
An Efficient Deadlock-Free Tree-Based Routing Algorithm for Irregular
Wormhole-Routed Networks Based on the Turn Model

Yau-Ming Sun, Chih-Hsueh Yang, Yeh-Ching Chung
1
, and Tai-Yi Huang

Department of Computer Science,
National Tsing Hua University,
HsingChu, Taiwan 300 R.O.C

{sym87u, dickyang}@sslab.cs.nthu.edu.tw, {ychung, tyhuang}@cs.nthu.edu.tw

1 The corresponding author.

Abstract

In this paper, we proposed an efficient deadlock-Free
tree-based routing algorithm, the DOWN/UP routing, for
irregular wormhole-routed networks based on the turn
model. In a tree-based routing algorithm, hot spots
around the root of a spanning tree and the uneven traffic
distribution are the two main facts degrade the
performance of the routing algorithm. To solve the hot
spot and the uneven traffic distribution problems, in the
DOWN/UP routing, it tries to push the traffic downward
to the leaves of a spanning tree as much as possible and
remove prohibited turn pairs with opposite directions in
each node, respectively. To evaluate the performance of
DOWN/UP routing, the simulation is conducted. We
have implemented the DOWN/UP routing along with the
L-turn routing on the IRFlexSim0.5 simulator. Irregular
networks that contain 128 switches with 4-port and 8-port
configurations are simulated. The simulation results
show that the proposed routing algorithm outperforms
the L-turn routing for all test samples in terms of the
degree of hot spots, the traffic load distribution, and
throughput.

1. Introduction

The Up*/Down* routing was the first deadlock-free

tree-based routing algorithm for irregular networks. It is

simple and easy to be implemented. However, it does not

perform well. The reasons are three-fold. First, the so

called hot spots [5] will occur around the root of a

spanning tree. Second, the average length of routing

paths is long compared to other tree-based routing

algorithms. Third, there may exist two prohibited turns

whose directions are opposite to each other on a node.

These opposite prohibited turn pairs make the traffic

distribution uneven [4].

To overcome the drawbacks of the up*/down* routing,

the L-turn routing was proposed in [4] based on the 2D

turn model [3]. In the L-turn routing, the routing is based

on the L-R tree. By carefully setting up the prohibited

turns for each node, one can obtain a more even

distribution of traffic load and shorter routing paths

compared to the up*/down* routing [4]. However, in the

L-turn routing, the tree links and the cross links are

considered as the same type of links. They have the same

definition on directions. It is possible that the hot spots

will still occur around the root under some L-R trees and

makes traffic load unbalancing.

In this paper, we propose an efficient deadlock-free

tree-based routing algorithm, the DOWN/UP routing, for

irregular wormhole-routed networks based on the turn

model. In the DOWN/UP routing, the communication
graph based on the coordinated tree of a given topology

is used to derive the prohibit turns. There are many ways

to construct the coordinated tree of a given topology.

Different coordinated trees lead to different performance

of a routing algorithm. In this paper, we proposed a

better way to construct the coordinated tree such that a

better throughput can be obtained when a routing

algorithm is performed.

In a communication graph, the tree links and cross

links are considered as different links. They have

different definitions on directions. This allows us to

make the prohibited turn selection more precisely, that is,

we can select the prohibited turns between the same or

different type of links. Therefore, the traffic flow control

by selecting prohibited turns in a communication graph is

easier than that in the L-R tree used by the L-turn routing.

Based on the maximal direction graph, we can

construct a maximal acyclic direction dependency graph
by performing prohibited turn selection process. In the

prohibited turn selection process, we careful select the set

of prohibited turns such that the traffic can be pushed

downward to leaves of a spanning tree as much as

possible and a more even distribution of traffic load can

be achieved. From the maximal acyclic direction

dependency graph, the DOWN/UP routing can be derived

by applying the same prohibited turns to each node in the

communication graph and releasing unnecessary

prohibited turns for each node. The DOWN/UP routing

Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

can be directly applied to arbitrary topology with (or

without) any virtual channel of wormhole-routed

networks.

To evaluate the proposed DOWN/UP routing, we

compare its performance with that of L-turn routing. The

hot spots, the traffic load distribution, and throughput are

the three key factors for the evaluation. We implemented

these two routing algorithms on simulated irregular

networks that contain 128 switches with 4-port and 8-port

configurations. The simulation results show that the

DOWN/UP routing has less hot spots, better traffic load

distribution, and higher throughput than the L-turn
routing.

The rest of the paper is organized as follows. In

Section 2, a brief survey of related work will be presented.

In Section 3, we will introduce notations and terminology

used in this paper. Section 4 presents the proposed

deadlock-free routing algorithm in detail. The simulation

environment and results will be presented in Section 5.

2. Related Work

Many deadlock-free routing algorithms for irregular

network topologies have been proposed in the literature.

In [7], the up*/down* routing used in DEC AN1 system

was proposed for arbitrary network topologies. This

adaptive routing algorithm assigns each network channel

an up or a down direction based on a spanning tree. From

the direction definitions, each packets must go through

zero or more than one up direction channels followed by

zero or more than one down direction channels to

guarantee connectivity and deadlock-free. In [8], the

up*/down* routing was extended to consider virtual

channels or additional physical channels to achieve high-

performance routing. In [6], an improved up*/down*
routing based on depth first search (DFS) spanning tree

was proposed. The proposed routing is deterministic

source routing that has lower latency and better

throughput than the original up*/down* routing algorithm.

