
A Hybrid Just-In-Time Compiler for Android

Comparing JIT Types and the Result of Cooperation

Guillermo A. Pérez
National Tsing Hua University

Hsinchu, Taiwan
gaperez64@

sslab.cs.nthu.edu.tw

Chung-Min Kao
National Tsing Hua University

Hsinchu, Taiwan
klozesk@

sslab.cs.nthu.edu.tw

Yeh-Ching Chung
National Tsing Hua University

Hsinchu, Taiwan
ychung@cs.nthu.edu.tw

Wei-Chung Hsu
National Chiao Tung University

Hsinchu, Taiwan
hsu@cs.nctu.edu.tw

ABSTRACT

The Dalvik virtual machine is the main application plat-
form running on Google’s Android operating system for mo-
bile devices and tablets. It is a Java Virtual Machine run-
ning a basic trace-based JIT compiler, unlike web browser
JavaScript engines that usually run a combination of both
method and trace-based JIT types. We developed a method-
based JIT compiler based on the Low Level Virtual Machine
framework that delivers performance improvement compa-
rable to that of an Ahead-Of-Time compiler. We compared
our method-based JIT against Dalvik’s own trace-based JIT
using common benchmarks available in the Android Market.
Our results show that our method-based JIT is better than
a basic trace-based JIT, and that, by sharing profiling and
compilation information among each other, a smart combi-
nation of both JIT techniques can achieve a great perfor-
mance gain.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—Compil-
ers, Interpreters, Code generation, Optimization, Parsing,
Retargetable compilers

General Terms

Performance, Design, Experimentation, Languages

Keywords

Method-Based, Trace-Based, JIT, Android, Dalvik VM

1. INTRODUCTION
Interpreted and Dynamic languages have been on the rise

for several years now. These programming languages are not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’12, October 7–12, 2012, Tampere, Finland.
Copyright 2012 ACM 978-1-4503-1424-4/12/09 ...$15.00.

compiled and translated into native instructions like classi-
cal programming languages are. Instead, a program written
using them is read line by line and executed by an inter-
mediate engine or virtual machine. The process of fetching
each instruction and the execution of it can be much slower
than how a native program is usually ran. This problem
has traditionally been dealt with by adding a Just-In-Time
(JIT) Compiler to the virtual machine [25] [4]. A JIT Com-
piler is a compiler that takes a code sequence or code block
and translates it into native code during run time in order
to improve its execution time.

The Java language is an example of an interpreted lan-
guage which runs on top of Oracle’s JavaTMVirtual Machine
(JVM). Java allows developers to write a program once and
run it on any platform that implements a JVM [30]. De-
velopers might choose to write computationally intensive
code using a different programming language (C and as-
sembler are the most common choices) and communicate
with the JVM using Java’s Native Interface (JNI) [28]. This
approach, however, requires that the developer provide the
target user with a library compiled for the user’s hardware.
The use of JNI to interface with the virtual machine is also
a problem because of the overhead required to change from
the interpreted to the native environment and back [20]. It
is also possible to compile an application written in Java to a
native binary file using Java to native compilers [9] [32] but
the resulting binary and the libraries needed to execute it
need to be compiled for the user’s platform as well, making
this and the previous approaches less portable than the JVM
and Google’s Dalvik virtual machine. Because of these rea-
sons most Java applications are written using mostly Java
and are therefore benefited by a VM’s JIT compiler. As
of Java 1.3, the standard HotSpot became the default Sun
Java Virtual Machine [29]. The HotSpot virtual machine
included a method-based (MB) JIT compiler to analyze the
program’s performance for hot spots (frequently executed
instructions) and compile them.

Recently, trace-based (TB) JIT compilers have become
more popular than it’s MB counterpart because of its abil-
ity to define traces that range from one method to another
and therefore extend the scope of what is being considered
for compilation and optimization. TB JIT compilers can
also take dynamically typed languages and compile them
to optimized native code that handles the variables’ types

41

being observed during run time [10]. As is explained in sec-
tion 4.1.1, Java is not actually a dynamically typed language
and therefore such an optimization does not completely ap-
ply to the Dalvik VM. Nevertheless, short instruction se-
quence compilation can result in smaller memory footprint
and still improve performance by selecting the few most ex-
ecuted instructions for JIT compilation. Because of these
reasons, and also because of the speed at which a simple TB
JIT can start delivering performance improvements, Google
chose to implement a TB JIT compiler for their Android
operating system for mobile devices [6]. However, with the
advantage of method structures as basic block delimiters and
considering that Android’s TB JIT, currently does not have
the ability to create traces containing code from more than
one method, it is not really clear and no one has really stud-
ied if a MB JIT would have the same effect or achieve even
better performance.

Both JIT compiler types have their own strengths and
outperform the other in terms of memory usage or delivered
code quality depending on the situation and the platform’s
resources. Simple TB JIT compilers, such as Dalvik’s, might
seem better suited for resource-constrained devices such as
cellphones because of their ability to avoid compiling cold
code and their fast compilation times. However, more robust
TB JIT compilers or MB JIT compilers, although slower and
even though they might have a bigger memory footprint,
deliver faster, more efficient, code. This paper compares
the performance of the code generated by a limited TB JIT
compiler and a MB JIT compiler running on a mobile device
and suggests the usage of a fast, incomplex JIT compiler
combined with a slow JIT compiler capable of delivering
better optimized code.

In this work we propose a MB JIT compiler based on the
Low Level Virtual Machine (LLVM) [22] compiler frame-
work and API to deal with methods that can be further
optimized by considering them as a whole block instead of
focusing merely on the hot traces they contain, like the cur-
rent TB compiler does. Our resulting JIT framework has
been shown to improve the execution speed of commonly
used benchmarks to test the speed of Java Virtual Machines
by up to 4 times compared to Android’s mainstream, un-
modified Dalvik VM. We show that a MB JIT compiler can
provide similar results to those a static compiler could while
having the advantage of run-time profiling information and
taking a relatively small toll on resource usage compared
to the performance gain. Finally, we propose a sharing en-
vironment in which information resulted from the TB JIT
profiling and subsequent compilation of code can be useful
for our MB compiler and vice versa in order for each com-
piler to complement each other’s weaknesses and harness
their own advantages.

