
BiFennel: Fast Bipartite Graph Partitioning Algorithm
for Big Data

Lyu-Wei Wang1, Shih-Chang Chen1, Wenguang Chen2, Hung-Chang Hsiao3 and Yeh-Ching Chung*1

1Department of Computer Science, National Tsing Hua University,
Hsinchu, 30013, Taiwan

{lyuwei, shcchen}@sslab.cs.nthu.edu.tw, ychung@cs.nthu.edu.tw
2Department of Computer Science and Technology, Tsinghua University

Beijing, 100084, China
cwg@tsinghua.edu.cn

3Department of Computer Science and Information Engineering, National Cheng Kung University,
Tainan 70101, Taiwan

hchsiao@csie.ncku.edu.tw

Abstract— Graph computing is widely utilized today, which
severely requires the ability of processing graphs of billion vertices
rapidly for social network analyzing, bio-informational network
analyzing and semantic processing. Therefore, graph processing
play a significant role in the research and application
development. Data of music and movie recommendation and LDA
topics can be modeled as bipartite graph and perform the
computation with graph processing engines. The most important
step before graph computation is graph partitioning. Graph
partitioning is a mature technology, however, most of classic graph
partitioning algorithms require iterative calculation for several
times, which causes high time complexity. Some algorithms with
short partitioning time proposed these years, but they cannot be
used in bipartite graph directly. This paper proposes a new
bipartite graph partitioning algorithm, BiFennel, which effectively
decreases graph processing time and network loading by reducing
vertex replication factor and maintaining work balance. We
implement BiFennel in a popular graph engine called
PowerGraph. The performance results show that BiFennel has
29~55% improvement on communication cost and 21~49%
improvement on overall runtime comparing with Aweto.

Keywords— Graph processing; Graph partitioning; Bipartite
graph; PowerGraph

I. INTRODUCTION

In recent decade of years, the universalization of World-
Wide-Web promotes the booming of websites. According to
statistics data of CNNIC in December, 2013, there were 150
billion websites in just mainland China, which increased 22.2%
than 2012 [1]. As for the largest social network site (SNS) in the
world, Facebook, the user number reached 2.2 billion in July,
2014, which occupied 1/3 population of the world [2]. Messages
transferred by users on Facebook reached 12 billion per day and
search commands are executed one billion times. Meanwhile,
various kinds of SNSs such as Wikipedia, Twitter and Quora
attract billions of cyber citizens and generate huge amount of
information, which is useful for companies to acquaint their
users’ requirement, figure out new ideas and implement creative
and useful functions for followers.

To better process these continuously, rapidly and massively
generated data, graph structure is a proper way to describe, store
and handle the metadata. Graph is one of the most common data
structure in computer science and technology, which can present
more complicated and general relations than linear arrays and
trees in terms of structure and semantics. Because lots of realistic
scenes can be presented in graph, graph processing and
applications are utilized in widely range of areas. Traditionally,
graph processing is applied in optimizing transporting routes,
predicting path of disease outbreak, relationship of paper citing,
and so on. Now, applications such as SNS analysis, semantic
web analysis and bio-information network analysis model also
process data using graph format. Although graph theory and
technology has been well developed, the booming of
information enlarges the scale of graph when modeling the
metadata into graph data. Correspondingly, the method of
efficient and rapid processing for graphs which contains billions
of vertices and edges faces severe challenge under this
condition.

PageRank [3] is a classic algorithm in search engine, which
is developed by Google. In this algorithm, every web page gets
a score, which is calculated by all pages it links to. Therefore,
web pages are presented with vertices and linking relationships
with directed edges. If a graph contains 10 billion vertices and
50 billion edges, and every vertex and its edges occupied
100KB, the whole graph stored in memory will exceed 1TB.
Obviously, to store, update, search and process such a huge
graph, the time and space consumption is far beyond the ability
of traditional centralized graph management strategy.

Cloud computing has advantages for processing graph [4].
Google put forward one of the most popular graph engine for
graphs at the scale of billions vertices called Pregel [5] in 2010.
Other popular graph engines such as GraphLab [6] developed by
CMU, Presto [7] are widely used in distributed graph processing
as well.