Ni and Glass [1] proposed the turn model to design

partially adaptive wormhole routing algorithms without

any additional physical links and virtual channels. The

idea of this model is to prohibit the minimum number of

turns to break all of the cycles so that the routing is

deadlock-free. Based on the model, the authors also

proposed three partially adaptive routing algorithms,

west-first, north-first, and negative-first, for two-

dimensional meshes.

In [3] [4], Funahashi et al. proposed the 2D turn model
by introducing two-dimensional directions into a

spanning tree to solve the traffic unbalancing problem

occurred in the up*/down* routing. Two adaptive routing

algorithms, left/right routing and L-turn routing, were

proposed. The simulation results in [4] have shown that

the L-turn routing achieves better performance than the

up*/down* routing.

3. Preliminaries

Definition 1: A network with arbitrary switch-based

interconnection can be represented as a graph G = (V, E),

where V is the set of switches and E is the set of

bidirectional links between switches. For each link e =

(v1, v2) in E, it consists of two communication channels

<v1, v2> and <v2, v1> in which v1 can send message to v2

through <v1, v2> and v2 can send message to v1 through

<v2, v1>. For each channel <v1, v2>, v1 and v2 are called

start and sink nodes of the channel, respectively. <v1, v2>

is called the output channel and input channel of v1 and v2,

respectively. G is called the network topology or the

topology of the network.

Definition 2 (coordinated tree): Given G = (V, E), a

coordinated tree is a breath first search (BFS) spanning

tree of G. For each node v in a coordinated tree, node v is

associated with a two dimensional coordinate v(x, y). We

use X(v) and Y(v) to denote the x and y coordinates of

node v, respectively, that is, X(v) = x and Y(v) = y. X(v) is

defined as the order of preorder traversal of the

coordinated tree starting from the root to node A and Y(v)

is defined as the level of node v in the coordinated tree.

Due to two or more children nodes can be selected as

the next preorder traversal node, several coordinated trees

can be built from the same network topology.

Definition 3: Given G = (V, E) and a coordinated tree

CT = (V, E’) of G, E’ and E E’ are the sets of tree links
and cross links of G with respect to CT, respectively.

Definition 4: Given G = (V, E) and a coordinated tree

CT = (V, E’) of G, for each link e = (v1, v2) E, we

define

(1) v2 is the left-up node of v1 if X(v2) < X(v1) and Y(v2)

< Y(v1),

(2) v2 is the left node of v1 if X(v2) < X(v1) and Y(v2) =

Y(v1),

(3) v2 is the left-down node of v1 if X(v2) < X(v1) and

Y(v2) > Y(v1),

(4) v2 is the right-up node of v1 if X(v2) > X(v1) and

Y(v2) < Y(v1),

(5) v2 is the right node of v1 if X(v2) > X(v1) and Y(v2)

= Y(v1), and

(6) v2 is the right-down node of v1 if X(v2) > X(v1) and

Y(v2) > Y(v1).

Definition 5 (Communication graph (CG)): Given G =

(V, E) and a coordinated tree CT = (V, E’) of G, the

communication graph CG = (V, E) with respect to G and

CT is a directed graph, where E is the set of all

communication channels of E. For each channel e = <v1,

v2> E , if e is a channel of a tree link, the direction of

Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

e , denoted as d(), is defined as LU_TREE and

RD_TREE if v
e

2 is a left-up node of v1 and v2 is a right-
down node of v1, respectively. If e is a channel of a

cross link, the direction of e is defined as LU_CROSS,

LD_CROSS, RU_CROSS, RD_CROSS, R_CROSS, and

L_CROSS if v2 is a left-up node of v1, v2 is a left-down
node of v1, v2 is a right-up node of v1, v2 is a right-down
node of v1, v2 is a right node of v1, and v2 is a left node of

v1, respectively.

Definition 6 (Turn): Given a communication graph

CG = (V, E), the directions of and form a turn for

v

1e 2e

2 if = <v1e 1, v2> and = <v2e 2, v3>. We use
1 2(), ()d e d eT

to denote the turn formed by the directions of 1e and 2e .

Definition 7 (Turn cycle): A turn cycle TC =

(,T , …,) is a sequence

of turns in which the sink node of the first channel is also

the sink node of the last channel in the turn sequence, that

is, the start node of is the sink node of .

1 2(), (d e d eT
2 3(), ()d e d e) 1(), ()k kd e d eT

2e 1ke
Definition 8 (Direction graph (DG)): The direction

graph DG = (D,) with respect to a communication

graph CG = (V,

T
E) is a complete directed graph, where D

is the set of directions defined in CG and T = { |

for all d
21 ,ddT

1, d2 D and d1 d2} is the set of possible turns

that can be defined in CG. A DG is called the complete
direction graph (CDG) if D = {LU_TREE, RD_TREE,

LD_CROSS, RU_CROSS, R_CROSS, L_CROSS,

LU_CROSS, RD_CROSS}.

Definition 9 (Direction dependency graph (DDG)):

Given a DG, any subset of DG is called the direction
dependency graph (DDG) of DG.

Definition 10 (Acyclic direction dependency graph
(ADDG)): Given a CG, the DG of CG, and a DDG of DG,

for each node v in CG, if the edges of DDG are the only

available turns allowed at v and no turn cycle can be

formed in CG, then the DDG is called acyclic DDG.

