linux-
AMD.

[9] Rusty Russel. virtio: towards a de-facto standard for virtual I/O
devices. In Operating Systems Review, 2008.

[10] AMD. AMD64 Virtualization Codenamed “Pacifica” Tech-
nology: Secure Virtual Machine Architecture Reference Man-
ual, May 2005.

[11] IRQFD, https://lwn.net/Articles/329837/.

[12] Y. Dong, J. Dai, Z. Huang, H. Guan, K. Tian, Y. Jiang, To-
wards high-quality I/O virtualization. SYSTOR 2009.

[13] AMD OpcnCL APP SDK, http://developer.amd.com/tools-
and-sdks/opencl-zone/.

[14] Portable Computing Language (pocl) for HSA,
http://pocl.sourceforge.net/docs/html/hsa.html.

[15] D. Abramson, J. Jackson, S. Muthrasanallur, G. Neiger, G.
Regnier, R. Sankaran, I. Schoinas, R. Uhlig, B. Vembu, and
J. Wiegert. Intel virtualization technology for directed I/O. In-
tel Technology Journal, 10, August, 2006.

[16] TIAN, K., DONG, Y., AND COWPERTHWAITE, D. A full
gpu virtualization solution with mediated pass-through. In
Proc. USENIX ATC (2014).

[17] NVIDIA. NVIDIA GRID VGX SOFTWARE.
http://www.nvidia.com/object/grid-vgx-software.html, 2014.

[18] DUATO, J., PENA, A. J., SILLA, F., MAYO, R., AND
QUINTANA-ORTI, E. rCUDA: Reducing the number of
GPU-based accelerators in high performance clusters. In Proc.
of IEEE Int’l Conf. on High Performance Computing Simula-
tion (2010), pp. 224–231.

14

http://gpgpu.org/
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.hsafoundation.com/
http://www.amd.com/en-us/products/processors/desktop/a-series-apu
http://www.amd.com/en-us/products/processors/desktop/a-series-apu
http://developer.amd.com/wordpress/media/2012/10/488821.pdf
http://developer.amd.com/wordpress/media/2012/10/488821.pdf
https://github.com/HSAFoundation/HSA-Drivers-Linux-AMD
https://github.com/HSAFoundation/HSA-Drivers-Linux-AMD
https://lwn.net/Articles/329837/
http://developer.amd.com/tools-and-sdks/opencl-zone/
http://developer.amd.com/tools-and-sdks/opencl-zone/
http://pocl.sourceforge.net/docs/html/hsa.html
http://www.nvidia.com/object/grid-vgx-software.html

[19] SHI, L., CHEN, H., SUN, J., AND LI, K. vCUDA: GPU-Ac-
celerated High-Performance Computing in Virtual Machines.
IEEE Transactions on Computers 61, 6 (2012), 804–816.

[20] GUPTA, V., GAVRILOVSKA, A., SCHWAN, K.,
KHARCHE, H., TOLIA, N., TALWAR, V., AND RANGA-
NATHAN, P. GViM: GPU-Accelerated Virtual Machines. In
Proc. of ACM Workshop on System-level Virtualization for
High Performance Computing (2009), pp. 17–24.

[21] Tien, Tsan‐Rong, and Yi‐Ping You. "Enabling OpenCL sup-
port for GPGPU in Kernel‐based Virtual Machine." Software:
Practice and Experience 44.5 (2014): 483-510.

[22] C. Smowton. Secure 3D graphics for virtual machines. In Eu-
roSEC'09: Proceedings of the Second European Workshop on
System Security. ACM, 2009, pp. 36-43.

[23] H. A. Lagar-Cavilla, N. Tolia, M. Satyanarayanan, and E. D.
Lara. VMM-independent graphics acceleration. In Proc. VEE
(2007), pp. 33-43

[24] M. Dowty and J. Sugerman. GPU Virtualization on VMware’s
Hosted I/O Architecture. ACM SIGOPS Operating Systems
Review, 43:73–82, July 2009.

[25] SUZUKI, Y., KATO, S., YAMADA, H., AND KONO, K.
GPUvm: why not virtualizing gpus at the hypervisor? In Pro-
ceedings of the 2014 USENIX conference on USENIX Annual
Technical Conference (2014), USENIX Association, pp. 109–
120.

15

