
An Efficient Programming Paradigm for Shared-Memory  
Master-Worker Video Decoding on TILE64 Many-Core Platform 

Xuan-Yi Lin*    Kuan-Chou Lai†    Shau-Yin Tseng     Kuan-Ching Li‡    Yeh-Ching Chung* 

* Department of Computer Science 
National Tsing Hua University 

Hsinchu, Taiwan 
{xylin, ychung}@cs.nthu.edu.tw 

 Information & Communications Research Laboratories 
Industrial Technology Research Institute 

Hsinchu, Taiwan 
tseng@itri.org.tw 

† Department of Computer Science and Information Science 
National Taichung University of Education 

Taichung, Taiwan 
kclai@mail.ntcu.edu.tw 

‡ Department of Computer Science and Information Engineering 
Providence University 

Taichung, Taiwan 
kuancli@pu.edu.tw 

 
 

Abstract— The ubiquity of many-core architectures brings 
challenges in making scalable application software, changing 
dramatically from the way applications are traditionally 
developed. Optimization of programs for many-core platforms 
is a multifaceted problem, where system and architectural 
factors should be taken into consideration. In this paper, we 
attack the problem on the aspect of programming paradigm. 
We propose a hybrid producer-write plus consumer-read 
shared-memory programming paradigm for implementation of 
a master-worker video decoder on the TILE64 many-core 
platform. To evaluate the scalability and performance benefits 
of different programing paradigms, a Motion JPEG decoder is 
parallelized using master-worker structure and implemented 
with combinations of consumer-read programming and 
producer-write programming. Experimental results show that 
the proposed implementation obtained competitive 
performance speedup, scaling well with number of available 
cores and up to 4 times performance improvement over other 
implementations on the decoding of a 1080P video. 

Keywords-many-core; producer-consumer; master-worker; 
shared memory; programming paradigm; TILE64 

I.  INTRODUCTION 
With rapid industry development of many-core 

architectures, mass-produced processors now contain tens to 
hundreds of cores in a single chip [1]. While the trend of 
processor manufacturing is to increase the number of cores 
rather than clock frequency [2, 3], software developers can 
no longer rely on the so called "free lunch" [4] that 
automatically makes existing programs run faster on 
processors clocked at higher frequencies. 

In order to make performance of a program scale well 
with the number of available cores on a many-core platform, 
existing software needs to be modified or re-written from 
ground up [5, 6, 7, 8, 9]. Efforts involving parallelization of 
an application are twofold, known as design and 
implementation. The former is about finding concurrency in 
the given application and to derive algorithms and program 
structures to make it run faster, while the latter is about 

utilization of available programming resources on the 
designated parallel platform to realize the designed algorithm 
and structure. The available programming resources include 
programming language, programming paradigm, APIs, 
among others. 

Due to the flexibility of available options, there may be 
possible multiple implementations for a single design, so 
performance and scalability characteristics of completed 
applications may vary with different implementations. Thus, 
it is important to set guidelines for developers to follow in 
order to produce better programs on a given platform. The 
purpose of this paper is to discuss and demonstrate how 
programming paradigm correlates with issues in 
performance and scalability of software implementations on 
a many-core platform. 

Master-worker structure is often adopted as design of an 
application when there is need to dynamically balance 
workloads among a set of available processors [10, 11]. 
There are two parts in a master-worker system where 
communications take place between master and worker 
processes. The former is task distribution and the latter is 
result collection. In the task distribution part, master process 
generates a set of workloads and distributes tasks to worker 
processes, here the master process can be seen as a producer 
process and worker processes can be seen as consumer 
processes. In the result collection part, the master process 
collects computation results made by worker processes, here 
the worker processes can be seen as producer processes and 
the master process can be seen as a consumer process. 
Efficient handling of the communications between master 
and worker processes is required to develop a high-
performance system. 

