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Abstract— Graph computing is widely utilized today, which 
severely requires the ability of processing graphs of billion vertices 
rapidly for social network analyzing, bio-informational network 
analyzing and semantic processing. Therefore, graph processing 
play a significant role in the research and application 
development. Data of music and movie recommendation and LDA 
topics can be modeled as bipartite graph and perform the 
computation with graph processing engines. The most important 
step before graph computation is graph partitioning. Graph 
partitioning is a mature technology, however, most of classic graph 
partitioning algorithms require iterative calculation for several 
times, which causes high time complexity. Some algorithms with 
short partitioning time proposed these years, but they cannot be 
used in bipartite graph directly. This paper proposes a new 
bipartite graph partitioning algorithm, BiFennel, which effectively 
decreases graph processing time and network loading by reducing 
vertex replication factor and maintaining work balance. We 
implement BiFennel in a popular graph engine called 
PowerGraph. The performance results show that BiFennel has 
29~55% improvement on communication cost and 21~49% 
improvement on overall runtime comparing with Aweto. 

Keywords— Graph processing; Graph partitioning; Bipartite 
graph; PowerGraph 

I. INTRODUCTION 

In recent decade of years, the universalization of World-
Wide-Web promotes the booming of websites. According to 
statistics data of CNNIC in December, 2013, there were 150 
billion websites in just mainland China, which increased 22.2% 
than 2012 [1]. As for the largest social network site (SNS) in the 
world, Facebook, the user number reached 2.2 billion in July, 
2014, which occupied 1/3 population of the world [2]. Messages 
transferred by users on Facebook reached 12 billion per day and 
search commands are executed one billion times. Meanwhile, 
various kinds of SNSs such as Wikipedia, Twitter and Quora 
attract billions of cyber citizens and generate huge amount of 
information, which is useful for companies to acquaint their 
users’ requirement, figure out new ideas and implement creative 
and useful functions for followers. 

To better process these continuously, rapidly and massively 
generated data, graph structure is a proper way to describe, store
and handle the metadata. Graph is one of the most common data 
structure in computer science and technology, which can present 
more complicated and general relations than linear arrays and 
trees in terms of structure and semantics. Because lots of realistic 
scenes can be presented in graph, graph processing and 
applications are utilized in widely range of areas. Traditionally, 
graph processing is applied in optimizing transporting routes, 
predicting path of disease outbreak, relationship of paper citing, 
and so on. Now, applications such as SNS analysis, semantic 
web analysis and bio-information network analysis model also 
process data using graph format. Although graph theory and 
technology has been well developed, the booming of 
information enlarges the scale of graph when modeling the 
metadata into graph data. Correspondingly, the method of 
efficient and rapid processing for graphs which contains billions 
of vertices and edges faces severe challenge under this 
condition. 

PageRank [3] is a classic algorithm in search engine, which 
is developed by Google. In this algorithm, every web page gets 
a score, which is calculated by all pages it links to. Therefore, 
web pages are presented with vertices and linking relationships 
with directed edges. If a graph contains 10 billion vertices and 
50 billion edges, and every vertex and its edges occupied 
100KB, the whole graph stored in memory will exceed 1TB. 
Obviously, to store, update, search and process such a huge 
graph, the time and space consumption is far beyond the ability 
of traditional centralized graph management strategy.  

Cloud computing has advantages for processing graph [4].
Google put forward one of the most popular graph engine for 
graphs at the scale of billions vertices called Pregel [5] in 2010. 
Other popular graph engines such as GraphLab [6] developed by 
CMU, Presto [7] are widely used in distributed graph processing 
as well. 

Engines mentioned above use hash edge-cut method for 
graph partitioning, which means all vertices are assigned to 
different machines by hash values and vertices on a same edge 
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in different machines communicating with each other via 
network. This method balances workload by uniformly 
assigning vertices rapidly, however, the inner structure of the 
graph is totally ignored. As a result, when there is a k-machines 
cluster, the ratio of cut edges of a graph will be up to (1 - 1/k), 
which leads immeasurable communication cost. To relieve this 
degradation of communication, PowerGraph [8] invented a 
balanced p-way vertex cut instead of edge cut. Simply, the 
engine places edges into machines by hash values of source 
vertices. In this way, just same vertices in different machines 
communicate with itself to update unified values, instead of 
transferring huge amount of edge data. 

