
HSAemu 2.0: Full System Emulation for HSA platforms
with Soft-MMU

Hao-Che Hsu
Computer Science

National Tsing Hua University
Hsinchu, Taiwan

joshsyu@sslab.cs.nthu.edu.tw

Chih-Wei Yeh
Computer Science and
Information Engineering

National Taiwan University
Taipei, Taiwan

medicinehy@gmail.com

Shih-Hao Hung
Computer Science

National Taiwan University
Taipei, Taiwan

hungsh@csie.ntu.edu.tw

Wei-Chung Hsu
Computer Science

National Taiwan University
Taipei, Taiwan

hsuwc@csie.ntu.edu.tw

Chung-Ta King
Computer Science

National Tsing Hua University
Hsinchu, Taiwan

king@cs.nthu.edu.tw

Yeh-Ching Chung
Computer Science

National Tsing Hua University
Hsinchu, Taiwan

ychung@cs.nthu.edu.tw

ABSTRACT
With the increasing computing complexity and the prolifer-
ation of data, the world demands efficient, next-generation
system architecture to enable large-scale applications at ac-
ceptable costs. Heterogeneous computing has become a hot
topic and a solution to achieve the goals of high performance
and efficient power consumption, especially when graphi-
cal processing units (GPU’s) are constantly integrated into
systems-on-chips (SoC’s) and are widely used for mobile de-
vices. Heterogeneous System Architecture (HSA) is a series
of standards provided by the HSA Foundation and designed
to support heterogeneous computing, including runtime soft-
ware and hardware specifications. To support the devel-
opment and optimization of HSA-compliant systems and
applications, we developed a full-system emulator, called
HSAemu 2.0, which meets the latest HSA 1.0 system specifi-
cations and supports application development with OpenCL
2.0 features, such as shared virtual memory, device enqueue
and pipe. As a hardware/software co-design tool, HSAemu
2.0 not only supports the development of heterogeneous ap-
plications, but also assists system vendors in designing and
evaluating the HSA runtime libraries, HSAIL compiler, and
HSA hardware.

CCS Concepts
•Computer systems organization → Heterogeneous
(hybrid) systems;

Keywords
HSA; OpenCL; Heterogeneous Computing; Emulation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RACS ’16 , October 11-14, 2016, Odense, Denmark
c© 2016 ACM. ISBN 978-1-4503-4455-5/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2987386.2987431

1. INTRODUCTION
Multi-cores have flourished as the speed increase of single

processor cores has encountered bottlenecks such as heat
issues when the clock frequency increases [15]. Even with
multi-cores, the world demands better computational effi-
ciency in solving large problems, and many recent research
and development works have moved intensive computational
CPU tasks onto the other types of computing devices, such
as GPU [14], and FPGA [19], for higher performance and/or
better power efficiency. Such a concept of heterogeneous
computing basically advocates the use of a variety of proces-
sor architectures to improve the performance/efficiency of a
system in executing applications, as opposed to only utiliz-
ing the same processor architecture in traditional multi-core
systems [16].

Figure 1: Enhancements of HSAemu 2.0

However, while heterogeneous computing is attractive, the
portability of an application would suffer if it is designed for
a specific heterogeneous system, as heterogeneity introduces
different application programming interfaces (API’s), appli-
cation binary interfaces (ABI’s) and instruction set archi-
tecture (ISA’s). Thus, a set of specifications, called Hetero-
geneous System Architecture (HSA) were proposed by the
HSA Foundation, with a goal to offer an industrial standard
for heterogeneous computing. The HSA foundation is an
industry standard organization that consists of some major

230



companies such as AMD, ARM, Qualcomm, MediaTek, etc,
and serves as a consortium to develop device-agnostic run-
time software and hardware interfaces for a wide range of
applications, from embedded systems to supercomputers.

The HSA Foundation has released three standards for ar-
chitectrure [9], programmer’s reference [7], and runtime soft-
ware [8]. Following these standards, we have developed a
full-system emulator for HSA, called HSAemu. The pur-
pose of HSAemu is to support the development of HSA-
compliant applications and help explore the design of HSA
systems. We have released HSAemu 1.0 [5] as the HSA spec-
ifications were being drafted in 2014. Since then, the first
official HSA specification (1.0) were finalized in 2015, and
OpenCL 2.0 [12] has gained some momentum. At the same
time, it also becomes a common practice that multiple GPU
devices are plugged into a system as a way to increase the
throughput. This paper introduces HSAemu 2.0, our latest
release which meets the latest HSA standards, as shown in
Figure 1, it supports the shared memory features offered by
OpenCL 2.0, and is capable of emulating multiple GPU de-
vices simultaneously. We spent some significant efforts to
keep HSAemu up with the latest trends, which are to be
described and evaluated with experimental results in this
paper.

