
Taiwan UniCloud: A Cloud Testbed with Collaborative Cloud Services

Wu-Chun Chung*, Po-Chi Shih*, Kuan-Chou Lai¥, Kuan-Ching Li§,
Che-Rung Lee‡, Jerry Chou‡, Ching-Hsien Hsu£ and Yeh-Ching Chung‡

*‡Department of Computer Science, National Tsing Hua University, Hsinchu 300, Taiwan.
¥Department of Computer and Information Science, National Taichung University, Taichung 403, Taiwan.

§Department of Computer Science and Information Engineering, Providence University, Taichung 433, Taiwan.
£Department of Computer Science and Information Engineering, Chung Hua University, Hsinchu 300, Taiwan.

Email: {*wcchung, *shedoh}@sslab.cs.nthu.edu.tw, ¥kclai@mail.ntcu.edu.tw, §kuancli@gm.pu.edu.tw,
£chh@chu.edu.tw, {‡cherung, ‡jchou, ‡ychung}@cs.nthu.edu.tw

Abstract—This paper introduces a prototype of Taiwan
UniCloud, a community-driven hybrid cloud platform for
academics in Taiwan. The goal is to leverage resources in
multiple clouds among different organizations. Each self-
managing cloud can join the UniCloud platform to share
its resources and simultaneously benefit from other
clouds with scale-out capabilities. Accordingly, resources
are elastic and sharable with each other such as to afford
unexpected resource demands to each cloud. The
proposed platform provides a web portal to operate each
cloud via a uniform user interface. The construction of
virtual clusters with multi-core VMs is supplied for
parallel and distributed processing models. An object-
based storage system is also delivered to federate different
storage providers. This paper not only presents the
architectural design of Taiwan UniCloud, but also
evaluates the performance to demonstrate the possibility
of current implementation. Experimental results show
the feasibility of the proposed platform as well as the
benefit from the cloud federation.

Keywords: community cloud; virtual cluster; vm migration;
federated sotrage; portal

I. INTRODUCTION

Cloud computing is an emerging topic recently. The core
concept of cloud computing is to provision the resources of
computer software and hardware as services. Users can access
a variety of virtualized resources and services by various
client devices anytime and anywhere. Benefiting from mature
open-source cloud software, many organizations or campuses
are able to build their clouds on premises. However, when lots
of resource demands come together or a service request with
a large resource requirement is arrived at a cloud system, it
may lead the cloud in unexpected overloading or
oversubscription situations. Consequently, single cloud could
not support sufficient resources due to its physical hardware
limit. The SLA (Service Level Agreement) would be violated
[14, 15] while the cloud is neither scale-up with the capacity
of available resources nor scale-out with the capability of
federated clouds. To alleviate the predicament, Taiwan
UniCloud (University Cloud) is proposed to leverage
resources of different single clouds in Taiwan to overcome the
sudden overloading of each cloud.

Taiwan UniCloud is a community-driven hybrid cloud
platform for academia to support cloud education, research,
and application development. The self-managing cloud in
each campus can join the UniCloud to contribute its cloud
resources and benefit the distributed sharing resources from
other participants. However, there are some challenges,
including:
� Different clouds may have various user interfaces, which

results in a user having to be familiar with varied
dashboard operations.

� Each cloud may have different system calls or access
APIs, which causes many efforts to leverage the
existence of multiple clouds.

� The inter-cloud cooperation is not mature in open-source
software, which makes a single cloud platform hard to
supply the collaborative services among multiple clouds.

� The resource information is usually maintained by each
self-managing cloud, which needs extra efforts to
retrieve the monitoring information from multiple
clouds.

� The live migration of a virtual machine (VM) is
sometimes necessary across clouds. The big challenge is
to online migrate a VM across clouds while keeping the
service hosted by the VM is still available.

Our contribution involves tackling the above issues while
developing the Taiwan UniCloud platform. The current
prototype enables the collaborative cloud services with the
development of several major components: web portal,
federated computation, and federated storage. In addition,
based on the resource monitoring information, our platform
could further supply SLA-based resource provisioning. This
paper not only presents the architecture of Taiwan UniCloud,
but also evaluates the performance to demonstrate the
feasibility of our current implementation.

In the current implementation, our platform could leverage
the OpenStack-based campus clouds and the public Amazon
clouds. Users could easily operate multiple cloud systems on
a single portal and browse the resource status of different
clouds. Users may further demand their needs through the
UniCloud portal or deploy their cloud applications among
multiple clouds. Experimental results demonstrate the
feasibility of the proposed platform as well as the benefit from
the cloud federation.

2014 IEEE International Conference on Cloud Engineering

978-1-4799-3766-0/14 $31.00 © 2014 IEEE

DOI 10.1109/IC2E.2014.28

107

The rest of this paper is organized as follows. Section II
presents the related work and distinguishes our work from
existing research. Section III introduces the architecture of
proposed cloud environment. Section IV shows the feasibility
and experimental results. The conclusions and future work are
finally given in Section V.

II. RELATED WORK

Cloud providers such as Amazon [2], Google [4, 5],
Microsoft [13], and Salesforce [12] have built up the public
clouds for hosting a variety of cloud services and applications.
However, these cloud systems are mainly established for the
commercial usage with high prices. In addition, it is difficult
to clone these clouds on our on-premised server farm for
testing, trial run or even academic education and research.
With the rapid development of open-source cloud platforms,
some open and free solutions could help us to build our clouds.
A comparative study of current open-source cloud platforms
could be referred to [16, 19, 20].

