
Leveraging the Multiprocessing Capabilities of Modern Network Processors for
Cryptographic Acceleration∗

Gunnar Gaubatz and Berk Sunar
Cryptography & Information Security Laboratory

Worcester Polytechnic Institute, Massachusetts, U.S.A.
{gaubatz,sunar}@wpi.edu

Abstract

The Kasumi block cipher provides integrity and confi-
dentiality services for 3G wireless networks, but it also
forms a bottleneck due to its computational overhead.
Especially in infrastructure equipment with data streams
from multiple connections entering and leaving the network
processor the critical performance issue needs to be ad-
dressed. In this paper we present a highly scalable bit sliced
implementation of the Kasumi block cipher for the Intel IXP
28xx family of network processors. It can achieve a maxi-
mum theoretical encryption rate of up to 2 Gb/s when run
in parallel on all 16 on-chip microengines.

1 Introduction

The security of third generation wireless communication
devices is ensured through the use of strong cryptography in
a modular and extensible framework specified by the 3GPP
working group [3]. The centerpiece of this security archi-
tecture that consists of the algorithms f8 (confidentiality)
and f9 (integrity) is the block cipher Kasumi [4]. Cel-
lular network base stations need to provide the capability
of processing multiple Radio Network Layer (RNL) data
streams at high rates that can be multiplexed into high-speed
backbone links [6]. This processing also involves security
functions which due to their computational complexity form
a bottleneck. An efficient strategy for encrypting multiple
data streams in parallel is hence required.

Network processing units (NPU) form the centerpiece of
data and voice network routers. They typically contain mul-
tiple programmable packet processing engines optimized
for TCP/IP traffic. Frequently 16 or more of these engines
are present on a single chip in order to provide high process-
ing throughput on the order of tens of Gb/s. Only recently,
however, manufacturers have addressed the aspect of net-
work security by providing cryptographic accelerators that
can sustain high data rates in the form of either on-chip,

∗This work was supported by a grant from Intel Corporation, U.S.A.

flow-through or look-aside co-processors. In this paper we
are concerned with providing fast encryption and decryp-
tion capabilities to network processors that have already
been deployed in the field without any form of hardware
acceleration. To do so we rely on two concepts: (1) on
the explicit parallelism of the aforementioned multiple pro-
grammable packet processors, and (2) on an efficient data
representation that enables software parallelization of the
encryption procedure.

2 Microengine Architecture

Microengine architectures differ significantly from mod-
ern general purpose processors, since the primary intended
use is for packet processing and not for computationally in-
tensive tasks like cryptographic operations. The high num-
ber of parallel microengines necessitates certain trade-offs
due to silicon area constraints. Typical architectures possess
neither caches nor super-scalar out-of-order execution units.
They do, however, possess large general purpose register
files, special purpose memory transfer registers and low-
latency local memory. As such the optimization process for
typical applications differs significantly from that for gen-
eral purpose processors. The allocation of variables, for ex-
ample, to either registers or various types of RAM has a
tremendous influence on the performance and needs to be
thoroughly considered during the planning phase. The tar-
get of our implementation is the Intel IXP 2xxx family of
network processors [5], although the same principles should
apply similarly to other NPU architectures. The NPUs in
this family contain either 8 or 16 RISC-based microengines
operating at clock frequencies of up to 1.4 GHz (IXP 2800).
Each microengine contains 8 Kwords of instruction RAM
and two banks of 128 general purpose registers each. 2560
bytes of 32-bit addressable low-latency local memory serve
as temporary storage for larger data structures. External
memory controllers offer larger storage capacity, however,
latencies of up to 300 clock cycles may be incurred upon
accessing these slow memories.