The remainder of this paper is organized as follows: Sec-
tion II describes works related to emulators, compilers and
heterogeneous computing. Section III briefly introduces HSA
standards and the major concepts. Section IV discusses the
architecture and design of HSAemu 2.0 discusses the archi-
tecture and design of HSAemu 2.0. Section V presents our
latest experimental results on HSAemu 2.0 and discusses the
difference from HSAemu 1.0. The final section concludes this
work and describe potential future works.

2. BACKGROUND AND RELATED WORKS
For heterogeneous computing, there are popular program-

ming languages, such as CUDA and OpenCL.NVIDIA’s CUDA
(Compute Unified Device Architecture) provides a full tool
suite for offloading application kernels onto GPU devices,
but it is difficult to port CUDA applications to another het-
erogeneous platform as CUDA is limited to NVIDIA GPU
devices so far. On the other hand, OpenCL (Open Com-
puting language) is an open, royalty-free standard for cross-
platform, parallel programming of a variety of processors
[12][13]. Although OpenCL is an open standard and sup-
ported by several hardware vendors, including NVIDIA, it
takes time for the vendors to implement the software run-
time and hardware support for OpenCL. In contrast to OpenCL,
HSA defines not only the language and the API’s, it also de-
fines the software infrastructure and hardware specifications
to reduce the efforts in support the standard [8]. In fact, it
has been shown that several programming languages, includ-
ing OpenCL, have been implemented on the top of HSA.

The HSA Foundation created a project [6] to build a series
of tool chains for the HSA system, including HSA runtime,
HSAIL compiler, HSA finalizer and HSAIL instruction sim-
ulator for testing execution of HSAIL Brig files. We work
closely with the HSA Foundation in developing the first full-
system emulator for HSA, HSAemu [5].

Although most of the HSA software infrastructure is open-
source, the vendor still needs to implement its own compiler
infrastructure, since the instruction set architecture (ISA)
used in a heterogeneous system is vendor-specific. Instead,

our HSAemu utilizes the LLVM compiler framework to com-
pile source codes into the binary for the target processor.
LLVM can primitively translate source codes into LLVM IR
and then retargets the LLVM IR to various ISAs by using
the LLVM compiler infrastructure. Since HSA defines its
own intermediate language called HSAIL [7] with some new
features which are not yet supported by LLVM, we had to
modify the LLVM to meet HSA requirements by adding the
support of HSAIL to the LLVM.

Emulators and simulators are often used in designing new
systems, as a way to verify or evaluate hardware architec-
ture design or test applications. Full-system simulators,
such as QEMU [2], can simulate a full system with a set of
virtual hardware resources to execute a full-blown software
stack including operating system at the binary level. Unlike
cycle-accurate simulators, QEMU is a functional-accurate
emulator, which only emulates processor cores, peripheral
devices, memories, and network connections without mod-
eling the micro-architectural or circult-level details. On the
contrary, QEMU can emulate many architectures, includ-
ing x86, ARM, MIPS, etc., with dynamic binary transla-
tion techniques and offers much higher execution speed than
cycle-accurate simulators do. Furthermore, parallel versions
of QEMU, e.g. PQEMU [4] and COREMU [18], allow multi-
ple CPU cores to be emulated concurrently by parallel emu-
lator threads to take advantage of the multi-core processing
capability on the host machine.

For the design of GPGPU, GPGPUsim [1] and Multi2sim
[17] are two of the most popular simulation tools. GPG-
PUsim provides a detailed simulation of a GPU for running
CUDA and OpenCL workloads with an integrated energy
model at the microarchitecture level. Similarly, Multi2sim
provides an OpenCL system library that runs OpenCL ap-
plications on simulated GPU devices. For our case study, we
chose to hook Multi2sim to our HSA emulator as the code
of Multi2sim is easier for us to port into our environment.