Engines mentioned above use hash edge-cut method for
graph partitioning, which means all vertices are assigned to
different machines by hash values and vertices on a same edge

2015 IEEE International Conference on Smart City/SocialCom/SustainCom together with DataCom 2015 and SC2 2015

978-1-5090-1893-2/15 $31.00 © 2015 IEEE

DOI 10.1109/SmartCity.2015.153

715

in different machines communicating with each other via
network. This method balances workload by uniformly
assigning vertices rapidly, however, the inner structure of the
graph is totally ignored. As a result, when there is a k-machines
cluster, the ratio of cut edges of a graph will be up to (1 - 1/k),
which leads immeasurable communication cost. To relieve this
degradation of communication, PowerGraph [8] invented a
balanced p-way vertex cut instead of edge cut. Simply, the
engine places edges into machines by hash values of source
vertices. In this way, just same vertices in different machines
communicate with itself to update unified values, instead of
transferring huge amount of edge data.

Nevertheless, both vertex and edge cut can decrease network
communication and computation runtime with an advanced
graph partitioning algorithm which increases localization within
a part and reduces connections between parts. This kind of
problem is called balanced graph partitioning problem, which is
NP-hard [9]. There are some approximation algorithms for this
problem, however, it is difficult for algorithms to consider load
balance, localization, speed simultaneously.

As a special form of graph, bipartite graph is widely used in
machine learning and data mining (MLDM), which divides its
vertices to two disjoint parts and every edge join two vertices in
the different parts. Typical bipartite graph in large-scale graph
processing includes topic-document graph in semantic modeling
and user-movie graph in movie recommendation system.
Correspondingly, MLDM algorithms such as Latent Dirichlet
Allocation (LDA), Alternating Least Squares (ALS) are used in
these conditions.

This paper focuses on a new rapid balanced bipartite graph
partitioning algorithm and applying to a popular graph
processing engine, PowerGraph. The rest of the paper is
organized as follows. Section 2 gives the description of
important graph processing engines and explains why
PowerGraph is chosen to as the performance evaluation
platform. It also introduces related work of bipartite graph
partitioning of large-scale graph. Section 3 describes the design
and an example of the proposed method, BiFennel. In section 4,
evaluation of BiFennel is presented and the paper compares it
with BiCut, and Aweto. Finally, the conclusion and future works
are given in Section 5.

II. RELATED WORK

This section introduces graph engines, which are used for
graph computing, and important algorithms for graph partition.

A. Graph Engines
Graph engines aim to improve computation speed by

reducing communication cost, balancing workload or some
other methods.

� Pregel is a calculation architecture mainly for algorithms
such as Breadth First Search (BFS), Single Source
Shortest Path (SSSP) and PageRank. Google replaces
MapReduce [10] by PageRank because of the low
efficiency MapReduce performs on graph processing.
Pregel is inspired by Bulk Synchronous Parallel (BSP)
model [11] which is a model of computation,

communication and synchronization. One advantage of
Pregel is simple programing model, which just need
users define function of vertex calculation and which
vertices should be calculated. Another is the whole
performance can be predicted. Apache Giraph [12] is an
open source version of Pregel. The system is built on
Apache Hadoop and is utilized by Facebook.

� GraphX [13] is a component in Spark [14] for graph-
parallel computation. GraphX extends the Spark RDD by
introducing a directed multi-graph with properties
attached to vertices and edges. Because of Scala
language, GraphX makes graph computing programing
simple. It utilizes vertex-cut rather than edge-cut,
avoiding huge amount of communication cost.
Asynchronous computing mechanism avoids the
bottleneck of waiting time in synchronous computing.

� PowerGraph proposes a vertex-cut method for graph
partition instead of an edge-cut method employed by
Pregel. Fig. 1 [15] show the difference between vertex-
cut and edge-cut concepts. Edge-cut methods may have
low efficiency because of excessive message call.
Vertex-cut methods divide a node to a master and mirrors
to reduce communication of dense-degree vertices.
Vertex-cut method and the mix of synchronous and
asynchronous engine makes PowerGraph a fast, low-
communication graph-parallel system. Unlike GraphX
on Spark, PowerGraph is an independent graph engine
which avoid extra efficiency loss. Although independent
system makes it harder to interact with other distributed
storage system, it still performs well in other aspects.