Definition 11: Given a CG, the DG of CG, an ADDG
of DG is called the maximal ADDG if adding any edge

that in DG but not in ADDG to the ADDG will result in

turn cycles in CG.

Lemma 1: Given a CG and a DDG of CG, if there is

no cycle in the DDG, then no possible turn cycle can be

formed in CG when the edges of DDG are the only

available turns allowed at each node in CG.

Proof : Assume that there is a turn cycle TC =

(, , …,) in CG. The

turn cycle TC can be simply represented as

TC’(, , …,) in a DDG, where d

1 2(), ()d e d eT
2 3(), ()d e d eT

1(), ()k kd e d eT

21,ddT
32 ,ddT

1,ddk
T 1 = d(1e)

= d(), d1ke 2 = d(), d2e 3 = d(), …, and d3e k = d(ke).

TC’(, , …,) is a cycle in the DDG. This

contradicts the assumption.

21,ddT
32 ,ddT

1,ddk
T

We now give examples to explain the above

definitions. Figure 1(a) is an example of a switch-based

network with irregular interconnection. The

corresponding network topology of Figure 1(a) is shown

in Figure 1(b). A coordinated tree for the network

topology shown in Figure 1(b) is shown in Figure 1(c).

In Figure 1(c), we have Y(v1) = 0, X(v2) = 2, and v3 is the

right node, left node, and right-down node of v5 , v4 , and

v1, respectively. For a link in Figure 1(b), if it is a link in

Figure 1(c), then it is a tree link. Otherwise it is a cross

link. The CG with respect to Figure 1(b) and Figure 1(c)

is shown in Figure 1(d). In Figure 1(d), d(<v2,v4>) =

RU_CROSS, d(<v5,v2>) = RD_TREE, TRD_TREE,RU_CROSS is

a turn, TC =

(
5 1 1 3(,), (,)d v v d v vT , ,

1 3 3 5(,), (,)d v v d v vT

3 5 5 1(,), (,)d v v d v vT) is a turn cycle, and the set of

direction D = {LU_TREE, RD_TREE, LD_CROSS,

RU_CROSS, R_CROSS, and L_CROSS}. In Figure 1(d),

the thick links are tree links and thin links are cross links.

The corresponding DG of Figure 1(d) is shown in Figure

1(e). Figure 1(f) is an ADDG of Figure 1(d) and Figure

1(e). In Figure 1(f), the ADDG has two nodes,

LD_CROSS and RD_TREE, and two edges (or turns),

TLD_CROSS,RD_TREE and TRD_TREE,LD_CROSS. The two edges

form a cycle in the ADDG. However, if each node of CG
shown in Figure 1(d) only allows these two turns, no turn

cycle can be formed in the CG. From Figure 1(f), we can

see that a cycle in a DDG may not result in a turn cycle in

a CG.

4. The DOWN/UP Routing

Given an irregular network topology G = (V, E), the

construction of the DOWN/UP routing consists of the

following three phases.

Phase 1: Construct a CT = (V, E’) from G and the CG

= (V, E) with respect to G and CT.

Phase 2: Find the maximal ADDG max_ADDG =

(D, 'T) from the complete direction graph CDG = (D,T).

Phase 3: Let PT = T 'T be the set of prohibited turns

for each node in CG. According to CG, remove the

redundant prohibited turns for each node and find the

possible shortest routing paths for any two nodes based

the available turns of each node to form the DOWN/UP
routing.

In the following, we explain each phase in details.

Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

: p ro c e sso r

: sw itc h

v 3

v 1

v 2

v 4 v 5 v 5
v 4

v 2 v 3

v 1

(2,2)

(0,0)

(1,1)
(3,1)

(4,1)

i

(x,y)

i : node number
x : x coordinate

y : y coordinate

v4

v1

v2

v3v5

(a) A switch-based network. (b) The network topology of (a). (c) A coordinated tree of (b).

RU_CROSS

RD_TREE

LU_TREE

LD_CROSS

L_CROSS

LU_CROSS
R_CROSS

RD_CROSS

Tree links’ directions Cross links’ directions

v1

v4v3

v2

v5

LU_TREE

RU_CROSS

RD_TREE L_CROSS

LD_CROSS

R_CROSS

RD_TREEL_CROSS

(d) A CG of (b) and (c). (e) The DG corresponding to (d). (f) An ADDG of (d) and (e).

Figure 1. Examples for Definitions 1 to 11.

4.1. Phase 1

There are many ways to construct a coordinated tree

from a network topology. Different coordinated trees

lead to different performance of routing algorithms. How

to construct a coordinated tree that leads to a better

performance for routing algorithms is an important issue.

One of the main contributions of this paper is that we

propose a better way to construct a coordinated tree that

leads to a better performance of routing algorithms. The

construction of a coordinated tree CT = (V, E’) is

composed of the following steps:

Step 1. Initially, let Q be an empty queue, Visited be an

array of size |V | initialized with 0, and E’ be an empty set.

Step 2. Select v with the smallest node number from V.

Set Visited[v] = 1 and insert v to Q.

Step 3. Delete v from Q.

Step 4. Let W = {w1, w2, …, wk} be the set of nodes

adjacent to v , where Visited[wi] = 0, for i = 1, …, k and

the node number of wi is less than that of wi+1. For i =

1, …, k, insert wi to Q, E’ = E’ {(v , wi)}, and set

Visited[wi] = 1.

Step 5. If Q is not empty, perform Steps 3 and 4.

