
An Efficient MPI-IO for Noncontiguous Data Access over InfiniBand

Ding-Yong Hong, Ching-Wen You and Yeh-Ching Chung
1

Department of Computer Science, National Tsing Hua University, Taiwan

{dyhong, chingwuen}@sslab.cs.nthu.edu.tw, ychung@cs.nthu.edu.tw

1 The corresponding author

Abstract

Noncontiguous data access is a very common

access pattern in many scientific applications. Using

POSIX I/O to access many pieces of noncontiguous

data segments will generate a lot of I/O requests that

cause the I/O system perform poorly. Tow-phase I/O,

also called collective I/O, applied by MPI-IO provides

a good method to optimize noncontiguous I/O

operations. However, this method requires many data

segments being redistributed. This redistribution needs

some information been calculated in advance and lots

of data segments are transmitted via network more

than once. With I/O-intensive applications, the

aggregate size of these data segments being

redistributed becomes significant large. This

additional overhead will degrade the system

performance. In this thesis, we extend the collective

I/O method and propose a new I/O scheme to avoid

retransmission of data segments by applying RDMA

gather/scatter operations supported by InfiniBand

hardware. We also extend the “view” and “datatype”

concepts of MPI into the file system to help complete

our design. The experiments show that the method we

design improves the performance and is more efficient

than the collective I/O approach.

1. Introduction
In a cluster system, many I/O-intensive scientific

applications frequently request I/O operations between

memory and files which reside in different machines.

With the computing ability and the network

transmission rate of processors become more and more

powerful, I/O is emerging as the main bottleneck

degrading the system performance. Therefore, efficient

and scalable parallel I/O schemes and high

performance parallel file systems are needed. Many

parallel I/O designs and parallel file systems have been

proposed in the literature [6,7,8,9]. Sometimes the data

layout is noncontiguous in the memory or in the file. In

the traditional way, like POSIX I/O, it will access these

noncontiguous data segments using individual request

for each contiguous data piece. Inevitably, as the

number of noncontiguous data segments is numerous,

I/O clients will generate a large amount of I/O

operations. Such large amount of I/O requests will

cause I/O servers busy and the performance of I/O

servers will be degraded.

Collective I/O [8] is an optimizing approach for

these kinds of noncontiguous data layouts. Through

the analysis of the collection of independent I/O

operations, what data regions must be transferred is

determined. These data regions are then split up among

I/O clients and the noncontiguous data segments are

redistributed to appropriate positions in appropriate

clients. Each data region formed by combining many

I/O operations can be read/write by only one request

call. Thus, total numbers of I/O requests are reduced.

Redistribution, however, needs extra overheads such

as redistribution information calculation and data

transmissions. These additional calculations will add

more computing loads to I/O clients which may run

some CPU-intensive application programs, and

additional data transmissions will also increase

network traffic. How to reduce these overheads is

important to the performance of collective I/O.

In this thesis, we address these issues of

noncontiguous data accesses and extra data

transmissions of collective I/O on InfiniBand

architecture (IBA) [3]. We extend the collective I/O

method and propose a new I/O scheme to avoid re-

transmission of data segments based on InfiniBand

RDMA read/write operations. We also extend the

“view” and “datatype” concepts of MPI into the file

system to help our design and shift a greater part of

computing loads from I/O clients to I/O servers

without increasing the loads of I/O servers. The

experiments show that the proposed I/O scheme can

improve the performance and is more efficient than the

collective I/O approach.

Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05)
1087-4089/05 $20.00 © 2005 IEEE

The rest of the thesis is organized as follows. In

Chapter 2, a brief survey of related work on collective

I/O is given. Chapter 3 gives an overview of collective

I/O. In Chapter 4, we describe the method for the

noncontiguous data accesses based on InfiniBand

RDMA read/write operations. Chapter 5 shows the

performance results of our method and collective I/O.

In Chapter 6, we give some conclusion remarks

regarding to the proposed method and point out the

directions of future work.

2. Related Work
Many methods for improving collective I/O have

been proposed in the literature. Dickens et al. [2]

presented that collective I/O can be further improved

with threads. They demonstrated that using I/O threads

to perform the collective I/O in the background while

the main thread continues with computations is

frequently a worst implementation option. The reason

was that some parts of collective I/O cannot overlap

with computations. They developed an alternate

approach where some parts of the collective I/O are

performed in the background, and some parts are

performed in the foreground. Their technique provides

up to 80% improvement over sequential collective I/O.