The previous work [14] presents the InterCloud for the
producer-consumer-based cloud federation. In the InterCloud,
the Cloud Exchange acts as a market maker between the
service consumers represented by users and the service
providers represented by Cloud Coordinators. The goal is to
supply the dynamic expansion or contraction of resource
capabilities to handle the sudden variations of demands. An
extended work [15] of the InterCloud is proposed to detail the
design of a Cloud Coordinator. These works conduct a
simulation-based experiment using the CloudSim and a small-
scale evaluation with the Eucalyptus-based cluster to
demonstrate the feasibility of cloud federation. However, their
works neither focus on constructing a cross-cloud virtual
cluster nor a federated storage system across multiple clouds.

Our work not only pays attentions on both federated
computing resources and storage ones but also implements a
preliminary prototype across clouds in different geographic
locations. The Taiwan UniCloud adopts the viewpoint on top
of multiple self-managing university clouds to leverage cloud
resources. Moreover, we enable the cross-cloud virtual cluster
with a virtual network over Internet, and the VM live
migration across clouds. A federated storage system across
different storage providers is also supplied in the current
implementation. To realize our design, we adopt the
OpenStack [9] as the basis of our platform. OpenStack could
support high compatible cloud services with the public
Amazon cloud in recent releases. Therefore, some
preprocesses to realize the community-driven hybrid cloud
could be simplified. The current prototype of Taiwan
UniCloud can also provision cloud resources from different
campus clouds and the public Amazon EC2 [1].

III. ARCHITECTURE AND IMPLEMENTATION

This section describes the proposed framework and
presents the implementation details of our current prototype.

A. System Overview
As shown in Fig. 1, the current prototype focuses on the

following issues: web portal, federated compute, federated
storage, meta-cloud interface, and SLA-based resource

provisioning. A uniform UniCloud Portal is developed to
leverage and manipulate different clouds. The federated
compute addresses the distributed computing services such as
to support the virtual cluster computing for parallel
programming. On the other hand, the federated storage
focuses on leveraging storage resources across multiple
storage providers to supply an object-based storage service.
We further conduct the benchmarking on our platform and try
to model the performance assurance for the fulfillment of
SLA-based resource provisioning.

Fig. 2 depicts an overview of our current implementation.
A UniCloud portal is developed using the web framework.
The restful APIs are adopted as the meta-cloud interface to
facilitate the usage of cloud resources residing in different
organizations or campuses. With the meta-cloud interface, our
platform is able to supply the virtual clusters in which virtual
resources may be obtained from multiple clouds. The virtual
cluster is built upon a cross-cloud VLAN (Virtual Local Area
Network) to interconnect with each virtual resource. The
VLAN is constructed by exploiting the OpenStack quantum
plugin and the Open vSwitch to manage the OpenFlow rules.
Besides, the online VM migration across different clouds also
adopts the GRE (Generic Routing Encapsulation) tunnel to
keep the running service within a virtual cluster.

B. UniCloud Portal
The UniCloud portal aims at leveraging multiple

geographic clouds. The major design consideration is to
provide a uniform and simplified user interface. In the current
implementation, the portal supports the manipulation of

Fig. 1. Framework of current prototype

Fig. 2. Overview of the architectural design

Federated Compute Federated Storage

SLA-Based Resource Provisioning

UniCloud Portal

Meta-Cloud Interface

Campus
Cloud (NTHU)

Campus
Cloud (NTCU)

Metata-a-Cloud Interface
(RESTful APIs)

Metata-a-Cloud d Interface
(RESTful APIs)

Crossssss-ss-Cloud rossss ouClC
VLAN

(OpenFlow + Open vSwitch)

Crossssss-ss--Cloud Crossss oud ClC
Migration

(On-line)

Public Cloud
(Amazon)

P

M
et

ata
-a-
Cl

ou
d d

In
te

rf
ac

e
(R

ES
Tf

ul
AP

Is
)

AP & SaaS

Virtual ClusterVirtual Cluster
(MPI, Hadoop)

UniCloudddddd Portal
(Django)

Federated Cloud Storage
(Object-based)

108

OpenStack clouds and the VM operations of Amazon EC2.
Fig. 3 presents that users can register their authorized
information and provide the corresponding endpoints for each
candidate cloud. By using the restful APIs, the authenticated
users could create VMs or use those cloud resources they
leased from multiple clouds. These manipulations are all
accomplished on the same UniCloud portal.

For most of users, they can install necessary packages after
launching VMs. Users may also create VMs with their own
images for the sake of deploying the prepared cloud
applications. Accordingly, our UniCloud portal allows users
to upload the compatible and customized VM images, as
shown in Fig. 4. The portal can register these VM images to
all candidate clouds for future VM launch.

Moreover, the Ganglia monitoring system [17] is adopted
to monitor the resource utilization of the UniCloud platform.
The portal provides a visualized GUI (Graphical User
Interface) to report the status of cloud resources. Users can
browse the static or dynamic information about their leased
resources. Fig. 5 reveals the monitoring information about
VMs hosted by Amazon EC2 and two campus clouds. In our
current implementation, not only the resource information
about virtual machines, but also the status of physical
resources are all aggregated on the same UniCloud portal.

C. Federated Compute
The federated compute aims at supplying the construction

of parallel and distributed computing environments across
multiple clouds. The construction of a cross-cloud virtual
cluster is presented first, following by the key techniques to
enable the cross-cloud collaborative computing: the VLAN
over WAN and the cross-cloud live migration.

