
Efficient Parallel Algorithm for Optimal Three-Sequences Alignment

Chun Yuan Lin1, Chen Tai Huang, Yeh-Ching Chung, and Chuan Yi Tang
Department of Computer Science, NTHU

{1cyulin@mx, g936325@oz, ychung@cs, cytang@cs}.nthu.edu.tw

Abstract

Sequence alignment is a fundamental problem in

the computational biology. Many alignment methods
have been proposed in the literature, such as pair-wise
sequence alignment (2SA), syntenic alignment,
multiple sequence alignment (MSA) and constraint
multiple sequence alignment, etc. Three-sequence
alignment (3SA) problem has been proposed and
discussed in the computational biology and proved
that the alignment results from 3SA are better than
those from 2SA under some conditions. However, 3SA
problem is less discussed over the past decade due to
the computer capability. 3SA problem now is worthy
to discuss due to the powerful computer and more and
more genome and protein sequences. In this paper, an
efficient parallel algorithm (P3SA) is proposed to solve
3SA problem. The P3SA method requires O(n2/p)
space complexity and O(n3/p) time complexity. The
experimental results show that P3SA algorithm is
applicable and achieves a satisfied speed-up.
Index Terms- dynamic programming, computational
biology, sequence alignment, Hirschberg’s technique,
time and space complexities.

1. Introduction

Sequence alignment is a fundamental problem in the
computational biology [7]. Many alignment methods
have been proposed in the literature, such as pair-wise
sequence alignment (2SA, [18, 20, 23]), multiple
sequence alignment (MSA, [4, 5, 17, 19, 25]), syntenic
alignment [6], and constraint multiple sequence
alignment [24], etc. The 2SA method typically used the
dynamic programming scheme in which one or
multiple tables are filled through a scoring mechanism.

*The work of this paper was partially supported by
NSC under contract NSC94-2745-P-007-001 and
NSC95-2745-P-007-001. 1Corresponding author.

Once the best score in the tables is found a trace back
procedure is involved for finding the optimal alignment.
Let n be the maximum length of two sequences aligned.
Several tables with the size of (n+1)×(n+1) are filled to
find an optimal path for 2SA. It takes both O(n2) time
and space complexities. Myers and Miller [15] applied
the divide-and-conquer technique of Hirschberg [8] to
reduce the space requirement to the linear space
complexity.

Three-sequence alignment (3SA) problem has been
proposed and discussed in the computational biology [1,
9, 13, 14, 16, 21]. Some methods and definitions have
been presented and proved that the alignment results
from 3SA are better than those from 2SA under some
conditions. 3SA method also can be solved both in
O(n3) time and space complexity by using a dynamic
programming scheme [1], where n is the maximum
length of these three sequences be aligned. Huang [13]
extended the Myers and Miller’s algorithm [15] for
2SA method to 3SA method. The 3SA method was
done by filling several tables with the size of (n+1)×
(n+1)×(n+1). 3SA method can be solved in O(n3) time
complexity and O(n2) space complexity. However,
3SA problem is less discussed over the past decade due
to the computer capability. 3SA problem now is
worthy to discuss due to the powerful computer and
more and more genome and protein sequences released.
Although the space requirement is reduced to quadratic
space, the time complexity of 3SA method still limits its
applicability. Hence, to reduce the time complexity of
3SA method becomes an important issue.

In this paper, an efficient parallel algorithm (P3SA)
for 3SA problem is proposed to reduce the time
complexity. We adopt the definitions of 3SA problem
used in the Huang’s algorithm and the divide-and-
conquer technique of Hirschberg [10] to extend the
3SA method to P3SA method. The P3SA method
requires O(n2/p) space complexity and O(n3/p) time
complexity, where p is number of processors and less
than n. Both theoretical analysis and experimental tests
are presented. The experimental results show that a

good performance and a satisfied speed-up are
achieved by P3SA method.

The rest of the paper is organized as follows: In
Section 2, a brief survey of related work is presented.
Section 3 describes the definitions and algorithms of
3SA and P3SA methods. In Section 4, theoretical
analysis of P3SA method is given. In Section 5, the
experimental tests are presented.

