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Abstract

In this paper, we propose a general turn model, 
Tree-turn model, for irregular topology.  In Tree-turn 
model, links are classified as either tree or cross and six 
directions are associated with channels of links.  From 
these six directions, we prohibit some turns such that an 
efficient deadlock-free routing algorithm, Tree-turn 
routing, can be derived.  There are three phases to 
construct the Tree-turn routing.  First, build up a 
coordinated tree for a given topology.  Second, construct 
a communication graph of the topology and the 
corresponding coordinated tree.  Third, set up the 
forwarding table by using the all-pairs shortest path 
algorithm according to the prohibited turns derived from 
the Tree-turn model and the directions of the channels in 
communication graph.  To evaluate the performance, we 
implement the Tree-turn routing algorithm along with the 
up*/down* routing algorithm and the L-turn routing 
algorithm on a software simulator.  The simulation 
results show that Tree-turn routing outperforms other two 
routing algorithms for all test cases.

1. Introduction 

Efficient routing algorithms can achieve high 
performance in switched-based networks such as Myrinet 
[1], ServerNet [5], and InfiniBand [6].  For wormhole 
switching [12], the deadlock is occurred when cyclic 
waiting of messages.  How to design an efficient 
deadlock-free [2] routing algorithm is important to such 
networks.  Many methods to prevent deadlocks have 
been proposed in the literature [3][10][11][15].  The turn 
model proposed in [4] was a tool to deliver deadlock-free 
routing algorithms for regular topologies.  It analyzes the 
directions of messages and prohibits enough turns to break 
the turn cycles to avoid deadlocks. 

The up*/down* routing [14] was the first tree-based 
routing algorithm for irregular topology.  In up*/down*

routing, there are only two directions, up and down, for 
channels.  A legal route of up*/down* routing follows 
the rule: it must traverse zero or more links in the up 
direction followed by zero or more links in the down 
direction.  Although the up*/down* routing is simple, the 
performance is not good since there exists many traffic 
congestions at root of a spanning tree called hot spots 
[13][16]. 

To overcome the drawbacks of the up*/down* routing,
the L-turn routing was proposed in [9] based on the 2D 
turn model [8].  In L-turn routing, there are four 
directions, left-up, left-down, right-up, and right-down, 
for channels.  The routing is based on the L-R tree.  By 
carefully setting up the prohibited turns for each node, one 
can obtain a more even distribution of traffic load and 
shorter routing paths compared to the up*/down* routing.  
However, in L-turn routing, the tree links (edges in a 
spanning tree) and the cross links (edges not in the 
spanning tree) are considered as the same type of links.  
It is possible that the hot spots will still occur around the 
root under some L-R trees.  It is also possible that the 
opposite prohibited turn pairs exist on a node and make 
traffic load unbalancing.

In this paper, we first propose a general turn model, 
Tree-turn model, for irregular topologies.  In the 
Tree-turn model, the directions of channels can be 
classified into left-up, left, left-down, right-up, right, and 
right-down directions.  It has two more directions, left 
and right, than the 2D turn model.  With two more 
directions, there are more choices of routing paths.  In 
addition, tree links and cross links are associated with 
different definitions (directions).  The tree links can only 
have left-up and right-down directions and the cross links 
have left, left-down, right-up, and right directions.  By 
giving different definitions to tree links and cross links, 
we can use cross links to push the traffic downward in a 
spanning tree and release hot spots. 

Based on the Tree-turn model, we propose an efficient 
tree-based routing algorithm, Tree-turn routing, for 
irregular topologies.  The principle of Tree-turn routing 
is to provide more bandwidth and push the traffic 
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downward to leaves to prevent hot spots.  Given an 
irregular topology G = (V, E), to construct the Tree-turn 
routing, we first build up the corresponding coordinated 
tree CT = (V, E’) of G followed by constructing the 
communication graph CG = (V, E ) from G and CT.
Then we can obtain the forwarding tables of nodes by 
using the all-pairs shortest path algorithm according to the 
prohibited turns derived from the Tree-turn model and the 
directions of the channels in CG.