1

Proceedings of the 2005 Fourth IEEE International Symposium on Network Computing and Applications (NCA’05)
0-7695-2326-9/05 $20.00 © 2005 IEEE

3 The Kasumi Block Cipher

The design of the Kasumi block cipher is based on a
similar cipher design called Misty1 [7]. Both were devel-
oped by Mitsuru Matsui and share most of the design prin-
ciples that provide strong resistance to linear and differen-
tial cryptanalysis. They encrypt blocks of 64 bits using a
Feistel network of eight rounds. In each round, alternating
between the left and right halves of the state, one half enters
the outer round function FO() for processing. The output
of the round function is then XOR’ed to the opposite half
of the state and operation continues with the next round.
FO() itself consists of three rounds of an inner round func-
tion FI() in a similar recursive Feistel structure with half the
block size. In a third level of recursion FI() itself is com-
posed of either three (Misty1) or four (Kasumi) rounds of
nonlinear S-Box transformations arranged in a Feistel struc-
ture. Both ciphers require 128 bits of secret key material
which is expanded into 64 16-bit round keys. The main
difference between Kasumi and Misty1 is a slightly altered
S-Box definition, a simplified key schedule facilitating effi-
cient hardware implementations and the mode of using the
additional sub function FL().

4 Kasumi on IXP 28xx Microengine

The main goal of our implementation of Kasumi on the
Intel IXP 28xx was to maximize the throughput while mak-
ing efficient use of the available resources of a single mi-
croengine. The latency of off-chip memory access is pro-
hibitively high, which mandates that all variables have to fit
into the available registers and local memory. Such mem-
ory placement optimization was applied to the example C-
implementation given in the appendix of the Kasumi spec-
ification [4], resulting in an 11-fold speed-up. To improve
the performance yet further, however, alternative concepts
must be explored. Upon closer inspection of the Kasumi
specifications we made some interesting observations. The
S-Boxes S7 and S9 can be specified as look-up tables, but
they are also specified in terms of single-bit operations. Can
we somehow compute the S-Box substitution more effi-
ciently than using table look-up? Look-up table operations
require the isolation of the 7- or 9-bit index from the state
using masking operations, shifting and memory pointer ini-
tializations. Can we avoid costly bit-manipulations and
pointer set-ups, and rather spend cycles on the actual op-
eration? Look-up table sizes use up valuable space in local
memory that might be better used otherwise, while only a
single block of data is produced every eight rounds. Can
we store multiple data blocks in local memory and process
them in parallel?

4.1 Bit sliced Data Representation

In 1997 Eli Biham presented a fast software implemen-
tation of DES [2] using a technique that is now commonly

referred to as “bit slicing”. The scheme can be visualized
as follows: In a processor with a native word size (data-
path width) of w bits data is typically processed w bits at
a time. If an operation is to only manipulate specific single
bits of a word, this requires additional operations in order to
isolate these bits, modify them, and finally re-assemble the
word. By collecting the data of up to w words of data in a
w×w-bit matrix and computing the transpose, it is possible
to allocate all bits of the same significance into w separate
words. Single bit manipulations can now be performed in
parallel on w blocks of data with a single instruction. This
w-fold single-bit SIMD operation can help to speed up algo-
rithms that require a lot of costly bit manipulations, such as
typical block ciphers. We took the same basic idea and im-
plemented a bit sliced variant of Kasumi on the IXP micro-
engine. The feasibility of this approach ultimately depends
on the types of operations in a given algorithm. Obviously
there is a trade-off involved since, for example, S-Box sub-
stitutions cannot be performed as table look-ups anymore
and data conversion from regular to bit sliced representation
introduces additional overhead before and after encryption.
Bit slicing is also not applicable to algorithms that mostly
consist of arithmetic operations, e.g. RC5, RC6 or MARS.
Certain bit-level operations, on the other hand, can simply
be ignored in the bit sliced representation since the same
effect can be achieved through register renaming.