2. OVERVIEW

2.1 Method-Based JIT Compiler flow
Every time an application is launched in Android a new

copy of the Dalvik VM is spawned from the system Dalvik
zygote. Each DVM acts as an application sandbox with its
own Garbage Collection and Compiler Threads. The new
DVM opens the application file (called a dex file) and loads
into memory the contents of it. In order to speed up the exe-
cution of interpreted instructions, a TB JIT compiler checks
for hot traces while the program is being run. Any instruc-

Native Execution

[has compiled version]

[MB threshold]

Interpret

JIT compile

order queue

Main Execution Thread

Select Trace

[TB threshold]

Figure 1: Main Thread State Diagram

tion executed a certain amount of times can trigger a trace
selection phase inside the interpreter and then a trace com-
pile order will be emitted for the compiler to transform the
trace into native code. Our work adds a second threshold
to the process. The new threshold applies only for invoca-
tion opcodes and is tuned to allow the TB JIT to run as
the base JIT compiler to allow for fast optimization of the
application by means of short traces being compiled while
the MB compiler delivers faster, heavily optimized compiled
methods afterwards. When the threshold for invocation in-
structions is reached, there is no need for a trace selection
phase so the compile order is emitted quicker than a trace
compile order. Figure 1 depicts the first profiling phase for
our MB JIT and how it appends to the existing JIT profil-
ing technique. This thread profiling phase is simpler than
Dalvik’s JIT because there is no need to build a trace before
submitting a method compile order.

In recent times, the tendency has been to create software
that can be executed in parallel on multi-core processors.
This is often allowed by processes spawning new child pro-
cesses or by processes being further divided internally as
threads. Java virtual machines provide a mechanism to cre-
ate, handle and kill additional threads apart from the main
execution thread [28]. Threads can be created and started
using the Runnable interface or the Thread class and the
virtual machine is in charge of creating a new thread and
executing the code in the class’ implementation of the run
method [27]. In the case of the Dalvik VM, this threads
are provided via POSIX [17] threads and the corresponding
API. The invocation of the run() method is not profiled by
Dalvik’s TB JIT because it is directly invoked from the vir-
tual machine. We propose an additional Class-level profiling
phase to be able to select when the run() should be consid-
ered for MB JIT compilation. Having Class-level profiling
information might enable us to consider related methods
from the same Class or related Classes for JIT compilation.
This kind of semantic information is not being utilized, at
the moment, by the JIT compiler framework.

The Compiler Thread works by emptying the compile or-
der queue and processing every trace one at a time. Trace
orders are handled by Google’s Dalvik VM TB JIT compiler.
At this moment, the only methods considered for inlining by
the TB JIT compiler are simple methods that fit the profile

42

JIT compile

order queue

Compiler Thread

process

orders

dequeue

expand trace

compile trace

check method

compile method

[method]

[invokes method]

[trace]

[fits profile]

queue

method

order

add method

Figure 2: Compiler Thread State Diagram

of getters or setters. When presented with invocations
to other methods then inlining is not realized. In our pro-
posed framework we consider the case in which a method is
not inlined counter productive for the JIT compiler’s goal.
Therefore we add a call to our MB compiler to avoid having
a compiled trace call an interpreted method and then return
to the native environment because of the overhead that this
would mean (interfacing native code with interpreted usu-
ally implies the use of JNI or another bridge) [20]. This is
the third way a method can be scheduled for MB compila-
tion. We chose to append our MB JIT compiler to the same
compiler thread because this, when the profiler is tuned to
favor the TB JIT as the base JIT, allows for traces to be
compiled first. In this manner, the TB compiler thread does
not compete with the MB compiler thread for CPU time, be-
cause they are handled by one single compiler thread, and
together deliver quicker native versions of traces while the
slower method compilations are left for later. The assump-
tions and derivations we followed for the tuning of our pro-
filer are explained in section 3.2. Figure 2 shows all the
states in which the compiler thread can find itself. It also
shows the method level profiling phase of our proposed JIT.

A second advantage of our decision to use the same com-
piler thread is that Dalvik’s original security scheme is left
unmodified. Every application still runs inside its own vir-
tual machine and every virtual machine has its own compiler
thread that has access to its own native compiled code. The
only difference is that, for method work orders, after some
transformations are applied to the DEX code, the MB JIT
is called instead of the original TB JIT.

2.2 The Compiler
The compiler itself uses LLVM’s framework to translate

optimized DEX instructions directly into LLVM bitcode. Al-
though a trace is not provided for the compiler to work on,
the object oriented structures created by the DVM to hold
classes, objects and such provide access to the DEX code
without having to reload the dex file from the application.
The reasons for having chosen LLVM as the compiler’s back-

bone and the benefits that this meant, and ones yet to ex-
ploit, are explained in section 4.2.

Using a third party developed compiler such as LLVM’s
allows us to focus on the comparison and cooperation be-
tween JIT types. The idea of building a JVM using third
party components had already been fathomed by Geoffray et
al. [11] to reduce the expertise needed to implement any of
its main components. The JIT compiler is just another one
of a JVM’s components and its job is to take an intermedi-
ate representation (IR), be it DEX code or LLVM bitcode,
and generate native code. The compiler thread (its state
diagram shown in figure 2) is in charge of calling the right
JIT compiler for each work order. The Dalvik VM later sets
the jump point from interpreted code to the newly compiled
one.

3. PROFILING APPROACH

3.1 Existing Profiling Tools
Google provides a tool called traceview to profile the exe-

cution of applications on the Dalvik Virtual Machine. Wang’s
previous work on an Ahead-Of-Time-Compiler (AOTC), Ic-
ing [35], bases its profiling model on information provided by
traceview available after the application has been ran once.
The information is then considered at static time to deter-
mine which methods are good candidates for static compila-
tion previous to repackaging the Android application. The
situation for a JIT is a bit different since run time informa-
tion is readily available and more valuable than any sort that
could be obtained ahead-of-time. In most cases user behav-
ior will affect which methods and which code sections are
executed more often, this is something that can only be de-
termined during run-time. Further differences with similar
compilers and their approaches are discussed in section 6.