Nevertheless, both vertex and edge cut can decrease network 
communication and computation runtime with an advanced 
graph partitioning algorithm which increases localization within 
a part and reduces connections between parts. This kind of 
problem is called balanced graph partitioning problem, which is 
NP-hard [9]. There are some approximation algorithms for this 
problem, however, it is difficult for algorithms to consider load 
balance, localization, speed simultaneously. 

As a special form of graph, bipartite graph is widely used in 
machine learning and data mining (MLDM), which divides its 
vertices to two disjoint parts and every edge join two vertices in 
the different parts. Typical bipartite graph in large-scale graph 
processing includes topic-document graph in semantic modeling 
and user-movie graph in movie recommendation system. 
Correspondingly, MLDM algorithms such as Latent Dirichlet 
Allocation (LDA), Alternating Least Squares (ALS) are used in 
these conditions. 

This paper focuses on a new rapid balanced bipartite graph 
partitioning algorithm and applying to a popular graph 
processing engine, PowerGraph. The rest of the paper is 
organized as follows. Section 2 gives the description of 
important graph processing engines and explains why 
PowerGraph is chosen to as the performance evaluation 
platform. It also introduces related work of bipartite graph 
partitioning of large-scale graph. Section 3 describes the design 
and an example of the proposed method, BiFennel. In section 4, 
evaluation of BiFennel is presented and the paper compares it 
with BiCut, and Aweto. Finally, the conclusion and future works 
are given in Section 5. 

II. RELATED WORK

This section introduces graph engines, which are used for 
graph computing, and important algorithms for graph partition. 

A. Graph Engines 
Graph engines aim to improve computation speed by 

reducing communication cost, balancing workload or some 
other methods. 

� Pregel is a calculation architecture mainly for algorithms 
such as Breadth First Search (BFS), Single Source 
Shortest Path (SSSP) and PageRank. Google replaces 
MapReduce [10] by PageRank because of the low 
efficiency MapReduce performs on graph processing. 
Pregel is inspired by Bulk Synchronous Parallel (BSP) 
model [11] which is a model of computation, 

communication and synchronization. One advantage of 
Pregel is simple programing model, which just need 
users define function of vertex calculation and which 
vertices should be calculated. Another is the whole 
performance can be predicted. Apache Giraph [12] is an 
open source version of Pregel. The system is built on 
Apache Hadoop and is utilized by Facebook.  

� GraphX [13] is a component in Spark [14] for graph-
parallel computation. GraphX extends the Spark RDD by 
introducing a directed multi-graph with properties 
attached to vertices and edges. Because of Scala 
language, GraphX makes graph computing programing 
simple. It utilizes vertex-cut rather than edge-cut, 
avoiding huge amount of communication cost. 
Asynchronous computing mechanism avoids the 
bottleneck of waiting time in synchronous computing. 

� PowerGraph proposes a vertex-cut method for graph 
partition instead of an edge-cut method employed by 
Pregel. Fig. 1 [15] show the difference between vertex-
cut and edge-cut concepts. Edge-cut methods may have 
low efficiency because of excessive message call. 
Vertex-cut methods divide a node to a master and mirrors 
to reduce communication of dense-degree vertices. 
Vertex-cut method and the mix of synchronous and 
asynchronous engine makes PowerGraph a fast, low-
communication graph-parallel system. Unlike GraphX 
on Spark, PowerGraph is an independent graph engine 
which avoid extra efficiency loss. Although independent 
system makes it harder to interact with other distributed 
storage system, it still performs well in other aspects.  

Fig. 1. An illustration of Edge-cut and vertex-cut methods from [15]. 

B. Graph Partitioning Algorithms 
Graph partitioning algorithms aim at increasing localization 

of subgraphs to reduce communications among graph partitions. 
To keep scale of subgraphs balanced is also an important issue. 
However, algorithms provides higher localization and more 
balanced subgraphs usually cause worse time complexity. 