Fig. 1. An illustration of Edge-cut and vertex-cut methods from [15].

B. Graph Partitioning Algorithms
Graph partitioning algorithms aim at increasing localization

of subgraphs to reduce communications among graph partitions.
To keep scale of subgraphs balanced is also an important issue.
However, algorithms provides higher localization and more
balanced subgraphs usually cause worse time complexity.

� METIS [16] is a software package which provides
balanced partitions and produces low fill orderings for
sparse matrix. The algorithms implemented in METIS

716

are based on the multilevel graph partitioning paradigm
including three phases: graph coarsening, initial
partitioning and uncoarsening. In the coarsening phase,
original input graph is reduced by collapsing vertices and
edges to a set of successively smaller graphs, consisting
of a maximal size series of adjacent vertices. Graph
coarsening keeps processing until the size of the original
graph reduced to hundreds of vertices which is called a
coarsest graph. Next, in the initial partitioning phase,
coarsest graph is partitioned by relatively simple
approaches such as Kernighan-Lin algorithm [17]. Since
the coarsest graph is consisted of just hundreds of
vertices, this step finishes quickly. Finally, in the
uncoarsening phase, the coarsest graph is transmitted to
the successively and relatively larger graphs by assigning
the pairs of vertices. After each transmitting step,
heuristic methods will be used to iteratively exchange
vertices between partitions to improve the quality of the
partitioning result.

� Fennel [18] is a streaming balanced edge-cut graph
partitioning algorithm for simple undirected graph.
Streaming means vertices arrive while the decision of the
assignment has to be done “on-the-fly” for the purpose
of little computational overhead. To overcome
computation complexity, this algorithm has no iterative
processing mechanism. Like other algorithms, Fennel
formulates the graph partitioning function to consider
two elements: one represents the cost of edges cut and
the other one represents the sizes of subgraphs, however,
the difference is that Fennel relaxes the hard constraints
as compensation. In some experiments, edge-cut
proportion of Fennel is slightly more than METIS, which
explains that METIS maybe a better graph partitioning
tool in terms of edge-cut ratio. However, it takes METIS
8.6 hours to partition a large Twitter graph with more
than 1 billion edges while Fennel just need 42 minutes.
Although Fennel sacrifices a little edge-cut ratio that
increases communication load, it dramatically reduces
partitioning time of large-scale graph.

� BiCut [19] is a randomized bipartite graph partitioning
algorithm implemented in PowerGraph. It takes
advantage of bipartite graph structures, especially for
skewed one. In a bipartite graph, there are two subsets of
vertices. Vertices on a single edge must be from different
subsets, which means vertices in the same subset are
disjoint. BiCut avoids replication from one subset that
keeps major number of vertices. This will dramatically
reduce the replicas of vertices with vertex-cut strategy of
PowerGraph. To distinguish the two subsets of bipartite
graph, the algorithm represents the larger subset as
favorite subset, marked as V. Reversely, the smaller one
is represented as not favorite subset, marked as U. This
algorithm contains two steps. First, the vertices of the
favorite subset and the edges containing vertices in
favorite subset are evenly sent to machines according to
hash values of favorite vertices. These favorite vertices
introduce no replicas of vertices. Second, the algorithm
calls finalize function of PowerGraph to construct local
graph on every machine. One replica of a vertex is

marked as the master that manages mirrors which
represent other replicas of the same vertex. Fig. 2 [19]
shows the results of Hash, Grid (a default bipartite
partition algorithm in PowerGraph and BiCut partition
methods. BiCut performs better than Hash and Grid
partition because of fewer replicas.

Fig. 2. An illustration of Partitioning results of Hash, Grid and BiCut from
[19].

� Aweto, inspired by Ginger [20], is a greedy bipartite
vertex-cut algorithm implemented in PowerGraph.
Aweto is designed to improve the edge balance of BiCut.
First, Aweto partitions the graph by assigning the
vertices in the randomized method. After this step, the
algorithm reassigns favorite subset to meet the
localization of non-favorite vertices. Though, the
implementation of algorithm slightly improves the
performance of BiCut, it ignores the update of subgraphs
when exchanging vertices among machines. Besides, the
algorithm fixes the location of non-favorite vertices so
that whole localization of graph structure is influenced.
Moreover, the implementation utilizes some complex
data structure of C++, which makes the program slow
down. However, it is still one of the best competitor of
all bipartite graph partitioning algorithms.