Dalvik’s TB JIT compiler keeps track of the amount of
times most instructions from a program have been called.
This information is stored in a hash table and is updated
any time a candidate trace entry point is about to be in-
terpreted. The choice of a hash table is definitely based on
the need for the interpreter to be able to continue its job
without much overhead being added by the TB JIT. Once
the amount of times an instruction has been called passes
the threshold set for the TB JIT to kick in then the entry
in the hash table is reset and the Interpreter goes through a
series of steps to decide where the trace should stop, taking
into account a parametrized maximum length for any given
trace. The trace is later dispatched as a work order for the
Compiler Thread to take care of the JIT compilation and
attachment of the compiled code where the Interpreter is
able to call it. The compiled code, however, is not called
until the execution threshold is once again passed; at this
moment the interpreter checks if the code has already been
compiled, and if it has, then jumps to the native compiled
code. At this point we notice that, not only are trace com-
pile orders dispatched earlier, but they will also be called
earlier (given the fact that the TB JIT threshold, threshT ,
is low enough). With a different tuning, the profiler would
easily be able to make the MB JIT the base JIT because the
MB compile orders take less time to build and they do not
depend on the invocation threshold being passed twice for
the native code to be installed.

43

3.2 Profiling for our Method-Based JIT
We took advantage of the existing profiling mechanism

and for every method called we check if a specific MB thresh-
old had been reached. Once the threshold is passed then a
work order is submitted to the Compiler Thread for the
method to be compiled and made available for future calls.
The method is marked so that, in the future, it will not be
considered for MB JIT orders and rather be taken into con-
sideration only for trace compilations. This way we avoid re-
evaluating rejected methods. Since the native version of the
method will replace the invocation to a interpreted method
for an invocation to a native one, this only affect in the case
that the method was considered not fit for the MB JIT. The
modifications we added to this profiling stage are executed
in constant time and account for a minimum amount of time
in the whole compilation process. The interpreter only needs
to check a hash table and update the counter stored in it.

In order to obtain an initial setting for the profiling model
thresholds we followed a simple derivation. We defined a
Method as a finite sequence of instructions: Method = {i0, i1,
i2, ...}; and a Trace as a subsequence of instructions Trace ⊆
Method so if we set our MB JIT threshold, threshM , to any
value such that threshM > 1, the hot traces of instructions
inside a method’s instruction sequence are sure to be dis-
patched as trace compile orders if there is a flow control
structure inside the method such that the TB JIT’s thresh-
old is reached. Actually, although loops, recursive method
calls and repetitive event inputs are all examples of situ-
ations that might cause an instruction to be ran several
times, only loops do not implicitly include the invocation
of a method (which would be profiled for the MB JIT as
well). With this setting then, an instruction can be called a
certain amount of times before the compiler’s behavior de-
generates into compiled traces being outdated by complete
native methods. Consider exec(i) to be the expected amount
of times an instruction i ∈ Method = {i0, i1, i2, ...} is to be
executed per method call. We can now say that the degen-
erate case occurs when we have the following conditions:

• ∃i ∈ Method | exec(i) ≥ threshT /threshM

• calls to Method exceed threshM

This means that an optimal tuning should consider low MB
thresholds compared to the numerator, otherwise the degen-
erate case might occur too often. The usual TB threshold
for Dalvik (around 40) proved to be a good setting in combi-
nation with a relatively small MB one (around 2 or 5). If the
TB threshold is increased too much then the speed boosts
will be delivered too late for some benchmarks and proba-
bly for short-lived applications as well. Of course, the TB
maximum trace length and the MB minimum instruction
count for consideration also play a role in avoiding attempts
to compile a method that has already have most of its in-
structions or opcodes translated by the TB JIT. However,
we depend on the above formulation for the case in which a
method is worth being compiled completely even if it con-
tains a loop that might trigger the TB beforehand.

A compiled trace is also called earlier because the pro-
cess of building the trace itself and then compiling it takes
two passes over a lengthTrace = |Trace| instructions long
trace. Our previous derivations imply that lengthMethod =
|Method| ≥ lengthT race. For most cases, at the very least
in our tests, this is enough time for the trace to be ready the

next time threshT is reached. The compilation of a method
also takes two passes over the instruction sequence but we
devised a simple optimization (described in section 4.3) so
that we can avoid having to wait for the threshold to be met
again until the native version of the method is put in place.

When the compiler thread is faced with a method com-
pilation work order it has to determine whether a compiled
version of it will help increase performance or not. First
of all, the method should contain no instructions that will
indicate a need to jump from native to interpreted envi-
ronment. In the case of DEX instructions, invocations of
non-inlineable methods would end up being compiled to a
call to the interpreter to execute the method. Instructions
requiring access to fields in order to retrieve or save values
can be provided because the JIT sends a reference to the
method’s owner, be it an Object or a Class, and therefore
do not have to be banned. Second, the method instruction
count should amount or surpass a threshold set to avoid
small methods, that usually only set, get or return a value,
from being compiled. The described types of methods would
only result in native code islands and would probably only
increase the amount of environment jumps between inter-
preted and native code and would not be benefited from
MB JIT compilation, they should instead be inlined.

3.3 Trace-Based vs. Method-Based JIT
Android’s TB JIT for the Dalvik Virtual Machine focuses

on the hot parts of a method’s code and compiles them into
native code that is linked to the first instruction from the
original trace. Methods with loops and other flow control
constructs that cause instructions to be executed repeatedly,
will trigger this behavior and cause a trace compilation work
order to be emitted. However, if an invocation to a method
is included in a hot trace or if a method is being invoked too
often, it is probably better to compile all of the method into
native code instead of calling an interpreted method and
then shift to native code once inside the method and possi-
bly back into interpreted code (if the trace does not extend
until the end of the method) before returning. The situa-
tion looks even more complicated when a trace containing
a method invocation is compiled and the method’s code in-
cludes a compiled trace of its own. Consequently, we decided
that a trace compilation work order including an invocation
instruction should also trigger a method compilation order
so as to avoid unnecessary environment jumps.