To evaluate the performance of Tree-turn routing, we 
compare it with up*/down* routing and L-turn routing.  
We implement a wormhole routing simulator for these 
three routing algorithms.  We use six network sizes as 
test cases to evaluate the three routing algorithms.  The 
simulation results show that Tree-turn routing 
outperforms other two routing algorithms for all test 
cases.

The rest of the paper is organized as follows.  Some 
definitions and terms used in this paper will be given in 
Section 2.  In Section 3, we will describe the Tree-turn 
model.  The Tree-turn routing derived from Tree-turn
model will be given in Section 4.  The experimental test 
will be given in Section 5.  We give the conclusions in 
Section 6. 

2. Preliminaries 

In this section, we will give some definitions and terms 
used in this paper. 

Definition 1 (Graph): Given a switch-based network, 
it can be represented as a graph G = (V, E), where V is the 
set of the switches and E is the set of the bidirectional 
links between switches, and G is the network topology.  
For link e = (vi, vj) in E, it consists of two communication 
channels <vi, vj> and <vj, vi> such that node vi can send 
message to node vj through <vi, vj> and node vj can send 
message to node vi through <vj, vi>.  For channel <vi, vj>,
vi and vj are called start and sink nodes of the channel, 
respectively.  <vi, vj> is called the output channel and 
input channel of vi and vj, respectively.   

Definition 2 (Coordinated tree): Given G = (V, E), a 
coordinated tree (CT) is a breath first search (BFS) 
spanning tree of G, where CT = (V, E’) and E’ ⊆ E.  For 
each node v in a coordinated tree, node v is associated 
with a two-dimensional coordinate v(x, y).  We use X(v)
and Y(v) to denote the x and y coordinates of node v,
respectively, that is, X(v) = x and Y(v) = y. Y(v) is 
defined as the level of node v in the coordinated tree, and
X(v) is defined as the order of preorder traversal of the 
coordinated tree starting from the root to node v.

Due to two or more children nodes can be selected as 
the next preorder traversal node, several coordinated trees 
can be built from the same network topology.  To obtain 
the unique coordinated tree of a given network topology, 
the node with smaller network ID will be selected first 

when performing the preorder traversal.   
Definition 3 (Tree link and cross link): Given G = (V,

E) and a coordinated tree CT = (V, E’) of G, E’ and E − E’
are the sets of tree links and cross links of G with respect 
to CT, respectively   

Definition 4 (Communication graph (CG)): Given G
= (V, E) and a coordinated tree CT = (V, E’) of G, the 
communication graph CG = (V, E ) is a directed graph 
with respect to G and CT, where E  is the set of all 
communication channels of E.

Definition 5 (Direction): Given a communication 
graph CG = (V, E ), for each channel e = <vi, vj> ∈ E ,
we define 

(1) vj is the left-up node of vi if X(vj) < X(vi) and Y(vj) < 
Y(vi). 

(2) vj is the left node of vi if X(vj) < X(vi) and Y(vj) = 
Y(vi). 

(3) vj is the left-down node of vi if X(vj) < X(vi) and Y(vj)
> Y(vi).

(4) vj is the right-up node of vi if X(vj) > X(vi) and Y(vj)
< Y(vi).

(5) vj is the right node of vi if X(vj) > X(vi) and Y(vj) = 
Y(vi). 

(6) vj is the right-down node of vi if X(vj) > X(vi) and 
Y(vj) > Y(vi).

For each channel e = <vi, vj>, the direction of e ,
denoted as ( )d e , is defined as LU, L, LD, RD, R, and RD
if vj is the left-up node, the left node, the left-down node, 
the right-up node, the right node, and the right-down node 
of vi, respectively. 