4.2 Efficient Data Conversion

The conversion overhead due to bit slicing is the com-
putation of four transposes per data block (32 × 64 bits
of data split into two matrices, one transpose each before
and after encryption). For each new set of keys the setup
phase of the key schedule also requires the computation of
four transposes due to the 128-bit keys. It is therefore cru-
cial to use an efficient conversion algorithm. Algorithm 1
below is used to compute the transpose of a 32 × 32-bit
block of data. It is loosely based upon the BITREVERSAL

algorithm often encountered in applications computing the
Fast Fourier Transform. A similar algorithm was published
in [8] under the name SWAPMOVE. It is optimized specifi-
cally for binary matrices organized in a 32-word array and
runs in time Θ(n log2 n). Our implementation was written
in microcode, the IXP equivalent of assembly language, in
order to minimize conversion overhead. It recursively com-
putes the transpose of a 32 × 32-bit data block by dividing
the matrix into four equally sized sub-matrices in each step
and swapping the two quadrants on opposite sides of the
main diagonal. The algorithm proceeds until sub matrices
only contain a single bit, which is the case after five re-
cursion levels. All data manipulation happens in-place in
local memory, thereby reducing the memory footprint sig-
nificantly. The integrated barrel-shifter of the microengine’s
ALU is particularly helpful for this algorithm which takes
around 600 clock cycles for a 32 × 32-bit block of data.

2

Proceedings of the 2005 Fourth IEEE International Symposium on Network Computing and Applications (NCA’05)
0-7695-2326-9/05 $20.00 © 2005 IEEE

Algorithm 1 Algorithm for computing the transpose of a
binary matrix
Input: A � n × n-bit Matrix in form of a linear array
Output: AT

1: procedure PRECOMPUTATION

2: mask0 ← (55 . . . 5)16
3: mask1 ← (33 . . . 3)16
4: mask2 ← (FF . . . F)16
5: . . .
6: maskj ← ({0}2j {1}2j

)2
7: end procedure

8: procedure BINARYMATRIXTRANSPOSE(A)
9: for j from 0 to (log2 n) − 1 do

10: k ← 2j

11: for i from 0 to n − 1 do
12: l ← 2(i − (i mod k)) + i mod k
13: temp ← (Al ∧maskj)∨ (Al+k ∧maskj) << k
14: Al+k ← (Al+k ∧maskj)∨(Al∧maskj) >> k
15: Al ← temp
16: end for
17: end for
18: end procedure

4.3 S-Box Optimization

Kasumi uses two differently sized non-linear substitu-
tion functions S7 : {0, 1}7 → {0, 1}7 and S9 : {0, 1}9 →
{0, 1}9. In [7] Matsui only gives partial information about
the exact selection of parameters for their construction.
Both S7 : x �→ x81 and S9 : x �→ x5 are almost per-
fectly non-linear power functions over the fields GF(27)
and GF(29) that have a compact logic description with al-
gebraic degree of 3 and 2, respectively [1]. In the algo-
rithm specification of Kasumi the set of logic equations for
both functions are given in two-level XOR sum-of-products
form. The intent was to give hardware implementors a cir-
cuit definition with a short critical path in addition to the
contents of the look-up table. The same definition can be
used for our bit sliced software implementation. But since
we are computing all the terms sequentially, there is no rea-
son why we have to implement the equations in two-level
XOR-SOP form. Basic multi-level logic optimization tech-
niques can be used to minimize the overall number of oper-
ations needed to compute all values of the S-Boxes. By ap-
plying the distributive law to the product terms we can iso-
late common factors. Often this leaves us with terms similar
to xi(xj ⊕ 1) which include constant terms. These can be
rewritten as xi¬xj . Just by applying simple optimizations
like these we can achieve an overall reduction of 35% in the
number of instructions.