Most literature indicates that loops can be exploited so
that observed variable types are used for further optimized
code generation [10]. Short traces that are executed for a
long period of time over and over again constitute the per-
fect target for Dalvik’s standard JIT. The difference with
most dynamic programming languages that are sped up by
TB JIT compilers and DEX code is that, although being
indeed a type-less registered based intermediate representa-
tion, most DEX code opcodes reveal hints as to what the
registers’ types could be. Translating the registers to LLVM
bitcode, which has to indicate variables’ types explicitly, is
hard but not impossible if we handle registers as 32 or 64 bit
integers when only their type size is known. When a later
executed instruction reveals the real type of a register it can
be casted using the bitcast instruction [22]. When we are
done with the translation, we are left with an SSA represen-
tation of the method, with information regarding all of the
variables’ types and many options for optimizations.

44

4. THE METHOD-BASED COMPILER
We based our JIT compiler on LLVM, translating Dalvik’s

DEX code into LLVM bitcode to be able to use its method-
based JIT. LLVM provides libraries and APIs for the trans-
lation of any source language into bitcode IR, LLVM’s lingua
franca, and manipulate the resulting bitcode in many forms.

4.1 DEX code to LLVM bitcode
The Dalvik VM is a register based Virtual Machine. Reg-

isters have no type and can be assigned many times through
the execution of any given method. LLVM bitcode, on the
other hand, has to comply with SSA form and has to load
and store values to and from memory if the same variable is
to be assigned more than once. Every method compile work
order is handled by translating every DEX instruction in the
original method to a sequence of IR instructions equivalent
to it. The translation is dealt with in two passes: 1) search
for backward branching targets and opcode filtering; and
2) code translation.

The first pass deals with labeling of backward branch tar-
gets and making sure that the method contains no banned
opcodes (examples of undesired opcodes for MB JIT com-
pilation are mentioned in section 3.2). The first pass also
makes sure the amount of instructions that will be trans-
lated exceeds the instruction count threshold for the method
to actually benefit from being JIT compiled. Finally, if the
method contains only desired instructions then the second
pass will translate all DEX instructions into LLVM IR, val-
idate and compile it to memory.

4.1.1 Typing the Typeless

Although Java is a statically typed language, Google’s dx
tool [12] translates Java bytecode into a typeless register
based represensation, DEX code. This presents a problem
when translating into LLVM bitcode because all operations
on LLVM bitcode have to be executed on operands with
strictly the same type. Most DEX opcodes present hints
as to what type of data a register holds, but sometimes it
is necessary to infer the data from assignment operations
or such. To overcome this problem and to avoid having
many versions of the same register name, we translate every
DEX register into variables representing the register name
and their type, i.e. v5_INTEGER, and since the variables, in
most cases, are references to memory in order to preserve
the SSA constraint, any register could represent a number
of different variables in its LLVM bitcode translation and
have many memory addresses related to it.

4.2 LLVM Advantages
LLVM provides an API to run several transformations

through code represented using its bitcode. Once the trans-
lation from DEX code to bitcode is done, we can optimize
the resulting code using these transformations and optimiza-
tion passes to get different levels of optimized code. LLVM
also provides many ways of running the code. One of them,
conveniently for us, is a JIT compiler that returns the ad-
dress of the memory location of the compiled method. Aside
from the obvious reason of convenience, we chose LLVM to
build our compiler because of Google’s own decision to in-
clude it into Android with the Renderscript [34] execution
engine. Although our compiler uses the mainstream exe-
cution engine to create the JIT compiled code, it can be
slimmed down to have a smaller footprint on the operat-

ODEX Instruction Original Instruction

iget-quick offset iget id

iput-quick offset iput id

invoke-virtual-quick offset invoke-virtual id

invoke-super-quick offset invoke-super id

Table 1: Optimized opcodes

ing system, just like libbcc (Renderscript’s execution engine)
was. The other option would be to modify libbcc to allow
for it to compile methods for Dalvik. The latter would not
be too hard a modification to our work since our translation
to bitcode would only have to call a different library for the
last phase, native code emission. The benefits of using libbcc
include caching of compiled code (faster applications with-
out having to recompile methods) and the use of a common
LLVM execution engine throughout Andoid, which roughly
translates to less space on disk.

In our experiments, code compiled using LLVM’s JIT com-
piler performs better than code compiled by Dalvik’s TB JIT
compiler in part because of it’s use of ARM’s floating point
architecture VFP [24]. The standard version of Google’s
Dalvik VM and its JIT compiler don’t use vfp instructions
by default and require device manufacturers to modify An-
droid to have the JIT compiler emit different specialized
instructions specific for their platforms. LLVM takes care
of generating specialized code depending on the platform it
was set up for.

4.3 Optimizations

4.3.1 Quick Field Access

Usually native code called from Java has to go through
the Java Native Interface in order to have access to fields
inside objects or classes even if the address to the container
has been passed as an argument to the method. We avoid
the situation in which we have to call back into the inter-
preted environment at all costs, so instead we take advantage
of Dalvik’s optimized instructions, which have the offset of
every field to speed up the retrieval of them. Just as the in-
terpreter uses the optimized opcodes to get fields by adding
the base address with the offset of any field, we use LLVM’s
API to manage pointers to addresses and are able to load
fields in constant time. Examples of instructions that are
optimized by dexopt [33] are shown in table 1.

4.3.2 Installing the Compiled Method

Dalvik’s JIT delegates the job of linking the compiled code
to the interpreted trace to the main execution thread. After
the execution count for an instruction exceeds the threshT

then the translation cache is checked to verify that a na-
tive translation of the trace exists. It is then called instead
of the interpreter continuing normally. In our case we are
changing a whole method from interpreted to native, the
easiest way is to change the method’s attributes to tell the
interpreter that it requires a call to native code and allow
for a Java Native Interface (JNI) call. However, changing
the method’s attributes would allow for bugs during the ex-
ecution if there are more than one thread trying to call the
method (i.e. one thread calls the native method but the ad-
dress has not yet been updated) so we modified the Method

45

structure inside Dalvik to be able to have additional infor-
mation and additional checks so that no bugs are introduced.
This also allows for faster calls to native code, avoiding some
checks and parameter conversion routines that JNI does be-
fore calling native code. The result is that our native code
pinning process is quicker than how the TB JIT does it and
allows for additional information to be available to the na-
tive code, compared to what would normally be for a JNI
compliant native method, while making sure that regular se-
curity checks are still applied to external native code being
called by the Java Native Interface (effectively giving special
treatment to internal native code).