2. Related Work

Many schemes for reducing the complexities of
alignment methods have been proposed. Hirschberg
[10] first proposed a linear space algorithm for
computing longest common subsequences problem.
Myers and Miller [15] applied the Hirschberg’s
technique to Gotoh’s algorithm [8]. After applying the
Hirschberg’s technique [10], the space complexity of
2SA method is reduced from O(n2) to O(n) and
introduces a small constant (about 2) slowdown to O(n2)
time complexity. Huang [12] extended the above
algorithm to local sequence alignment problem. Since
the size of biological sequences could be very large,
these algorithms are very important that make 2SA
method applicable. Although space-optimal algorithms
reduce the space requirement for large sequence
alignment, it still is a time-consuming problem. Some
parallel algorithms to reduce the computational cost
have been proposed. Huang [11] presented a P2SA
algorithm that uses optimal O((m+n)/p) space
complexity and suboptimal O((m+n)2/p) time
complexity, where m and n are the lengths of two
sequences aligned. Aluru et al. [2] presented another
parallel algorithm with optimal O((mn)/p) time
complexity but uses O(m+(n/p)) space complexity.
Afterward a space and time optimal, O((m+n)/p) space
complexity and O((mn)/p) time complexity, P2SA
algorithm was presented by Rajko and Aluru [20].
Huang [13] extended the Myers and Miller’s algorithm
[15] to optimal 3SA with affine gap penalties. The 3SA
algorithm simultaneously aligns three sequences by
using a dynamic programming approach to find an
optimal path in O(n2) space complexity and O(n3) time
complexity.

3. Method

In this section, 3SA problem will be formalized first.
Then a dynamic programming algorithm with a divide-
and-conquer technique [10] for solving 3SA problem
which proposed by Huang [13] will be introduced.
Finally, the P3SA method will be presented.

Figure 1. An example of the result for aligning
sequences A, B and C.

3.1. 3SA problem

Let A = a1, a2, …, am, B = b1, b2, …, bn and C = c1,
c2, …, cl be three sequences over an alphabet Σ. Let ‘-
‘ be a unique symbol not in Σ, denoted as a gap. Some
definitions [13] are shown in the following.

Definition 1. An aligned triple consists of three
ordered elements in Σ∪{-}.

Definition 2. An alignment of three sequences A, B
and C is a finite sequence of aligned triples.

For each triple, the first element is always from

sequence A or a gap (‘-‘), the second element is always
from sequence B or a gap and the third element is
always from sequence C or a gap.

Definition 3. A null triple is consisted of three gaps.

In here, we only consider the alignments without

null triple. Therefore, there are seven types for non-
null aligned triples according to the number and the
position of appearances of gaps (‘-‘). An example of
the result for 3SA is illustrated in Figure 1. Figure 1
shows these three sequences A, B and C, and the result
of aligning them. Each column in the alignment is an
aligned triple.

Definition 4. A block in an alignment is a contiguous
subsequence of aligned triples of the same type
bounded by aligned triples of other types or the end of
the alignment.

Definition 5 An i-gap block is a block consisting of
triples in which gap appears exactly i times.

There are only 1-gap blocks and 2-gap blocks in an

alignment of three sequences as shown in Figure 1
since we only consider the alignments without null
triple here. For example, in Figure 1, an aligned triple
(-, S, -) is a 2-gap block and another triple (H, -, H) is a

1-gap block. Given a scoring function f: Σ×Σ→R that
assigns a value to each combination of two elements in
alphabet Σ of a triple and a gap penalty function, the
score of an alignment is the sum of the values of each
aligned triple assigned by f minus gap penalties. For
example, it can be simply defined that function f as
f(a,a) = 10 for each a in Σ or f(a, b) = -20 for all a, b in
Σ with a≠b. For protein sequences, the function f is
usually defined through a scoring matrix such as
PAM250 or BLOSUM62.

For gap penalties, an affine gap penalty function is
commonly used in practice. Let q1 be a gap-open
penalty for each 1-gap block and let r1 be a gap-
extension penalty for each triple of 1-gap block, where
q1 and r1 are two non-negative numbers. The affine
gap penalty function takes p1 for a triple of 1-gap block,
where p1 is defined as:

 +

=
otherwise. ,

block. theofstart theis triple thisif ,

1

11
1 r

rq
p .