Step 6. Traverse the tree in preorder and nodes with

smaller node numbers are visited first. Set the values of

X(v) and Y(v) of node v as the order of preorder traversal

and the level of the spanning tree, respectively.

From Definition 5, the construction of the CG = (V, E)

with respect to G = (V, E) and CT = (V, E’) is

straightforward.

4.2. Phase 2

The complete direction graph contains all eight

directions that can be defined in a CG, that is, it contains

all possible turns that can be found in a CG. If we can

find a maximal ADDG from the complete direction graph,

then apply the edges (turns) in the maximal ADDG to

each node of a CG will also result in no turn cycle.

There are two issues to find the maximal ADDG from the

complete direction graph. The first issue is to decide

what edges should be removed (prohibited) from the

complete direction graph. The second issue is the routing

algorithm derived from the found maximal ADDG should

perform efficiently. For the first issue, we use an

incremental method to remove edges step by step from

the complete direction graph to obtain a maximal ADDG.

For the second issue, when removing edges from a DDG
in each step, we will try to prevent the traffic from

flowing to the root of a CG and push the traffic

downward to the leaves of a CG. The process of finding

the maximal ADDG from the complete direction graph

consists of the following four steps:

Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

LU_CROSS RD_CROSS

LU_CROSSRD_CROSS

RD_CROSS LU_CROSS LD_CROSS RU_CROSS

LD_CROSS

LD_CROSS
RU_CROSS

RU_CROSS

(a) The DG of nodes LU_CROSS and RD_CROSS and (b) The DG of nodes LD_CROSS and RU_CROSS and

a possible turn cycle. a possible turn cycle.

L_CROSS R_CROSS

L_CROSSL_CROSS

R_CROSSR_CROSS
RD_TREE LU_TREE

LU_CROSS
RD_CROSS

RD_CROSS LU_CROSS

(c) The DG of nodes L_CROSS and R_CROSS and (d) The DG of nodes LU_TREE and RD_TREE and

a possible turn cycle. a possible turn cycle.

Figure 2. The DGs of node pairs and their corresponding possible turn cycles.

Step 1. Find the maximal ADDGs ADDG1, ADDG2,

ADDG3, and ADDG4, from DGs of nodes LU_CROSS
and RD_CROSS, nodes LD_CROSS and RU_CROSS,

nodes L_CROSS and R_CROSS, and nodes LU_TREE
and RD_TREE from the complete direction graph,

respectively.

Step 2. Combine ADDG1 with ADDG2 by adding

edges between nodes in ADDG1 and ADDG2 to form a

new DDG and find a maximal ADDG ADDG5 from the

new formed DDG.

Step 3. Combine ADDG3 with ADDG5 by adding

edges between nodes in ADDG3 and ADDG5 to form a

new DDG and find a maximal ADDG ADDG6 from the

new formed DDG.

Step 4. Combine ADDG4 with ADDG6 by adding

edges between nodes in ADDG4 and ADDG6 to form a

new DDG and find a maximal ADDG ADDG7 from the

new formed DDG. The found ADDG7 is a maximal

ADDG of the complete direction graph.

A. Step 1

In this step, we want to find the maximal ADDGs
ADDG1, ADDG2, ADDG3, and ADDG4 from DGs of

nodes LU_CROSS and RD_CROSS, nodes LD_CROSS
and RU_CROSS, nodes L_CROSS and R_CROSS, and

nodes LU_TREE and RD_TREE from the complete

direction graph, respectively. The reason we choose

these node pairs is that the DG of each node pair contains

edges with opposite directions. These edges form a cycle

that may lead to a turn cycle. Figure 2 shows the DGs of

these node pairs and their corresponding possible turn

cycles.
To find the maximal ADDG from the DG of each node

pairs, we must remove one of the two edges of the DG.

For each node v in a CG, the LU_CROSS and RU_CROSS
directions indicate that the traffic flow is going upward

from node v to other nodes whose Y coordinate is less

than that of node v. The edges (turns) TRU_CROSS,LD_CROSS

and TLU_CROSS,RD_CROSS in Figure 2(a) and Figure 2(b),

respectively, will make the traffic flow goes upward

before downward. In order to push the traffic flow

downward to the leaves of the corresponding CT, we

remove edges TRU_CROSS,LD_CROSS and TLU_CROSS,RD_CROSS

from Figure 2(a) and Figure 2(b), respectively. The

maximum ADDGs ADDG1 and ADDG2 for the DGs

shown in Figure 2(a) and Figure 2(b) are shown in Figure

3(a) and Figure 3(b), respectively. For the cycle shown in

Figure 2(c), since the removal of either edge leads to the

same result, we randomly remove edge TL_CROSS,R_CROSS

from the DG. The ADDG3 is obtained and is shown in

Figure 3(c). For each node v in a CG, the LU_TREE
direction indicates that the traffic is flowing from node v
to the root of the corresponding CT. For the cycle shown

in Figure 2(d), in order to prevent the traffic from flowing

to the root of a corresponding CT, we remove edge

TRD_TREE,LU_TREE from the DG. The ADDG4 is formed and

is shown in Figure 3(d).

LU_CROSS RD_CROSS LD_CROSS RU_CROSS

(a) ADDG1 (b) ADDG2

L_CROSS R_CROSS RD_TREE LU_TREE

 (c) ADDG3 (d) ADDG4

Figure 3. The maximal ADDGs of DGs shown in
Figure 2.