TILE64 is a family of general purpose many-core 
processors [12], containing 64 identical cores connected by 
an on-chip network. In their publication [13], Tilera suggests 
that programmers can implement applications in a way such 
that producer processes always write data directly into 
memory addresses shared by consumer processes to avoid 
unnecessary cache coherent traffics on the memory network. 
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There are also literatures discussing scalability issues on 
many-core processors featuring on-chip networks or multiple 
memory controllers [14, 15, 16]. In our previous work [17], 
we have shown that it is necessary to consider the memory 
hierarchy and on-chip networks in order to develop high 
performance applications on the TILE64 platform. We have 
also shown that program performance and scalability can be 
very different between two implementations of an equivalent 
functionality. The problem is how to choose better 
implementation options without going through a time-
consuming trial and error sessions. 

In this paper, we further explore the problem by defining 
two different styles of programming paradigms, consumer-
read programming and producer-write programming, and to 
propose a hybrid producer-write plus consumer-read shared-
memory programming paradigm for implementation of a 
master-worker video stream decoder on the TILE64 many-
core platform. We implement task distribution and result 
collection in the master-worker system with combinations of 
producer-write programming and consumer-read 
programming. Experimental results show that for a Motion 
JPEG decoder, implementation based on producer-write task 
distribution and consumer-read result collection exhibits best 
performance and scalability for all given workloads with 
different video frame sizes. When decoding a 1080P video 
stream, the hybrid producer-write plus consumer-read 
decoder runs up to 4 times faster compared to other 
implementations. 

This paper brings the following contributions. It 
identifies two shared-memory programming paradigms for a 
many-core platform, consumer-read programming (CRP) 
and producer-write programming (PWP), that shows the 
way a master-worker stream processing system can be 
implemented using CRP and PWP, as also detailed 
performance comparisons between implementations of a 
master-worker video decoder using CRP and PWP and 
suggests that the hybrid producer-write plus consumer-read 
paradigm best suits this application on the TILE64 platform. 

The rest of this paper is organized as follows. Section II 
provides background knowledge of TILE64 processor 
architecture and the basics of how to implement shared-
memory communication between two processes on TILE64. 
In Section III, a master-worker stream processing system is 
described. Section IV introduces the CRP and PWP and 
variations of shared-memory implementations of a master-
worker stream processing system. In Section V, we 
implement a parallel Motion JPEG decoder with proposed 
programming paradigms and compare performance of the 
implementations. Concluding remarks of this work are given 
in Section VI. 

II. PRELIMINARIES 

A. The TILE64 Processor 
The TILE64 processor is a 64-core many-core processor 

featured as an array of 64 identical processor cores (each 
referred to as a tile) interconnected via on-chip two-
dimensional mesh networks [18]. The TILE64 is fully 
programmable using standard ANSI C under Linux 

environment, including a set of proprietary APIs called iLib. 
The iLib library supports two communication mechanisms, 
shared memory and distributed memory, for processes 
running on different cores to communicate with each other. 
So, software developers can make use of both 
communication primitives in an application program. In this 
paper, when we refer to a process, we mean a process that is 
bound to and running on a tile. A tile runs one process at any 
given time. A process bound to a tile at the initialization 
period will keep running on the same tile to its end of life. 
This fashion is similar to the execution of MPI programs. 

Fig. 1 illustrates the architecture overview of a TILE64 
processor. There are four memory controllers located at the 
four corners of a processor array, providing accesses to an 
external memory system that is accessible by all tiles. The 
interface to on-chip memory networks provides access both 
to L2 caches of other tiles and to external memory. 

B. Shared Memory Communication on TILE64 
Shared memory communication allows each process in a 

parallel application to load/store values from/to a globally 
visible region of memory. Each process in the application 
can access any object in shared memory at any time. Access 
to shared memory objects must be synchronized to prevent 
inconsistent states [19]. Data inconsistencies happen when 
multiple processes are storing values to identical memory 
address at the same time without proper synchronization. 