1)Cross-Cloud Virtual Cluster
A virtual cluster is composed by a set of VMs which may

be supplied from a single cloud or multiple clouds. Fig. 6
illustrates an environment of a virtual cluster across two
campus clouds, in which two VMs are launched in each cloud.
One of the VMs serves as a master of the virtual cluster and
the others are slaves. The master is randomly chosen and
associated with a public IP so that users outside the cloud can
connect to the virtual cluster. The inter-connections among
VMs within a virtual cluster are constructed with a cross-
cloud network to form a VLAN.

To easy the construction of a virtual cluster, the one-click
provisioning is supplied on the web portal. All necessary
software packages are automatically installed via the post-
script functionality supplied by OpenStack. The default
packages in a virtual cluster include NIS, NFS, and SSH keys.
In addition, the Torque is also adopted for the job scheduling
and allocation. Fig. 7 depicts a workflow to construct a typical
cluster computing environment. While launching a virtual
cluster, a VM is configured as a master or a slave according to
the pre-defined virtual cluster configuration. During the
construction, the master collects the information of all slaves
such as to update the mapping between IP and hostname of
slaves and exchange the SSH keys. After the successful
installation, users can login to the master via the associated
public IP and login to other slaves from the master without
typing passwords. The virtual cluster would not be created
when any one step in the process fails. To make the system be
more reliable, the runtime failures would be handled in the
future work.

Users can request any number of VMs to form a virtual
cluster. How to make an optimal decision for VM deployment

Fig. 3. Access authorization for multiple clouds

Fig. 4. Image management among multiple clouds

Fig. 5. Resource information about VM instances

Fig. 6. Illustration of a cross-cloud virtual cluster

NTHU Cloud NTCU Cloud

Virtual Cluster

VM
Slave 1

VM
Slave 2

VM
Slave 3VLAN over WANVM

MasterM

109

on multiple clouds is an interesting issue, but beyond the
scope of this paper. Instead, we focus on the fundamental
features to enable the construction of a cross-cloud virtual
cluster. In the current implementation, all VMs in a virtual
cluster are equally distributed to multiple clouds. VM images
and installation scripts for both master and slave are
reconfigurable. As a result, the MPI or Hadoop packages
could be installed to provision a parallel and distributed
computing environment.

2)VLAN over WAN
The VLAN over WAN mechanism highly depends on the

network configuration of each OpenStack cloud. In
OpenStack Grizzly, a recommended network configuration is
to use the quantum plugin to manage the network and the GRE
tunnel to interconnect all the nodes, includes both network
node and compute node [10]. Fig. 8 depicts a sample network
architecture across two OpenStack clouds. Each node has two
Open vSwitches: br-int and br-tun. The br-int is used for the
intra-node communication and the br-tun is used for the inter-
node communication. The network node is equipped with an
additional br-ex vSwitch for the communication in/out the
cloud. Note that the name of a vSwitch is changeable and
therefore could be distinct in different clouds.

The VLAN inside an OpenStack cloud is accomplished
using the 802.1Q VLAN tag (vid in short) accompanied with
the GRE tunnel ID (tid in short). Each VM is connected to the
br-int of a compute node with a vid via the corresponding
Open vSwitch port. For VMs residing in the same VLAN, if
they are hosted by the same compute node, each VM can
communicate with others through the same vid. If they are
hosted by different compute nodes, the tid is used as a unique
identifier of VLAN across multiple nodes. That is, when a
packet is sent from br-int to br-tun, the vid is converted to a
tid according to which VLAN it belongs to, and will be
converted back (from tid to vid) in reversed course. In short,
VLAN in OpenStack cloud is uniquely identified by the tid,
which may be mapped to different vids in different nodes. This
mechanism enables a cross-node VLAN and allows the
flexible assignment of vid in different nodes.

To enable the cross-cloud VLAN, the UniCloud should
consider four issues:
� How to form the federated VLAN?
� How to identify the VLAN information?
� How to comply with OpenStack networking?
� How to connect the subnet of each VLAN?
To solve the first issue, a dynamic VLAN mapping

mechanism is proposed. The mechanism allows a dynamic
connection of VLANs in different clouds to form a federated
VLAN. Once a VLAN of each single cloud is chosen, its tid
is recorded in the mapping table as shown in Table 1. The
proposed mechanism has some benefits. First, the assignment
of tid to the VLAN would not destroy the original design of
OpenStack. Second, the mechanism is applicable to both
existing and new creating VLANs, even for a new joined
cloud. Third, not all clouds have to participate in the federated
VLAN, e.g., the VLAN 3 in Table 1, which presents a more
flexibility for the constitution of a federated VLAN.

For the second issue, the cross-cloud GRE tunnel is
established pairwisely between the br-tun of a network node
in each cloud. Since all the cross-cloud packets pass through
the network node, the br-tun preserves the tid information to
identify the source VLAN of a packet. The sender-initiate
approach is used to correct the mapping of tid according to the
VLAN ID mapping table. That is, a cloud that sends the packet
to another cloud is responsible for correcting the tid before
propagating the packet through br-tun. This procedure can be
automatically configured by setting openflow rules in the br-
tun vSwitch, as described next following.

The third issue is to deal with the openflow rules in an
OpenStack cloud. The OpenStack has some protection
schemes to prevent the broadcast storm and to protect the
network by dropping illegal packets, such as the packets
coming with unregistered vid, tid, or MAC address. However,
with the default rules, multicast packets will not be forwarded
to the cross-cloud GRE tunnel. To solve this issue, we aim at
forwarding the packet via the federated VLAN while not
compromising the original networking schemes used in
OpenStack.