We also define q2, r2 and p2 for 2-gap block in the
same way. Let x be the score of a triple. For any a, b
and c in Σ, we have a score x as:

2

1

),,(),,(),,(

),(),,(),,(),,(

),(),(),(),,(

paxaxax

pbafbaxbaxbax

cbfcafbafcbax

−=−−=−−=−−
−=−=−=−

++=
.

The score of an alignment is the sum of the score x
of each triple. For example, the score of the alignment
for sequences A, B and C shown in Figure 1 is 246 if
f(a,a) = 10 for each a in Σ, f(a, b) = -20 for all a, b in Σ
with a≠b, q1 = q2 = 12 and r1 = r2 = 2. The goal of 3SA
problem is to find an alignment with best score, which
is called an optimal alignment.

3.2. 3SA algorithm

Once a scoring mechanism is given, the optimal
alignment of three sequences can be found by using the
dynamic programming approach. Let S(m, n, l) be the
score of an optimal alignment of three sequences A1,m,
B1,n and C1,l with lengths m, n and l, respectively. The
score of S(i, j, k) can be computed along with auxiliary
matrices according to the recurrences [8]. In the
recurrences, the matrices E, F and G save the scores
that a gap opens at position j of sequence B, position i
of sequence A, and position k of sequence C,
respectively. The matrices H, I and J save the scores
that position i of sequence A, position j of sequence B
and position k of sequence C match two-gaps,
respectively. Once S(m, n, l) is computed, an optimal
alignment of best score S(m, n, l) can be found by a
trace back procedure. Since the entire matrices have to

{ }
{ }
{ }

{ }

{ }

{ }

{ }

{ }

{ }

>−−−−
=−

=

>−−−−
=−

=

>−−−−
=−

=

>>−+−−−−−
==−

=

>>−+−−−−−
==−

=

>>−+−−−−−
==−

=

>>>

+−−−

>>=
>=>
=>>

>==+−
=>=+−
==>+−

===

=

0 if)1,,(),1,,(max

0 if 2),,(
),,(

0 if),1,(),,1,(max

0 if 2),,(
),,(

0if),,1(),,,1(max

0 if 2),,(
),,(

0 and 0i if),(),1,1(),,1,1(max

0or 0 if),,(
),,(

0 and 0 if),()1,1,(),1,1,(max

0or 0 if),,(
),,(

0 and 0i if),()1,,1(),1,,1(max

0or 0 if),,(
),,(

0 and 0,0 if

),,()1,1,1(

),,,(),,,(),,,(

),,,(),,,(),,,(

max

0 and 0,0 if),,(),,,(),,,(max

0 and 0,0 if),,(),,,(),,,(max

 0 and 0,0 if),,(),,,(),,,(max

0 and 0,0 if)*(

0 and 0,0 if)*(

0 and 0,0 if)*(

0and00if 0

),,(

22

22

22

11

1

11

1

11

1

22

22

22

krqkjiSkjiJ

kqkjiS
kjiJ

jrqkjiSkjiI

jqkjiS
kjiI

 irqkjiSkjiH

iqkjiS
kjiH

jrbafqkjiSkjiG

jiqkjiS
kjiG

kjrcbfqkjiSkjiF

kjqkjiS
kjiF

krcafqkjiSkjiE

kiqkjiS
kjiE

kji

cbaxkjiS

kjiJkjiIkjiH

kjiGkjiFkjiE

kjikjiJkjiIkjiF

kjikjiJkjiHkjiE

kjikjiIkjiHkjiG

kjikrq

kjijrq

kjiirq

 k ,j i

kjiS

ji

kj

ki

kji

midk

midi

midj
Figure 2. Schematic diagram of divide-and-conquer
approach.

n+1

m+1
Rank_0 Rank_1 Rank_p-1

Figure 3. The concept of partitioning a 2D matrix by
using Block partition scheme.

be kept, the trace back procedure requires O(mnl)
space. Note that it only takes four two-dimensional
(2D) matrices and a few one-dimensional (1D) arrays if
only the best score S(m, n, l) is needed. For reducing
the space requirement to O(mn), assumed that l is
larger than m and n, the divide-and-conquer technique
of Hirschberg [10] is applied. The central idea is to
determine a middle point (imid, jmid, kmid), which is a
point on an optimal path from S(0, 0, 0) to S(m, n, l).