Both the Linux and iLib programming environments 
provide tools for allocating and synchronizing accesses to the 
shared memory. Linux allows programs to allocate and 
synchronize using the standard Unix shared memory and 
pthreads APIs, while iLib supports a special function for 
shared memory allocation, malloc_shard() as well as an 
implementation of a pthreads-style mutex lock. To use iLib 
to implement shared memory mechanisms in a program, the 
process which shares information can call the 
malloc_shard() function to get an address pointing to a block 
of shared memory. Then the process notifies other processes 
the location of shared memory by sending them messages 
containing this address. 

Fig. 2 shows an example on the use of iLib to create an 

 
Figure 1.  TILE64 processor architecture overview. 
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integer object shared between 2 processes, while Fig. 3 
depicts the corresponding codes within processes 0 and 1. 

⎯ There are two cores, each of which executes one 
process, 

⎯ Process 0 allocates a region of memory to hold one 
integer using malloc_shared(), 

⎯ The malloc_shared() function returns a value x, 
which is the address of the shared integer. The value 
of x is stored in an integer pointer p in process 0, 

⎯ Process 0 sends content of p to process 1, 
⎯ Process 1 stores this address with integer pointer q. 
After above initialization process, both processes 0 and 1 

will be able to load from and store to this shared integer in 
the same way as normal variables. Any update to *q made by 
process 1 can be seen by process 0 using *p, and back and 
forth is also valid. 

Because the malloc_shared() function is called by 
process 0, the shared memory region starting at x is said to 
be homed on core 0. 

III. MASTER-WORKER STREAM PROCESSING 
A stream processing application is a program that takes a 

data stream as input, performs operations upon that input 
stream and then outputs another processed data stream [20, 
21, 22, 23, 24]. Data streams might carry any kind of 
information, making there a huge diversity between stream 
processing applications. Video stream processing 
applications refer to those which data streams are used to 
carry video data. Some examples of such applications are 
video encoders, decoders, and transcoders. These 
applications transform video streams from one format to 
another. Other examples of video stream processing 
applications are image processing and pattern recognition 

ones, such as video labeling, object detection and object 
tracking applications. These applications retrieve information 
from input video streams then attach the information to 
output video streams. 

Given a data stream to be processed by a stream 
processing application, assume that the stream can be 
divided into n sequenced fragments that can be 
independently processed and outputted. The input data 
stream can be represented as a set of sequenced data items, 
fi1 to fin, and the output data stream is represented as fo1 to 
fon. Assume that the application is run on a processor, each 
fragment takes time tn to be processed from input format to 
output format. The total time needs to process all fragments 
in the stream would be: 

ti1

n�  

The ideal case of processing such data stream using p 
processors would be similar to the one shown in Fig. 4. In 
such ideal case, t1 = t2 = … = tn and n is an exact multiple of 
p. This leads to a perfect speedup of p, though unfortunately 
barely impossible to existing real world applications. In 
reality, it may take variable amount of time to process 
different data fragments, and n is commonly not an exact 
multiple of p. In addition to that, even if the input data can be 
concurrently processed, the output data should be sequenced 
to guarantee the correctness of output stream. 

One way to speed up data stream processing applications 
on multiple processors is to use a master-worker scheme as 
underlying parallelization structure. The master-worker 
scheme is a parallel skeleton for task pools with dynamic 
task distribution, what is particularly useful under the 
situation when there is a set of tasks to be done and 
completion times for each task are either unknown or vary a 
lot from task to task. 

A master-worker system consists of a master process 
managing a set of worker processes. The master process 
distributes tasks to a set of subordinate worker processes and 
later collects computed results. There are two task pools in a 
master-worker system, the pool of pending tasks and the pool 
of completed tasks. Master process distributes tasks by filling 
data into the pool of pending tasks, and worker processes 
then fetch data from this pool to perform tasks. Once a 
worker finishes a task, the worker process fills the result to 
the pool of completed tasks. The master process then fetches 
results from the pool of completed tasks and outputs the 
results. 

Fig. 5 illustrates a master-worker stream processing 
system that consists of one master process and 4 worker 
processes. The master process reads in the input stream and 

Figure 2.  Sharing of an integer between two processes. 

Figure 3.  Code snippets of process 0 and process 1  
to create a shared integer. 