III. PROPOSED METHOD

This section introduces a new greedy bipartite graph
partitioning algorithm, BiFennel, inspired by Fennel and BiCut.
Throughout this thesis, we use the following definitions:

� A bipartite graph G is separated to k subgraphs
nominated as P=(S1,…,Si,…,Sk).

� G consists of n vertices v and m edges e, or favorite subset
V and not favorite subset U.

� N(v) represents the adjacent vertices of v.

� |Si| represents the edge number of partition i.

717

� Replica means replicated vertex in vertex-cut algorithm.

� Replication factor = 1 + number of replicas/(|U| + |V|)

As mentioned in previous section, Fennel is not designed for
bipartite graph and omits the structure of bipartite graph. The
replication factor generated by Fennel may be greater than those
considering bipartite graph structure. Besides, Fennel is an edge-
cut algorithm, which is proved to have more communication cost
than vertex-cut algorithms in graph computing stage. BiCut only
considers the vertex balance during graph partitioning, however
in PowerGraph, edge balance is more important. Besides, as a
hash randomized algorithm, the replication factor will be greater
than greedy ones after partitioning. Though the speed of
randomized partitioning algorithm will be faster, the result of
partitioning will slow down the computation stage due to larger
replication factor.

Thus, this paper proposes a new heuristic algorithm inspired
by Fennel and BiCut, named BiFennel, which utilizes the speed
and low replication factor of Fennel and the method that
introduces no replicas of favorite subset of BiCut. The algorithm
is implemented in PowerGraph, a vertex-cut graph engine, to
reduce communication cost.

The steps of BiFennel are described as follows:

� Step 1: Load in all graph data and store it in an
adjacent list, which represents each favorite
vertex’s neighbors.

� Step 2: Define ��(�, ��) = |�(�) ∩ ��| −
 	
��(|��| + |�(�)|). Assign each favorite vertex
� and its neighbors to partition in stream to meet
the function that for all � ∈ [�], ��(�, ��) ≥
 ����, ���.

� Step 3: Construct local graph and other data
structure. Meanwhile, mark master and mirror
vertices in PowerGraph record.

� Step 4: Call finalize function in PowerGraph to
output statistics.

In step 2, the gain function ��(�, ��) = |�(�) ∩ ��| −
 	
��(|��| + |�(�)|) can be divided into positive gain function
|�(�) ∩ ��| that refers to localization of � in �� and negative
gain function 	
��(|��| + |�(�)|) which controls edge balance
of each partition. In the experiment of this paper, it is proved that
edge balance can be less constrained because local computation
is faster than communication if memory is enough. Thus, for
better localization and less communication, the paper sets
negative gain function as 1/2 times square instead of one in
Fennel. To optimize ��(�, ��) , this paper uses 	
��(|��| +
|�(�)|) to predict future edge balance rather than |��| which
represents edge number now in Fennel. Step 2 also utilizes the
method of avoiding to replicate vertices in favorite subset to
reduce vertex replication factor.

In step 3 and 4, the algorithm runs on every single local
machine without any communication with each other. This
design guarantees the speed of this algorithm. This algorithm
helps construct all data structures of PowerGraph for further
processing in PowerGraph.

The pseudo code of BiFennel is presented as bellow.