After determining a middle point (imid, jmid, kmid), the
original 3SA problem can be divided into two smaller
3SA problems. Then these smaller 3SA problems are
divided recursively. Finally, an optimal 3SA is
obtained by merging the series of the computed middle
points. Figure 2 illustrates this idea.

For details, recall that S(m, n, l) is the score of an
optimal alignment of three sequences A1,m, B1,n and C1,l,
the matrices introduced above are computed in
increasing order of indices. Another set of matrices
can be defined symmetrically. Let R, U, V, W, X, Y,
and Z be the set of matrices which are computed in
decreasing order of indices, where R corresponds to S,
U corresponds to E, V corresponds to F, W corresponds
to G, X corresponds to H, Y corresponds to I, Z
corresponds to J. Therefore, R(0, 0, 0), equal to S(m, n,
l), is the score of an optimal alignment of three
sequences Am,1, Bn,1 and Cl,1. To find the middle point
(imid, jmid, kmid), first set kmid to 2/l . In the forward

phase, compute the matrices S through J for 0≤i≤m,
0≤j≤n and 0≤k≤kmid, and save four 2D matrices S(i, j, k),
E(i, j, k), F(i, j, k) and J(i, j, k). Note that, kmid is a
character in sequence C, we do not have to consider the
cases in which kmid is a gap. In the reverse phase,
compute the matrices R through Z for 0≤i≤m, 0≤j≤n
and kmid≤k≤l, and save four 2D matrices R(i, j, k), U(i, j,
k), V(i, j, k) and Z(i, j, k). The middle point (imid, jmid,
kmid) of an optimal alignment of three sequences A, B
and C is one which has the score:

njmi

qkjiZkjiJ

qkjiVkjiF

qkjiUkjiE

kjiRkjiS

midmid

midmid

midmid

midmid

≤≤≤≤

++
++
++

+

0 and 0for

),,(),,(

,),,(),,(

,),,(),,(

),,,(),,(

max

2

1

1

Note that we need to add a gap-open penalty q1 or q2

to some pairs of matrix because an extra q1 or q2 is
charged when two gaps of the same type merged into a
single gap. Here, only some 2D matrices and some 1D
arrays are used to find the middle point (imid, jmid, kmid).
Once the middle point (imid, jmid, kmid) is found, we
recursively compute an optimal alignment of
subsequences A1, imid, B1, jmid and C1, kmid and another
one of subsequences Am, imid+1, Bn, jmid +1 and Cl, kmid +1,
respectively. The optimal 3SA is obtained by merging

the series of the computed middle points. It is obvious
that the space required by this algorithm with a divide-
and-conquer technique is O(mn). Here, we briefly
prove the time complexity of this algorithm retains
O(mnl). Let T be the time required to compute the
middle point (imid, jmid, kmid), T will be cmnl, where c is
a constant coefficient. Once the middle point is found,
the original problem T(m, n, l) is divided into two sub-
problems T(m, n, 2/l) and T(m, n, 2/l). The time

required to compute the middle points of the two
subproblems is T/2. We can see that the time required
to compute the middle points of subproblems is half the
time of original problems. The total time required to
compute the optimal alignment is T(m, n, l) = T + T(m,
n, 2/l) + T(m, n, 2/l) ≤ 2T and consequently the

time complexity of this algorithm is still O(mnl).

3.3. P3SA algorithm

In this section, P3SA algorithm is proposed. The
critical cost of 3SA algorithm is the part of computation
of 2D matrices, such as matrices S, E, F and J. Hence,
it is worthy to reduce computational time and space
requirement for this part. The P3SA algorithm will
partition each of 2D matrices into p parts by using
Block partition scheme first. Then, each processor will
execute 3SA algorithm with corresponding matrices.
Finally, the result of three sequences alignment will be
given by merging partial results from each processor.
The P3SA algorithm can be divided into four parts,
initiation and allocation phase, forward phase, reverse
phase and determine a middle point phase. In the
following, each phase will be illustrated, respectively.