� METIS [16] is a software package which provides 
balanced partitions and produces low fill orderings for 
sparse matrix. The algorithms implemented in METIS 
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are based on the multilevel graph partitioning paradigm 
including three phases: graph coarsening, initial 
partitioning and uncoarsening. In the coarsening phase, 
original input graph is reduced by collapsing vertices and 
edges to a set of successively smaller graphs, consisting 
of a maximal size series of adjacent vertices. Graph 
coarsening keeps processing until the size of the original 
graph reduced to hundreds of vertices which is called a
coarsest graph. Next, in the initial partitioning phase, 
coarsest graph is partitioned by relatively simple 
approaches such as Kernighan-Lin algorithm [17]. Since 
the coarsest graph is consisted of just hundreds of 
vertices, this step finishes quickly. Finally, in the 
uncoarsening phase, the coarsest graph is transmitted to 
the successively and relatively larger graphs by assigning 
the pairs of vertices. After each transmitting step, 
heuristic methods will be used to iteratively exchange 
vertices between partitions to improve the quality of the 
partitioning result. 

� Fennel [18] is a streaming balanced edge-cut graph 
partitioning algorithm for simple undirected graph. 
Streaming means vertices arrive while the decision of the 
assignment has to be done “on-the-fly” for the purpose 
of little computational overhead. To overcome 
computation complexity, this algorithm has no iterative 
processing mechanism. Like other algorithms, Fennel 
formulates the graph partitioning function to consider 
two elements: one represents the cost of edges cut and 
the other one represents the sizes of subgraphs, however, 
the difference is that Fennel relaxes the hard constraints 
as compensation. In some experiments, edge-cut 
proportion of Fennel is slightly more than METIS, which 
explains that METIS maybe a better graph partitioning 
tool in terms of edge-cut ratio. However, it takes METIS 
8.6 hours to partition a large Twitter graph with more 
than 1 billion edges while Fennel just need 42 minutes.
Although Fennel sacrifices a little edge-cut ratio that 
increases communication load, it dramatically reduces 
partitioning time of large-scale graph. 

� BiCut [19] is a randomized bipartite graph partitioning 
algorithm implemented in PowerGraph. It takes 
advantage of bipartite graph structures, especially for 
skewed one. In a bipartite graph, there are two subsets of 
vertices. Vertices on a single edge must be from different 
subsets, which means vertices in the same subset are 
disjoint. BiCut avoids replication from one subset that 
keeps major number of vertices. This will dramatically 
reduce the replicas of vertices with vertex-cut strategy of 
PowerGraph. To distinguish the two subsets of bipartite 
graph, the algorithm represents the larger subset as 
favorite subset, marked as V. Reversely, the smaller one 
is represented as not favorite subset, marked as U. This 
algorithm contains two steps. First, the vertices of the 
favorite subset and the edges containing vertices in 
favorite subset are evenly sent to machines according to 
hash values of favorite vertices. These favorite vertices 
introduce no replicas of vertices. Second, the algorithm 
calls finalize function of PowerGraph to construct local 
graph on every machine. One replica of a vertex is 

marked as the master that manages mirrors which 
represent other replicas of the same vertex. Fig. 2 [19]
shows the results of Hash, Grid (a default bipartite 
partition algorithm in PowerGraph  and BiCut partition 
methods. BiCut performs better than Hash and Grid 
partition because of fewer replicas. 

Fig. 2. An illustration of Partitioning results of Hash, Grid and BiCut from 
[19]. 

� Aweto, inspired by Ginger [20], is a greedy bipartite 
vertex-cut algorithm implemented in PowerGraph. 
Aweto is designed to improve the edge balance of BiCut. 
First, Aweto partitions the graph by assigning the 
vertices in the randomized method. After this step, the 
algorithm reassigns favorite subset to meet the 
localization of non-favorite vertices. Though, the 
implementation of algorithm slightly improves the 
performance of BiCut, it ignores the update of subgraphs 
when exchanging vertices among machines. Besides, the 
algorithm fixes the location of non-favorite vertices so 
that whole localization of graph structure is influenced. 
Moreover, the implementation utilizes some complex 
data structure of C++, which makes the program slow 
down. However, it is still one of the best competitor of 
all bipartite graph partitioning algorithms. 

III. PROPOSED METHOD

This section introduces a new greedy bipartite graph 
partitioning algorithm, BiFennel, inspired by Fennel and BiCut. 
Throughout this thesis, we use the following definitions: 

� A bipartite graph G is separated to k subgraphs 
nominated as P=(S1,…,Si,…,Sk).

� G consists of n vertices v and m edges e, or favorite subset 
V and not favorite subset U. 

� N(v) represents the adjacent vertices of v. 