Kandemir [4] proposed a compiler-directed

collective I/O approach which detects opportunities for

collective I/O and inserts the necessary I/O calls in the

code automatically. The characteristic of his approach

is that instead of indiscriminately applying collective

I/O by programmers, it uses collective I/O selectively

only in cases where independent parallel I/O would not

be possible or would lead to an excessive number of

I/O calls. He showed that the approach he proposed is

only 5.23 percent worse than an optimal scheme.

Ching et al. [1] addressed the issue of

noncontiguous data accesses. Their implementation

adds a method of noncontiguous data accesses, list I/O,

supporting in the ROMIO MPI-IO implementation.

Similar to collective I/O, their scheme can also reduce

the numbers of I/O operations. They also proposed a

hybrid scheme involving data sieving and list I/O. This

scheme can cover a large range of access patterns.

3. Preliminaries
3.1. Overview of Collective I/O

Collective I/O consists of read, write, and read-

modify-write operations. In its two-phase approach,

every I/O client is an aggregator process. The role of

the aggregator process is to collect the data segments

to match the file layouts. In this thesis, we will focus

on read and write operations.

1 2 43

1 3 2 4

1 23 4

I/O Client 1 I/O Client 2

I/O Server

Temp Buffer

1 2 43

1 3 2 4

1 23 4

I/O Client 1 I/O Client 2

I/O Server

Temp Buffer

(a) write (b) read

Figure 1: An example of the collective I/O operations.

3.1.1. The write operation. Figure 1(a) shows the

behavior of the write operation of collective I/O. In

Figure 1(a), I/O clients 1 and 2 are responsible to write

the file layouts {1, 3} and {2, 4} to the I/O server,

respectively. At first, the noncontiguous data layout in

each I/O client does not match the file layout specified.

In the first phase, the two I/O clients collectively

match file layouts {1, 3} and {2, 4} by analyzing and

redistributing some data segments between them. After

the redistribution, in the second phase, the contiguous

data region of each I/O client can be transferred to the

I/O server with only one write operation. Once the I/O

server receives the contiguous data regions from each

I/O client, it can write the received data regions to disk.

Assume that there are m I/O clients collectively

write n data segments to one I/O server and each data

segment is k-byte. Each I/O client is responsible to

write n/m data segments. The two-phase write

operation consists of four steps, the analysis step, the

redistribution step, the write step, and the disk I/O step.

In the analysis step, an I/O client needs to compute the

information for data segments redistribution. In the

redistribution step, an I/O client is responsible for

redistributing the data segments among I/O clients. In

the write step, an I/O client writes the contiguous data

regions to an I/O server. In the disk I/O step, an I/O

server writes data to disk. The total time of the write

operation, TCIO_write, is

TCIO_write = TCIO_analysis + TCIO_redistribution + TCIO_write + Tdisk_io ,

where TCIO_analysis, TCIO_redistribution, TCIO_write, and Tdisk_io

is the time to perform the analysis step, the

redistribution step, the write step, and the disk I/O step,

respectively.

For TCIO_analysis, it can be divided into two different

computing parts. The first part is to transform the

datatype to positions and lengths of data segments. The

time needed for transformation is proportional to the

number of data segments, n. This part will cost time n,

where is a constant. The second part is to pick up all

data segments held by an I/O client and calculate final

positions where these segments will be redistributed. It

will cost time n, where is a constant. We have

TCIO_analysis = n + n.

Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05)
1087-4089/05 $20.00 © 2005 IEEE

For TCIO_redistribution, each client needs to distribute

m

n

m

m 1
 data segments to other I/O clients. We have

n
tionredistribuCIO

S

k

m

n

m

m
T

1
_ ,

where Sn is the bandwidth of the network.

In the write step, each I/O client writes the data

region to the I/O server. The write time is

n
writeCIO

S

k

m

n
T _ .

After the I/O server receives these data regions,

they will be written into disk. The disk access time is

d
iodisk

S

k
nT _ ,

where Sd is the bandwidth of disk I/O.

The total time to finish the write operation is

TCIO_write = TCIO_analysis + TCIO_redistribution + TCIO_write + Tdisk_io

)()()
1

()(
dnn S

k
n

S

k

m

n

S

k

m

n

m

m
nn .