A. initiation and allocation phase

After determining an initial middle point, the

original 3SA problem can be divided into two smaller
problems, called forward phase and reverse phase. In
the forward phase, four 2D matrices S, E, F, J and
other 1D array G, H, I need to be computed. In the
reverse phase, four 2D matrices R, U, V, Z and other
1D array W, X, Y need to be computed. Therefore, in
this phase, eight 2D matrices S, E, F, J, R, U, V and Z
will be partitioned into p parts. Figure 3 shows the
concept of partitioning a 2D matrix by using Block
partition scheme.

Each processor only needs to compute the
corresponding part of matrices in the forward and
reverse phases and then determine the candidate middle
point according to their partial results. The real middle
point will be determined by merging all candidate

middle points. The steps of this phase are shown
below:

Initiation and allocation:
Step0: Initialize p processors from rank_0 to rank_p-1.
Step1: Input sequences A, B and C with lengths m, n

and k, respectively.
Step2: set kmid is 2/l as an initial middle point.

Step3: Allocate eight 2D matrices and other 1D arrays
for each processor rank_0 to rank_p-1.

B. Forward and Reverse phases

In these two phases, each processor only needs to

compute the partial 2D matrices and other
corresponding 1D arrays. Due to the dependency of
dynamic programming, each processor can compute the
partial matrix after receive the necessary data from its
neighbor. It will be a pipelining technique. The steps
of these two phases are shown below, respectively:

Forward phase:
For k=0 to k=kmid do

Processor rank_0:
Step0: Compute all partial 2D matrices and 1D

arrays.
Step1: Send the last columns of each 2D matrices to

rank_1.
Processor rank_(i), for 21 −≤≤ pi :

Step0: Receive the last columns of each 2D matrices
from rank_(i-1).

Step1: Compute all partial 2D matrices and 1D
arrays.

Step2: Send the last columns of each 2D matrices to
rank_(i+1).

Processor rank_p-1:
Step0: Receive the last columns of each 2D matrices

from rank_p-2.
Step1: Compute all partial 2D matrices and 1D

arrays.
End for

Reverse phase:
For k=l to k=kmid do

Processor rank_p-1:
Step0: Compute all partial 2D matrices and 1D

arrays.
Step1: Send the last columns of each 2D matrices to

rank_p-2.
Processor rank_(i), for 21 −≤≤ pi :

Step0: Receive the last columns of each 2D matrices
from rank_(i+1).

Step1: Compute all partial 2D matrices and 1D
arrays.

Step2: Send the last columns of each 2D matrices to
rank_(i-1).

Processor rank_0:
Step0: Receive the last columns of each 2D matrices

from rank_1.
Step1: Compute all partial 2D matrices and 1D

arrays.
End for

C. Determine a middle point phase

After the forward and reverse phases, a new middle

point can be determined from all processors. Each
processor can find a candidate middle point with best
score by merging its results of forward and reverse
phases first. Then, each processor send its candidate
middle point to processor rank_0. Finally, processor
rank_0 will determine a new middle point by
comparing the scores of all candidates to find a real
best one. The steps of this phase are shown below.

Determine a middle point
For processor Rank_1 to Rank_p-1

Step0: Find a middle point with best score by
merging its results of forward and reverse
phases.

Step1: Send this middle point to Rank_0.
For processor Rank_0:

Step0: Find a middle point with best score by
merging its results of forward and reverse
phases.

Step1: Receive middle points from other processors
as candidate middle points.

Step2: Determine the real middle point by
comparing these candidates.

When a new middle point is determined, each of

subproblems can be divided into two smaller problems.
The P3SA algorithm will execute these four phases
recursively to find all of middle points as an optimal
path from S(0, 0, 0) to S(m, n, l). The optimal
alignment of three sequences is given by this path.