4.3.3 Invocation to System Libraries

Finally, our choice of LLVM as our MB JIT compiler
framework has the advantage that it seamlessly links exter-
nal function calls to the standard library (i.e. sine or cosine)
without any additional library having to be added, resulting
in less memory wasted. This allows for static invocations
into standard Java libraries to be translated to static native
calls. DEX code tries to cope with this by using an opcode
(execute-inline) to inline common static system routine
calls, so we translate both static invocations and inlined in-
vocations to the java\lang* library into external method
calls that LLVM deals with.

5. RESULTS
The following tests, mentioned in this section, were ran

on a Galaxy Nexus [14] phone running our modified image
of Google’s latest version of the Android - Ice Cream Sand-
wich operating system [13]. This platform has a 1.2 GHz
TI OMAP 4460 ARM Cortex-A9 dual-core processor and a
304 MHz PowerVR SGX540 (Underclocked from 384MHz)
GPU, as wel as 1 GB of memory. Note that the platform
does have hardware-based floating point operation support
(ARM’s Floating Point Architecture - VFP [24]).

5.1 CaffeineMark 3.0 Benchmark
To test our own implemented MB JIT compiler and to

provide information we could use to compare it to the TB
JIT and existing ahead-of-time compilers for Java, we tar-
geted two of the most commonly used benchmarks for Java
virtual machines. The calculation of the number π (pi) up
to a specific number of digits and a series of mathemati-
cal tests whose execution is counted versus a given amount
of time are the main tasks carried out by the BenchmarkPi
and CaffeineMark 3.0 Android applications. Both have been
used by Google to test their JIT compiler and by Wang et
al. [35] to prove the potential of a MB AOTC. The mathe-
matical tests executed by the CaffeineMark benchmark in-
clude the Sieve of Erathosthenes, the execution of many code
branches, loops and floating point calculations.

Our tests suggest that methods compiled using our MB
JIT compiler can be almost twice as fast as methods that
have only been optimized by Dalvik’s standard JIT. Figure 3
shows how the Sieve, Loop, Float and Logic tests from the
CaffeineBenchmark3.0 are faster when ran on our proposed
hybrid JIT. Float, Loop and Logic tests being the ones that
enjoy the most benefits from being compiled using the MB
JIT. The figure also shows that the MB JIT by itself appears
to be better then the proposed hybrid JIT framework (Loop
and Logic tests). This is due to the fact that the TB and MB
JIT compilers by themselves create less compile orders and

Figure 3: CaffeineMark 3.0 benchmark results (the
higher the better)

Figure 4: CaffeineMark 3.0, second run

so the native versions of the traces or methods are delivered
and consequently used earlier, resulting in the native code
providing earlier perceivable performance gain. However,
the proposed hybrid JIT, because of our profiling choices,
delivers performance gain almost as good or sometimes even
better than that of the TB JIT on initial runs and much
better on following ones.

Since our modifications to Dalvik’s profiling system cre-
ate an extra flow of work into the compiler thread, it is to
be expected that some of the compilation orders are not at-
tended at the very start. The profiler settings can be tuned
to allow for compile orders to be dispatched earlier but this
would rather be a problem if the compiler thread becomes
overwhelmed and neither type of JIT would deliver on time.
This behavior is not unique to our proposed hybrid JIT, An-
droid’s standard TB JIT also exhibits better performance
results during the second run (especially for the first tests
that were run by the benchmark, i.e. Sieve). Figure 4 shows
how some of the tests in the CaffeineMark3.0 benchmark are
much quicker during a second execution of the application
since the compiler thread has dealt with all the compile or-
ders in queue. Code as much as twice as fast as the one
delivered by the TB JIT is observed for the Sieve test and,
although not as easily visualized on the graph, for the Logic
test after executing it more than once.

In both figure 3 and figure 4 it is also evident that the
Method and String tests were rejected by one of the MB JIT
profiling phases. Their score is almost as good as the one
corresponding to the TB and the virtual machine with no
JIT compiler (the first compared to the hybrid JIT and the
latter compared with the MB JIT alone). Although the MB
compilation of these tests has been rejected, the additional

46

Figure 5: Pi Benchmark results

lag introduced by our proposed profiling techniques is almost
non-existent, even though the first run of this application
generates many compile orders (both traces and methods)
for the compiler thread to handle all at once. Although we
do not expect our present profiling tuning to be perfect for
all situations, we observe that there at least exists such a
configuration for applications behaving similar to the ones
we tested.

5.2 BenchmarkPi
Another well-known benchmark used by Google to bench-

mark their JIT is the BenchmarkPi [31]. The benchmarks
computes the number π up to a specific amount of digits and
times the computation. Our results show that performance
improvement achieved by our hybrid JIT framework can ob-
tain similar results to those of an Ahead-Of-Time-Compiler
such as Wang et al.’s Icing [35]. Figure 5 shows how fast the
benchmark can be ran once both TB and MB JIT compilers
have done their work compared to having only a TB JIT.
Our results show that a MB JIT outperforms Android’s TB
JIT by almost a factor of 4 in such computation-intensive
applications. MB JIT compilers are expected to outperform
simple TB JIT compilers on such computations but the huge
difference in performance is mainly due to LLVM’s advan-
tages previously mentioned in section 4.2.

5.3 Memory Overhead
Our proposed hybrid JIT compiler framework transforms

complete methods into a faster native version, but in doing
so requires more memory than a TB JIT compiler which
would only translate a subset of the method’s instructions.
This compilation of both hot code and cold code in meth-
ods is also the reason why compiling methods takes longer
than compiling traces, which consist only of the hot code.
The memory overhead in which we incur by compiling whole
methods is proportional to the amount of instructions each
compiled method contains. Figure 6 shows both the TB JIT
and hybrid JIT compilers and their memory usage behavior
throughout one of our tests. The memory usage of the hy-
brid JIT is made up of its native heap and compiled meth-
ods, both shown on the graph. As is expected, compiling
methods is costly and therefore has to be done smartly and
sparingly. This reaffirms the importance of our framework’s
profiler having to be tuned in order to provide good perfor-
mance without having to exhaust the system’s resources. It
also confirms that the decision to keep the default TB JIT
compiler as the base JIT compiler for a hybrid framework is
the best idea for a resource constrained device.