4.4 Simplified Bit-Operations and Key Schedule

Bit sliced representation of data has positive ramifica-
tions throughout the Kasumi algorithm. Shifts and rotates
by a fixed-amount, truncations, zero-extensions and per-

mutations, which otherwise would require costly logic and
shift operations, can now be emulated using clever operand
indexing. The large number of registers per microengine
is tremendously helpful for an efficient implementation that
can afford only a small amount of local memory, especially
since the amount of data is about 32 times of that in a non-
bit sliced variant. Not surprisingly, resource management is
a considerable challenge, especially in comparison to other
typical network processors applications. A few short exam-
ples help demonstrate the benefits: A frequently encoun-
tered operation in Kasumi is rotation of 16-bit data, which
is not available as a native instruction. In bit sliced notation
we simply modify the index of the bit slice modulo 16 and
rotate implicitly. In FI() the 16-bit data path is split into a
7- and a 9-bit half. XOR operations between the two halves
require truncations and zero-extensions involving bit-level
masking operations. In bit sliced notation these can be sim-
ply ignored.

Being able to address single bit slices separately also
helps to reduce storage requirements of the key schedule.
A total of eight 16-bit sub-keys are derived from the main
key K and a related key K ′ in every round by means of bit-
rotation. Regular implementations pre-compute the entire
key schedule ahead of time, consuming 128 bytes. Doing
the same in the bit sliced variant with 32 keys would require
4096 bytes of storage. But since the sub-keys are related to
the main key and its derivative up to a rotation, we only re-
quire a quarter of the space. The rotation can be achieved
through index manipulation.

5 Implementation Results

In Table 1 we compare the performance of our imple-
mentation to highly optimized software implementations of
MISTY1 on Alpha and Pentium III processors [10, 9]. A
direct comparison, however, is misleading due to the pro-
found architectural differences between these two super-
scalar processors and the cache-less single-issue IXP mi-
croengine. Considering that the Alpha’s data path is twice
as wide as that of an IXP microengine, it seems surprising
that a single microengine of the IXP can achieve throughput
rates of only a small factor below those high-end proces-
sors. One reason is the relatively high clock frequency of
1.4 GHz, which is much higher than the 500, 667 and 800
MHz used in the Alpha and Pentium III benchmarks. The
disadvantages associated with the simplicity of the micro-
engine architecture turn into benefits when we make use of
the multi-processing capabilities of the IXP architectures.
The high-end model IXP 2800 contains 16 microengines on
the same chip that can operate completely independent of
each other. Since our Kasumi implementation uses local
memory exclusively, memory bottlenecks can be avoided
and hence the performance scales linearly. The maximum
theoretical throughput therefore reaches an unparalleled 2
Gb/s performance. Obviously this is only a theoretical fig-
ure, since there are other tasks that need to be performed

3

Proceedings of the 2005 Fourth IEEE International Symposium on Network Computing and Applications (NCA’05)
0-7695-2326-9/05 $20.00 © 2005 IEEE

Encryption Key Schedule Max. Throughput
(cycles/block) (cycles/key) (Mb/s)
reg. bit sliced reg. bit sliced reg. bit sliced

Kasumi IXP single ME 2,333 708 1,507 101 38 126
Kasumi IXP 16 MEs 2,333 708 1,507 101 614 2,010
MISTY1 Alpha 21164 [10] 305 111 n/a n/a 105 288
MISTY1 Alpha 21264 [9] 197 68 200 17 217 601
MISTY1 Pentium III [9] 207 169 230 46 247 303

Table 1. Comparison of Implementation Results

by a network processor in addition to encryption. Nonethe-
less, this result shows the advantage of highly parallel on-
chip multi-processors for specialized tasks. Incidentally,
this multi-processing approach taken by network processor
vendors bears a certain resemblance to that taken by Sony,
IBM and Toshiba with their latest Cell Processor architec-
ture [11].