Definition 6 (Turn): Given a communication graph 
CG = (V, E ), the directions of eα  and eβ  form a turn
for vj if eα = <vi, vj> and eβ  = <vj, vk>.  We use 

( ), ( )d e d eT
α β

 to denote the turn formed by the directions of 

eα  and eβ .   
Definition 7 (Turn cycle): Given a communication 

graph CG = (V, E ), a turn cycle TC = 
(

1 2( ), ( )d e d eT ,
2 3( ), ( )d e d eT , …,

1( ), ( )k kd e d eT
+

) is a sequence of 
turns in which the sink node of the first channel is also the 
sink node of the last channel in the turn sequence, that is, 
the start node of 2e is the sink node of 1ke + .

Definition 8 (Direction graph (DG)): The direction 
graph DG = ( , )D T  with respect to a communication 

graph CG = (V, E ) is a complete directed graph, where D
is the set of directions defined in CG and T  = { ,i jd dT | for 

all di, dj ∈ D and di ≠ dj} is the set of all possible turns that 
can be defined in CG.  A DG is called the complete
direction graph (CDG) if D = {LU, L, LD, RU, R, RD}. 

Definition 9 (Direction dependency graph (DDG)):
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Given a DG, any subset of DG is defined as the direction 
dependency graph (DDG) of DG.

Definition 10 (Acyclic direction dependency graph 
(ADDG)): Given a CG, the DG of CG, and a DDG of DG,
for each node v in CG, if the edges of DDG are the only 
available turns allowed at v and no turn cycle can be 
formed in CG, then the DDG is called acyclic DDG.

Definition 11 (Maximal acyclic direction dependency 
graph (Maximal ADDG)): Given a CG, the DG of CG, an 
ADDG of DG is called the maximal ADDG if adding any 
edge that in DG but not in ADDG to the ADDG will result 
in turn cycles in CG.

Lemma 1: Given a CG and a DDG of CG, if there is 
no cycle in the DDG, then it is impossible to have turn 
cycles in CG when the edges of DDG are the only 
available turns allowed at each node in CG.

Proof: We want to show that if there is a turn cycle in a 
CG, then there is a cycle in DDG.  Assume that there is a 
turn cycle TC = (

1 2( ), ( )d e d eT ,
2 3( ), ( )d e d eT , …, 

1( ), ( )k kd e d eT
+

) in 
CG.  The turn cycle TC can be simply represented as
TC’(

21,ddT ,
32 ,ddT , …, 

1,ddk
T ) in the corresponding DDG,

where d1 = d( 1e ) = d( 1+ke ), d2 = d( 2e ), d3 = d( 3e ), …, 

and dk = d( ke ).  TC’(
1 2,d dT ,

32 ,ddT , …, 
1,ddk

T ) is a cycle 
in the DDG.

We now give an example to explain above definitions.  
In Figure 1(a), we use a graph G = (V, E) to represent a 
switched-based network, where V = {v1, v2, v3, v4, v5} and 
E = {(v1, v2), (v1, v3), (v1, v4), (v2, v3), (v3, v4), (v3, v5), (v4,
v5)}.  In Figure 1(b), a BFS spanning tree of the network 
in Figure 1(a) is shown.  The root in the BFS spanning 
tree is node v1.  The coordinated tree of G is shown in 
Figure 1(c).  In Figure 1(c), according to Definition 2, 
we have Y(v1) = 0, Y(v2) = 1, Y(v3) = 1, Y(v4) = 1, and Y(v5)
= 2,.  When performing preorder traversal, we have X(v1)
= 0.  Nodes v2, v3, v5, and v4 are traversed in order since 
we choose the node with smaller ID as the next node.  
We have X(v2) = 1, X(v3) = 2, X(v5) = 3, and X(v4) = 4.  
Node v3 is the right-down, right, left, and left-up node of 
nodes v1, v2, v4, and v5, respectively. 

