
S. Wu, L.T. Yang, and T.L. Xu (Eds.): GPC 2008, LNCS 5036, pp. 116–127, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Using Moldability to Improve Scheduling Performance
of Parallel Jobs on Computational Grid

Kuo-Chan Huang1, Po-Chi Shih2, and Yeh-Ching Chung2

1 Department of Computer and Information Science
National Taichung University

No. 140, Min-Shen Road, Taichung, Taiwan
kchuang@mail.ntcu.edu.tw
2 Department of Computer Science

National Tsing Hua University
101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan

shedoh@sslab.cs.nthu.edu.tw, ychung@cs.nthu.edu.tw

Abstract. In a computational grid environment, a common practice is try to
allocate an entire parallel job onto a single participating site. Sometimes a
parallel job, upon its submission, cannot fit in any single site due to the
occupation of some resources by running jobs. How the job scheduler handles
such situations is an important issue which has the potential to further improve
the utilization of grid resources as well as the performance of parallel jobs. This
paper develops adaptive processor allocation methods based on the moldable
property of parallel jobs to deal with such situations in a heterogeneous
computational grid environment. The proposed methods are evaluated through a
series of simulations using real workload traces. The results indicate that
adaptive processor allocation methods can further improve the system
performance of a load sharing computational grid.

1 Introduction

This paper deals with scheduling and allocating independent parallel jobs in a
heterogeneous computational grid. Without grid computing local users can only run
jobs on the local site. The owners or administrators of different sites are interested in
the consequences of participating in a computational grid, whether such participation
will result in better service for their local users by improving the job turnaround time.
A common load-sharing practice is allocating an entire parallel job to a single site
which is selected from all sites in the grid based on some criteria. However,
sometimes a parallel job, upon its submission, cannot fit in any single site due to the
occupation of some resources by running jobs. How the job scheduler handles such
situations is an important issue which has the potential to further improve the
utilization of grid resources as well as the performance of parallel jobs.

Multi-site parallel execution [7~12] is a possible approach to this issue. Previous
research on homogeneous and heterogeneous grids has shown significant performance
improvement. However, multi-site parallel execution in heterogeneous grid environments

 Using Moldability to Improve Scheduling Performance of Parallel Jobs 117

might lead to inefficient resource usage because the portion of computation on faster sites
would finish earlier than those on slower sites but the faster sites’ resources wouldn’t be
released until the entire parallel computation comes to the end. This inefficiency could in
turn degrade the overall system performance. This paper develops adaptive processor
allocation methods based on the moldable property of parallel jobs. The proposed
methods are evaluated through a series of simulations using real workload traces. The
results indicate that the adaptive processor allocation method outperforms the multi-site
parallel execution approach and can further improve the system performance of a
heterogeneous computational grid.

2 Related Work

Job scheduling for parallel computers has been subject to research for a long time. As
for grid computing, previous works discussed several strategies for a grid scheduler.
One approach is the modification of traditional list scheduling strategies for usage on
grid [1~4].

England and Weissman in [5] analyzed the costs and benefits of load sharing of
parallel jobs in the computational grid. Experiments were performed for both
homogeneous and heterogeneous grids. However, in their works simulations of a
heterogeneous grid only captured the differences in capacities and workload
characteristics. The computing speeds of nodes on different sites are assumed to be
identical. In this paper we deal with load sharing issues regarding heterogeneous grids
in which nodes on different sites may have different computing speeds.

For load sharing there are several methods possible for selecting which site to
allocate a job. Earlier simulation studies in the literature [1, 6] showed the best results
for a selection policy called best-fit. In this policy a particular site is chosen on which
a job will leave the least number of free processors if it is allocated to that site.
However, these simulation studies are performed based on a computational grid
model in which nodes on different sites all run at the same speed. In this paper we
explore possible site selection policies for a heterogeneous computational grid. In
such a heterogeneous environment nodes on different sites may run at different
speeds.