In comparison, gem5 [3] is a cycle-accurate full-system
emulator, which provides a highly configurable simulation
framework with a detailed system model. While gem5 also
supports multiple ISAs including ARM, ALPHA, and x86,
its execution speed is too low for software testing purposes.
The gem5-gpu [11] is modifying from the gem5 project for
heterogeneous computing, which combines gem5 and GPG-
PUsim. Unfortunately, gem5-gpu does not supports OpenCL
2.0 and HSA.

3. OVERVIEW OF THE HSA STANDARDS
By coupling different types of processors, HSA seeks to im-

prove programmability, performance, and energy efficiency.
As illustrated in Figure 2, the HSA standards include a run-
time library that defines APIs for high-level programming,
a hardware architecture that defines features supported to
meet the requirement of HSA for vendors, and a program-
mer’s reference manual that describes HSA’s intermediate
language HSAIL. HSAIL can be converted to a generic file
of binary format, namely, BRIG.

A HSA application is comprised of two parts: agent and
kernel. An agent can dispatch tasks onto another compute
device, for example, the CPU typically executes the agent
code and dispatches tasks to GPU devices. As a feature of
HSA, a GPU device can also dispatch a task to the CPU if
it determines the CPU is more suitable for that task. The
kernel code is the data-parallel code that typically executes

231



Figure 2: Overview of the HSA Runtime

on a GPU device, but CPU can also execute the kernel code
if needed. In the following HSAIL and BRIG subsection, we
will describe how the kernel code becomes executable for the
target device.

3.1 Queues and AQL Packets
A queue is a runtime-allocated resource that contains a

packet buffer. This queue is controlled by a packet proces-
sor, which enqueues, dequeues and resolves dependencies by
tracking states of packets. As shown in Figure 2, all AQL
(Architected Queuing Language) packets will be placed into
a queue owned by a kernel agent. HSA provides this special
feature to enable applications to launch kernels by enqueu-
ing packets. When a packet is enqueued the packet processor
will inform the respective device for which the packet is as-
signed, if there is no dependency. With AQL packets and
command queues, applications can easily be dispatched on
any agents. HSA defines three types of AQL packets:

• The kernel dispatch packet contains a pointer to the
executable kernel, kernel arguments, and kernel launch
information. The kernel launch information includes
launch dimensions, work groups, and private memory.

• The agent dispatch packet is used to launch built-in
functions in agents. For example, a compute-unit run-
ning a kernel can ask the host application to allocate
memory on its behalf.

• The barrier-AND packet allows an application to spec-
ify up to five signal dependencies and requires the
packet processor to resolve all dependencies before pro-
ceeding. The barrier-OR is similar to the barrier-AND
differing in that if any dependency is resolved, then it
can proceed.

3.2 Signals
A signal is a runtime-allocated object used for commu-

nications between agents in a HSA system. Using signals,
each agent in HSA system can inform other agents of their
respective state transitions. A kernel agent can also monitor
the signal and check if the computing device is finished or set
a maximum waiting time to send a signal to the computing
device to terminate. Using signals as communication mech-
anism usually perform better in terms of power or speed
than using shared memory address, thanks to synchroniza-
tion management in shared virtual memory.

3.3 Shared Virtual Address

Data transfer often causes bottleneck in high performance
computing. OpenCL 2.0 provides a feature called Shared
Virtual Memory (SVM), which enables programmers to de-
velop applications with extensive use of pointer-linked data
structures to transmit arguments or share data between the
agents. Nevertheless, support of shared memory can be
a challenge due to cache coherence issues. Thus, SVM is
scrutinized from Intel’s perspective [10] and is categorized
into three levels of synchronization: Coarse-grained buffer,
Fine-grained buffer, and Fine-grained system. In coarse-
grained buffer, shared space occupies a region of the system’s
memory, coherence occurs when the OpenCL synchroniza-
tion function, clEnqueueSVMMap, is called. This forces pro-
grammers to ensure coherence by explicitly calling memory
map functions. Fine-grained buffer also utilizes a portion
of memory with the capability to implicitly handle the is-
sue of coherence. Each modification on the address is valid
to other agents. Fine-grained system has no need to han-
dle coherence; besides, its shared space includes all system
memory rather than a region. In comparison, HSA’s archi-
tecture standard defines a compliant HSA system that allows
agents to access shared system memory through the com-
mon HSA unified virtual address space. Each agent should
handle shared virtual memory address translation through
page tables managed by the HSA component, called HSA-
MMU (HSA Memory Management Unit). The HSA-MMU
allows memory operations to easily be handled by every
agent regardless of coherence or overhead. HSA’s Shared
memory inherently handles coherence for all agents and en-
sures that memory protection mechanisms cannot be cir-
cumvented. Thus, shared virtual memory is perjhaps the
most important feature for the HSA platform, as SVM not
only reduces communication overhead but simplifies flows of
programs to enhance programmability.