Figure 1(d) shows the communication graph of Figure 
1(a) and Figure 1(c).  We use thick links and thin links in 
Figure 1(d) to represent tree links and cross links, 
respectively.  We can find that the directions of tree links 
are either LU or RD, and the directions of cross links are L,
LD, RU, or R.  In Figure 1(d), the directions d(<v1, v2>) = 
RD, d(<v2, v1>) = LU, d(<v2, v3>) = R, d(<v3, v2>) = L,
d(<v4, v5>) = LD, and d(<v5, v4>) = RU.

2 1 1 3( , ), ( , )d v v d v vT < > < >

= ,LU RDT  is a turn and TC = {
2 1 1 3( , ), ( , )d v v d v vT < > < > ,

1 3 3 2( , ), ( , )d v v d v vT < > < > ,
3 2 2 1( , ), ( , )d v v d v vT < > < > } = { ,LU RDT , ,RD LT ,

,L LUT } is a turn cycle.
In Figure 1(e), the direction graph DG of Figure 1(d) is 

shown.  It is a complete direction graph since it consists 
of six directions.  Figure 1(f) shows a direction
dependency graph DDG of Figure 1(e).  There are two 
turns ,RD LUT and ,LU RDT  in the DDG.  Turn cycles 
{ ,RD LUT , ,LU RDT } and { ,LU RDT , ,RD LUT }  are formed in 
the DDG.  Figure 1(g) shows an acyclic direction
dependency graph ADDG of Figure 1(e).  It has two 
turns ,L RDT  and ,RD LT .  If we only allow these two turns 
in Figure 1(d), the two turns form a cycle but not a turn 
cycle.  We can see that a cycle in an ADDG will not 
result in a turn cycle in CG.

v1

v3

v5v4

v2

i node i
(switch)

link
v3

v5

v1

v4v2

(a) A network topology G     (b) The spanning tree  
                              of G

v3

v5

v1

v4v2

(0, 0)

(1, 1) (2, 1)

(3, 2)

(4, 1)

(x, y)
x: x coordinate
y: y coordinate

(c) A coordinated tree of G

v3

v5

v1

v4v2

RULU

LD RD

RL

LU RU

LD RD

L R

(d) The CG of G           (e) The DG of CG

RD LU L RD

(f) A DDG              (g) An ADDG
Figure 1. An example for definitions. 

3. The Tree-turn Model 

The Tree-turn model is a general turn model for 
irregular topology.  Given an irregular topology G, in the 
Tree-turn model, based on Definitions 2, 3, 4, and 5, the 
directions of channels can be classified into six directions, 
left-up, left, left-down, right-up, right, and right-down 
directions.  The Tree-turn model has two more directions, 
left and right, than the 2D turn model.  With these two 
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more directions, there are more choices of routing paths.  
In addition, since the coordinated tree of G is skewed and 
we define tree links as the links of the coordinated tree, 
for each channel e  in tree links, the direction of e  is 
either LU or RD, that is, ( )d e ∈ {LU, RD}.  For each 
channel e  in cross links, the direction of e  is L, LD,
RU, or R, that is, ( )d e ∈ {L, LD, RU, R, RD}.  Tree 
links and cross links are associated with different 
directions in the Tree-turn model.  By giving different 
directions to tree links and cross links, we can use cross 
links to push the traffic downward in a spanning tree and 
release hot spots. 

In order to avoid deadlocks, in the Tree-turn model, a 
maximal ADDG is derived from the CDG that contains six 
directions.  Since no turn cycle can be formed in a 
maximal ADDG and the DG of a topology G contains at 
most six directions, when apply the prohibited turns 
derived from the construction of a maximal ADDG of the 
CDG to nodes of G, a deadlock-free routing can be 
preserved.  There are two issues to find the maximal 
ADDG from the CDG.  The first issue is to decide what 
edges should be removed (prohibited) from the CDG.
The second issue is the routing algorithm derived from the 
found maximal ADDG should perform efficiently.  For 
the first issue, we use an incremental method to remove 
edges step by step from the CDG to obtain a maximal 
ADDG.  For the second issue, when removing edges 
from a DDG in each step, we will try to prevent the traffic 
from flowing to the root of a CG and push the traffic 
downward to the leaves of a CG.  The process of finding 
the maximal ADDG from the CDG consists of the 
following three steps: 

Step 1. Find the maximal ADDGs ADDG1, ADDG2,
and ADDG3 from DGs of nodes LU and RD, nodes LD
and RU, and nodes L and R from the CDG, respectively. 