Figure 6: Hybrid versus trace-based JIT memory
overhead (Hybrid Total Memory is the sum of its
Native Heap and Compiled Methods)

6. RELATED WORK
During Google I/O 2010 [6], Google announced that the

TB JIT they now provide for Android was only the ini-
tial step towards improving their application platform. The
compiler’s code reveals hints that plans for extensions to-
wards making the trace analysis include complete methods
have been considered, and the outline for a basic MB com-
piler is also laid out but not fully implemented. Their pro-
posed MB compiler scheme includes an SSA transformation
stage, register allocation as well as translation phases to
two intermediate representations before generating native
instructions (all of which LLVM provides to our proposed
framework without the need for more than one intermediate
representation). Google also fathomed the idea of both JIT
types coexisting in Android but there have been no further
comments or developments on this project.

Other authors have tried to compare mature MB compil-
ers with their own TB JIT compilers [18] but haven’t done
so in a resource constrained environment. Nor have they
measured a limited TB JIT’s capabilities versus a MB JIT.
The cooperation between a limited TB compiler, like the one
provided by Google for the DVM, and our proposed MB JIT
delivers a speed boost quickly after starting an application
and replaces slow, hot methods with fast and optimized na-
tive ones after they have been invoked a few times. It does so
without having to compile all the DEX code and whithout
replacing Android’s TB JIT as the base JIT compiler be-
cause it is more mature in the Android operating system. It
is also worth mentioning that the work by Inoue et al. [18]
does talk about a TB compiler and its advantages over a
regular MB one but refers to a compiler that has the abil-
ity to analyze traces that span more than one method and
therefore is not comparable to our study.

6.1 Disassemblers
There are many tools available for the disassembly of DEX

code or complete Android packaged applications into text
files containing DEX source code. Most of them read the
dex file format and obtain all the strings from the constant
pool and the opcodes for each instruction in order to con-
struct a stream of human readable dex code. Smali and
Baksmali [19] as well as Android’s DexDump [12] tool are
some of the most popular. Baksmali can even be used to
reconstruct an application from modified DEX source files.
However, all of these tools go through an unnecessary step
by transforming DEX opcodes into readable text, which our

47

compiler does not need, and therefore are not suited for a
fast DEX IR to LLVM IR transformation like the one we
implemented.

DEX disassembler programs are able to output human
readable code after parsing DEX code. Disassembler ap-
plications are similar to our DEX to LLVM IR translator
because they also decode DEX code and transform it into
another format, plain text. Understanding of the DEX code
format is necessary to be able to read the instructions cor-
rectly from the DEX file, be able to group them using a
common format and finally translate them (a similar pro-
cess is used by the DexDump tool).

6.2 Method-Based Compilers
The Icing Ahead-Of-Time-Compiler [35] provides a fairly

good attempt at profiling the Dalvik VM’s behavior and
determining which methods are better off being completely
native instead of just having traces compiled. Our profiling
model is based on parts of their work, such as the avoidance
of excessive environment jumping and attempting to access
object fields directly from object pointers. However, the
impasses prompted by the use of the Java Native Interface
are no longer present in a run time compiler and cooper-
ation with the TB JIT compiler makes it possible for eas-
ier method inlining and a more accurate decision on which
methods can be considered hot.

6.2.1 Zero and Shark

Zero and Shark [5] are an implementation of a Java Vir-
tual Machine using zero architecture dependent code. The
project aimed at delivering a more portable version of the
Virtual Machine that could be used by Linux on other ar-
chitectures besides x86. This zero-machine code OpenJDK
port is profiled by a MB JIT that works on top of the LLVM
framework. Shark, the JIT compiler, has dealt with all the
issues involved with plugging a JIT into a Java VM. Most
issues include dealing with the Garbage Collector and the
way references are deemed unused. Our work takes some
ideas from their implementation, but the Dalvik VM inter-
nals differ a lot from regular Java virtual machines, and so
most of their insights are not of much use for the Android
application platform.

6.3 Combined JIT Frameworks
Most attempts at combining both trace and MB JIT com-

pilers have been on the field of JavaScript engines. During
the past few years most web browser companies have devel-
oped a fairly good combination of a quick MB JIT compiler
to avoid having to interpret, sometimes at all, and a slower
TB compiler that applies aggressive optimizations and is
supported by run time information to replace initially com-
piled code with several versions of heavily optimized traces.
Our approach is quite different since we propose the MB JIT
compiler to be the one with heavy optimization settings and
leave early speed boosts up to Android’s TB JIT compiler,
the latter providing a few optimization considerations but
not as complete as static compilers and others have to offer.

The work by Lee et al. [23] provides good insight regard-
ing whether JavaScript engines should put so much effort
into compiling all the script to avoid interpretation. Bench-
mark software exhibit many opportunities for hot traces to
be compiled into extremely efficient native code but real web
pages’ JavaScript code does not necessarily contain so many

instructions being called again and again. Their work con-
cludes that a good interpreter matched with a JIT compiler
that is used only when the situation really calls for it, is
often better than trying to compile everything. Google has
already adopted this idea with their quick interpreter being
optimized only when necessary by their TB JIT. Addition-
ally, our hybrid framework builds on top of the same idea by
compiling methods only when certain conditions are met.

6.3.1 Chrome’s V8

Google’s JavaScript execution engine V8 [15] translates
most of the script into native code as soon as it is down-
loaded. The JavaScript is translated using a MB compiler
initially. It then uses a TB JIT to optimize the code being
executed so that loops, and run time observed types can be
used to compile faster versions of portions of the code.

6.3.2 JaegerMonkey

Firefox’s mature JavaScript execution engine, SpiderMon-
key, has been upgraded to TraceMonkey and more recently
to JaegerMonkey [26] to allow the code to enjoy an initial
quick boost from the MB JIT. The TB JIT then applies late
improvements to hot loops and other traces with additional
run time information.