In [7] the authors addressed the scheduling of parallel jobs in a heterogeneous
multi-site environment. They also evaluated a scheduling strategy that uses multiple
simultaneous requests. However, although dealing with a multi-site environment, the
parallel jobs in their studies were not allowed for multi-site parallel execution. Each
job was allocated to run within a single site.

The support of multi-site parallel execution [8~12] on a computational grid has
been examined in previous works, concerning the execution of a job in parallel at
different sites. Under the condition of a limited communication overhead, the results
from [1, 3, 4, and 6] all showed that multi-site parallel execution can improve the
overall average response time. The overhead for multi-site parallel execution mainly
results from the slower communication between different sites compared to the intra-
site communication. This overhead has been modeled by extending the execution time
of a job by a certain percentage [2, 3, and 6].

118 K.-C. Huang, P.-C. Shih, and Y.-C. Chung

In [2] the authors further examined the multi-site scheduling behavior by applying
constraints for the job fragmentation during the multi-site scheduling. Two parameters
were introduced for the scheduling process. The first parameter lower bound
restricted the jobs that can be fragmented during the multi-site scheduling by a
minimal number of necessary requested processors. The second parameter was
implemented as a vector describing the maximal number of job fragments for certain
intervals of processor numbers.

However, the simulation studies in the previous works are performed based on a
homogeneous computational grid model in which nodes on different sites all run at
the same speed. In this paper we explore possible multi-site selection policies for a
heterogeneous computational grid. In [13] the authors proposed job scheduling
algorithms which allow multi-site parallel execution, and are adaptive and scalable in
a heterogeneous computational grid. However, the introduced algorithms require
predicted execution time for the submitted jobs. In this paper, we deal with the site
selection problem for multi-site parallel execution, requiring no knowledge of
predicted job execution time.

In the literature [19~25] several strategies for scheduling moldable jobs have been
introduced. Most of the previous works either assume the job execution time is a
known function of the number of processors allocated to it or require users to provide
estimated job execution time. In [18] without the requirement of known job execution
time three adaptive processor allocation policies for moldable jobs were evaluated and
shown to be able to improve the overall system performance in terms of average job
turnaround time. In this paper adaptive processor allocation is viewed as an alterna-
tive to multi-site parallel execution for improving system utilization as well as
shortening waiting time for user jobs.

3 Computational Grid Model and Experimental Setting

In the computational grid model, there are several independent computing sites with
their own local workload and management system. The computational grid integrates
the sites and shares their incoming jobs. Each participating site is a homogeneous
parallel computer system. The nodes within each site run at the same speed and are
linked with a fast interconnection network that does not favor any specific
communication pattern [14]. The parallel computer system uses space-sharing and run
the jobs in an exclusive fashion.

The system deals with an on-line scheduling problem without any knowledge of
future job submissions. For the sake of simplicity, in this paper we assume a global
grid scheduler which handles all job scheduling and resource allocation activities. The
local schedulers are only responsible for starting the jobs after their allocation by the
global scheduler. Theoretically a single central scheduler could be a critical limitation
concerning efficiency and reliability. However, practical distributed implementations
are possible, in which site-autonomy is still maintained but the resulting schedule
would be the same as created by a central scheduler [15].

The grid is heterogeneous in the sense that nodes on different sites may differ in
computing speed and different sites may have different numbers of nodes. The local
site which a job is submitted from will be called the home site of the job

 Using Moldability to Improve Scheduling Performance of Parallel Jobs 119

henceforward in this paper. We assume the ability of jobs to run in multi-site mode.
That means a job can run in parallel on a node set distributed over different sites when
no single site can provide enough free processors for it due to a portion of resources
are occupied by some running jobs. In addition, we assume all jobs have the moldable
property. It means the programs are written in a way so that at runtime they can
exploit different parallelisms for execution according to specific needs or available
resource. Parallelism here means the number of processors a job uses for its
execution. In our model we associated each job with several attributes. The following
five attributes are provided before a simulation starts. The first four attributes are
directly gotten from the SDSC SP2’s workload log. The slowdown attribute is
generated by the simulation program according to a specified statistical distribution.