Step 2. Combine ADDG1 with ADDG2 by adding edges 
between nodes in ADDG1 and ADDG2 to form a new 
DDG and find a maximal ADDG, ADDG4, from the new 
formed DDG.

Step 3. Combine ADDG3 with ADDG4 by adding edges 
between nodes in ADDG3 and ADDG4 to form a new 
DDG and find a maximal ADDG, ADDG5, from the new 
formed DDG.  The found ADDG5 is a maximal ADDG
of the CDG.

In the following, we will describe these three steps in 
details. 

A. Step 1 

In this step, we will find the maximal ADDGs ADDG1,
ADDG2, and ADDG3 from DGs of nodes LU and RD,
nodes LD and RU, and nodes L and R from the CDG,
respectively.  The reason we choose these node pairs is 
that the DG of each node pair contains edges with 

opposite directions.  These edges form a cycle that may 
lead to a turn cycle.   Figure 2 shows the DGs of these 
node pairs and their corresponding possible turn cycles. 

To prevent the cycles of DGs shown in Figure 2, we 
must remove one edge from each DG.  In Figure 2(a), we 
remove the edge ,RD LUT  and this is the only choice.  
The reason is to maintain the connectivity of a topology.  
Since the LU and RD directions are defined for tree links, 
if the topology is a tree and we remove edge ,LU RDT , there 
is no way for all nodes to communicate with each other if 
one node is not the ancestor or the child of the other node.  
By removing edge ,RD LUT  from Figure 2(a), we can get 
ADDG1 shown in Figure 3(a).  In Figure 2(b), we can 
break the cycle by removing either edge of the DG.  For 
each node v in the CG, the direction LD means that the 
traffic flow is going downward from node v to other nodes 
whose Y coordinate is less than that of node v.  Edge 

,LD RUT  means that the traffic flow is going downward 
before going upward.  In order to push to traffic 
downward, we keep edge ,LD RUT .  By removing edge 

,RU LDT  from Figure 2(b), we can get ADDG2 shown in 
Figure 3(b).  In Figure 2(c), the cycle is formed by 
directions L and R.  Since it does not affect the traffic 
flow going downward or upward by removing either edge, 
we remove edge ,R LT  in this case.  By removing edge 

,R LT  from figure 2(c), we can get ADDG3 shown in 
Figure 3(c).

LU RD
LU

RD

RD
LU

LD RU
LD

RU

RU

LD

    (a) LU and RD           (b) LD and RU
L R

L

R R

L

(c) L and R
Figure 2. The DGs of node pairs and their 
corresponding possible turn cycles. 

LU RD LD RU L R

(a) ADDG1       (b) ADDG2       (c) ADDG3
Figure 3. The maximal ADDGs of DGs shown in 
Figure 2. 

B. Step 2 

In this step, we want to combine ADDG1 with ADDG2
by adding edges between nodes in ADDG1 with ADDG2 to 
form a new DDG and find ADDG4 from the new formed 
DDG.  The DDG by combining ADDG1 with ADDG2 is 
shown in Figure 4(a).  In Figure 4(a), there are four 
cycles C1, C2, C3, and C4 that will result in turn cycles TC1
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= { ,RD RUT , ,RU LUT , ,LU RDT }, TC2 = { ,LD RUT , ,RU LUT ,

,LU LDT }, TC3 = { ,RU RDT , ,RD LDT , ,LD RUT }, and TC4 = 
{ ,RD LDT , ,LD LUT , ,LU RDT } in a CG as shown in Figures 
4(b), 4(c), 4(d), and 4(e), respectively.  To break these 
four turn cycles, we need to remove some edges from the 
DDG shown in Figure 4(a). 