3.4 HSAIL and BRIG
HSA is designed to support multiple hardware, therein

encompassing multiple instruction set architectures (ISA’s),
which allows HSA to be hardware-agnostic. A HSA program
is compiled to HSAIL (Heterogeneous System Architecture
Intermediate Language) as an abstraction of the native in-
struction set. The abstracted layer is then translated into
the appropriate native machine code for the target device by
using the finalizer, if the hardware cannot support HSAIL
natively. Upon application execution, the loader loads the
executable file onto the computing device. The life cycle of
an application can be divided into three stages: finalization,
loading, and execution.

In the finalization stage, the finalizer generates code for a
specific kernel agent instruction set. Then the loader man-
ages the allocation of global and read-only segment variables
and subsequently moves the finalized code onto the specific
kernel agent. Lastly, it generates packets that will be exe-
cuted on a kernel agent at runtime.

4. HSAEMU 2.0
HSAemu 2.0 is the lastest update of HSAemu with the

support of OpenCL 2.0 and HSA 1.0 standards, as well as
multiple GPU devices. The new features include shared vir-
tual memory, image processing, device enqueue and pipe.
Applications can take advantage of these features to im-
prove performance, which was not possible in HSAemu 1.0.
HSAemu 2.0 also develops a mechanism that handles shared

232



virtual memory translation called HSA Soft-MMU (HSA
Software Memory Management Unit) that simulates mem-
ory operations in detail, thereby approaching hardware de-
sign. As illustrated in Figure 3, HSAemu 2.0 mainly consists
of three layers, and the remainder of this section presents the
components in these layers:

Figure 3: Overview of
HSAemu 2.0

Figure 4: Support for
OpenCL 2.0

• The application layer that consists of agent code and
kernel code, which can be an OpenCL or a HSA pro-
gram.

• The communication layer that consists of compiler,
runtime and driver. The compiler generates kernel
HSAIL code and then converts HSAIL into native bi-
nary. The runtime library combines OpenCL 2.0 run-
time and HSA runtime for which programming libraries
are provided. The driver provides an interface be-
tween emulators and applications and transmits inter-
rupt signals.

• The simulation platform that contains four emulators
that can serve as compute devices, namely, PQEMU,
Multi2sim and Fast-sim GPU. As described in Sec-
tion 2, PQEMU is a parallel QEMU that simulates
CPU, and Multi2sim is a cycle-accurate GPU emula-
tor. Fast-sim GPU is included by HSAemu to serve as
a fast function-accurate GPU emulator, which is sev-
eral orders of magnitudes faster than Multi2sim and is
designed for software testing purposes. Programmers
can select which GPU device they want to use when
creating the context and command. By utilizing the
HSA MMU, it is not only to reduce the overhead of all
global memory access between the GPU devices and
CPU but also makes it easier to hook the new com-
puting device.

4.1 OpenCL 2.0 Runtime
As shown in Figure 4, the agent part of the OpenCL ap-

plication runs on the CPU side and links essential libraries,
including the OpenCL library. Following the OpenCL 2.0
specification, we implement our own OpenCL 2.0 runtime
library that supports new features. When an OpenCL API
function is called, the function links to our OpenCL runtime
library and is then forwarded downstream to call to the HSA
runtime, which then packets the information of the execut-
ing OpenCL functions in an AQL format and sends it to HSA
packet processors. Most of OpenCL functions can be pack-
eted as AQL packets and sent to HSA packet processors but
functions that need hardware support are redirected to the
respective hardware using interrupts. These functions are
used in features like shared virtual memory, pipe and image
processing. To build a shared virtual memory environment,
we pass the addresses of global arguments, that will be used

in the OpenCL kernel function, to the HSA MMU that han-
dles memory access. The feature, pipe, in addition needs to
be passed as a command to tell the emulator to prepare a
special memory object. For image processing, OpenCL 2.0
defines some image APIs that need hardware support, so
an image processing API may be sent as a HSA command
to the emulator to request hardware information. Table I
shows OpenCL 2.0 API’s and their corresponding to HSA
commands