� |Si| represents the edge number of partition i. 
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� Replica means replicated vertex in vertex-cut algorithm. 

� Replication factor = 1 + number of replicas/(|U| + |V|)

As mentioned in previous section, Fennel is not designed for 
bipartite graph and omits the structure of bipartite graph. The 
replication factor generated by Fennel may be greater than those 
considering bipartite graph structure. Besides, Fennel is an edge-
cut algorithm, which is proved to have more communication cost 
than vertex-cut algorithms in graph computing stage. BiCut only 
considers the vertex balance during graph partitioning, however 
in PowerGraph, edge balance is more important. Besides, as a 
hash randomized algorithm, the replication factor will be greater 
than greedy ones after partitioning. Though the speed of 
randomized partitioning algorithm will be faster, the result of 
partitioning will slow down the computation stage due to larger 
replication factor. 

Thus, this paper proposes a new heuristic algorithm inspired 
by Fennel and BiCut, named BiFennel, which utilizes the speed 
and low replication factor of Fennel and the method that 
introduces no replicas of favorite subset of BiCut. The algorithm 
is implemented in PowerGraph, a vertex-cut graph engine, to 
reduce communication cost. 

The steps of BiFennel are described as follows: 

� Step 1: Load in all graph data and store it in an 
adjacent list, which represents each favorite 
vertex’s neighbors. 

� Step 2: Define ��(�, ��) = |�(�) ∩ ��| −
 	
��(|��| + |�(�)|). Assign each favorite vertex 
� and its neighbors to partition  in stream to meet 
the function that for all � ∈ [�], ��(�, ��)  ≥
 ����, ���.

� Step 3: Construct local graph and other data 
structure. Meanwhile, mark master and mirror 
vertices in PowerGraph record.

� Step 4: Call finalize function in PowerGraph to 
output statistics.

In step 2, the gain function ��(�, ��) = |�(�) ∩ ��| −
 	
��(|��| + |�(�)|) can be divided into positive gain function 
|�(�) ∩ ��| that refers to localization of �  in ��  and negative 
gain function 	
��(|��| + |�(�)|) which controls edge balance 
of each partition. In the experiment of this paper, it is proved that 
edge balance can be less constrained because local computation 
is faster than communication if memory is enough. Thus, for 
better localization and less communication, the paper sets 
negative gain function as 1/2 times square instead of one in 
Fennel. To optimize ��(�, ��) , this paper uses 	
��(|��| +
|�(�)|) to predict future edge balance rather than |��| which 
represents edge number now in Fennel. Step 2 also utilizes the 
method of avoiding to replicate vertices in favorite subset to 
reduce vertex replication factor. 

In step 3 and 4, the algorithm runs on every single local 
machine without any communication with each other. This 
design guarantees the speed of this algorithm. This algorithm 
helps construct all data structures of PowerGraph for further 
processing in PowerGraph. 

The pseudo code of BiFennel is presented as bellow.  

Algorithm 1 BiFennel Algorithm 

Input: Create a �–bit bitmap to save vertices’ location in 

�, named as ���ℎ���_���. Save metadata into adjacent 
list, named as ���_���.

if (the graph is finalized), return.
endif
����_�!�_����[�] ← 0
for each � in #, do

create a � -element vector ����_������ to keep
|�(�) ∩ ��|

��	�_���� ← 1
��	�_	���� ← $�%_&$�

for each �′ ∈ |�(�)|, do:
for  = 1 to �, do:

����_������[] ← ���ℎ���_���[�′][]
//compute |�(�) ∩ ��|

endfor
endfor

for  = 1 to �, do:
             ����_	���� ← ����_������[]

                          −	
��(����_�!�_����[] + |�(�)|)
            if ����_	���� > ��	�_	����, Then

        ��	�_	���� ← ����_	����
                                  ��	�_���� ← 

       endif
endfor
for each �′ ∈ |�(�)|, do:

���ℎ���_���[�′][��	�_����] ← 1
	���(��	�_����, ����(�, �′)) //send all 

�’s edges to appointed machine

set �′ as a master if it is the first time to be 
sent

endfor
����_�!�_����[�] ← ����_�!�_����[�] +

|�(�)|
endfor
delete ���ℎ���_���, ���_��� //save memory for local 
graph
Construct PowerGraph local graph: *��2������, ��2*��
Set *��2������. _�����	 //mark all mirrors
-�/��3���ℎ. 4��*5�()
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Fig. 3. A bipartite graph and its adjacent list. 