For cycles C1 and C2, they have a common edge 
,RU LUT  and this edge makes the traffic flow upward.  In 

order to push the traffic flow downward to leaves of a 
corresponding CT, we remove this common edge and 
break cycles C1 and C2.  For cycles C3 and C4, they have 
a common edge ,RD LDT .  Since edge ,RD LDT  makes the 
traffic flow downward, we keep the edge.  For other 
edges ,RU RDT  and ,LD RUT  in cycle C3, ,RU RDT makes the 
traffic flow upward then downward and ,LD RUT  makes 
the traffic flow downward then upward.  In order to push 
the traffic flow downward to leaves of a corresponding CT,
we remove edge ,RU RDT  to break cycle C3.  For other 
edges ,LU RDT  and ,LD LUT  in cycle C3, since LU and RD
are directions of tree links, we cannot remove ,LU RDT  for 
connectivity reason as stated in Step 1.  Therefore, we 
remove edge ,LD LUT  to break cycle C4.  We then obtain 
the ADDG4 as shown in Figure 4(f). 

    

LU RU

LD RD
RD

RD

RU

RU

LU
LU

C1 TC1

LU RU

RD

(a) The DDG by           (b) Cycle C1 and  
   combining ADDG1         turn cycle TC1
   with ADDG2

LD

LD

LU

LU

RU
RU

C2 TC2
LU RU

LD

(c) Cycle C2 and turn cycle TC2

RU

RU

RD

RD

LD

LD

C3 TC3
RU

LD RD

(d) Cycle C3 and turn cycle TC3

LU

LU

LD

LD

RD

RD
C4 TC4

LU

LD RD          

LU RU

LD RD

(e) Cycle C4 and turn cycle TC4       (f) ADDG4
Figure 4. Combine ADDG1 with ADDG2 to form 
ADDG4.

C. Step 3 

In this step, we want to combine ADDG3 with ADDG4
by adding edges between nodes in ADDG3 and ADDG4 to 
form a new DDG and find ADDG5 from the new formed 
DDG.  For nodes in Figure 4(f), we have the following 
observations:

Observation 1:  Any combination of edges from 
nodes LD and RD would not have upward directions in a 
CG.

Observation 2:  Any combination of edges from 
nodes LU and RU would not have downward directions in 
a CG.

Therefore, we divide ADDG4 into Region 1 and Region
2 as shown in Figure 5(a).  For the ADDG3 shown in 
Figure 3(c), edge ,L RT  indicates that the traffic is flowing 
between nodes in the same level of a corresponding CT.
To combine ADDG3 with Region 1 or Region 2 shown in 
Figure 5(a), we have the following observations: 

Observation 3:  If we combine ADDG3 with Region 1 
to form a DDG shown in Figure 5(b), no turn cycles can 
be formed by applying edges of the DDG to nodes of a 
given CG.

Observation 4:  If we combine ADDG3 with Region 2 
to form a DDG shown in Figure 5(c), no turn cycles can 
be formed by applying edges of the DDG to nodes of a 
given CG.

Observation 5:  If we combine ADDG3 with ADDG4,
there are two possible ways to form turn cycles.  One is 
from node v in ADDG3 to nodes in Region 1, nodes in 
Region 2, and goes back to node v.  The other is from 
node v in ADDG3 to nodes in Region 2, nodes in Region 1, 
and goes back to node v.

Based on observations 3-5, in Figure 5(d), there are six 
cycles C5, C6, C7 , C8, C9, and C10 that will result in turn 
cycles TC5 = { ,L LUT , ,LU RDT , ,RD LT }, TC6 = { ,L LDT ,

,LD RUT , ,RU LT }, TC7 = { ,L RDT , ,RD RUT , ,RU LT }, TC8 =
{ ,R LDT , ,LD RUT , ,RU RT }, TC9 = { ,R LUT , ,LU RDT , ,RD RT },
and TC10 = { ,R LUT , ,LU LDT , ,LD RT } as shown in Figure 
5(e), Figure 5(f), Figure 5(g), and Figure 5(h), Figure 5(i), 
and Figure 5(j), respectively.   