( )1

n
it p�  

Figure 4.  Perfect task scheduling of stream processing on 4 processors. 

Process 0 
int *p; 

p=(int *)malloc_shared(sizeof (int)); 
ilib_msg_send(GROUP, /* group */ 

1, /* rank */ 
MESSAGE_TAG, /* tag */ 
&p, /* buffer */ 
sizeof(p)); /* size */ 

Process 1 
int *q; 

ilib_msg_receive(GROUP, /* group */ 
0, /* rank */ 
MESSAGE_TAG, /* tag */ 
&q, /* buffer */ 
sizeof(q), /* size */ 
&status); /* status */ 
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divides the input stream into smaller chunks of data that can 
be independently processed. Each of these chunks can be 
seen as a pending task that is then transferred into the pool of 
pending tasks by the master process. Once initialized, all 
worker processes in this system keep monitored the pool of 
pending tasks and see if there are present workloads. If such 
pool is not empty, any worker that is available can fetch 
(drain) a task from the pool and start to process it. Once 
completed such execution, it fills the pool of completed tasks 
with the results of current task. In the meanwhile, the master 
process monitors the pool of completed tasks and checks its 
status. Since completed tasks arrive in arbitrary order, master 
process keeps an output sequence counter. The counter is 
used to select the next completed task form the pool with 
correct sequence number to be output to the output stream. 

Algorithm 1 shows the pseudo code of a master-worker 
stream processor. 

A. Process Roles in a Master-Worker System 
There are two parts in a master-worker system where 

communications take place between master and worker 
processes, namely task distribution and result collection. 
Each of these parts involves the handling of a task pool. In 
the task distribution part, master and worker processes work 
together to manipulate the pool of pending tasks, while in the 
result collection part, master and worker processes work 
together to manipulate the pool of completed tasks. 

During the progress of task distribution, master process 
can be seen as a producer process and worker processes can 
be seen as consumer processes. This part is essentially one-
to-many communication. On the other hand, in the progress 
of result collection, worker processes can be seen as 
producer processes and master process can be seen as a 
consumer process. This part is essentially many-to-one 
communication. 

Fig. 6 shows the timing diagram of a master-worker 
stream processor featuring one master process and 4 worker 
processes. Note that synchronization overheads are 
introduced in both task distribution and result collection parts 
of the system. Programming paradigm used to implement the 
fill() and drain() functions have direct influences on these 
synchronization overheads, which further shapes the 
performance and scalability characteristics of the 
implemented system. 

To focus on observation and comparison of performance 
impacts of shared memory programming paradigm, we use a 
flat master-worker structure rather than a hierarchical one. In 
this paper, the flat master-worker structure contains only one 
master process. 

Figure 5.  Illustration of a master-worker stream processor. 
Figure 6.  Synchronization overheads in a master-worker stream 

processing system. 
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IV. SHARED-MEMORY PROGRAMMING PARADIGMS  
FOR THE TILE64 PLATFORM 

In this section, we introduce two shared-memory 
programming paradigms: the consumer read programming 
(CRP) and the producer write programming (PWP), as also 
show how CRP and PWP are used to implement shared-
memory communication in a master-worker system on the 
TILE64 platform. 

On the TILE64 platform, communication between two 
processes by using shared-memory mechanisms can be 
achieved by allowing a process to allocate a block of shared 
memory and then exchange the address of shared memory 
with another process. The steps involved in creating shared 
memory between processes are detailed in subsection II.B. 
All participating processes in the data communication are 
able to directly load value from or store value to the 
specified shared memory addresses, what provides flexibility 
of implementation. 

By considering the scenario of implementing shared-
memory communication between a producer process and a 
consumer process on the TILE64 platform, shared memory 
can be allocated by either producer process or consumer 
process. These two fundamentally different choices are the 
basis of CRP and PWP. 

A. Consumer Read Programming 
When producer process sends data to a consumer 

process, it writes the data into memory address shared by the 
producer process itself. Consumer process then reads the 
data from this shared address. The term consumer read 
implies the action of "consumer reads data from producer 
shared memory." 