B. Step 2

In this step, we want to combine ADDG1 with ADDG2

by adding edges between nodes in ADDG1 and ADDG2 to

Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

LU_CROSS

RD_CROSS LD_CROSS

RU_CROSS
RU_CROSS

LD_CROSS

LD_CROSS

RD_CROSS

RD_CROSS
RU_CROSS

LD_CROSS

RU_CROSS

RU_CROSS

LU_CROSS

LU_CROSSLD_CROSS

LU_CROSS

RD_CROSS LD_CROSS

RU_CROSS

(a) The DDG of combining ADDG1 (b) A possible turn (c) A possible turn (d) ADDG5.

with ADDG2. cycle for C1. cycle for C2.

Figure 4. Combine ADDG1 with ADDG2 to form ADDG5.

Region 2

LU_CROSS

RD_CROSS LD_CROSS

RU_CROSS

Region 1

Region 2

LU_CROSS

RD_CROSS LD_CROSS

RU_CROSS

Region 1
L_CROSS R_CROSS

Region 2

LU_CROSS

RD_CROSS LD_CROSS

RU_CROSS

Region 1
L_CROSS R_CROSS

LU_CROSS

RD_CROSS LD_CROSS

RU_CROSS

L_CROSS R_CROSS

(a) Two regions for ADDG5. (b) Combine ADDG3 with (c) Combine ADDG3 with (d) ADDG6.

Region 1. Region 2.

Figure 5. Combine ADDG3 with ADDG5 to form ADDG6.

form a new DDG and find a maximal ADDG ADDG5

from the new formed DDG.

The DDG of combining ADDG1 with ADDG2 is shown

in Figure 4(a). When adding edges between node RD-
CROSS in ADDG1 and nodes in ADDG2, a cycle

C1(TRU_CROSS,RD_CROSS, TRD_CROSS,LD_CROSS, TLD_CROSS,RU_CROSS)

is formed. This cycle may form the turn cycle, shown in

Figure 4(b), in a CG. When adding edges between node

LU_CROSS in ADDG1 and nodes in ADDG2, a cycle

C2(TLU_CROSS,LD_CROSS, TLD_CROSS,RU_CROSS, TRU_CROSS,LU_CROSS)

is formed. This cycle may form the turn cycle, shown in

Figure 4(c), in a CG. Since the edges (turns)

TRU_CROSS,RD_CROSS and TLU_CROSS,LD_CROSS in cycles C1 and

C2 will make the traffic flow goes upward before

downward, respectively. In order to push the traffic flow

downward the leaves of a corresponding CT, we remove

edges TRU_CROSS,RD_CROSS and TLU_CROSS,LD_CROSS from the

ADD shown in Figure 4(a). The ADDG5 is formed and is

shown in Figure 4(d).

C. Step 3

In this step, we want to combine ADDG3 with ADDG5

by adding edges between nodes in ADDG3 and ADDG5 to

form a new DDG and find a maximal ADDG ADDG6

from the new formed DDG. For nodes in Figure 4(d), we

have the following observations:

Observation 1: Any combination of edges (turns)

from nodes LD_CROSS and RD_CROSS would not have

upward directions in a CG.

Observation 2: Any combination of edges (turns)

from nodes LU_CROSS and RU_CROSS would not have

downward directions in a CG.

Therefore, we divide ADDG5 into Region 1 and

Region 2 as shown in Figure 5(a). For the ADDG3 shown

in Figure 3(c), edge TR_CROSS,L_CROSS indicates that the

traffic is flowing between nodes in the same level of a

corresponding CT. To combine the ADDG3 with Region
1 or Region 2 shown in Figure 5(a), we have the

following observations:

Observation 3: If we combine ADDG3 with Region 1

to form a DDG shown in Figure 5(b), no turn cycles can

be formed from the DDG shown in Figure 5(b).

Observation 4: If we combine ADDG3 with Region 2

to form a DDG shown in Figure 5(c), no turn cycles can

be formed from the DDG shown in Figure 5(c).

Observation 5: If we combine ADDG3 with ADDG5, a

possible turn cycle can be formed from node v in Region
1 to nodes in ADDG3, Region 2, and back to node v.

To combine ADDG3 with ADDG5 to form ADDG6,

based on Observations 3, 4, and 5, we can first combine

Figure 5(b) and Figure 5(c). Then by removing either

edges from nodes in Region 1 to nodes in ADDG3 or

edges from nodes in Region 2 to nodes in ADDG3, we can

obtain ADDG6. Since any combination of edges (turns)

between nodes in ADDG3 and nodes in Region 1 would

not have downward directions in a CG, to keep the traffic

flow downward, we remove edges from nodes in Region
1 to nodes in ADDG3. We then obtain ADDG6 as shown

in Figure 5(d).

D. Step 4

In this step, we want to combine ADDG4 with ADDG6

by adding edges between nodes in ADDG4 and ADDG6 to

form a new DDG and find a maximal ADDG ADDG7

Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

LU_CROSS

RD_CROSS LD_CROSS

RU_CROSS

L_CROSS R_CROSS

Region 4
Region 4

Region 3

LU_CROSS

RD_CROSS LD_CROSS

RU_CROSS

L_CROSS R_CROSS

Region 4
Region 4

Region 3

RD_TREE

LU_TREE

RD_TREE

L_CROSSL_CROSS

RD_TREE

RU_CROSS

RU_CROSS

(a) Two regions for ADDG6. (b) Add node RD_TREE into Region 3. (c) A possible turn cycle for C3.