For cycle C5, edges ,L LUT  and ,LU RDT  make the 
traffic flow upward.  Since LU and RD are directions of 
tree links, we cannot remove ,LU RDT  for connectivity 
reason.  In order to push the traffic flow downward to 
leaves of a corresponding CT, we remove edge ,L LUT  to 
break cycle C5.  For cycles C6 and C7, they have a 
common edge ,RU LT that makes the traffic flow upward.  
In order to push the traffic flow downward to leaves of a 
corresponding CT, we remove edge ,RU LT  to break 
cycles C6, and C7.  For cycle C8, since only edge ,RU RT
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makes the traffic flow upward ( ,LD RUT  makes the traffic 
flow downward then upward), in order to push the traffic 
flow downward to leaves of a corresponding CT, we 
remove edges ,RU RT  to break cycle C8.  For cycles C9

and C10, they have a common edge ,R LUT that makes the 
traffic flow upward.  In order to push the traffic flow 
downward to leaves of a corresponding CT, we remove 
edge ,R LUT  to break cycles C9, and C10.  We obtain 
ADDG5 as shown in Figure 5(k). 

From Step 1 to Step 3, we have removed 10 edges from 
CDG.  These removed edges are prohibited turns, 
denoted as PT = { ,L LUT , ,LD LUT , ,RU LUT , ,R LUT , ,RD LUT ,

,RU LT , ,R LT , ,RU LDT , ,RU RT , ,RU RDT }, in the Tree-turn
model.

LU RU

LD RD

Region 2

Region 1

LU RU

LD RD

Region 2

Region 1

L R

(a) Two regions of         (b) Combine ADDG3
ADDG4                  with Region 1 

LU RU

LD RD

Region 2

Region 1

L R

LU RU

LD RD

Region 2

Region 1

L R

(c) Combine ADDG3 with  (d) Combine ADDG3 with  
Region 2                ADDG4
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RD

L

L L

RD

RD

LU
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C5 TC5

(e) Cycle C5 and turn cycle TC5
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L
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L L

RU

RU
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(f) Cycle C6 and turn cycle TC6
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L
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RD RU
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(g) Cycle C7 and turn cycle TC7
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Figure 5. Combine ADDG3 with ADDG4 to form 
ADDG5.

4. The Tree-turn Routing 

Based on the Tree-turn model, given an irregular 
topology G = (V, E), we can derive the Tree-turn routing 
by the following three phases: 

Phase 1: Construct the corresponding coordinated tree 
CT = (V, E’) of G.   

Phase 2: Construct the communication graph CG = (V,
E ) from G and CT.   

Phase 3: Set up the forwarding tables of nodes in CG
by using the all-pairs shortest path algorithm according to 
the 10 prohibited turns derived from the Tree-turn model 
and the directions of the channels in CG.

In phase 3, for the all-pairs shortest path algorithm, 
whenever we find a shorter routing path through node k,
and if the turn formed at node k is not a prohibited turn, 
we will adjust the routing path and setup the forwarding 
tables of the nodes on the routing path.  Otherwise, we 
will keep the original routing path.  If there are several 
routing paths with the same length, we add all of them to 
the routing tables.  Following is the detail of all-pairs 
shortest path algorithm for Tree-turn routing.
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Algorithm setup_forwarding_tables() 
1. Let n be the number of nodes in the network. 
2. Let routing_path[i][j] be the routing path from node i to 
node j.
2. Let length[i][j] be the length from node i to node j.
3. Let direction(i, j) be the direction of channel <i, j>
formed by node i and node j.
4. Let turn(di, dj) be the turn form direction di and 
direction dj.
5. /* Initialize the length[i][j] according to the adjacency 
matrix. */ 
for i = 1 to n do

for j = 1 to n do
if ( there exists one link between node i and node j ) 
then { length[i][j] = 1; } 