Fig. 7 depicts the initialization of CRP, where producer 
process allocates a region of shared memory to 
accommodate shared objects. Producer process then notifies 
consumer process the location of shared memory, so that 
producer checks and fills the shared memory if it is not full. 
Consumer keeps checking the content in the shared memory 
and consumes it if the shared memory is not empty. 

B. Producer Write Programming 
When a producer process sends data to a consumer 

process, it writes the data into memory address shared by the 
consumer process. The term producer write implies the 
action of "producer writes data to consumer shared 
memory." 

In Fig. 8, consumer process allocates a region of shared 
memory to accommodate shared objects. Similarly to above 
discussion, consumer process then notifies producer process 
the location of shared memory, and producer checks and fills 

the shared memory if it is empty. Consumer keeps checking 
the content in the shared memory and consumes it if the 
content is valid. 

C. Implementation of Master-Worker System using CRP 
and PWP 
There are multiple ways of using iLib shared-memory 

primitives to implement a master-worker stream processing 
system as described in Algorithm 1. The major difference is 
on the implementation of the two functions, drain() and fill(). 
These two functions are essential to the manipulation of the 
two task pools. Depending on the shared-memory 
programming paradigm used, the two pools of tasks can 
reside in memory addresses shared by either master process 
or worker processes. 

The pool of pending tasks can be implemented using 
either CRP or PWP, so is the pool of completed tasks. The 
implementation algorithms are given in Algorithm 2 to 4. 
This gives us 4 master-worker system combinations: 

1) CRP+CRP: Using CRP to implement both pools. 
The pool of pending tasks resides in memory shared by 
master process. And all of the worker shared memory 
combined together forms the pool of completed tasks. This 
combination is in fact implementation of a centralized pool 
of pending tasks and a distributed pool of completed tasks. 

2) CRP+PWP: Using CRP to implement pool of 
pending tasks and using PWP to implement pool of 
completed tasks. Both pool of pending tasks and completed 
tasks reside in memory shared by master process. This 
combination is in fact implementation of a centralized pool 
of pending tasks and a centralized pool of completed tasks. 

3) PWP+CRP: Using PWP to implement pool of 
pending tasks and using CRP to implement pool of 
completed tasks. Both pool of pending tasks and completed 
tasks are actually shared memory blocks distributed among 
all workers processes. This combination is in fact 
implementation of a distributed pool of pending tasks and 
distributed pool of completed tasks. 

4) PWP+PWP: Using PWP to implement both pools. 
And all of the worker shared memory combined together 
forms the pool of pending tasks, and the pool of completed 
task resides in memory shared by master process. This 
combination is in fact implementation of a distributed pool 
of pending tasks and centralized pool of completed tasks. 

V. EXPERIMENTAL RESULTS 
We have modified an open source Motion JPEG decoder 

— MJPEG Tools [25], and made it a parallel decoder using 

Memory of Producer
private

Memory of Consumer
private

xp shared

vx

xq

 
Figure 7.  CRP illustration. 

Memory of Producer
private

Memory of Consumer
private

yp shared

vy

yq

 
Figure 8.  PWP illustration. 
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master-worker structure as described in Section III. Then, we 
designed and instrumented the shared memory between 
master and worker processes using the following 
combinations: CRP+CRP (R+R), CRP+PWP (R+W), 
PWP+CRP (W+R) and PWP+PWP (W+W), as described in 
subsection IV.C. 

A TILE64 hardware platform is used to conduct the 
performance evaluation. We ran the implemented decoders 
on a TILExpress-20G card, a TILE64 development platform 
featured with a TILE64 processor running at 700 MHz and 4 
GBs of DDR2-800 memory. 

Each of the decoders is setup to decode 4 videos files of 
different resolutions. Table I lists the video test files used. 
The files are placed in ram file system. Due to tiles located in 
the last row are reserved for system use and are not available 

to users when running programs on TILE64 hardware 
platform, the maximum number of tiles we used is 56 (8 
columns by 7 rows.) We measure decoder performance from 
2 tiles (1 master process and 1 worker process) to 56 tiles (1 
master process and 55 worker processes) to obtain a total of 
880 sets of timing data. We also collect 4 sets of sequential 
performance data to be the baseline for comparison. Table II 
shows the number of performance data sets collected 
between different configurations. 