4. Analysis

In this section, the time and the space complexities
of P3SA method will be proved. The theoretical
performance of P3SA method by considering
computation and communication time will be also
analyzed. From Figure 3, we can see that, in a (m+1)×
(n+1) matrix, each of p processors handles pn /1+

columns except processor rank_p-1. Therefore, each
processor takes O(mn/p) time complexity and requires
O(mn/p) space complexity for each (m+1)*(n+1)
matrices. When the dimension k increases from 1 to l,
each processor takes O(mn/p) time complexity.
However, each processor only requires O(mn/p) space
complexity by reusing the space for k = i to update the
values for k= i+1 with an addition one-dimensional
array as used in the Hirschberg’s technique. In practice,
each processor will compute eight 2D matrices and
other 1D arrays and the dimension k will be divided
into two parts recursively. Hence, P3SA method takes
O(mn/p) time complexity and O(mn/p) space
complexity.

The details of theoretical performance for P3SA
method are analyzed below. Some parameters are
introduced here. Let t1 be the computation time of one
array element; let t2 be a startup time between two
processors with a communication; let t3 be the
transmission time of one array element in a
communication channel. In order to simplify the
analysis, a (m+1)×(n+1) matrix will be regarded as a
m×n matrix and m and n can be divided with p. As
mentioned in Section 3.3, in the forward phase (or
reverse phase), processor rank_1 (or rank_p-2) can
compute each two-dimensional matrix when it receive
the data from processor rank_0 (or rank_p-1). There is
an idle time between processor rank_0 and rank_1 and
the time is equivalent to the time of computing a matrix
with size of mn/p by processor rank_0 adds the
communication time of sending a column with size of
m from processor rank_0 to processor rank_1. The
computing time is (mn/p)t1 and the communication time
is (t2+t3m). Similarly, processor rank_2 can compute
the matrix when processor rank_1 computed its matrix
and then send the last column of this matrix to
processor rank_2. Hence, last processor rank_p-1
starts to compute its matrix when it is waiting for
processor rank_p-2 completes its part and then send the
column to processor rank_p-1. The idle time of last
processor is)1)(()/)1((321 −++− pmtttpmnp . The

last processor rank_p-1 will complete its matrix with
the computing time (mn/p)t1. In an ideal environment,
when last processor rank_p-1 completed its part, the
processor rank_p-2 also complete its next plane
(dimension k increases). The last processor rank_p-1
can start to compute its next plane when it is waiting
for processor rank_p-2 send the column to it (as a
pipeline). Therefore, the required time of last
processor rank_p-2 for finishing forward phase is the
computing time 1)2/()/(tlpmn × adds the

communication time)1)2/)(((32 −+ lmtt after the idle

: computation : communication : idle

…

…

…

…

p0

p1

pp-1

…

computation time

idle time computation time + communication time

Figure 4. The theoretical analysis concept.

Figure 5. A random data set with complete match (a)
and complete mismatch (b).

time. Figure 4 illustrates this theoretical analysis
concept.

The required time of last processor rank_0 for
finishing reverse phase is equal to that of forward phase.
After each processor completed the forward and
reverse phases, each processor needs to add these two
results to find a candidate middle point and then send it
to the processor rank_0. After processor rank_0
received all candidate middle points, it will determine a
new middle point. The required time of processor
rank_0 for determining a new middle point is

)1)(()/(321 −++ ptttpmn . After the initial middle

point (kmid is 2/l), the total time for finding a new

middle point is)12)(/(1 −+ plpmnt +)53(2 −+ plt

+]1)42([3 −+−+ pplmt . The P3SA algorithm will

execute these four phases recursively to find all of
middle points for each matrix. The time related to t1
and t3 will be double. The time related to t2 is direct
proportional to the number of communications occur
and it will be multiplied by a variable L, where L is a
parameter proportional to the length of the optimal path,

lnmLlnm ++≤≤),,max(.

The total time required by P3SA method to find all
of middle points for each matrix is

2]}1)42([)12)(/({ 31 ×−+−++−+ pplntplpmnt +

Lplt *)]53([2 −+ . The time required by sequential

3SA method to find all of middle points for each matrix

is 1)(2 tmnl . For sequential 3SA and P3SA methods,

they both need to compute four 2D matrices. The
costof computing other 1D arrays is omitted here since
it is very small if comparing it with the cost of
computing 2D matrices.