Fig. 7. Workflow of constructing a typical cluster environment

Start

Finish

Launch a VM with
Master image

Launch VMs with
Slave image

Update the
mapping between
IP and hostname

Update the
mapping between
IP and hostname

Install and
configure the VM
with Master script

Install and
configure VMs

with Slave script

Get SSH pub_keySSH keygen

d t

t ll

d t

t ll

h

Cluster-Master Cluster-Slaves

Fig. 8. Sample of the network architecture across two
OpenStack clouds with the Open vSwitch plugin

Table 1: Example of the mapping table for VLAN ID using
the dynamic VLAN mapping mechanism

Cloud A Cloud B Cloud C
Federated VLAN 1 tid=1 tid=2 tid=1
Federated VLAN 2 tid=2 tid=1 tid=3
Federated VLAN 3 tid=4 tid=5

110

Therefore, two openflow rules are proposed as add-ons to
the original rules:
� For all packets coming from another cloud (this can be

determined by the used port of Open vSwitch), one rule
directly forwards them to all br-tun switches of compute
nodes in this cloud.

� For all incoming packets with the tid registered in a
federated VLAN, one rule converts the tid according to
the VLAN ID mapping table and sends it to the
corresponding cloud.

Note that these add-on rules do not violate the design principle
of OpenStack networking. First, the broadcast storm will not
appear because all multicast packets coming from other cloud
are confined to the local cloud only. The original rules in
OpenStack takes over the prevention of the broadcast storm in
a local cloud. Second, only the packets with vid registered in
a federated VLAN will be forwarded to other clouds, so that
other illegal usage of the network is still protected.

Regarding the fourth issue, all VMs in the same VLAN
should be put into the same subnet so that VMs can
communicate with each other using the assigned private IP,
even those VMs are hosted by multiple clouds. A feasible
network configuration is proposed: (1) all the federated
VLANs are assigned within the same private IP subnet, e.g.,
192.168.5.0/24; (2) in order to avoid the IP conflict, the
gateway IP address and the DHCP range of each VLAN in the
same federation are exclusive, e.g., one VLAN is assigned
with the IP range from 192.168.5.1 to 192.168.5.50 while the
other one is assigned from 192.168.5.51 to 192.168.5.100. In
the current prototype system, as a proof of concept, the
assignments of a subnet and the IP ranges are pre-configured.
Nevertheless, sophisticated policies or rules can be easily
developed to automate the decision making.

3)Cross-Cloud Live Migration
The goal of cross-cloud live migration is to migrate a VM

residing in the same federated VLAN from one cloud to
another one. Meanwhile, all the network state are preserved
during the migration process, i.e., all original TCP
connections will still be alive before and after the migration
process. This goal is difficult for the cross-cloud paradigm due
to two essential issues: the functionality issue and the IPv4
mobility issue.

Regarding the first issue, none of open-source cloud
platforms inherently provides the live migration feature across
two clouds. Therefore, as a proof of concept, we exploit the
libvirt API to perform the cross-cloud live migration on
OpenStack VMs. Before presenting the solution, several basic
requirements for the live migration are highlighted in our
current prototype: 1) all clouds adopt the hypervisor with the
same version; 2) all clouds use similar or compatible hardware
in the hypervisor point of view; 3) each cloud has a shared file
system (like NFS) to store all VM instances for the candidate
compute nodes.

The detail procedure of a cross-cloud live migration is
given as follow:
� Retrieve the domain information of a candidate VM.
� Configure the shared instance directory for the candidate

VM in both source and destination clouds.

� Configure DNAT to expose the TCP ports used in live
migration if a compute node is behind the NAT.

� Configure openflow rules on the destination compute
node (in br-int) to accept the MAC address of the VM.

� Call libvirt APIs to perform the cross-cloud live
migration.

� Correct the vid of the VM according to which VLAN it
belongs to in the destination compute node.

The second issue is that different clouds own a different
range of public IP addresses. Once a VM is migrated from one
cloud to another cloud, the public IP address associated for the
connection to the Internet should be varied. Consequently, the
original TCP connection will be broken while the public IP is
changed after the migration. To solve this issue, we apply the
GRE tunnel and openflow rules to hold the original public IP
and redirect those packets sent to this IP address to the
migrated VM. As shown in Fig. 9, with the proposed
mechanism, a VM associated with the floating IP can keep
receiving the connection from that IP address even if the VM
is migrated to another cloud.

D. Federated Storage
The goal of our federated storage service is to integrate the

storage services provided by different clouds participating in
the UniCloud environment. Since each cloud is managed by
its own cloud service provider or third-party organization, the
storage services may be varied significantly in many ways, in
terms of API interface, I/O performance, geographic location,
level of data availability, reliability or security, etc. Therefore,
our proposed service not only allows users to specify their
requirements for their data, but also designs a matchmaking
strategy to select the proper storage providers for storing the
data. To achieve our goal, some key research questions are
addressed in our approach.
� How to provide a unified storage service API?
� How to select a proper storage provider for servicing

each storage request?
� Can we achieve better I/O performance through a

federated storage environment?
Our federated cloud storage system consists of three main

components as shown in Fig. 10. The actual data is stored in

Fig. 9. Packet flow after the VM migration

111

multiple storage providers, which may be provided by
different participants in UniCloud. The federated cloud
storage manager is responsible for three important tasks: (1)
collecting the information of all storage providers; (2)
deciding where to store the data through a matchmaking
policy; (3) resolving data lookup requests from the storage
client. At the client side, we deploy a client daemon of the
federated cloud storage to serve storage requests. The client
daemon is mainly composed of two sub-components. One is
the wrapper which defines a unified I/O interface based on the
S3-like restful protocol which is useful to negotiate with
various storage providers. Accordingly, arbitrary storage
providers can be plug-in or register into our storage system.
The other subcomponent is the lookup cache which prevents
redundant lookup operations between I/O requests. When a
lookup request of the data location is sent to the storage
manager, the data transfer is directly performed between the
storage provider and the user while the desired data is located.