R_CROSS R_CROSS

RD_TREE

RD_TREE

LU_CROSS

LU_CROSS

LU_CROSS

RD_CROSS LD_CROSS

RU_CROSS

L_CROSS R_CROSS
Region 4

Region 3

RD_TREE

LU_TREE

Region 4

LU_CROSS

RD_CROSS LD_CROSS

RU_CROSS

L_CROSS R_CROSS

LU_TREE

RD_TREE

 (d) A possible turn cycle for C4. (e) The ADDG of RD_TREE and ADDG6. (f) ADDG7.

Figure 6. Obtain a maximal ADDG for the complete direction graph.

from the new formed DDG. The found ADDG7 is a

maximal ADDG of the complete direction graph.

For nodes in Figure 5(d), we have Observation 2 and

the following observation:

Observation 6: Any combination of edges (turns)

from nodes LD_CROSS and RD_CROSS, L_CROS, and

R_CROSS would not have upward directions in a CG.

Therefore, based on Observations 2 and 6, we divide

ADDG6 into Region 3 and Region 4 as shown in Figure

6(a).

When adding edges between node RD_TREE and

nodes in Region 3, no turn cycles can be formed from the

DDG and any combination of edges (turns) from the

DDG would not have upward directions in a CG, that is,

the turns defined in the DDG will push the traffic

downward to the leaves of a corresponding CT. We keep

all edges in between node RD_TREE and nodes in Region
3 and the DDG is shown in Figure 6(b).

Based on Figure 6(b), when adding edges between

node RD_TREE and nodes in Region 4, two cycles

C3(TRD_TREE,L_CROSS, TL_CROSS,RU_CROSS, TRU_CROSS,RD_TREE)

and C4(TRD_TREE,R_CROSS, TR_CROSS,LU_CROSS, TLU_CROSS,RD_TREE)

are formed. These cycles may form turn cycles as shown

in Figure 6(c) and Figure 6(d), respectively. Therefore,

we remove the two edges TLU_CROSS,RD_TREE and

TRU_CROSS,RD_TREE and the DDG is shown in Figure 6(e).

When adding edges between node LU_TREE and

nodes in ADDG6 based on Figure 6(e), a possible turn

cycle can be formed from node RD_TREE to nodes in

ADDG6, LU_TREE, and back to node RD_TREE. For

each node v in a CG, the LU_TREE direction indicates

that the traffic is flowing from node v to the root of the

corresponding coordinated tree. To prevent the traffic

from flowing to the root of a corresponding CT, we

remove all edges from nodes in ADDG6 to node

LU_TREE to form an ADDG as shown in Figure 6(f).

This new formed ADDG is ADDG7, a maximal ADDG of

the complete direction graph.

4.3. Phase 3

In Phase 2, we have removed eighteen edges from the

complete direction graph. These eighteen edges form a

set of prohibited turns PT = {TRD_TREE,LU_TREE,

TRD_CROSS,LU_TREE, TL_CROSS,LU_TREE, TR_CROSS,LU_TREE,

TRU_CROSS,LU_TREE, TLU_CROSS,LU_TREE, TLD_CROSS,LU_TREE,

TRU_CROSS,LD_CROSS, TRU_CROSS,RD_CROSS, TLU_CROSS,LD_CROSS,

TLU_CROSS,RD_CROSS, TLU_CROSS,RD_TREE, TRU_CROSS,RD_TREE,

TL_CROSS,R_CROSS, TR_CROSS,RU_CROSS, TR_CROSS,LU_CROSS,

TL_CROSS,RU_CROSS, TL_CROSS,LU_CROSS }. Since the ADDG7

found in Phase 2 is a maximal ADDG of the complete

direction graph, when the prohibited turns in PT applied

to nodes of a CG, it is possible that some prohibited turns

are redundant for some nodes. For example, for the CG
shown in Figure 7, in which the thick lines are the tree

links and the thin lines are cross links, the turn from node

v9 through node v6 to node v8 (TRU_CROSS,RD_TREE) and the

turn from node v4 through node v11 to node v5

(TLU_CROSS,RD_TREE) are unnecessary prohibited turns for

nodes v6 and v11, respectively, since these prohibited turns

on these nodes do not form turn cycles in the CG. In this

Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

phase, we want to remove these redundant prohibited

turns for each node in CG from PT and find routing paths

from the available turns of each node in CG to form the

DOWN/UP routing.

We propose a cycle detection algorithm, which is

similar to that in [4], to remove the redundant prohibited

turns for each node in CG from PT. In the cycle detection

algorithm, we only consider to release the prohibited

turns TLU_CROSS,RD_TREE and TRU_CROSS,RD_TREE in each node.

The reasons are two-fold. First, only the prohibited turns

TLU_CROSS,RD_TREE and TRU_CROSS,RD_TREE in PT can help the

traffic flow not go upward to the root and push the traffic

flow downward to the leaves of a corresponding CT.

Second, each node in a CG, except the leaves of a

corresponding CT, has the output channel with direction

RD_TREE. The number of TLU_CROSS,RD_TREE and

TRU_CROSS,RD_TREE may be more than that of other

prohibited turns in a CG. The algorithm is given as

follows:

Algorithm cycle_detection(CG, PT) /* CG = (V, E) */

1. Let in(v) be the set of input channels of node v in V
whose direction is LU_CROSS or RU_CROSS.

2. Let out(v) be the set of output channels of node v in V
whose direction is RD_TREE.

3. v V, for each pair of (,) do /* where 1e 2e 1e in(v)

and out(v) */ 2e
4. { Initialize stacks S and D.