3.1.2. The read operation. Figure 1(b) shows the

behavior of the read operation of collective I/O. In

Figure 1(b), I/O clients 1 and 2 need to get data

segments {1, 2} and {3, 4} from the I/O server,

respectively. However, the order of data segments in

the I/O server is (1, 3, 2, 4). The data layout in the I/O

server does not match the layout of each I/O client. In

the first phase, these two I/O clients analyze the best

layout information for I/O server and ask I/O server to

read the data segments from disk. In the second phase,

the I/O server sends contiguous data regions to each

client according to the request of each client. In our

example, I/O sever will send contiguous data regions

{1, 3} and {2, 4} to I/O clients 1 and 2, respectively.

After each client received the contiguous data region,

it redistributes some data segments to corresponding

clients. Therefore, client 1 and client 2 redistribute data

segments 3 and 2 to client 2 and client 1, respectively.

The two-phase read operation also consists of

four steps, the analysis step, the disk I/O step, the read

step, and the redistribution step. With the same

assumption of the write operation, the total time to

finish the noncontiguous I/O read operation is

TCIO_read = TCIO_analysis + Tdisk_io + TCIO_read + TCIO_reditribution

)
1

()()()(
nnd S

k

m

n

m

m

S

k

m

n

S

k
nnn ,

where TCIO_analysis, Tdisk_io, TCIO_read, and TCIO_redistribution is

the time to perform the analysis step, the disk I/O step,

the read step, and the redistribution step, respectively.

4. Extended Collective I/O Based on

InfiniBand RDMA

The InfiniBand architecture is a new industry-

standard architecture for server I/O and inter-server

communication [3]. It defines two kinds of semantics,

the channel semantic and the memory semantic. These

two semantics define send/receive and Remote Direct

Memory Access (RDMA) read/write operations. The

RDMA operation also supports the gather/scatter

operations. The RDMA write can collect multiple data

segments and then write to a contiguous region of

memory with one request. The RDMA read can read a

contiguous region of memory and dispatches the

contiguous subsets of these data into separate memory

locations. With the RDMA read/write operations, the

time for the data segments redistribution in collective

I/O can be reduced a lot. In the following, we will

describe how to use InfiniBand RDMA read and write

operations to efficiently perform read and write

operations of collective I/O in details. We call our

design as Extended Collective I/O (ECIO).

4.1. The write Operation of ECIO
To use RDMA gather/scatter write operation to

efficiently perform the write operation of collective I/O,

the goal is to avoid retransmission of data segments

among I/O clients. Therefore, we extend the design of

the write operation of collective I/O. The write

operation of ECIO consists of the following five steps:

1. Analysis step – An I/O client needs to compute

the corresponding lengths and locations of data

segments specified by the I/O client.

2. Write step – An I/O client writes noncontiguous

data segments to the I/O server by using RDMA

gather/scatter write operation.

3. Transformation step – The I/O server transforms

the datatype to offsets and lengths of the data

segments.

4. Local redistribution step – The I/O server is

responsible to move the data segments received

from I/O clients to their corresponding locations

in its local memory.

5. Disk I/O step – The I/O server writes data to disk.

Since the redistribution step of collective I/O will

cause the data segment transmissions among I/O

clients, in our design, we divide this step to the

transformation step and the local redistribution step. In

this way, we can reduce the overhead of data segment

transmissions from interconnection network to local

memory. This will reduce the execution time a lot.

In the analysis step, our design is similar to the

analysis step of the write operation of collective I/O.

Each client still calculates information about its own

data segments.

Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05)
1087-4089/05 $20.00 © 2005 IEEE

I/O Client 1 I/O Client 2

RDMA Write

Temp Buffer

I/O Server

(a) write (b) read

Figure 2: An example of noncontiguous data accesses

using RDMA gather/scatter operations.

In the write step, if I/O clients detect that the

noncontiguous data segments are all subsets of any

contiguous data regions, these data segments will be

written directly from I/O clients to I/O servers. In order

not to act as the POSIX I/O operation, we apply the

RDMA gather/scatter write operation. With this write

operation, many pieces of data segments are combined

and fit into one RDMA gather/scatter list.

In the transformation step, after the I/O server

receives data segments from I/O clients, it has no idea

about the corresponding lengths and locations of all

received data segments in a file. To solve this problem,

we take the advantage of the “view” and “datatype”

concepts of MPI. That is, the I/O server must have the

same information of the datatype which has been

defined in the user program. After the datatype is set,

we must make a copy of the datatype in the I/O server.

The datatype can be passed to the I/O server as a hint

either when the user program calls the function

MPI_File_set_view or be attached to the I/O request

message sent to the I/O server. With this hint, the I/O

server can transform the datatype to offsets and lengths.