The speed-up ratio of P3SA method is

Lpltpplntpl
p

mn
t

tmnl

)]53([2]}1)42([)12(({

)(2

231

1

−++−+−++−+

.

5. Experimental Results

The P3SA method has been implemented by MPI +
C code, and tested on the NCHC Formosa Linux
Cluster with a clock rate of 2.8G Hz, 2GB memory and
1000Mbps switch. A random data set with complete
match and mismatch cases as those used in [20], shown
in Figure 5, are used to evaluate P3SA method. The
runtime of P3SA method with various numbers of
processors and various lengths of input three sequences
are shown in Table 1. From Table 1, (1) we can see
that the 3SA method is not applicable when the
sequence length is larger than 8k, however, it will be
applicable for P3SA method. (2) The runtime of
complete match and complete mismatch cases both can
be reduced when the number of processors increases.
It shows that P3SA method is useful for the optimal
alignment of three sequences. Figure 6 shows the
speed-up ratios of complete match and complete
mismatch cases with various numbers of processors
and various lengths of input three sequences. From
Figure 6, (1) we can see that the P3SA method obtains
a satisfied speed-up ratio for complete match and
complete mismatch cases. (2) The speed-up ratio will
increase when the sequence length increases.

6. Conclusions

In this paper, P3SA method is proposed to solve the
3SA problem. The P3SA method requires O(n2/p)
space complexity and O(n3/p) time complexity. Both
theoretical analysis and experimental tests have been
presented. The experimental results show that a good
performance and a satisfied speed-up are achieved by
using P3SA method. In the future, we plan to apply
P3SA method to the following applications. (1)
Testing the performance of MSA by using P3SA
method as a basic step instead of 2SA method. It will
help us to find the conditions used to chose the 3SA or
2SA for practical applications. (2) Finding important
patterns or residues on DNA/protein sequences by
using P3SA method.

Acknowledgments

Post doctor fellowship of Chun Yuan Lin is supported
by NSC under contract NSC94-2627-B-007-002 and
NSC 95-2221-E-007-031. The authors would like to
thank anonymous referees for their comments. These
comments are useful for this paper and the research
work in the future.

References

[1]. L. Allison, “A Fast Algorithm for the Optimal

Alignment of Three Strings,” J. Theor. Biol. Vol. 164,
1993, pp. 261-269.

[2]. S. Aluru, N. Futamura and K. Mehrotra, “Parallel
biological sequence comparison using prefix
computations,” J. Parallel and Distributed Computing,
Vol. 63, Issue 3, 2003, pp. 264-272.

[3]. P. Bonizzoni and G. D. Vedova, “The complexity of
multiple sequence alignment with SP-score that is a
metric,” Theoretical Computer Science, Vol. 259,
Issue1–2, 2001, pp. 63-79.

[4]. H. Carrillo and D. Lipman, “The multiple sequence
alignment problem in biology,” SIAM J. Applied Math.,
Vol. 48, 1988, pp. 1073-1082.

[5]. S.C. Chan, A.K.C. Wong and D.K.Y. Chiu, “A survey
of multiple sequence comparison methods,” Bulletin of
Mathematical Biology, Vol. 54, 1992, pp. 563-598.

[6]. N. Futamura, S. Aluru, and X. Huang, “Parallel
Syntenic Alignment,” Proc. Int’l Conf. High
Performance Computing, 2002, pp. 420-430.

[7]. D.Gusfield, Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational
Biology, Cambridege University Press, NY., 1997.

[8]. O. Gotoh, “An improved algorithm for matching
biological sequences,” J. Molecular Biology, Vol. 162,
1982, pp. 705-708.

[9]. O. Gotoh, “Alignment of three biological sequences
with an efficient traceback,” J. Theor. Biol. Vol. 121,
1986, pp. 327-337.

[10]. D.S. Hirschberg, “A Linear Space Algorithm for
Computing Maximal Common Subsequences,” Comm.
ACM, Vol. 18, No.6, 1975, pp. 341-343.

[11]. X. Huang, “A Space-Efficient Parallel Sequence
Comparison Algorithm for a Message-Passing
Multiprocessors,” Int’l j. Parallel Programming, Vol.
18, No. 3, 1989, pp. 223-239.