A. Speedup and Efficiency 
Fig. 9 shows the speedup and efficiency results of the 4 

decoders on different testing cases. These data are obtained 
by recording time spent on main decoding loop in the 
decoder and then compared to the same code segment in an 
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unmodified, sequential version of the decoder. Since parallel 
versions contain at least one master process and one worker 
process, the minimum number of cores required to run these 
parallel decoders is 2. When the parallel decoders are 
running using 2 cores, only the core that acts as worker 
process is responsible for the decoding job. Therefore, 
speedup and efficiency of the decoders on 2 cores would be 
close to 1 and 0.5 respectively. 

The results show that the PWP+CRP implementation 
outperforms among all versions discussed in subsection 
IV.C. It can also be observed that the implementations can be 

separated into two groups by their speedup and efficiency 
characteristics. The R+R and W+R decoders, which are 
based on CRP result collection scales well when decoding 
1080P videos. But the R+W and W+W decoders cannot 
scale beyond 16 workers. 

B. Runtime Breakdown of Master Process 
While speedup and efficiency charts shown in Fig. 9 

provide overall performance summary, these two charts 
alone do not provide detailed information about processes 
themselves. Therefore, runtime breakdown charts are used to 
present these detailed information. 

Due to running time of a master process decreases with 
increasing number of available worker processes, we use the 
percentage chart to better illustrate time spent by master 
process. For worker processes, we show the summation of 
total clock cycles spent by all worker processes. This enables 
us to ping-point program scalability issues by observing how 
much time have the worker processes actually spent on 
certain parts of the system. 

Looking at Fig. 10, it is possible to identify the reasons 
why R+R and W+R do not scale well beyond 32 cores for 

 

TABLE I.  MOTION JPEG TEST FILES USED. 

File Name Format Resolution Frames 
deadline CIF 352×288 1374 
city 4CIF 704×576 600 
stockholm 720P 1280×720 604 
factory 1080P 1920×1088 1339 

TABLE II.  PERFORMANCE DATA SETS OBTAINED. 

Video Size Sequential Parallel 
Vanilla R+R R+W W+R W+W 

CIF 1 55 55 55 55 
4CIF 1 55 55 55 55 
720P 1 55 55 55 55 
1080P 1 55 55 55 55 
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CIF video decoding. The worker processes drain the pool of 
pending tasks at higher speed than the rate master process 
fills the pool. Observing both Fig. 10 and 11, they show that 
for implementations based on PWP result collection, time 
spent by worker process on filling the pool of completed 
tasks grows linearly with number of participating worker 
processors in the system, degrading overall performance in 
these cases. 

VI. CONCLUSION AND FUTURE WORK 
New generations of many-core processors bring higher 

performance within same or lower power envelope. This 
advantage comes with the price of complications to 
application programming. In this paper, we explore the 
design and implementation of a video decoder on the 
TILE64 platform. We design a master-worker structure for 
stream processing and propose two styles of shared memory 
programming paradigm—consumer read programming and 
producer write programming—for the TILE64 platform. 
Experimental results show that the CRP best suits 
implementation of result collection part in a master-worker 
Motion JPEG decoder while PWP performs better in the task 
distribution part. 

We demonstrate that implementation choices for a given 
design on a many-core system will directly impact the 
performance and scalability of a program. We plan to further 
explore this topic by applying CRP and PWP onto more 
complicated designs such as hierarchical master-worker 
structures. And we would also like to see how CRP and PWP 
fit with applications of different data patterns such as those 
on video encoders. 
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Figure 9.  Speedup and efficiency results of the 4 implemented decoders on 4 different video frame sizes. 
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Figure 10.  Runtime breakdown of CIF decoding. 
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Figure 11.  Runtime breakdown of 1080P decoding. 
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