Table 1: OpenCL 2.0 APIs versus HSA Commands
OpenCL 2.0 API’s HSA Commands

Shared Virtual Memory
clSetKernelArg hsa abi svm alloc

Pipe
clCreatePipe hsa create pipe

Image processing
clCreateImage hsa abi image info

4.2 HSA 1.0 Runtime
Our HSA runtime is implemented according to HSA Run-

time Specification 1.0. HSAemu 2.0 provides full compatible
HSA APIs that programmers can either directly use to de-
sign applications or OpenCL runtime calls. As shown in
Figure 3, HSA runtime mainly focuses on following speci-
fication components: HSA Shared Memory Allocation, HSA
AQL Packets, and HSA Signal Handler.

HSA runtime stores the addresses of arguments containing
the global specifier in the kernel function and then sends a
shared memory allocation command to the HSA emulator.
Computing devices may then access this memory address.
Most information of tasks will be populated into the pack-
ets using the AQL format and then enqueued. A packet
processor will dispatch packets to the target device later.
HSA signal handler sends a signal to the device to start
computing and receives a signal upon completion from the
device.

4.3 HSA MMU
HSA memory management unit (MMU) is an important

component in HSAemu 2.0. The whole global memory allo-
cation, access and operations are handled by this unit, and
we use a thread, called HSA MMU, to emulate the MMU of
a HSA system. As illustrated in Figure 5, when PQEMU
boots, HSA MMU is initialized and keeps monitoring its
task queue. HSA Runtime sends a command to PQEMU
while passing kernel arguments, and then HSA MMU is
informed to handle this task, where the addresses of ker-
nel arguments are recorded in the HSA SVM table. While
the kernel program asks to access an address, it will jump
to hsa svm ld or hsa svm st helper function that is imple-
mented in the emulator to read or store data. The read/write
functions get the virtual address from kernel program and
then asks HSA MMU for its physical address. Under mu-
tex mechanism, HSA MMU prevents race conditions, which
also meets requirements of fine-grain buffer memory that has
map-free features by directly reading/writing from physical
address that are visible to all devices and support atomic
operations.

4.4 The PQEMU CPU Emulator

233



Figure 5: Design of
HSA MMU

Figure 6: Support of
multiple GPU Devices

In HSAemu 2.0, PQEMU serves to emulate multi-core
CPU on a multicore host and is responsible for booting
the operating system, handling the interrupts from the HSA
driver, and communicating with other HSA devices. PQEMU
is based on QEMU 1.7, which uses round robin (RR) mech-
anism to simulate the CPU core sequentially. Thus, if there
is a CPU that has dual cores, QEMU only uses one thread
to emulate this CPU. To improve the speed of emulation,
PQEMU parallelizes the dynamic binary translation (DBT)
process for each virtual CPU. The PQEMU adopted in HSAemu
2.0 uses the unified code cache (UCC) model, which uses
thread lock to handle synchronization between virtual CPUs
and shares most components in the DBT process. Compared
to separate code cache (SCC), UCC may be slower but it is
easier to implement and has less duplication of components.

4.5 The Multi2sim GPU Emulator
HSAemu 2.0 provides a friendly interface for the user to

plug in GPU emulators, and Multi2sim is one of the GPU
emulators that have been integrated into HSAemu for cycle-
accurate simulation. Multi2sim is capable of simulating a
variety of architectures, and we choose the AMD Southern
Island series GPU as the computing device in our case study.
When PQEMU initializes devices, Multi2sim starts its pro-
cesses and waits for tasks. Multi2sim also provides its com-
piler (M2C) for translating an OpenCL kernel program into
executable file for Southern Island GPU. When an OpenCL
program is dispatched from runtime level, Multi2sim will
be informed by the packet processor and then prepares ex-
ecution environment including memory allocation, numbers
of work items, etc. After receiving HSA computing signal,
Multi2sim starts loading binary of the kernel program and
performs computation. When the kernel program finishes,
Multi2sim shows profiling information that is produced by
its timing model.