In our current implementation, we support a basic object
storage service to demonstrate our approach and benefit. The
user APIs are summarized in Table 2. Through the APIs, users
could upload/download files, or create, delete, and list folders.
Instead of selecting the storage location for each file or data
object, we select the data location at the per-folder basis. In
other words, all the files immediately under a folder must be
stored in the same storage provider, but a sub-folder can be
stored separately from its parent folder. For example, all the
files under “/folder1” can be stored in storage provider1, but
the files under “/folder1/subfolder” can be stored in another
storage provider.

We made this design decision for many reasons. First, all
the files under the same folder are likely to have similar
storage requirements and file properties. Therefore, the same
storage provider can satisfy all their needs. Second, the
amount of metadata we need to store by the manager is
reducible such as to improve the scalability of our system.
Last but not least, our client side cache can effectively
minimize the number of data lookup requests when users
access multiple files under the same folder. Therefore, our
storage selection decision happens when users call
“create_folder()” request along with a given description. The

description allows users to specify the desired storage
requirements and preferences. Our matchmaking algorithm
can select the best storage provider to store the files. Details
of the description are explained next.

Each storage provider in our system is characterized by a
list of attributes, such as “availability”, “reliability”, and
“performance“, etc. Assume that the value of these attributes
is normalized between 0 and 1, and a greater value means the
higher quality resource. The values is either measured by our
storage manager or given by the storage providers. Based on
these attributes, users may specify their storage requirements
using three types of rules: constraint, preference, and hint.
The complete syntax of our resource description is defined in
Fig. 11. The constraint is a more restrict rule that allows users
to specify a threshold value on a certain attribute, so that the
selected candidates must satisfy the given requirement.
However, users have to require extensive knowledge to set the
proper threshold values for their data. If the value is too high,
the storage system might not be able to find any candidates; if
too low, the results may fail to meet user’s expectation.

Therefore, our second rule, preference, only asks users to
specify the level of importance of an attribute to their data, in
terms of HIGH, MED or LOW. The level of importance
implies two things in our matchmaking algorithm. First, it
represents the requirement of resource quality relative to all
other storage providers. For example, the HIGH means the
attribute value of the selected candidates should be ranked in
the top 33% from our resource pool, while the LOW only
requires the selected candidates to be ranked within 66%.
Second, it indicates the importance of an attribute relative to
other attributes. In other words, when multiple candidates are
satisfied with all the given requirements from users, our
matchmaking algorithm selects the one that has higher values
from more important attributes.

Moreover, we consider that most of users are only familiar
with the type of data from their applications, but not familiar
with the meaning of system-defined attributes. Therefore, our
third requirement rule is a hint that automatically generates the
proper preference based on the type usage of data given from
users. Users may also overwrite the preference on a specific
attribute according to the second rule.

Fig. 10. Architecture of the federated storage system

Table 2: APIs of the federated storage system
Type Command Parameter

File upload_file filename, parent folder fullpath
download_file filename, parent folder fullpath

Folder
list_folder folder fullpath
create_folder folder fullpath, description
delete_folder folder fullpath

attribute={BW, Availability, Reliability}
level = {HIGH, MED, LOW}
type = {LOG, BACKUP, ACTIVE, TEMP}
description = {constraint}*; {preference}*; {hint}*;
constraint = {attribute} {“<“ || “>” || “=“} {values}

preference = {attribute} : {level}
hint ={type}

Fig. 11. Syntax of the requirement description for storage

112

Table 3 lists a couple of data types, default preferences, and
file characteristics, which are commonly used in storage
applications. Note that, all the settings in the table are
configurable in our system based on user experience, resource
condition, and other factors. The discussion on how to
configure these system parameters is out of the scope of this
paper. Instead, we only present the design and mechanism of
the system to provide the usability and flexibility of our
storage service.

Based on the given resource requirement above, our
matchmaking algorithm is divided into four phases. The first
phase is to filter the candidates that do not satisfy with the
threshold according to the constraint rule. The second phase is
to filter the candidates that are not ranked within a preferred
percentile among all resource providers according to the level
of preference. The third phase is to calculate the total value of
a candidate by aggregating all the attribute values and
weighted by the attribute preference. Finally, our system
selects the candidate with the highest total value to be the final
decision. As shown by our evaluation results, our
matchmaking algorithm can select more proper storage
provider for users with different requirements and preferences,
and maximize their I/O performance.

E. SLA-Based Resource Provisioning
The goal of SLA-based resource provisioning is to assign

desired resources to requests such the service level agreement,
companied with requests, can be satisfied. In cloud computing,
there are different types of SLAs, such as the availability of
services. In the UniCloud, the SLA-based resource
provisioning focuses on performance assurance, whose
objective is to ensure the provisioned virtual machines can
have similar performance as physical machines. Moreover,
the utilization of physical machines is expected to be as high
as possible, which means the provisioning algorithm will
consolidate virtual machines if such an action does not affect
the performance of SLA.