• Site number. This indicates the home site of a job which it belongs to.
• Number of processors. It is the number of processors a job uses according to the

data recorded in the workload log.
• Submission time. This provides the information about when a job is submitted to

its home site.
• Runtime. It indicates the required execution time for a job using the specified

number of processors on its home site. This information for runtime is required for
driving the simulation to proceed. However, in our job scheduling methods the job
scheduler does not know the job runtime prior to a job’s execution. Therefore, they
do not use this information to guide the determination process of job scheduling
and allocation.

• Slowdown. It is a value indicating how much longer a job will take to finish its
execution if it conducts multi-site parallel execution, compared to the runtime
required when running in its home site. The runtime for multi-site parallel
execution is equal to the runtime within its home site multiplied by the slowdown
value.

Our simulation studies were based on publicly downloadable workload traces [16].

We used the SDSC’s SP2 workload logs1 and LANL’s CM5 workload logs2 on [16]
as the input workload in the simulations. The detailed workload characteristics are
shown in Tables 1 and 2.

In the SDSC’s SP2 and LANL’s CM5 systems the jobs in the logs are put into
different queues and all these queues share the same pool of processors on the system.
The SDSC’s SP2 system has 128 processors and the LANL’s CM5 has 1024
processors. In the following simulations these workload logs will be used to model
the workload on a computational grid consisting of several different sites whose
workloads correspond to the jobs submitted to the different queues respectively.
Tables 3 and 4 show the corresponding configurations of the computational grid
according to the respective workload logs under study. The number of processors on
each site is determined according to the maximum number of required processors of
the jobs belonged to the corresponding queue for that site.

1 The JOBLOG data is Copyright 2000 The Regents of the University of California All Rights

Reserved.
2 The workload log from the LANL CM-5 was graciously provided by Curt Canada, who also

helped with background information and interpretation.

120 K.-C. Huang, P.-C. Shih, and Y.-C. Chung

To simulate the speed difference among participating sites we define a speed
vector, e.g. speed=(sp1,sp2,sp3,sp4,sp5), to describe the relative computing speeds of
all the five sites in the grid, in which the value 1 represents the computing speed
resulting in the job execution time in the original workload log. We also define a load
vector, e.g. load=(ld1,ld2,ld3,ld4,ld5), which is used to derive different loading levels
from the original workload data by multiplying the load value ldi to the execution
times of all jobs at site i.

Table 1. Characteristics of the workload log on SDSC’s SP2

 Number
of jobs

Maximum
execution
time (sec.)

Average
execution
time (sec.)

Maximum number
of processors

per job

Average number of
processors

per job
Queue 1 4053 21922 267.13 8 3
Queue 2 6795 64411 6746.27 128 16
Queue 3 26067 118561 5657.81 128 12
Queue 4 19398 64817 5935.92 128 6
Queue 5 177 42262 462.46 50 4

Total 56490

Table 2. Characteristics of the workload log on LANL’s CM5

 Number
of jobs

Maximum
execution
time (sec.)

Average
execution
time (sec.)

Maximum number
of processors

per job

Average number
of processors

per job
Group 1 79076 66164 158.90 1024 57
Group 2 85358 239892 2027.81 128 55
Group 3 22515 170380 3625.65 1024 210
Group 4 14394 239470 3815.42 1024 238

Total 201343

Table 3. Configuration of the computational grid according to SDSC’s SP2 workload

 total site 1 site 2 site 3 site 4 site 5
Number of processors 442 8 128 128 128 50

Table 4. Configuration of the computational grid according to LANL’s CM5 workload.

 total site 1 site 2 site 3 site 4
Number of processors 3200 1024 128 1024 1024

4 Multi-site Parallel Execution

In this paper we use the average turnaround time of all jobs as the comparison
criterion in all simulations, which is defined as:

 Using Moldability to Improve Scheduling Performance of Parallel Jobs 121

rofJobsTotalNumbe

submitTimeendTime

TimeTurnaroundAverage JobsAllj
jj∑

∈

−
=

)(
 (1)

Multi-site parallel execution is traditionally regarded as a mechanism to enable the
execution of such jobs requiring large parallelisms that exceed the capacity of any
single site. This is a major application area in grid computing called distributed
supercomputing [17]. However, multi-site parallel execution could be also beneficial
for another application area in grid computing: high throughput computing [17]. In
our high throughput computing model in this paper, each job’s parallelism is bound
by the total capacity of its home site. That means multi-site parallel execution is not
inherently necessary for these jobs. However, for high throughput computing a
computational grid is used in the space-sharing manner. It is therefore not unusual
that upon a job’s submission its requested number of processors is not available from
any single site due to the occupation of a portion of system resources by some
concurrently running jobs. In such a situation, splitting the job up into multi-site
parallel execution is promising in shortening the turnaround time of the job through
reducing its waiting time. However, in multi-site parallel execution the impact of
bandwidth and latency has to be considered as wide area networks are involved. In
this paper we summarize the overhead caused by communication and data migration
as an increase of the job’s runtime [2, 6]. The magnitude of this overhead greatly
influences the achievable turnaround time reduction for a job which is allowed to
perform multi-site parallel execution.

If a job is performing multi-site parallel execution, the runtime of the job is
extended by the overhead which is specified by a parameter p [2]. Therefore the new
runtime r* is:

() rp1r ×+=* (2)

Where r is the runtime for the job running on a single site. As for the site selection
issue in multi-site parallel execution, previous works in [1, 6] suggested the larger-
first policy for a homogeneous grid environment, which repeatedly picks up a site
with the largest number of free processors until all the selected sites together can
fulfill the requirement of the job to be allocated. As a heterogeneous grid being
considered, the speed difference among participating sites should be taken into
account. An intuitive heuristic is called the faster-first policy, which each time picks
up the site with the fastest computing speed instead of the site having the most
amount of free processors. In [26] we developed an adaptive site selection policy
which dynamically changes between the larger-first and the faster-first policies based
on a calculation of which policy can further accommodate more jobs for immediate
single-site execution.

Figure 1 is an example under the SDSC’s SP2 workload, which demonstrates that
supporting multi-site parallel execution can further improve the performance of a
heterogeneous load sharing computational grid with the multi-site overhead p=2.
Moreover, our proposed adaptive site selection policy outperforms the larger-first and
the faster-first policies significantly. Actually in all the 120 simulations we performed
for different speed configurations the adaptive policy performs better than the other
two policies for each case.

122 K.-C. Huang, P.-C. Shih, and Y.-C. Chung

Fig. 1. Performance evaluation of adaptive site selection in multi-site parallel execution

5 Adaptive Processor Allocation Using Moldability

When a job can not fit in any single site in a computational grid, in addition to multi-
site parallel execution, adaptive processor allocation is another choice which allocates
a smaller number of processors than specified upon submission to a job, allowing it to
fit in a single site for immediate execution. This would improve system utilization and
shorten the waiting times for user jobs at the cost of enlarged job execution time. The
combined effects of enlarged execution time and reduced waiting time for adaptive
processor allocation on a homogeneous single-site parallel computer have been
evaluated in previous work [18] and shown to be promising in improving average
turnaround time for user jobs. In this section an adaptive processor allocation policy
for a heterogeneous grid environment is developed. The major difference between the
adaptive processors allocation procedures for a single-site parallel computer and for a
heterogeneous grid environment is the site selection process regarding the calculation
and comparison of computing power of different sites. A site’s free computing power
is defined as the number of free processors on it multiplied by the computing speed of
a single processor. Similarly, the required computing power of a job is defined as the
number of required processors specified upon job submission multiplied by the
computing speed of a single processor on its home site. A configurable threshold
parameter, power, with its value ranging from zero to one is defined in the adaptive
processor allocation procedure. A site will be selected to allocate the job only when
the site’s free computing power is equal to or larger than the job’s required computing
power multiplied by the predefined threshold value and it provides the largest
available computing power among all sites in the grid. Figure 2 is an example under
the SDSC’s SP2 workload, which demonstrates adaptive processor allocation can
further improve system performance in a heterogeneous grid.