Adding extra datatype calculations will bring

some overheads to the I/O server. Since the I/O server

is usually in I/O or network communication phases, the

idle CPU time can be used to perform this calculation.

Therefore, it is easy to overlap these computations with

I/O and network communication without degrading the

performance of the I/O server.

In the local redistribution step, the I/O server

moves data segments received to their corresponding

locations. Since this redistribution is performed in the

local memory and can be overlapped with

communication, the time to execute this operation is

insignificant. In the disk I/O step, the design is the

same as that of the write operation of collective I/O.

Figure 2(a) shows an example of our design. In

Figure 2(a), I/O clients want to write the shadowed

noncontiguous data segments to the I/O server. The

I/O clients perform the RDMA gather/scatter write

operation to transfer data segments to the I/O server in

parallel. After all data segments are received, the I/O

server performs local copies to redistribute them to

correct positions. Then, the data segments are written

to the disk. Assume that there are m I/O clients

collectively write n data segments to one I/O server

and each data segment is k-byte. The total time to

complete the write operation, TECIO_write, of ECIO is

TECIO_write = TECIO_analysis + TRDMA_write + TECIO_transform +

Tlocal_redistribution + Tdisk_io,

where TECIO_analysis, TRDMA_write, TECIO_transform, Tlocal_redistribution

and Tdisk_io is the time to perform the analysis step, the

write step, the transformation step, the local

redistribution step, and the disk I/O step, respectively.

In the analysis step, since an I/O client only needs

to compute the information of data segments specified

by I/O client, we have TECIO_analysis = n.

In the write step, an I/O client writes the

noncontiguous data segments to an I/O server using

RDMA gather/scatter write operation. We have

,
_

_
writesg

writeRDMA
S

k

m

n
T

where Ssg_write is the bandwidth of the network for the

RDMA gather/scatter write operation.

In the transformation step, after the data segments

from I/O clients are received, the file system has to

transform the datatype to offsets and lengths for later

local redistribution. This time of transformation is the

same as TECIO_analysis. We have, TECIO_transform= n. Since

this calculation can be overlapped with other I/O

operations, TECIO_transform can be hidden and saved, that

is, we can assume that TECIO_transform = 0.

The local redistribution time, Tlocal_redistribution, is

relative to the computing power of the processor.

However, the local copies among memory are fast. In

our design, this redistribution can be overlapped with

other I/O operations. Therefore, we can also assume

that Tlocal_redistribution = 0. In the disk I/O step, an I/O

server writes data to disk. Tdisk_io is the same as the disk

access time of collective I/O. The total time to finish

the extended collective write operation is

TExtend_CIO_write = TECIO_analysis + TRDMA_write +

TECIO_fransform + Tlocal_redistribution + Tdisk_io

dwritesg S

k
n

S

k

m

n
n

_

4.2. The read Operation of ECIO

The design of the read operation of ECIO is

similar to that of the write operation of ECIO. The read

operation of ECIO consists of the following five steps:

1. Analysis step – An I/O client needs to compute

the corresponding lengths and locations of data

segments specified by the I/O client.

2. Disk I/O step – The server reads data from disk.

3. Transformation step – The I/O server transforms

Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05)
1087-4089/05 $20.00 © 2005 IEEE

datatype to offsets and lengths of data segments.

4. Local redistribution step – The I/O server is

responsible to move data segments retrieved from

disk to the correct locations in its local memory.

5. Read step – An I/O client reads noncontiguous

data segments from the I/O server by using

RDMA gather/scatter read operation.

Figure 2(b) shows an example of our design. The

assumption is the same as that of the write operation of

ECIO. The analysis step is the same as that in extended

collective write design. We have TECIO_analysis = n. In

the disk I/O step, an I/O server reads data segments

from disk. Tdisk_io is the same as the disk access time of

collective I/O. The time of transformation step is the

same as that of extended collective write operation. We

have TECIO_transform = n. Since this transformation can

be overlapped with other I/O operations, the time

required can be hidden and saved. We can assume that

TECIO_transform = 0. The local redistribution among

memory is fast and in our design this redistribution can

be overlapped with I/O or network communication, we

can also assume that Tlocal_redistribution = 0. Finally, the

time for the RDMA gather/scatter read operation is

readsg
readRDMA

S

k

m

n
T

_
_

,

where Ssg_read is the bandwidth of RDMA gather/scatter

read operation. The total time to perform

noncontiguous data read in our implementation is

TExtend_CIO_read = TECIO_analysis + Tdisk_io + TECIO_transform +

 Tlocal_redistribution + TRDMA_read

readsgd S

k

m

n

S

k
nn

_

4.3. Theoretical Analysis

For the write operation of ECIO, our scheme can

save time TCIO_write – Textend_CIO_write , that is,

TCIO_write – TExtend_CIO_write

).()()
1

(
_ writesgnn S

k

m

n

S

k

m

n

s

k

m

n

m

m
n (1)

From Equation (1), we can predict when the number of

I/O clients, m, becomes larger, the difference between

collective I/O and our scheme will become smaller.