6. /* Compute the length[i][j] and adjust the routing paths. 
*/ 
for k = 1 to n do

for i = 1 to n do 
for j = 1 to n do 

if ( length[i][k] + length[k][j] <=length[i][j] ) then  
{

Let node m be the (length[i][k] – 1)th node of 
routing_path[i][k]. 
Let node n be the second node of 
routing_path[k][j]. 
inDirection = direction(m, k);
outDirection = direction(k, n);
if ( turn(inDirection, outDirection) is not 

prohibited ) then
{

length[i][j] = length[i][k] + length[k][j];
Adjust the routing paths and setup the 
forwarding tables for the nodes on the routing 
paths. 

}
}

End_of_algorithm_setup_forwarding_tables 

Theorem 1:  The Tree-turn routing is deadlock-free 
and there exists at least one path from one node to another 
in a CG.

Proof:  Based on Tree-turn model, there is at least one 
prohibited turn to break each turn cycle in the CDG.
Therefore, this routing algorithm is deadlock-free.  Since 
the turn ,LU RDT  is not prohibited for each node in a CG,
each packet from any source node to its destination node 
can first go upward to their least common ancestor and 
then goes downward to the destination node.  Therefore, 
there exists at least one path from one node to another. 

5. Simulation Results 

To evaluate the performance of the proposed routing 
algorithm, we implement the Tree-turn routing algorithm 
along with the up*/down* routing algorithm and the 
L-turn routing algorithm on a wormhole routing simulator, 
IRFlexSim [7].  In our network model, the topologies are 
generated randomly by given number of switches and 
links.  Each switch is associated with a processor.  
There are 8 ports in each switch, and each port is 
associated with one input channel and one output channel.  
We do not allow duplicated links between a pair of 
switches, that is, there exists at most one link between a 
pair of switches.  The packet length is 128 flits.  The 
delay for a flit goes through a link is one clock.  The 
delay for the flit header to be routed and arbitrated to the 
output channel is one clock.  The delay for a data flit to 
be transmitted from the input channel to the output 
channel is one clock.  The traffic pattern is uniform.  To 
simulate the irregular topology, we have six 
configurations for different number of nodes (switches) n
and links l, that is, (n, l) ∈ {(128, 384), (128, 448), (128, 
512)}. 

Figure 6 shows the simulation results of these three 
algorithms under different network configurations.  In 
Figure 6, the throughput is defined as the received data 
per clock per node (flits/clock/node).  The message 
latency is measured in clocks.  From the simulation 
results, we can see that the performance of Tree-turn
routing is better than that of L-turn routing, and the 
performance of L-turn routing is better than that of 
up*/down* routing.  That is, Tree-turn routing 
outperforms L-turn routing and up*/down* routing.  For 
topologies used in Figures 6(a) to 6(c), they have the same 
number of nodes, but different numbers of links.  From 
Figures 6(a) to 6(c), for all routing algorithms, we can see 
that when the number of links increases, the throughputs 
of routing algorithms are getting larger and the latencies 
of routing algorithms are getting smaller. 

6. Conclusions 

In this paper, we have proposed a general Tree-turn 
model for irregular topology.  Based on the Tree-turn
model, we derive an efficient deadlock-free routing 
algorithm, Tree-turn routing.  To evaluate the 
performance of the proposed routing algorithm, we have 
implemented the Tree-turn routing algorithm along with 
the up*/down* routing algorithm and the L-turn routing 
algorithm on a software simulator.  The simulation 
results show that the proposed Tree-turn routing 
outperforms other two routing algorithms for all the test 
cases.
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(a) 128-nodes and 384-links 

(b) 128-nodes and 448-links 

(c) 128-nodes and 512-links 
Figure 6. Simulation results of different routing 
algorithms with different network configurations. 
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