Algorithm 1 BiFennel Algorithm

Input: Create a �–bit bitmap to save vertices’ location in

�, named as ���ℎ���_���. Save metadata into adjacent
list, named as ���_���.

if (the graph is finalized), return.
endif
����_�!�_����[�] ← 0
for each � in #, do

create a � -element vector ����_������ to keep
|�(�) ∩ ��|

��	�_���� ← 1
��	�_	���� ← $�%_&$�

for each �′ ∈ |�(�)|, do:
for = 1 to �, do:

����_������[] ← ���ℎ���_���[�′][]
//compute |�(�) ∩ ��|

endfor
endfor

for = 1 to �, do:
 ����_	���� ← ����_������[]

 −	
��(����_�!�_����[] + |�(�)|)
 if ����_	���� > ��	�_	����, Then

 ��	�_	���� ← ����_	����
 ��	�_���� ←

 endif
endfor
for each �′ ∈ |�(�)|, do:

���ℎ���_���[�′][��	�_����] ← 1
	���(��	�_����, ����(�, �′)) //send all

�’s edges to appointed machine

set �′ as a master if it is the first time to be
sent

endfor
����_�!�_����[�] ← ����_�!�_����[�] +

|�(�)|
endfor
delete ���ℎ���_���, ���_��� //save memory for local
graph
Construct PowerGraph local graph: *��2������, ��2*��
Set *��2������. _�����	 //mark all mirrors
-�/��3���ℎ. 4��*5�()

718

Fig. 3. A bipartite graph and its adjacent list.

Fig. 3 shows a bipartite graph and the adjacent list of the
original graph stored by BiFennel in step 1. Step 2 places
vertices of favorite set and related links to four machines. After
assigning vertices and edges to four parts, Fig. 4 shows the final
results with master and mirror vertices.

Fig. 4. The graph partitioning result with master and mirror vertices.

IV. PERFORMANCE EVALUATION

BiFennel is implement in PowerGraph 2.2 which is released
in Jan. 2015. We compare BiFennel with three existing bipartite
graph partitioning algorithms, e.g. BiCut and Aweto. BiCut and
Aweto, both developed by SJTU, are the algorithms
implemented separately in PowerGraph. Results of replication
factor, partitioning time, overall runtime and scalability of these
algorithms are also given in this section.

A. Environment Settings
The environment is a virtual cluster with virtual machines

(VM) created using QEMU-KVM on two physical machines
(PM). Each VM is equipped with 2 cores, 15GB RAM and 1TB
storage space while each PM is equipped with 48 cores, AMD
CPU, 120GB RAM and 15TB hard disk. A layer-2 1Gbps switch
is used to connect PMs. Fig. 5 lists the collection of bipartite
graphs downloaded the Koblenz Network Collection (KONECT)
[21], collected by the Institute of Web Science and Technologies
at the University of Koblenz-Landau, and Stanford Large
Network Dataset Collection [22] and used as datasets in paper.

Fig. 5. Collections of bipartite graphs.

B. Performance of Graph Partitioning with Different Graph
Data
This section gives performance of BiFennel, Aweto and

BiCut with graphs given in Fig. 5. Fig.6 shows the results of
normalized graph partitioning time. The time consumption of
BiFennel is from 1.27 to 1.6 times of BiCut and is slightly slower
than Aweto. It is because that the time complexity of BiFennel
is more related to edge number. In detail, the time complexity of
BiFennel is 6(�) = � + � ∗ � , while Aweto is 6(�) = � +
� ∗ |#|. However, Fig. 7 shows, the replication factors of
BiFennel are all less than Aweto. Thus the slight time delay is
valuable for localization of subgraphs.

Fig. 6. Graph partitioning time of BiFennel, Aweto and BiCut.

Fig. 7. Replication factor of BiFennel, Aweto and BiCut.

C. Overall Performance
This section compares the proposed algorithm with BiCut

and Aweto in aspect of overall runtime and communication cost
to show the improvement on graph computing. Singular Value
Decomposition (SVD) algorithm, Alternating Least Squares
(ALS) algorithm and Stochastic Gradient Descent (SGD)
algorithm are used in graph computing stage on a four-node

719

virtual cluster. In this experiment, actor-movies (AM),
DBLP(DB) and LiveJournal(LJ) data are processed for 10
iterations. Fig. 8 shows the normalized communication cost
results and BiFennel outperforms its competitors. The
normalized performance of BiFennel is 38~62% better than the
performance of Aweto. Fig. 9 shows the normalized execution
time. BiFennel also has best performance and is 31 53% better
than the performance of Aweto. Although Fig. 6 shows BiFennel
may has more partitioning time, Fig. 9 shows that low
communication cost of the partitioning results of BiFennel can
help achieve better overall performance.