However, as the number of data segments, n, increases,

the time difference will also increase.

For the read operation of ECIO, our scheme can

save time TCIO_read – Textend_CIO_read , that is,

TCIO_read – TExtend_CIO_read

).()()
1

(
_ readsgnn S

k

m

n

S

k

m

n

s

k

m

n

m

m
n (2)

From Equation (2), we have similar predictions as

those in Equation (1).

5. Performance Evaluation
This section demonstrates the performance results

of our implementations. The I/O servers and I/O clients

run Linux with kernel version 2.6.8 on 5 IBM e-

Servers. Each IBM e-Server has dual Xeon 2.4 GHz

CPUs and 1 GB DRAM. All machines are connected

with InfiniHost 7000 dual port 4x HCA adapters. The

I/O server contains one 36GB SCSI hard disk. The

InfiniBand interface is VAPI [5] which is a user-level

API. We use MVPICH [6] and PVFS2 [7] as our MPI-

IO software and file system, respectively. Figure 3

represents the “datatype” structure of our test data.

This datatype can be defined by calling the function

MPI_Type_struct(count, blocklens, indices, old_type,

&new_type) supported by MPI, where count is the total

numbers of data blocks, blocklens means the number

of elements in each block, indices means displacement

between two joint blocks and old_type is the basic

datatype of the data element in the data blocks.
count

blocklens indices

Figure 3: A structure of an MPI datatype.

5.1. Noncontiguous Data Write

In the first experiment of write case, we set m=2,

blocklens=1, indices = 2, old_type = MPI_INT, and

count is set to {4000, 8000,…,512000, 1024000}. The

data segments are written to one I/O server and this

noncontiguous data write case is executed 100 times.

Table 1 shows the performance results of our

design for the first experiment. In this test case, one

I/O client is responsible to write shadow blocks shown

in Figure 3 and the other client is responsible to write

the white blocks. In Table 1, column 1 is the number

of data elements in a block. Columns 2 and 3 show the

file size and the total size of data redistribution after

the write operation is executed 100 times, respectively.

Columns 4 and 5 are the execution time of collective

I/O and our scheme, respectively. Column 6 shows the

improvement of our scheme over collective I/O.

Table 1: Noncontiguous data write: 2 clients + 1 server.
count

(103)

File

size

(MB)

Resent

size

(MB)

MPI

CIO

(sec)

ECIO

(sec)

Improve

ment

(%)

4 1.6 0.8 1.65 1.48 10.3

8 3.2 1.6 1.94 1.77 8.8

16 6.4 3.2 2.48 2.20 11.3

32 12.8 6.4 3.62 3.22 11.0

64 25.6 12.8 6.03 5.12 15.0

128 51.2 25.6 10.72 9.29 13.3

256 102.4 51.2 20.20 17.26 14.6

512 204.8 102.4 39.62 33.37 15.8

1024 409.6 204.8 77.92 65.66 15.7

Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05)
1087-4089/05 $20.00 © 2005 IEEE

From Table 1, as the number of noncontiguous

data segments increases, our scheme can save more

time than collective I/O. This result matches the

theoretical analysis described in Chapter 4.3.

In the second experiment of write case, the

settings are the same as those of the first experiment

except that the total number of I/O clients, m, is set to

4. Table 2 shows the performance results of our design.

From Table 2, as the number of noncontiguous data

segments increases, our scheme can save more time

than the collective I/O method. From Tables 1 and 2,

we also observe that as the number of client increase,

the time difference between collective I/O and our I/O

scheme decreases. These results match the theoretical

analysis described in Chapter 4.3.