Our approach consists of three steps: machine
benchmarking, performance modeling, and dynamic
provisioning. In the first step, we analyze the major

performance degradation on cloud platforms. In the second
step, we build the performance models, based on the analysis
in the first step, to predict the performance degradation. In the
last step, we develop a dynamic allocation mechanism to
adjust the resource allocation according to the VM behaviors
and our performance models.

In our analysis, the major performance degradation of cloud
platforms comes from two factors: virtualization and
consolidation. To quantify their influences, two overhead
metrics are defined: the virtualization overhead and the
consolidation overhead. Given a program p, let t1 be the
execution time of p on a physical machine; t2 be the execution
time of p on a virtual machine that is running solely on a
physical machine; and t3 be the execution time of p on a virtual
machine that is running with other virtual machines. The
virtualization overhead of p is defined as (t2-t1)/t1; and the
consolidation overhead of p is (t3-t1)/t1.

The virtualization overhead and the consolidation overhead
are varied on different cloud platforms owing to the
techniques and machine specification in use. Therefore, a
benchmarking tool is designed to measure those metrics. We
further categorize the computing resources as CPU, memory,
and disk IO according to the difference in performance
degradation under virtualization and consolidation. For
instance, with hardware support virtualization, the
virtualization and consolidation overhead of CPU benchmarks
are almost zero. However, for disk IO, the virtualization
overhead can be nearly 50% for write and 40% for read. Table
4 lists the benchmarking results on UniCloud.

The performance model is built based on the profiles of
programs and the measured metrics of performance
degradation. We use monitoring tools to obtain the profile of
programs, or more specifically, the running virtual machines.
In UniCloud, the launched virtual machine is managed by
KVM (Kernel-based Virtual Machine) [6] hypervisor, which
is a process running on physical OS. Performance monitoring
and profiling tools, such as PAPI (Performance API) [11], can
generate the desired profiles of VMs. Most modern machines
have hardware counters for instructions and hardware
information, such as cache miss rate. PAPI can read the
information online and report them in real time. We use the
linear model to estimate the total performance degradation of
the VM. For instance, if ai is the percentage of instructions
using computing resource i, and the performance degradation
of computing resource i is bi, the total performance
degradation of the VM is estimated as ∑ ����

�
��� , where K is

the number of computing resources.
The provisioning for VM requests follows the OpenStack

procedure, which consists of two parts: filtering and weighting.
In the filtering stage, the qualified computing resources (PM)
are selected; in the weighting stage, one of the qualified PM is
chosen according to some cost functions. Initially, since there
is no programming execution information, we use the
requested resources as the filtering criteria in the filtering
stage. That is, the system finds a physical machine that fits the
specification to host the request virtual machine. After the VM
is running, the scheduler polls the monitoring subsystem to
obtain the runtime information of the virtual machines, such
as memory usage, disk IO frequency, etc. When some

Table 3: Example of pre-defined system parameters in the
federated cloud storage

Type Availability Reliability Perfor-
mance File Size R/W

Ratio
LOG HIGH MED LOW Small 0

BACKUP LOW HIGH MED Large 0
ACTIVE HIGH HIGH HIGH Small 0.5
CACHE MED LOW LOW Small 1

BIGDATA HIGH HIGH MED Large 1

Table 4: Measured virtualization overhead and consolidation
overhead of UniCloud

Overhead CPU Memory Disk
Virtualization 0.01 0.03 0.30

Consoli-
dation

CPU 0.01 0.01 0
Memory 0.13 0.52 0.03
Disk -0.07 -0.25 0.54

113

profiling information is gathered, we use the performance
modeling as the filtering conditions. If the current
provisioning cannot guarantee the SLA performance, the
action of migration is taken. On the other hand, if there are
some VMs that can be consolidated without scarifying their
performance, the consolidation process will be activated.

IV. EVALUATION

To illustrate the achievement of our UniCloud platform, we
design some experiments to explore the feasibility in terms of
federated compute and federated storage.

A. Federated Compute
To evaluate the federated computation, two geographically

different campus clouds are deployed. One cloud is located in
NTHU at HsihChu and the other one is located in NTCU at
TaiChung. Each cloud is composed of three servers with the
installation of OpenStack Grizzly, in which one server acts as
both the controller node and the network node while two
servers act as compute nodes for the VM hosting. Different
campus clouds may have heterogamous hardware equipment.
Detail information about the testing environment is listed in
Table 5.

The construction of a virtual cluster is equally to deploy
VMs on two clouds with the same instance flavors. The
NASA NPB [7] is exploited to estimate the feasibility of
collaborative cloud services over the UniCloud prototype. We
adopt the EP (Embarrassingly Parallel) benchmark to evaluate
the performance of a cross-cloud virtual cluster. The problem
size of Class B and Class C [8] are both assigned to the
experiments with a varied number of VMs. Experimental
results are also averaged in several rounds.

Fig. 12 and Fig. 13 reveal that the EP problem with the
larger size takes higher average time to complete the
computation. The average execution time of Class C is higher
than that of the Class B. In addition, the more the VMs are
launched in a virtual cluster, the less the average time will be.
Particularly, the average execution time of NTHU cloud
outperforms that of the NTCU cloud due to the computing
capability of hardware equipment.

On the other hand, the performance of a cross-cloud virtual
cluster is moderate. The average execution time of a cross-
cloud virtual cluster is longer and shorter than that of single
NTHU cloud and that of single NTCU cloud, respectively.
That is because some VMs in a cross-cloud virtual cluster are
allocated in the NTHU cloud and the others are resided in the
NTCU cloud. In addition, each single cloud cannot fulfill a
large demand while more VMs are required. The experiment
demonstrates that our UniCloud platform can supply the large
demand of a virtual cluster across multiple clouds.