Figures 3 and 4 show that the value of the power parameter greatly affects the
performance of the adaptive processor allocation method. Therefore, selection of an
appropriate value for the power parameter becomes a critical issue when applying the
adaptive processor allocation method to a heterogeneous grid. We conducted a series
of 120-case simulations corresponding to all possible permutations of the site speed
vector (1,3,5,7,9) and found that 0.5 is the best value for the power parameter under
the SDSC’s SP2 workload. Another series of 24-case simulations for all possible

 Using Moldability to Improve Scheduling Performance of Parallel Jobs 123

Fig. 2. Performance comparison of loading sharing with/without adaptive processor allocation

Fig. 3. Adaptive processor allocation with different power values under SDSC SP2 workload

Fig. 4. Adaptive processor allocation with different power values under LANL CM5 workload

permutations of the four-site speed vector (1,3,5,7) indicate that 0.1 is the best value
for power under the LANL’s workload. 0.5 and 0.1 are then used for power
throughput the following simulation studies in this section for the SDSC’s SP2 and
LANL’s CM5 workloads, respectively.

Figures 5 and 6 compare multi-site parallel execution and adaptive processor
allocation under the two different workloads. In our job model, each job is associated
with an attribute, slowdown, which indicates how long its runtime would be extended
to when performing multi-site parallel execution in the grid. In the simulations, the
slowdown values for these jobs are generated according to specified statistical
distributions and upper limits. The upper limits are denoted by p in figures 5 and 6.

124 K.-C. Huang, P.-C. Shih, and Y.-C. Chung

Fig. 5. Comparison under SDSC’s SP2 workload for uniformly and normally distributed slow-
down values

Fig. 6. Comparison under LANL’s CM5 workload for uniformly and normally distributed slow-
down values

Two types of statistical distributions, uniform and normal distributions, are evaluated
in the simulations. Results in figures 5 and 6 show that the performance of multi-site
parallel execution is greatly affected by the slowdown value which is determined by
both the parallel program characteristics and underlying interconnection speed. On the
other hand, performance of adaptive processor allocation is irrelative to the slowdown
values and the results also indicate that adaptive processor allocation outperforms
multi-site parallel execution in the simulations.

To further compare these two approaches for all possible permutations of speed
vectors, we conducted a series of 120-case simulations under the SDSC’s SP2
workload. The results are shown in figure 7. Adaptive processor allocation outper-
forms multi-site parallel execution in all cases and in average produces more than five
times of performance improvement. Although, for a single job, multi-site parallel
execution might outperform adaptive processor allocation, e.g. reducing the number
of processors from 5 to 3 in adaptive processor allocation and the slowdown value
being just 1.1 for multi-site parallel execution. The simulation results indicate that
adaptive processor allocation is better considering overall performance. This might be
because multi-site parallel execution would enlarge the total occupied time period of
processor resources, i.e. execution time multiplied by the number of processors, while
adaptive processor allocation would not. These results shed some light on how to
handle the situation where a parallel job can not fit in any single site in a
heterogeneous computational grid. Adaptive processor allocation might be a more

 Using Moldability to Improve Scheduling Performance of Parallel Jobs 125

promising solution than multi-site parallel execution when the parallel jobs have the
moldable property.

Figure 8 is an example demonstrating how much performance improvement a load-
sharing computational grid with adaptive processor allocation can bring under the
SDSC’s SP2 workload. Compared with the non-grid architecture, five independent
clusters, the load-sharing grid with adaptive processor allocation leads to more than 4
times of performance improvement.