Table 2: Noncontiguous data write: 4 clients + 1 server.
count

(103)

File

size

(MB)

Resent

size

(MB)

MPI

CIO

(sec)

ECIO

(sec)

Improve

ment

(%)

4 1.6 1.2 1.76 1.56 11.3

8 3.2 2.4 1.92 1.71 10.9

16 6.4 4.8 2.34 1.96 16.2

32 12.8 9.6 2.85 2.49 12.6

64 25.6 19.2 4.04 3.73 7.6

128 51.2 38.4 6.36 6.04 5.3

256 102.4 76.8 11.45 10.86 5.2

512 204.8 153.6 21.55 20.21 6.2

1024 409.6 307.2 41.51 39.05 5.9

5.2. Noncontiguous Data Read

In the third and forth experiments, the settings are

the same as those for the first and second experiments,

respectively, except that data segments are read from

disk to I/O clients. Table 3 and Table 4 show the

performance results of these two test cases respectively.

From these results, we have similar observations as

those of the first and second experiments.

6. Conclusions and Future Work

In this thesis, we have proposed a new scheme for

parallel I/O over InfiniBand. By taking advantage of

the InfiniBand hardware, fewer I/O requests and

reduction of extra data transmission can be achieved.

The methods we proposed extend the collective I/O

design and are more efficient for noncontiguous data

access. Some experimental tests have been conducted

in our implementation. The experimental results show

that the performance of our schemes is better than that

of collective I/O for all test cases. In this thesis, we

only consider the read/write operations of collective

I/O over InfiniBand architecture. In the future, we will

consider how to implement the read-modify-write

operation of collective I/O. Also, we will do more

experimental tests, such as multiple clients and

multiple servers, to verify the proposed schemes.

Table 3: Noncontiguous data read: 2 clients and 1 server.
count

(103)

File

size

(MB)

Resent

size

(MB)

MPI

CIO

(sec)

ECIO

(sec)

Improve

ment

(%)

4 1.6 0.8 1.56 1.42 9.0

8 3.2 1.6 1.80 1.63 9.4

16 6.4 3.2 2.35 2.08 11.5

32 12.8 6.4 3.44 2.89 16.0

64 25.6 12.8 5.62 4.53 19.4

128 51.2 25.6 10.31 8.15 20.9

256 102.4 51.2 19.25 14.87 22.8

512 204.8 102.4 38.31 29.20 23.8

1024 409.6 204.8 76.29 58.02 23.9

Table 4: Noncontiguous data read: 4 clients and 1 server.

count

(103)

File

size

(MB)

Resent

size

(MB)

MPI

CIO

(sec)

ECIO

(sec)

Improve

ment

(%)

4 1.6 1.2 1.52 1.42 6.6

8 3.2 2.4 1.66 1.54 7.2

16 6.4 4.8 1.95 1.74 10.8

32 12.8 9.6 2.59 2.27 12.4

64 25.6 19.2 3.60 3.17 11.9

128 51.2 38.4 5.85 5.31 9.2

256 102.4 76.8 10.59 9.67 8.7

512 204.8 153.6 20.02 18.51 7.5

1024 409.6 307.2 39.75 36.52 8.2

Acknowledgements

The work in this paper was partially supported by

National Science Council and Ministry of Economic

Affairs of the Republic of China under contract NSC-

94-2213-E-007-080, NSC-94-2752-E-007-004-PAE,

94-EC-17-A-04-S1-044 and 94-EC-17-A-01-S1-038.

References

[1] A. Ching, A. Choudhary, K. Coloma, W.K. Liao, R.

Ross, W. Gropp. “Noncontiguous I/O Accesses Through

MPI-IO.” Proceedings of the 3rd IEEE/ACM Internatio-

nal Symposium on Cluster Computing and the Grid, 2003.

[2] P.M. Dickens, R. Thakur, “Improving Collective I/O

Performance Using Threads”, 13th International Parallel

Processing Symposium and 10th Symposium on Parallel

and Distributed Processing, 1999.

[3] InfiniBand™ Trade Association, InfiniBand™

Architecture Specification Volume 1, Release 1.1, 2002.

[4] M. Kandemir, “Compiler-Directed Collective I/O”, IEEE

Transaction on Parallel and Distributed System, 2001

[5] VAPI, Mellanox IB-Verbs API.

[6] MVPICH, MPICH 1.2.5 implementation on InfiniBand.

[7] PVFS2, Parallel Virtual File System 2.

[8] J. M. del Rosario, R. Bordawekar, and A. Choudhary.

“Improved parallel I/O via a two-phase run-time access

strategy.” Proceedings of the IPPS ’93 Workshop on

Input/Output in Parallel Computer Systems, 1993

[9] X. Shen, A. Choudhary, “A Distributed Multi-Storage

Resource Architecture and I/O Performance Prediction

for Scientific Computing.” Ninth IEEE International

Symposium on High Performance Distributed Computing,

August 2000.

Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05)
1087-4089/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