4.6 The HSA Fast-sim GPU Emulator
Fast-sim GPU is a configurable and programmable func-

tional GPU emulator which provides a simple, generic GPU
model to emulate GPU’s behavior and develop HSA archi-
tecture. Fast-sim GPU can be set to emulate a number of
computing units, where each computing unit can be exe-
cuted by a thread to take advantage of the processing ca-
pability of the host. Note that the work items in a work
group is executed in a round-robin fashion by a single thread,
where the barrier instruction within a work group may not
be emulated correctly. In that case, the user should use
Multi2sim to simulate the GPU. As a functional emulator,
Fast-sim does not guarantee timing accuracy and is not suit-
able for detecting timing-dependent bugs.

4.7 Multiple GPU Emulation Support
HSAemu 2.0 allows the HSA Fast-sim GPU emulator to

be executed in parallel to emulate multiple GPU devices
the system. Let us use a two-GPU case to illustrate how
HSAemu 2.0 makes it possible, As illustrated in Figure 6,
there are two Fast-sim GPU emulator instances, and each
GPU emulator has a group of threads that represents as the
GPU’s computing units (CUs) and uses thread identifier
to record each computing unit’s information including id,
group size, finish state, etc. In addition, these two GPU
emulators are supported by the HSAemu 2.0 compiler and
runtime library. By configuring the Fast-sim GPU and HSA
Second GPU as computing devices, programmers can utilize
these two GPU emulators at the same time.

4.8 Compiler
HSAemu 2.0 provides the OpenCL 2.0 enabled HSA com-

piler by modifying LLVM 3.4 to compile a kernel program
into HSAIL codes and then generate the BIRG file for the
target device. We first use Clang 3.4 front-end to translate
kernel program into LLVM IR, an immediate language for
LLVM, and then follow the definition of HSAIL [7]. After
generating HSAIL codes, the compiler’s back-end, i.e. the fi-
nalizer, can translate HSAIL code into an executable file for
the target device by decoding and converting those HSAIL
instructions to native binary code. Once compiled, a HSA
or OpenCL kernel program can be dispatched to the target
device in HSAemu 2.0.

5. EXPERIMENTAL RESULTS
The first part of our experiments, as discussed in Section

5.1, is to prove that HSAemu 2.0 is compliant with HSA and
OpenCL 2.0, we use benchmarks provided by AMD SDK
to verify the correctness of the platform and simulate the
execution flow. The second part, as discussed in Section
5.2, carried out experiments to compare the performance of
HSAemu 2.0 with HSA MMU and without HSA MMU by
using the NBody benchmark provided by AMD SDK 2.9.
Finally, in Section 5.3, we show the performance scalabil-
ity with two Fast-sim GPU emulators enables, where each
GPU has 8 computing units, and each computing unit’s work
group size is 256. The experimental environment is showed
in Table 2.

Table 2: Experimental Environment

5.1 OpenCL 2.0 Features
HSAemu 2.0 is validated with AMD SDK 2.9 and AMD

SDK 3.0. Among the 29 benchmarks that We have success-
fully executed, 20 are written in OpenCL 1.2, 5 uses OpenCL
2.0 API’s, and the remaining benchmarks are mainly for im-
age processing. As mentioned in Section 4.1, OpenCL 2.0
features requires corresponding support from the HSA run-
time and emulator. Give that the HSA Fast-sim GPU is

234



capable of support most of the features listed in Table 1,
it is capable of exeucting all the OpenCL 2.0 benchmarks.
On the other hand, Multi2sim can successfully execute 23
benchmarks, because Multi2sim’s compiler (M2C) does not
support some of OpenCL 2.0 features so far.

5.2 Software MMU
The following experiments use the NBody benchmark to

show that the inclusion of HSA MMU is able to improve
the performance of HSAemu 2.0. First, as shown in Fig-
ure ??, we measure the performance of HSAemu 2.0 with
HSA MMU and compare it to the one without HSA MMU,
as the numbers of the computing body in the benchmark
increases from 1024 to 2048. The results show with HSA
MMU, the HSAemu performs better than without HSA MMU,
especially when the numbers of bodies is large. This exper-
iment indicates that if the HSA MMU handles memory ac-
cess between the CPU and GPU, the overhead of the address
translation is less than directly using the CPU MMU.

5.3 Multiple GPUs
To illustrate the capability of emulating two GPU deivces

in HSAemu 2.0, we run the Nbody benchmark by using SVM
mechanism to reduce the data transfer from CPU to GPU
devices. We fix the numbers of the computing body to 1024
and repeat the Nbody benchmark for 10, 20, 30 and 40 times.
As shown in Figure 7, it is obvious that running the Nbody
benchmark on two GPU devices reduces the total exeuction
time on the HSAemu, because the HSAemu is capable of
emulating the GPU devices with more threads. In this case,
our host machines has 32 physical processor cores and 64
virtual cores, which significantly improves emulation speed.