B. Federated Storage
We conduct real experiments to show the performance

benefit from using our federated cloud storage approach in
UniCloud. In our testing environment, we setup four storage
providers and each is based on different file systems and
configurations as shown in Table 6 and Table 7.

For simplicity, here we consider performance as the only
resource property in our setting. As a result, we observe these

storage providers differ in I/O performance when servicing
various types of I/O requests. For example, SP1 and SP4 has
better I/O performance for writing large file, but SP2 and SP3
has better I/O performance for reading large file. Therefore,
our objective is to maximize the overall I/O performance by
placing files onto the storage providers that could achieve the
highest throughput according to their access pattern.

Our evaluation is based on a real file access trace of a FTP
server during a ten-day period [18]. We extract the file upload
and download operations, and observe three important
workload characteristics from the trace: (1) the file access
requests are distributed over folders following the 80/20 rule.
In other words, the 80 percent of file upload or download
requests occurs in 20 percent of the folders; (2) the file size
distribution can be classified into small and large files, and
each of them can be characterize by a normal distribution

Table 5: Hardware Software information for the experiment

Site
Hardware Software

Node CPU Ram OS Hyper-
visor

NTHU
Cloud

Controller Intel
X5670 24GB Ubuntu

12.04 KVMCompute1
Compute2

NTCU
Cloud

Controller Intel
E5520 18GB Ubuntu

12.04 KVMCompute1

Compute2 Intel
5130 2GB

Fig. 12. Results of a virtual cluster running with Class B of
the EP

Fig. 13. Results of a virtual cluster running with Class C of
the EP

0

5

10

15

20

25

4 8 16 32

Av
er

ag
e

Ti
m

e
(S

ec
)

Number of VMs

NTCU-Cloud NTHU-Cloud Cross-Cloud

0

20

40

60

80

100

4 8 16 32

Av
er

ag
e

Ti
m

e
(S

ec
)

Number of VMs

NTCU-Cloud NTHU-Cloud Cross-Cloud

114

function as shown in Fig. 14; (3) the size of files within the
same folder is similar. As shown in Fig. 15, all the large files
are located in three folders.

The experiments firstly create folders that content the files
for I/O requests. According to the expected I/O pattern in that
folder, we classify the folders into five types: LOG,
BIGDATA, CACHE, BACKUP, ACTIVE. The file size and
read/write ratio of each type are listed in Table 3. Hence, when
we use the federated storage API to create these folders in our
system, we also specify the type as a hint in the folder
description. Our matchmaking algorithm will place those
folders to a proper storage provider based on the performance
measured in our system as shown in Table 7. For example, the
BACKUP data means writing large files. Our matchmaking
algorithm will sort candidates based on the performance for
writing a large file, and place the file to SP4. In contrast, the
BIGDATA means reading large files, so that the file will be
allocated to SP3. As shown in Fig. 15, our random generated
files are distributed across all four storage providers due to
each of them can achieve the best I/O performance for a
certain type of files. For example, SP1 is selected for small
file writes; SP2 is selected for small file reads; SP3 is selected
for large file reads; and SP4 is selected for large file writes.

Finally, we exploit FABAN [3] to generate the workload
request for file upload and download according to our
observed workload characteristics. FABAN has been widely
used for evaluating Cloud services, and it can measure the
response time of each service request (i.e. a file upload or
download request in our experiments). In each run of our
experiments, we continue sending I/O requests into our
system for over 30 minutes, and we report the performance
results by taking the average over five runs.

As shown in Fig. 16, our federated storage, named as FCSS
in the plot, significantly outperforms any other single storage
providers by at least 35%, and reaches almost 20MB/s
throughput in average. The second best storage provider, SP3,

only achieves 15 MB/s. In Fig. 17, we further breakdown the
performance comparison with respect to each type of files. As
shown, our federated storage may not achieve the better
performance for individual type of data access. However, our
matchmaking algorithm can explore multiple storage options,
and optimize for each type of data. Therefore, we can still
significantly improve the overall I/O performance, and satisfy
their individual requirement for availability, reliability or any
other resource properties.

V. CONCLUSIONS

This paper introduces a prototype of Taiwan UniCloud that
is a community-driven hybrid cloud platform for academics to
support education, research, and application development in
cloud computing. Each self-managing cloud can join the
UniCloud to share its resources and simultaneously leverage
the resources and scale-out capabilities of other clouds. The
architectural of UniCloud is presented and corresponding
issues we tackled are also discussed in terms of a cross-cloud
virtual cluster, VLAN over WAN, live migration across
clouds, and a federated storage across different providers. The
feasibility of our current implementation is also demonstrated
through various experiments. Based on the platform, a large
resource demand is affordable based on the federated
computation and the collaborative cloud services and
applications could be further sustained. In addition, the
federated storage gains the overall performance of
matchmaking between disparate data types and different
access properties among multiple storage providers.