5.1 Modes of Operation and their Implications

The Kasumi algorithm by itself is merely a single build-
ing block in the concept of 3G wireless security. The algo-
rithm f8 for confidentiality is based on Kasumi operating in
a variation of output feedback (OFB) mode. The integrity
algorithm f9 computes a MAC on the input message as a
variant of standard CBC-MAC mode. In both modes the
output of one iteration of the cipher is XOR-ed onto the in-
put of the next iteration. This inherently sequential process
makes it impossible to use the bit slicing technique devel-
oped in this paper for acceleration of a single data stream.
A network processor, however, is designed to handle hun-
dreds of data streams in parallel, each with different secu-
rity settings and keys. We can simply collect the working
sets of up to 32 different data streams into one session of
bit sliced Kasumi, and take advantage of the performance
benefits. Using the performance results from Table 1 we
can determine the break-even point for the minimum num-
ber of sessions required such that data transposition offer a
performance advantage over a regular Kasumi implementa-
tion. The encryption time of 708 cycles per block refers to
the best case of 32 parallel data sets, and we therefore break
even with at least Nmin ≥ ⌈

32·708
2333

⌉
= 10 parallel sessions.

6 Conclusions

In this paper we presented platform specific details and
performance evaluation of our Kasumi block cipher imple-
mentation on the Intel IXP 28xx family of network proces-
sors. We demonstrated how a computationally intensive
cryptographic algorithm can be implemented efficiently and
in a scalable manner despite the architectural limitations
of a packet processor microengine that was not designed
with the intention of running such algorithms. Our imple-
mentation achieves a throughput of more than 126 Mb/s

on a single microengine. The theoretical maximum that
can be achieved on 16 microengines running in parallel is
thus close to 2 Gb/s. The bit slicing technique allows us
to achieve a more than three times higher data rate than
with standard data representation. Due to an efficient algo-
rithm for conversion between data representations the per-
formance penalty remains negligible. Finally, we showed
that the problems typically associated with OFB modes of
operation do not prevent the application of the bit sliced
method in a network processor setting in which multiple
independent data streams need to be processed simultane-
ously.

References

[1] 3GPPSAGE. KASUMI evaluation report. SAGE v. 2.0,
3GPP, Oct 2000.

[2] E. Biham. A fast new DES implementation in software.
In E. Biham, editor, FSE’97, volume 1267 of LNCS, pages
260–272, Heidelberg, Germany, Jan 1997. Springer Verlag.

[3] ETSI/SAGE. 3GPP confidentiality and integrity algorithms;
document 1: f8 and f9. 3GPP TS 35.201, ETSI, Sophia-
Antipolis Cedex, France, Dec 1999. Draft.

[4] ETSI/SAGE. 3GPP confidentiality and integrity algorithms;
document 2: KASUMI. 3GPP TS 35.202, ETSI, Sophia-
Antipolis Cedex, France, Dec 1999. Draft.

[5] Intel Corporation. Intel IXP 2800 Network Processor Hard-
ware Reference Manual, May 2004.

[6] Intel Corporation. A modular approach to radio network
controller design using ATCA and Intel IXP2xxx network
processors. http://www.intel.com, Feb 2004.

[7] M. Matsui. New block encryption algorithm MISTY. In
E. Biham, editor, FSE’97, volume 1267 of LNCS, pages 54–
68, Berlin, Jan 1997. Springer-Verlag.

[8] L. May, L. Penna, and A. Clark. An implementation of bit-
sliced DES on the pentium MMX processor. In ACISP, vol-
ume 1841 of LNCS, pages 112–122. Springer-Verlag, 2000.

[9] J. Nakajima, T. Ichikawa, and T. Kasuya. Cipher algorithm
implementation. In MEA: Cryptography Edition, volume
100, pages 13–17. Mitsubishi Electric Co., Dec 2002.

[10] J. Nakajima and M. Matsui. Fast software implementations
of MISTY1 on alpha processors. IEICE Trans. Fundamen-
tals, E82-A(1):107–116, Jan 1999.

[11] D. Pham et al. The design and implementation of a first-
generation CELL processor. In Int. Solid State Circuits Con-
ference. IEEE SSCS, IEEE Press, Feb 2005.

4

Proceedings of the 2005 Fourth IEEE International Symposium on Network Computing and Applications (NCA’05)
0-7695-2326-9/05 $20.00 © 2005 IEEE