5. Starting from v, visit its adjacency node v’ through 2e

and mark .2e

6. Let in_channel = and push into D.2e 2e

7. if (node v’ has an output channel = <v’, v”> that'e
is not marked and does not form a prohibited

turn with d(in_channel)) then { Push v” into S,

push into D, mark , and v’ = v”. } 'e 'e
else if (S) then { v’ = pop(S), in_channel =

pop(D). }

else { Release the turn of node v.)(),(21 cdcdT
Check next input and output channel pair of node v. }

8. if (v’ = v and in_channel =)1e
then {A turn cycle exists and the prohibited turn in

node v can not be released.

Check next input and output channel pair of

node v. }

9. Goto line 7.}

end_of_cycle_detection

Algorithm cycle_detection uses the depth first search

(DFS) to check whether a prohibited turn of a node can

be released or not. The time complexity of algorithm

cycle_detection is O(d*|V|2), where d is the degree of each

node in a CG. After algorithm cycle_detection is

performed, the prohibited turns for each node are

determined. We then can use the shortest path algorithms

based on the prohibited turns to find the routing path

between any two nodes. We call the routing algorithm by

applying the proposed method as DOWN/UP routing
since the packet must go downward cross links then go

upward cross links.

Theorem 1: The DOWN/UP routing is deadlock-free

and connectivity between each node pair is guaranteed.

Proof: Based on Phase 2, there is at least one

prohibited turn to break each turn cycle in the maximal

DG. Therefore, this routing algorithm is deadlock-free.

Since the turn TLU_TREE,RD_TREE is not prohibited for each

node in a CG, each flit from any source node to it

destination node can first go upward their least common

ancestor and then goes downward to the destination node.

Therefore, connectivity between each node pair is

guaranteed.

RU_CROSS

RD_TREE

LU_TREE

LD_CROSS

L_CROSS

LU_CROSS

R_CROSS

RD_CROSS

Directions for tree links Directions for cross links

v0

v3 v6

v4v5

v2

v10

v9

v11

v8

v1

v7

Figure 7. An example for redundant prohibited turns.

5. Performance Analyses

To evaluate the performance of the DOWN/UP routing,

we have implemented the proposed method along with

the L-turn routing on the IRFlexSim0.5 simulator [2], a

wormhole technique simulator written in C. To simulate

an irregular network, we assume that the network

contains 128 switches. Each switch is associated with a

processor. The port number of each switch is set to 4 and

8. Each port has an input and an output channels. The

packet length is set to 128 flits. The delay of a flit passes

through a link is one clock. The delay of a routing header

to be routed and arbitrated to the output channel is one

clock. A data flit to be transmitted from the input channel

to output channel is one clock. A uniform traffic pattern

is assumed.

For both 4-port and 8-port configurations, we have

randomly generated 10 irregular networks each as test

Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

(a) 4-port configuration. (b) 8-port configuration.

Figure 8. The average message latency and accepted traffic.

samples. Since different coordinated trees will lead to

different performance, for each test sample, we used three

coordinated trees, M1, M2, and M3, to evaluate the

performance of the L-turn routing and the DOWN/UP
routing. When perform the preorder traversal to

determine the x-axis coordinate of a node in a coordinated

tree, the next node to be traversed for M1, M2, and M3 is

the node with the smallest node number, a randomly

selected one, and the node with the largest node number,

respectively. The method for M1 is the one we proposed

in Phase 1 of Section 4. When construct a coordinated

tree, we choose the node with the smallest node number

as the root a spanning tree. Since the L-turn routing and

the DOWN/UP routing are both non-minimal adaptive

deadlock-free routing algorithms, in the simulation, we

use the shortest possible paths between all pairs of source

and destination nodes to transmit flits. For any two nodes,

it is possible that more than one shortest possible path

exist. For this case, one of them is selected randomly.

Figure 8(a) and Figure 8(b) show the average

simulation results of message latency and accepted traffic

for 4-port and 8-port configuration, respectively. The

message latency is defined as the time elapsed since the

packet transmission is initiated at a node until the packet

is received at the destination node. The smaller the

message latency, the less the flits delay. The throughput

is defined as the accepted traffic measured in flits/clock

pernode (flits/clock/node). The higher the throughput,

the better the bandwidth offered. From Figure 8, for the

same coordinated tree and the same configuration, we

observe that the proposed routing algorithm has smaller

message latency and higher throughput than that of the L-
turn routing. For different coordinated trees and the same

configuration, we observe that both routing algorithms

have the smallest message latency and the highest

throughput if M1 is used.

In order to analyze the characteristics of both routing

algorithms, for each test sample, we also measure the

node utilization, the traffic load, the degree of hot spots,

and the leaves utilization when both routing algorithms

reach their maximal throughputs. Table 1 shows the

average simulation results of node utilization for both 4-

port and 8-port configurations. The utilization of an

output channel of a node is defined as the average number

of flits across the node through the output channel during

one clock. The node utilization of a node is defined as

the sum of utilization of all output channels of the node

divided by the number of ports connecting to other

switches. The higher the node utilization is, the smoother

the traffic flows. From Table 1, for the same coordinated

tree and the same configuration, we observe that the node

utilization of the proposed routing algorithm is higher

than that of the L-turn routing. For different coordinated

trees and the same configuration, both routing algorithms

have the best node utilization if M1 is used.