The future work will include adding more campus clouds
to the UniCloud platform. We will also continue investigating
methods for improving the performance, as well as enriching
functionalities of our platform, for instance a self-adaptive
framework for multi-cloud resource provisioning, integrating
with more APIs to improve the interoperability with other
clouds services, and investigating security concerns. A trial
run of cloud applications for academic education and research

Table 6: Configurations of four storage providers in our
federated storage environment

Storage
Provider

File
System

Replication
Factor

Number of
Nodes

SP1 Swift 3 5
SP2 Ceph 3 18
SP3 Ceph 2 4
SP4 HDFS 2 4

Table 7: Measured I/O throughputs for various I/O patterns
in our federated storage environment
Storage
Provider

Small file (1MB) Large file (100MB)
Read Write Read Write

SP1 4.60
MB/s

0.68
MB/s

6.50
MB/s

20.17
MB/s

SP2 15.01
MB/s

0.65
MB/s

29.49
MB/s

14.50
MB/s

SP3 11.49
MB/s

0.44
MB/s

30.70
MB/s

11.92
MB/s

SP4 8.07
MB/s

0.67
MB/s

11.53
MB/s

22.40
MB/s

Fig. 14. File size distribution from the FTP trace log

Fig. 15. File location distribution in federated storage
according to the matchmaking results

0

500

1000

1500

2000

2500

2 B 8 B 32 B 128 B 512 B 2 KB 8 KB 32 KB 128 KB 512 KB 2 MB 8 MB 32 MB 128
MB

512
MB

2 TB

C
ou

nt
 o

f f
ile

s

File Size

35%

35%

5%

25%

Ceph

HDFS

Swift

Ssbox

SP3

SP4

SP1
SP2

115

is also considerable to improve the reliability of handling
runtime failures. The long-term vision of our UniCloud is to
provide an open and self-sustained cloud ecosystem to deliver
infrastructure resources, runtime platform, and software
application as a service for users.

ACKNOWLEDGMENTS

The authors would like to thank You-Fu Yu, Meng-Ru
Hsieh and Chien-Yu Liu for their assistance in implementing
and evaluating, and thank Jatinder Singh and anonymous
reviewers for their insightful comments to polish this paper.

REFERENCES

[1] Amazon Elastic Compute Cloud (Amazon EC2).
Available: http://aws.amazon.com/ec2/.

[2] Amazon Web Service (AWS). Available:
http://aws.amazon.com/.

[3] FABAN. Available: http://faban.org/.
[4] Google App Engine (GAE). Available:

http://appengine.google.com.
[5] Google Compute Engine (GCE). Available:

http://cloud.google.com/products/compute-engine.
[6] KVM (Kernel-based Virtual Machine). Available:

http://www.linux-kvm.org/page/Main_Page.
[7] NAS Parallel Benchmarks. Available:

http://www.nas.nasa.gov/publications/npb.html.
[8] NPB Problem Size. Available:

http://www.nas.nasa.gov/publications/npb_problem_si
zes.html.

[9] OpenStack Cloud Software. Available:
http://www.openstack.org/.

[10] OpenStack Networking. Available:
http://docs.openstack.org/grizzly/basic-
install/apt/content/basic-install_network.html.

[11] Performance Application Programming Interface
(PAPI). Available: http://icl.cs.utk.edu/papi/.

[12] SalesForce.com. Available:
http://www.salesforce.com/.

[13] Windows Azure. Available:
http://www.windowsazure.com/.

[14] R. Buyya, R. Ranjan, and R. N. Calheiros, "InterCloud:
Utility-Oriented Federation of Cloud Computing
Environments for Scaling of Application Services," in
Proceedings of the 10th International Conference on
Algorithms and Architectures for Parallel Processing
(ICA3PP), Springer-Verlag, Busan, Korea, 2010, pp.
13-31.

[15] R. N. Calheiros, A. N. Toosi, C. Vecchiola, and R.
Buyya, "A Coordinator for Scaling Elastic Applications
Across Multiple Clouds," Future Generation Computer
Systems, vol. 28, no. 8, 2012, pp. 1350-1362.

[16] M. Mahjoub, A. Mdhaffar, R. B. Halima, and M. Jmaiel,
"A Comparative Study of the Current Cloud Computing
Technologies and Offers," in The First International
Symposium on Network Cloud Computing and
Applications (NCCA), IEEE, Toulouse, France, 2011,
pp. 131-134.

[17] M. L. Massie, B. N. Chun, and D. E. Culler, "The
Ganglia Distributed Monitoring System: Design,
Implementation, and Experience," Parallel Computing,
vol. 30, no. 7, 2004, pp. 817-840.

[18] R. Pang and V. Paxson, "A high-level programming
environment for packet trace anonymization and
transformation," in Proceedings of the 2003 conference
on Applications, technologies, architectures, and
protocols for computer communications (SIGCOMM),
ACM, Karlsruhe, Germany, 2003, pp. 339-351.

[19] I. Voras, B. Mihaljevic, M. Orlic, M. Pletikosa, M.
Zagar, T. Pavic, K. Zimmer, I. Cavrak, V. Paunovic, I.
Bosnic, and S. Tomic, "Evaluating open-source cloud
computing solutions," in Proceedings of the 34th
International Convention on Information and
Communication Technology, Electronics and
Microelectronics (MIPRO), IEEE, Opatija, Croatia,
2011, pp. 209-214.

[20] X. Wen, G. Gu, Q. Li, Y. Gao, and X. Zhang,
"Comparison of open-source cloud management
platforms: OpenStack and OpenNebula," in The 9th
International Conference on Fuzzy Systems and
Knowledge Discovery (FSKD), IEEE, Sichuan, China,
2012, pp. 2457-2461.

Fig. 16. Average IO throughput of all requests

Fig. 17. Performance comparisons with respect to each type of
files

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

B/
s)

Swift Ssbox Ceph

HDFS FCSS

SP1 SP2 SP3

SP4

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

RS RL WS WL

Th
ro

ug
hp

ut
 (M

B/
s)

Swift Ssbox Ceph HDFS FCSSSP1 SP2 SP3 SP4 FCSS

Small Read Large Read Small Write Large Write

116