Figure 7: Performance
scalability with
multiple GPU
emulators.

Figure 8: Speed of
HSAemu versus HSA
MMU

6. CONCLUSION AND FUTURE WORKS
Heterogeneous computing has become important, and HSA

provides a viable solution for high programmability, high
performance and less power consumption. To drive this new
architecture further, we have continued to develop HSAemu
to emulate HSA behavior more accurately and provide a
platform for developing HSA software. In the near future,
we will use HSAemu to search the hardware-software co-
design space for emerging application areas such as ma-
chine such as machine learning, cloud computing, and even
portable devices that may be benefited with heterogeneous
designs. We hope this effort of developing a full-system emu-
lator can contribute to heterogeneous computing as a useful
hardware/software co-design tool.

7. ACKNOWLEDGMENTS

This research was supported by MediaTek, Taiwan un-
der the grant MTKC-2016-0264 and Ministry of Science and
Technology (MOST), Taiwan under the grant No.105-2218-
E-007-001 and 104-2622-8-002-002.

8. REFERENCES
[1] A. Bakhoda, G. L., W. W. Fung, H. Wong, and T. M.

Aamdot. Analyzing cuda workloads using a detailed
gpu simulator. pages 163–174, 2009.

[2] F. Bellard. Qemu, a fast and portable dynamic
translator. USENIX ATC, pages 41–46, 2005.

[3] N. Binkert, B. Bechmann, G. Black, S. K. Reinhardt,
et al. The gem5 simulator. ACM SIGRACH Computer
Architecture News, 39:1–7, 2011.

[4] J. Ding, P. Chang, W. Hsu, and Y. Chung. PQEMU:
a parallel system emulator based on QEMU. ICPADS,
pages 276–283, 2004.

[5] J.-H. Ding, W.-C. Hsu, B.-C. Jeng, S. H. Hung, and
Y.-C. Chung. HSAemu - a full system emulator for
HSA platforms. Hardware/Software Codesign and
System Synthesis(CODES+ISSS), pages 1–10, 2014.

[6] H. Foundation. HSA Foundation Creating New
Solutions with Heterogeneous Computing.

[7] H. Foundation. HSA Programmer Reference Manual
Specification 1.01, 2015.

[8] H. Foundation. HSA Runtime Specification 1.0, 2015.

[9] H. Foundation. HSA System Architecture Specification
1.0, 2015.

[10] Intel. OpenCL 2.0 Shared Virtual Memory Overview,
2014.

[11] H. J., O. M.S., H. M. D., and W. D.A. gem5-gpu: A
heterogeneous cpu-gpu simulator. IEEE Computer
Architecture Letters, 14:34–36, 2014.

[12] G. Khronos. OpenCL 2.0 API Specification, July 2015.

[13] G. Khronos. OpenCL 2.0 C Language Specification,
Spetember 2015.

[14] J. Nickolls and W. J. Dally. The gpu computing era.
IEEE Micro, pages 56–59, 2010.

[15] P.E.Ross. Why cpu frequency stalled. IEEE Specturm,
45:72, 2008.

[16] G. Teodoro, R.Scachetto, O.Sertel, and M. N. Gurcan.
Coordinating the use of gpu and cpu for improving
performance of compute intensive applications. Cluster
Computing and Workshops, 2009. CLUSTER ’09.
IEEE International Conference on, pages 1–10, 2009.

[17] R. Ubal, J. Sahuquillo, S. Petit, and P. Lopez.
Multi2sim: a simulation framework to evaluate
multicore-multithread processors. HPCA, pages 62–68,
2007.

[18] Z. Wang, R. Liu, Y. Chen, X. Wu, H. Chen,
W. Zhang, and B. Zang. COREMU: a scalable and
portable parallel full-system emulator. PPoPP, pages
213–222, 2011.

[19] W.Tang, B.Duan, and C. Zhang. Accelerating millions
of short reads mapping on a heterogeneous
architecture with fpga accelerator.
Field-Programmable Custom Computing Machines
(FCCM), 2012 IEEE 20th Annual International
Symposium on, pages 184–187, 2012.

235