Table 1. The average simulation results of node
utilization.

L-turn routing DOWN/UP routing
4-port 8-port 4-port 8-port

M1 0.115772 0.123159 0.123295 0.147124

M2 0.108101 0.111653 0.121793 0.139588

M3 0.095841 0.092198 0.120955 0.126071

Table 2 shows the average simulation results of traffic

load for both 4-port and 8-port configurations. The traffic

load is defined as the standard deviation of the node

utilization of all nodes. The smaller the traffic load, the

better the balanced traffic load. From Table 2, for the

same coordinated tree and the same configuration, we

observe that the traffic load of the proposed routing

algorithm is less than that of L-turn routing. This

indicates that the DOWN/UP routing has a more balanced

traffic load than the L-turn routing. For different

coordinated trees and the same configuration, both

routing algorithms have the smallest traffic load if M1 is

used.

Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

Table 2. The average simulation results of traffic load.
L-turn routing DOWN/UP routing

4-port 8-port 4-port 8-port

M1 0.078314 0.048727 0.077657 0.043990

M2 0.081115 0.050460 0.078501 0.047316

M3 0.083969 0.053392 0.078047 0.049796

Table 3 shows the average simulation results of degree

of hot spots. The degree of hot spots is defined as the

percentage of the node utilization of nodes in levels 0 and

1 of a coordinated tree. The smaller the degree of hot

spots is, the less the traffic congests. Table 4 shows the

average simulation results of leave utilization. The leave

utilization is defined as the average of node utilization of

leaves of a coordinated tree. The more the leave

utilization, the higher the traffic flow to leaves. From

Tables 3 and 4, for the same coordinated tree and the

same configuration, we observe that the proposed routing

algorithm has less degree of hot spots and higher leave

utilization, respectively. For different coordinated trees

and the same configuration, we observe that both routing

algorithms have the smallest degree of hot spots and the

highest leave utilization if M1 is used.

Table 3. The average simulation results of degree of
hot spots.

L-turn routing DOWN/UP routing
4-port 8-port 4-port 8-port

M1 12.85 % 13.26 % 12.00 % 9.930 %

M2 14.15 % 14.90 % 12.13 % 10.56 %

M3 16.18 % 18.43 % 12.16 % 11.25 %

Table 4. The average simulation results of leave
utilization.

L-turn routing DOWN/UP routing
4-port 8-port 4-port 8-port

M1 0.07336 0.1065 0.082897 0.13807

M2 0.063953 0.093437 0.080773 0.131578

M3 0.050633 0.072627 0.078453 0.111609

From Tables 3 and 4, we can see that the DOWN/UP
routing has less degree of hot spots and better leaves

utilization than the L-turn routing. These lead to higher

node utilization and more balanced traffic load for the

DOWN/UP routing compared to the L-turn routing. That

is why the DOWN/UP routing has smaller message

latency and higher throughput than that of the L-turn
routing.

6. Conclusion Remarks

From the simulation results shown in Section 5, we

have the following remarks for the proposed routing

algorithm and the L-turn routing.

Remark 1. The way we construct a coordinated tree

(M1) leads to the best performance for both DOWN/UP
routing and L-turn routing compare to other methods (M2

and M3).

Remark 2. Since traffic in the DOWN/UP routing
flows more downward to the leaves of a coordinated tree

than that of the L-turn routing. Under the same

coordinated tree and the same configuration, the

DOWN/UP routing outperforms the L-turn routing in

terms of node utilization, traffic load, the degree of hot

spots, leaves utilization, message latency, and throughput

for all test samples.

Acknowledgments

This work in this paper was partially supported by

Program for Promoting Academic Excellence of

Universities under contract 89-E-FA04-1-4.

References

[1] C. J. Glass and L.M. Ni, “The Turn Model for

Adaptive Routing,’ J. ACM, Vol. 41, No. 5, pp.

874-902, Sept. 1994.

[2] IRFlexSim0.5 is available in”

http://www.usc.edu/dept/ceng/pinkston/tools.html”

[3] A. Jouraku, A. Funahashi, H. Amano, and M.

Koibuchi, ”Routing Algorithms on 2D Turn Model

for Irregular Networks,” the Sixth International
Symposium on Parallel Architectures, Algorithms,
and Networks(I-SPAN), pp.289-294, May. 2002

[4] A. Jouraku, A. Funahashi, H. Amano, and M.

Koibuchi,”L-turn routing: An Adaptive Routing in

Irregular Networks,” the International Conference
on Parallel Processing, pp.374-383, Sep. 2001.

[5] G. Pfister and V. Norton, “Hot Spot Contention

and Combining in Multistage Interconnection

Networks,” IEEE Trans. Computers. C34

(10):943-948, Oct. 1985.

[6] A. Robles , J. Duato, and J.C. Sancho,” A Flexible

Routing Scheme for Networks of Workstations,”

ISHPC, pp. 260-267,2000.

[7] M. D. Schroeder et al., “Autonet: A High-Speed

Self-Configuring Local Area Network Using

Point-to-Point Links,” SRC research report 59,
DEC, Apr. 1990.

[8] F. Silla and J. Duato, “High-Performance Routing

in Networks of Workstations with Irregular

Topology,” IEEE Transactions on Parallel and
Distributed Systems, Vol.11, No.7, pp. 699-719,

July 2000.

Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