7. CONCLUSIONS
First and most importantly, this work proves that a lim-

ited TB JIT compiler is still no match for a robust MB JIT
such as the one provided by the LLVM compiler framework.
More specifically, most advantages one could achieve by fa-
voring the implementation of a TB JIT over a MB one are
minimized by the properties of DEX code, which can be
”lazily” transformed back into a typed representation. Al-
though type specialization and various versions of optimized
code might not be good optimization approaches for DEX
code, it turns out that the TB JIT works really well for con-
siderably long loops, especially if the trace does not invoke
other methods. Other DEX code properties might later be
studied to reveal further optimization opportunities avail-
able to either JIT compiler type.

7.1 JIT Type Comparison
Dalvik’s TB JIT compiler achieves performance boost quickly

by compiling instruction sequences that are being called too
often, hot traces. When possible, it inlines small methods
being invoked by the instructions contained in the trace.
In contrast, the MB JIT compiler we designed is capable
of compiling most methods, as long as they pass the pro-
filing steps. The compiler is able to apply optimizations
regarding the ”liveness” of variables and other optimization
techniques that are only possible because the whole method
is being taken into consideration. Further transformations
similar, if not the same as, GCC’s O3 and O2 battery of
optimizations [8], are also available to our MB JIT compiler
through LLVM’s clang [3] and jello [21] projects. Although
our MB JIT does incur on more memory usage than a ba-
sic TB JIT, and the average compilation time for a method
might be up to one-hundred (100) times that of a small trace,
when hot methods are chosen correctly (and this can be fine-
tuned depending on the platform system), performance can
be greatly improved.

48

7.2 JIT Behavior
From our tests we have also come to the conclusion that

both TB and MB JIT compilers become idle after an appli-
cation has been executing for some time. A benchmark is
a good example of this situation, when the same methods
are ran several times and not much changes between runs.
We believe this idle time can be used for further aggressive
optimizations and even some unsound optimizations, as cat-
egorized by Guo and Palsberg [16], could be attempted in
order to increase the execution speed of the program un-
der the current observed state as long as a side-exit [10] is
made available. The previously described behavior could
be proposed for devices that are currently connected to a
fixed power source, and therefore in a state where further
resource usage can be afforded without compromising the
battery’s life. Google had proposed the introduction of a
dynamically adjustable profiling approach [6], but right now
Dalvik’s JIT’s behavior does not adapt much to the hard-
ware’s state.

7.3 Relevance
Our proposed hybrid JIT compiler takes ideas from what

current web browsers are trying to do to speed up the inter-
pretation of a scripted language. Java and .NET technolo-
gies, however, do not output a script but instead transform
code into an intermediate representation, which could be
stack or register based and that is easily transformed into
machine code by the respective implementations of their vir-
tual machines for all the architectures they support. Each
intermediate representation has been conceived with specific
features that may allow a TB or MB JIT to compile it easily
into native code. As we have proven in our work, hybrid JIT
compilers can be easily tuned depending on how fast perfor-
mance gain is needed and code behavior. Although our test
platform is a resource constrained device running an An-
droid operating system, different systems run programming
languages that are stored as intermediate representations
and so these systems could possibly benefit from the inclu-
sion of a similar tool.

8. PROJECT STATUS AND FUTURE WORK

8.1 Tool Status
Many methods have been successfully compiled using our

MB JIT but not all methods can be successfully emitted into
memory as native instructions by LLVM’s current JIT. All
previous phases (namely translation, transformations and
optimizations) are completed correctly and promptly but
the JIT’s support for ARM is limited and probably buggy
or broken in some parts. To overcome this problem with
some methods the profiler indicated had to be processed by
the MB JIT, we were forced to execute the last step (compil-
ing from assembler to native code) manually using LLVM’s
static compiler. The LLVM team is currently working on a
new version of the compiler, MCJIT [2], and will deprecate
the current JIT framework.

Our framework also supports memory petitions to the
Dalvik VM from MB JIT compiled code, and therefore re-
quires that we handle garbage collection in an efficient man-
ner. We currently yield to the garbage collection thread
every time we have a request for virtual machine managed
memory. This is necessary because the Dalvik VM does not

pause threads running on native mode to allow garbage col-
lection. If we did not yield at this moment an interpreted
heap memory request might be denied because of yet uncol-
lected garbage, even if there is unused memory. This tech-
nique, however, is an overly simplistic solution. Since the
benchmarks used to measure the performance of our frame-
work did not result on compilation of memory requests, fur-
ther testing of our approach to manage native and the vir-
tual machine’s memory has to take place before being able
to conclude anything relevant on the matter.

8.2 Future Work
There are many other benchmark applications available in

Android’s application market that can be tested to get more
conclusive results on how TB and MB JIT compilers behave.
There are even different versions of the CaffeineBenchmark
which include image, graphics and other tests which are not
included in the version used for our experiments [7]. More-
over, the effect of using our hybrid JIT approach on real
applications, apart from benchmarks, is still unknown. In
order for further tests to be conducted more DEX opcodes
have to be translated into LLVM bitcode.

Although the cooperation between both types of JIT com-
piler has been shown to improve performance and each one
has covered many of the other’s weaknesses, these compilers
are far from finished. Google’s TB JIT for the Dalvik VM
still lacks support for traces spanning through more than one
method. The implementation of this feature would mean
that the profiling model proposed in section 3.2 would have
to be reevaluated. The TB JIT could also be extended to
profile MB JIT compiled code and attach optimized versions
of hot traces inside hot methods as was proposed by Bala
et al. [4]. This extension to the TB JIT could work on
top of a native version of the method as well as its original
DEX code. In this case the TB JIT would also be able to
inline native code invocations, like those done through the
Java Native Interface, which previous work on the Dynamo
project [4] indicate would increase performance.

Another possibility for future comparisons would be split-
ting the compiler thread into a MB JIT thread and a TB JIT
thread. This would probably result in optimized compiled
methods being delivered earlier but would definitely make
it more difficult to avoid the problem of compiling a trace
only to later compile the whole method. Finally, we pro-
pose testing different methods of communication between
the interpreted and native parts of the code. Google has
already designed Renderscript [34] with a parallel thread
in charge of the execution of the compiled script and As-
ghar et al. also describe an alternative way, A-JUMP [1] for
parallel applications using multiple programming languages.
Such techniques could reduce the amount of time wasted in
environment jumps and would allow both environments to
communicate more often without having to avoid it for per-
formance’s sake [20].