Fig. 7. Thorough comparison under SDSC’s SP2 workload

Fig. 8. Performance improvement with load-sharing grid using adaptive processor allocation

6 Conclusion

A grid environment is usually heterogeneous in nature in the real world at least for the
different computing speeds at different participating sites. The heterogeneity presents
a challenge for effectively arranging load sharing activities in a computational grid.
This paper explores the job scheduling and allocation issue in heterogeneous
computational grids when a parallel job, during the scheduling activities, cannot fit in
any single site in the grid. Multi-site parallel execution is a possible approach to this
issue. However, in heterogeneous grid environments it might lead to inefficient
resource usage. This inefficiency could in turn degrade the overall system
performance. This paper develops adaptive processor allocation methods based on the
moldable property of parallel jobs. The proposed method is evaluated through a series
of simulations using real workload traces. The results indicate that the adaptive

126 K.-C. Huang, P.-C. Shih, and Y.-C. Chung

processor allocation method outperforms the multi-site parallel execution approach
and can further improve the system performance of a heterogeneous computational
grid when parallel jobs have the moldable property.

References

1. Hamscher, V., Schwiegelshohn, U., Streit, A., Yahyapour, R.: Evaluation of Job-
Scheduling Strategies for Grid Computing. In: Proceedings of the 7th International
Conference on High Performance Computing, HiPC 2000, Bangalore, India, pp. 191–202
(2000)

2. Ernemann, C., Hamscher, V., Yahyapour, R., Streit, A.: Enhanced Algorithms for Multi-
Site Scheduling. In: Proceedings of 3rd International Workshop Grid 2002, in conjunction
with Supercomputing 2002, Baltimore, MD, USA, pp. 219–231 (2002)

3. Ernemann, C., Hamscher, V., Schwiegelshohn, U., Streit, A., Yahyapour, R.: On
Advantages of Grid Computing for Parallel Job Scheduling. In: Proceedings of 2nd IEEE
International Symposium on Cluster Computing and the Grid (CC-GRID 2002), Berlin,
Germany, pp. 39–46 (2002)

4. Ernemann, C., Hamscher, V., Streit, A., Yahyapour, R.: On Effects of Machine
Configurations on Parallel Job Scheduling in Computational Grids. In: Proceedings of
International Conference on Architecture of Computing Systems, pp. 169–179 (2002)

5. England, D., Weissman, J.B.: Costs and Benefits of Load Sharing in the Computational
Grid. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004. LNCS,
vol. 3277, pp. 160–175. Springer, Heidelberg (2005)

6. Huang, K.C., Chang, H.Y.: An Integrated Processor Allocation and Job Scheduling
Approach to Workload Management on Computing Grid. In: Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and
Applications, Las Vegas, USA, pp. 703–709 (2006)

7. Sabin, G., Kettimuthu, R., Rajan, A., Sadayappan, P.: Scheduling of Parallel Jobs in a
Heterogeneous Multi-Site Environment. In: Proceedings of 9th Workshop on Job
Scheduling Strategies for Parallel Processing (2003)

8. Brune, M., Gehring, J., Keller, A., Reinefeld, A.: Managing Clusters of Geographically
Distributed High-Performance Computers. Concurrency – Practice and Experience 11,
887–911 (1999)

9. Bucur, A.I.D., Epema, D.H.J.: The Performance of Processor Co-Allocation in
Multicluster Systems. In: Proceedings of the Third IEEE International Symposium on
Cluster Computing and the Grid (2003)

10. Bucur, A.I.D., Epema, D.H.J.: The Influence of Communication on the Performance of
Co-allocation. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp.
66–86. Springer, Heidelberg (2001)

11. Bucur, A.I.D., Epema, D.H.J.: Local versus Global Schedulers with Processor Co-
Allocation in Multicluster Systems. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U.
(eds.) JSSPP 2002. LNCS, vol. 2537, pp. 184–204. Springer, Heidelberg (2002)