Fig. 3 shows a bipartite graph and the adjacent list of the 
original graph stored by BiFennel in step 1. Step 2 places 
vertices of favorite set and related links to four machines. After 
assigning vertices and edges to four parts, Fig.  4 shows the final 
results with master and mirror vertices. 

Fig. 4. The graph partitioning result with master and mirror vertices. 

IV. PERFORMANCE EVALUATION

BiFennel is implement in PowerGraph 2.2 which is released 
in Jan. 2015. We compare BiFennel with three existing bipartite 
graph partitioning algorithms, e.g. BiCut and Aweto. BiCut and 
Aweto, both developed by SJTU, are the algorithms 
implemented separately in PowerGraph. Results of replication 
factor, partitioning time, overall runtime and scalability of these 
algorithms are also given in this section. 

A. Environment Settings 
The environment is a virtual cluster with virtual machines 

(VM) created using QEMU-KVM on two physical machines 
(PM). Each VM is equipped with 2 cores, 15GB RAM and 1TB 
storage space while each PM is equipped with 48 cores, AMD 
CPU, 120GB RAM and 15TB hard disk. A layer-2 1Gbps switch 
is used to connect PMs. Fig. 5 lists the collection of bipartite 
graphs downloaded the Koblenz Network Collection (KONECT) 
[21], collected by the Institute of Web Science and Technologies
at the University of Koblenz-Landau, and Stanford Large 
Network Dataset Collection [22] and used as datasets in paper.  

Fig. 5. Collections of bipartite graphs. 

B. Performance of Graph Partitioning with Different Graph 
Data 
This section gives performance of BiFennel, Aweto and 

BiCut with graphs given in Fig. 5. Fig.6 shows the results of 
normalized graph partitioning time. The time consumption of 
BiFennel is from 1.27 to 1.6 times of BiCut and is slightly slower 
than Aweto. It is because that the time complexity of BiFennel 
is more related to edge number. In detail, the time complexity of 
BiFennel is 6(�) = � + � ∗ � , while Aweto is 6(�) = � +
� ∗ |#|.  However, Fig. 7 shows, the replication factors of
BiFennel are all less than Aweto. Thus the slight time delay is 
valuable for localization of subgraphs. 

Fig. 6. Graph partitioning time of BiFennel, Aweto and BiCut. 

Fig. 7. Replication factor of BiFennel, Aweto and BiCut. 

C. Overall Performance 
This section compares the proposed algorithm with BiCut 

and Aweto in aspect of overall runtime and communication cost 
to show the improvement on graph computing. Singular Value 
Decomposition (SVD) algorithm, Alternating Least Squares 
(ALS) algorithm and Stochastic Gradient Descent (SGD)
algorithm are used in graph computing stage on a four-node 
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virtual cluster. In this experiment, actor-movies (AM), 
DBLP(DB) and  LiveJournal(LJ) data are processed for 10
iterations. Fig. 8 shows the normalized communication cost 
results and BiFennel outperforms its competitors.  The 
normalized performance of BiFennel is 38~62% better than the 
performance of Aweto. Fig. 9 shows the normalized execution 
time. BiFennel also has best performance and is 31 53% better 
than the performance of Aweto. Although Fig. 6 shows BiFennel 
may has more partitioning time, Fig. 9 shows that low 
communication cost of the partitioning results of BiFennel can 
help achieve better overall performance.  

Fig. 8. Communication cost of BiFennel, Aweto and BiCut with SVD, ALS and 
SGD. 

Fig. 9. Overall runtime of BiFennel, Aweto and BiCut with SVD, ALS and SGD. 

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a new vertex-cut bipartite graph 
partitioning algorithm, BiFennel, for large-scale graph data. 
BiFennel is inspired by Fennel and BiCut, and implemented in
PowerGraph. The experiment results show that BiFennel has 
better performance in terms of replication factor, 
communication cost and overall runtime. As for future work, 
some of data structure used in the implementation can be 
modified for more rapid speed and less memory allocation. 
Besides, for tasks requiring many computing iterations, the 
edges on each node can be exchanged for several times with 
exactly the same gain function to further reduce vertex replicas 
for faster runtime. 
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