9. REFERENCES

[1] S. Asghar, M. Hafeez, U. A. Malik, A. ur Rehman,
and N. Riaz. A-jump, architecture for java universal
message passing. In Proceedings of the 8th
International Conference on Frontiers of Information
Technology, FIT ’10, pages 34:1–34:6, New York, NY,
USA, 2010. ACM.

49

[2] C. S. D. at the University of Illinois at
Urbana-Champaign. The llvm target-independent
code generator.
http://llvm.org/docs/CodeGenerator.html#mc, 16
January, 2012.

[3] C. S. D. at the University of Illinois at
Urbana-Champaign. clang: a c language family
frontend for llvm. http://clang.llvm.org/, 2012.

[4] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a
transparent dynamic optimization system. SIGPLAN
Not., 35(5):1–12, May 2000.

[5] G. Benson. Zero and shark: a zero-assembly port of
openjdk. http://today.java.net/pub/a/today/
2009/05/21/zero-and-shark-openjdk-port.html,
2009.

[6] B. Cheng and B. Buzbee. A jit compiler for android’s
dalvik vm. http://dl.google.com/googleio/2010/
android-jit-compiler-androids-dalvik-vm.pdf,
2010.

[7] P. S. Corporation. Caffeinemark 3.0 benchmark.
http://www.benchmarkhq.ru/cm30/, 1997.

[8] I. Free Software Foundation. Gcc, the gnu c compiler.
http://gcc.gnu.org/, 05 March, 2012.

[9] I. Free Software Foundation. Gcj - the gnu compiler
for the java programming.
http://gcc.gnu.org/java/, 2012.

[10] A. Gal, B. Eich, M. Shaver, D. Anderson,
D. Mandelin, M. R. Haghighat, B. Kaplan, G. Hoare,
B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith,
R. Reitmaier, M. Bebenita, M. Chang, and M. Franz.
Trace-based just-in-time type specialization for
dynamic languages. SIGPLAN Not., 44:465–478, June
2009.

[11] N. Geoffray, G. Thomas, C. Clément, and B. Folliot.
A lazy developer approach: building a jvm with third
party software. In Proceedings of the 6th international
symposium on Principles and practice of programming
in Java, PPPJ ’08, pages 73–82, New York, NY, USA,
2008. ACM.

[12] Google. Android developer tools. http://developer.
android.com/guide/developing/tools/index.html,
2007.

[13] Google. Google android - an open handset alliance
project. http://code.google.com/android/, 2008.

[14] Google. Galaxy nexus.
http://www.google.com/nexus/, 2011.

[15] Google. V8 javascript engine.
http://code.google.com/p/v8/, 2011.

[16] S.-y. Guo and J. Palsberg. The essence of compiling
with traces. SIGPLAN Not., 46(1):563–574, Jan. 2011.

[17] T. IEEE and T. O. Group. Posix.1-2008: The open
group base specifications issue 7. http:
//pubs.opengroup.org/onlinepubs/9699919799/,
2001 - 2008.

[18] H. Inoue, H. Hayashizaki, P. Wu, and T. Nakatani. A
trace-based java jit compiler retrofitted from a
method-based compiler. In Code Generation and
Optimization (CGO), 2011 9th Annual IEEE/ACM
International Symposium on, pages 246 –256, april
2011.

[19] JesusFreke. smali/baksmali: An assembler for

android’s dex format.
http://code.google.com/p/smali/, 2009.

[20] D. Kurzyniec and V. Sunderam. Efficient cooperation

between java and native codes âĂŞ jni performance
benchmark. In In The 2001 International Conference
on Parallel and Distributed Processing Techniques and
Applications, 2001.

[21] C. Lattner, M. Brukman, and B. Gaeke. Jello: a
retargetable just-in-time compiler for llvm bytecode,
2002.

[22] C. A. Lattner. Llvm: An infrastructure for multi-stage
optimization. Technical report, 2002.

[23] S.-W. Lee and S.-M. Moon. Selective just-in-time
compilation for client-side mobile javascript engine. In
Proceedings of the 14th international conference on
Compilers, architectures and synthesis for embedded
systems, CASES ’11, pages 5–14, New York, NY,
USA, 2011. ACM.

[24] A. Ltd. Arm: Floating point architecture.
http://www.arm.com/products/processors/

technologies/vector-floating-point.php, 2012.

[25] J. McCarthy. Recursive functions of symbolic
expressions and their computation by machine, part i.
Commun. ACM, 3(4):184–195, Apr. 1960.

[26] Mozilla. Jaegermonkey.
https://wiki.mozilla.org/JaegerMonkey, 2010.

[27] S. Oaks and H. Wong. Java Threads. O’Reilly Media,
Inc., 2004.

[28] Oracle. Java se specifications.
http://docs.oracle.com/javase/specs/, 2012.

[29] Oracle. Openjdk’s hotspot vm.
http://openjdk.java.net/groups/hotspot/, 2012.

[30] Oracle. Oracle. http://www.java.com/en/about/,
2012.

[31] V. K. Polychronis. Benchmarkpi - android
benchmarking tool. http://androidbenchmark.com/,
2009.

[32] T. A. Proebsting, G. Townsend, P. Bridges, J. H.
Hartman, T. Newsham, and S. A. Watterson. Toba:
Java for applications - a way ahead of time (wat)
compiler. In In Proceedings of the 3rd Conference on
Object-Oriented Technologies and Systems, pages
41–53, 1997.

[33] T. A. O. S. Project. Dalvik optimization and
verification with dexopt. http://www.netmite.com/
android/mydroid/dalvik/docs/dexopt.html, 2008.

[34] G. Tim Bray. Renderscript.
http://android-developers.blogspot.com/2011/

02/introducing-renderscript.html, 09 February,
2011.

[35] C.-S. Wang, G. Perez, Y.-C. Chung, W.-C. Hsu,
W.-K. Shih, and H.-R. Hsu. A method-based
ahead-of-time compiler for android applications. In
Proceedings of the 14th international conference on
Compilers, architectures and synthesis for embedded
systems, CASES ’11, pages 15–24, New York, NY,
USA, 2011. ACM.

50