[12]. X. Huang, “A Space-Efficient Algorithm for Local
Similarities,” Computer Applications in the
Biosciences, Vol. 6, No. 4, 1990, pp.373-381.

[13]. X. Huang, “Alignment of Three Sequences in
Quadratic Space,” ACM SIGAPP Applied Computing,
Vol. 1, Issue 2, 1993, pp. 7-11.

[14]. M.S. Johnson and R.F. Doalittle, “A Method for the
Simultaneous Alignment of Three or More Amino Acid
Sequences,” J Mol Evol. Vol. 23, 1986, pp. 267-78.

[15]. E.W. Mayers and W. Miller, “Optimal Alignments in
Linear Space,” Computer Applications in the

Biosciences, Vol. 4, No. 1, 1988, pp. 11-17.
[16]. M. Murata, J.S. Richardson, and J.L. Sussman,

“Simultaneous Comparison of Three Protein
Sequences,” Proc. Natl. Acad. Sci USA, Vol. 82, 1985,
pp. 3073-3077.

[17]. H.B. Nicholas, A.J. Ropelewski and D.W. Deerfield,
“Strategies for Multiple Sequence Alignment,”
Biotechniques, Vol. 32, 2002, pp. 592-603.

[18]. S.E. Needleman and C.D. Wunsch, “A general method
applicable to the search for similarities in the amino-
acid sequence of two proteins,” J. Molecular Biol., Vol.
48, 1970, pp. 443-453.

[19]. C. Notredame, “Recent progresses in multiple sequence
alignment: a survey,” Pharmacogenomics, Vol. 3, 2002,
pp. 131-144.

[20]. S. Rajko and S. Aluru, “Space and Time Optimal
Parallel Sequence Alignments,” IEEE Trans. Parallel
and Distributed Systems, Vol. 15, Issue 12, 2004, pp.
1070-1081.

[21]. D. Sankoff, “Simultaneous Solution of the RNA

Folding, Alignment and Protosequence Problems,”
SIAM J. Appl. Math., Vol. 45, Issue 5, 1985, pp. 810-
825.

[22]. J. Setubal and J. Meidanis, Introduction to
Computational Molecular Biology. PWS Publishing
Company, 1997.

[23]. T.F. Smith and M.S. Waterman, “Identification of
Common Molecular Subsequences,” J. Molecular
Biology, vol. 147, 1981, pp.195-197.

[24]. C.Y. Tang, C.L. Lu, M.D.T. Chang, Y.T. Tsai, Y.J.
Sun, K.M. Chao, J.M. Chang, Y.H. Chiou, C.M. Wu,
H.T. Chang and W.I. Chou, “Constrained Multiple
Sequence Alignment Tool Development and Its
Application to RNase Family Alignment,” Journal of
Bioinformatics and Computational Biology, Vol. 1,
2003, pp. 267-287.

[25]. L. Wang and T. Jiang, “On the complexity of multiple
sequence alignment,” J. Computational Biology, Vol. 1,
No. 4, 1994, pp. 337–348.

Table 1. Runtime of P3SA method tested on Formosa Linux Cluster.
No. of processors

Input Size
1 2 4 8 16 32

Complete match
1k×1k×1k 85 64 37 21 15 11
2k×2k×2k 737 495 263 145 88 56
4k×4k×4k 5745 3965 2079 1076 582 336
8k×8k×8k 47620 32373 17340 8634 4484 2476

Complete mismatch
1k×1k×1k 126 90 47 26 16 14
2k×2k×2k 1022 714 366 193 105 68
4k×4k×4k 8161 5673 2906 1482 777 442
8k×8k×8k 66828 46383 23174 11849 6388 3418

Time: second.

Complete match

0

4

8

12

16

20

2 4 8 16 32

No. of Processors

S
p
ee

d
-u

p
 r

at
io

1k

2k

4k

8k

Complete mismatch

0

4

8

12

16

20

2 4 8 16 32

No. of Processors

S
p
ee

d
-u

p
 r

at
io

1k

2k

4k

8k

 (a) Complete match (b) Complete mismatch

Figure 6. Speed-up ratios of P3SA method tested on Formosa Linux Cluster.