12. Banen, S., Bucur, A.I.D., Epema, D.H.J.: A Measurement-Based Simulation Study of
Processor Co-allocation in Multicluster Systems. In: Feitelson, D.G., Rudolph, L.,
Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 105–128. Springer,
Heidelberg (2003)

 Using Moldability to Improve Scheduling Performance of Parallel Jobs 127

13. Zhang, W., Cheng, A.M.K., Hu, M.: Multisite Co-allocation Algorithms for
Computational Grid. In: Proceedings of the 20th International Parallel and Distributed
Processing Symposium (2006)

14. Feitelson, D., Rudolph, L.: Parallel Job Scheduling: Issues and Approaches. In:
Proceedings of IPPS 1995 Workshop: Job Scheduling Strategies for Parallel Processing,
pp. 1–18 (1995)

15. Ernemann, C., Hamscher, V., Yahyapour, R.: Benefits of Global Grid Computing for Job
Scheduling. In: Proceedings of the Fifth IEEE/ACM International Workshop on Grid
Computing, pp. 374–379 (2004)

16. Parallel Workloads Archive (2008), http://www.cs.huji.ac.il/labs/parallel/workload/
17. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure.

Morgan Kaufmann Publishers, Inc., San Francisco (1999)
18. Huang, K.C.: Performance Evaluation of Adaptive Processor Allocation Policies for

Moldable Parallel Batch Jobs. In: Proceedings of the Third Workshop on Grid
Technologies and Applications, Hsinchu, Taiwan (2006)

19. Srinivasan, S., Krishnamoorthy, S., Sadayappan, P.: A Robust Scheduling Strategy for
Moldable Scheduling of Parallel Jobs. In: Proceedings of the Fifth IEEE International
Conference on Cluster Computing (2003)

20. Cirne, W., Berman, F.: Using Moldability to Improve the Performance of Supercomputer
Jobs. Journal of Parallel and Distributed Computing 62(10), 1571–1601 (2002)

21. Srinivasan, S., Subramani, V., Kettimuthu, R., Holenarsipur, P., Sadayappan, P.: Effective
Selection of Partition Sizes for Moldable Scheduling of Parallel Jobs. In: Sahni, S.K.,
Prasanna, V.K., Shukla, U. (eds.) HiPC 2002. LNCS, vol. 2552, pp. 174–183. Springer,
Heidelberg (2002)

22. Cirne, W., Berman, F.: Adaptive Selection of Partition Size for Supercomputer Requests.
In: Feitelson, D.G., Rudolph, L. (eds.) IPDPS-WS 2000 and JSSPP 2000. LNCS,
vol. 1911, pp. 187–208. Springer, Heidelberg (2000)

23. Sabin, G., Lang, M., Sadayappan, P.: Moldable Parallel Job Scheduling Using Job
Efficiency: An Iterative Approach. In: Proceedings of the 12th Workshop on Job
Scheduling Strategies for Parallel Processing (2006)

24. Barsanti, L., Sodan, A.C.: Adaptive Job Scheduling via Predictive Job Resource
Allocation. In: Proceedings of the 12th Workshop on Job Scheduling Strategies for Parallel
Processing (2006)

25. Turek, J., Ludwig, W., Wolf, J.L., Fleischer, L., Tiwari, P., Glasgow, J., Schwiegelshohn,
U., Yu, P.S.: Scheduling Parallelizable Tasks to Minimize Average Response Time. In:
Proceedings of the Sixth Annual ACM Symposium on Parallel Algorithms and
Architectures, pp. 200–209 (1994)

26. Huang, K.C., Shih, P.C., Chung, Y.C.: Towards Feasible and Effective Load Sharing in a
Heterogeneous Computational Grid. In: Proceedings of the Second International
Conference on Grid and Pervasive Computing, France (2007)

	Using Moldability to Improve Scheduling Performance of Parallel Jobs on Computational Grid
	Introduction
	Related Work
	Computational Grid Model and Experimental Setting
	Multi-site Parallel Execution
	Adaptive Processor Allocation Using Moldability
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