Fig. 8. Communication cost of BiFennel, Aweto and BiCut with SVD, ALS and
SGD.

Fig. 9. Overall runtime of BiFennel, Aweto and BiCut with SVD, ALS and SGD.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a new vertex-cut bipartite graph
partitioning algorithm, BiFennel, for large-scale graph data.
BiFennel is inspired by Fennel and BiCut, and implemented in
PowerGraph. The experiment results show that BiFennel has
better performance in terms of replication factor,
communication cost and overall runtime. As for future work,
some of data structure used in the implementation can be
modified for more rapid speed and less memory allocation.
Besides, for tasks requiring many computing iterations, the
edges on each node can be exchanged for several times with
exactly the same gain function to further reduce vertex replicas
for faster runtime.

REFERENCES

[1] http://finance.chinanews.com/it/2014/01-16/5745005.shtml
[2] http://tech.qq.com/a/20140725/000288.htm
[3] S. Brin., L. Page, "The anatomy of a large-scale hypertextual web search

engine," Computer Networks, Vol. 56, No. 18, pp. 3825-3833, 17
December 2012.

[4] G. Yu, Y. Gu, Y.-B. Bao, and Z.-G. Wang, "Large scale graph data
processing on cloud computing environments," Chinese Journal of
Computers, Vol. 34, No. 10, pp. 1753-1765, 2010.

[5] G. Malewicz, M. H. Austern, et al, "Pregel: a system for large-scale graph
pro-cessing," In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data (SIGMOD '10), pp. 135-146, ACM,
New York, NY, USA.

[6] Y. Low, D. Bickson, et al. "Distributed GraphLab: a framework for
machine learning and data mining in the cloud," In Proceedings of the
VLDB Endowment, pp. 716-727, April, 2012.

[7] B, N. Bershad, E. D. Lazowska, and H. M. Levy, "PRESTO: A system for
object-oriented parallel programming," Journal of Software: Practice and
Experience, Vol. 18, No. 8, pp. 713-732, August, 1988.

[8] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
"PowerGraph: Distributed Graph-Parallel Computation on Natural
Graphs," OSDI. Vol. 12. No. 1. 2012.

[9] K. Andreev, and H. Racke, "Balanced graph partitioning." Theory of
Computing Systems, Vol. 39, No. 6, pp. 929-939, 2006.

[10] J. Dean, and S. Ghemawat , "MapReduce: simplified data processing on
large clusters," Communications of the ACM, Vol. 51, No. 1, pp. 107-
113, 2008.

[11] L. G. Valiant, "A bridging model for parallel computation."
Communications of the ACM, Vol. 33, No. 8, pp. 103-111, 1990.

[12] Apache Giraph: http://giraph.apache.org
[13] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, "Graphx: A

resilient distributed graph system on spark," In First International
Workshop on Graph Data Management Experiences and Systems, pp. 2,
ACM, 2013.

[14] Spark. http://spark.apache.org
[15] J. E. Gonzalez, A presentation of PowerGraph,

https://www.usenix.org/conference/osdi12/technical-
sessions/presentation/gonzalez

[16] G. Karypis, and V. Kumar, "Metis-unstructured graph partitioning and
sparse matrix ordering system, version 2.0," 1995.

[17] B. W. Kernighan, and S. Lin, "An efficient heuristic procedure for
partitioning graphs," Bell system technical journal, Vol. 49, No. 2, pp.
291-307, 1970.

[18] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, "Fennel:
Streaming graph partitioning for massive scale graphs," In Proceedings of
the 7th ACM international conference on Web search and data mining,
pp. 333-342, 2014

[19] R. Chen, J. Shi, B. Zang, and H. Guan, "Bipartite-oriented distributed
graph partitioning for big learning." In Proceedings of 5th Asia-Pacific
Workshop on Systems, pp. 14, 2014.

[20] R. Chen, J. Shi, Y. Chen, and H. Chen, "PowerLyra: Differentiated Graph
Computation and Partitioning on Skewed Graphs," In Proceedings of the
Tenth European Conference on Computer Systems, pp. 1, 2015

[21] KONECT. http://konect.uni-koblenz.de/
[22] SNAP: http://snap.stanford.edu/data/

720

