
Efficient Compositing Methods for the Sort-Last-Sparse Parallel Volume
Rendering System on Distributed Memory Multicomputers

Don-Lin Yang, Jen-Chih Yu, and Yeh-Ching Chung1

Department of Information Engineering
Feng Chia University, Taichung, Taiwan 407

TEL: 886-4-451-7250x3700
FAX: 886-4-451-6101

E-mail: {dlyang, jcyu, ychung}@fcu.edu.tw

1 The corresponding author

Abstract
In the sort-last-sparse parallel volume rendering

system on distributed memory multicomputers, as the
number of processors increases, in the rendering phase,
we can get a good speedup because each processor
renders images locally without communicating with other
processors. However, in the compositing phase, a
processor has to exchange local images with other
processors. When the number of processors is over a
threshold, the image compositing time becomes a
bottleneck. In this paper, we proposed three compositing
methods, the binary-swap with bounding rectangle method,
the binary-swap with run-length encoding and static load-
balancing method, and the binary-swap with bounding
rectangle and run-length encoding method, to efficiently
reduce the compositing time in the sort-last-sparse
parallel volume rendering system on distributed memory
multicomputers. The proposed methods were
implemented on an SP2 parallel machine along with the
binary-swap compositing method. The experimental
results show that the binary-swap with bounding rectangle
and run-length encoding method has the best performance
among the four methods.

1. Introduction

Volume visualization is a well-known methodology
for exploring the inner structure and complex behavior of
three-dimensional volumetric objects. Existing volume
visualization algorithms are commonly divided into two
categories, surface rendering and (direct) volume
rendering. Surface rendering extracts a given volume
data to form a contour surface with a constant-field value

and renders the contour surface geometrically. Volume
rendering projects the entire volume data semi-
transparently onto a two-dimensional image without the
aid of intermediate geometrical representations. It is
important for users to interactively explore the volume
data in real time. However, both surface rendering and
volume rendering of a large volume data are still time
consuming and are difficult to realize the interactive
rendering rate on a single processor.

To achieve the goal of interactive volume
visualization, parallel rendering is very useful for this aim.
Molnar et al. [12] classified parallel rendering into three
categories, sort-first, sort-middle, and sort-last. Among
them, the sort-last is the most common used scheme in
parallel rendering. There are three phases, the
partitioning phase, the rendering phase, and the
compositing phase, in a sort-last parallel volume rendering
system as shown in Figure 1. In the partitioning phase, a
processor partitions entire volume data into several
subvolume data and distributes these subvolume data to
other processors. In the rendering phase, each processor
uses some volume rendering or surface rendering
algorithms to render the assigned subvolume data into a
2D subimage. In the compositing phase, some
compositing algorithms are used to composite the
subimages of processors into a full image. The image is
then displayed on screen or is saved as an image file.

A number of parallel volume rendering algorithms
for the sort-last class have been proposed in the literature.
Most of algorithms are implemented on MIMD/SIMD
distributed memory multiprocessor systems. In the
rendering phase, there are several volume visualization
algorithms can be used. The March cube algorithm [10]
was used for surface rendering. The ray tracing [9], the
shear-warp [7], and the splatting [15] algorithms were

proposed for volume rendering. In the compositing
phase, the implementations of the image compositing can
be divided into two categories, full-frame merging and
sparse merging [12]. In the full-frame merging
implementation, processors exchange full 2D subimage
frames without considering the contents of the frames.
The full-frame merging is very regular and easy to be
implemented in software and hardware. But it is not
efficient if the contents of 2D subimage frames are sparse.
On the other hand, in the sparse merging implementation,
processors exchange non-blank pixels of 2D subimage
frames. This implementation is more complicated than
the full-frame merging implementation. However, it can
reduce the communication and the computation overheads
in the compositing phase when the 2D subimage frames
are sparse.

From Figure 1, in the rendering phase, we can see
that each processor renders its local subvolume data
without communicating with other processors. A linear
speedup can be expected as the number of processors
increases. However, because of exchanging subimages
with other processors in the image compositing phase, a
speedup is restricted to a threshold as the number of
processors increases. This indicates that the compositing
phase is a bottleneck in a sort-last parallel volume
rendering system when the number of processors is over a
threshold.

ent i re vo lume data

sub-
vo lume

sub-
vo lume

sub-
vo lume

render ing

2 D
sub-

image

display

2 D
sub-

image

2 D
sub-

image

render ing render ing

processor 0 processor nprocessor 1

composi t ing sub- images in to a fu l l image

. . . .

. . . .

. . . .

par t i t ion ing ent i re vo lume in to sub-vo lume and
dis t r ibut ing them to each processor

Figure 1. Three phases in a sort-last parallel volume
rendering system.

In this paper, we proposed three compositing
methods to efficiently reduce the image compositing time

in the sort-last-sparse parallel volume rendering system on
distributed memory multicomputers. They are the
binary-swap with bounding rectangle (BSBR) method, the
binary-swap with run-length encoding and static load-
balancing (BSLC) method, and the binary-swap with
bounding rectangle and run-length encoding (BSBRC)
method. The terms sort-last-sparse and sort-last sparse
merging are used interchangeably in this paper. The
proposed methods were implemented on an SP2 parallel
machine along with the binary-swap compositing method
[11]. The experimental results show that the BSBRC
method has the best performance among the four methods.

The rest of the paper is organized as follows. The
related work of parallel compositing methods will be given
in Section 2. In Section 3, the proposed methods will be
described and analyzed in details. In Section 4, the
experimental results of the proposed methods will be
presented.

2. Related Work

Many parallel volume rendering algorithms in the
sort-last class have been proposed for distributed memory
multiprocessor systems. In the image compositing phase,
the compositing methods can be divided into two cases,
buffered case and sequenced case [14]. In the buffered
case, each processor is responsible for handling a fixed
portion of the image. Each processor allocates a buffer
and receives pixels in the same fixed portion of the image
from other processors once. After compositing pixels in
the buffer, each processor generates the final image of the
portion it handles. In the buffered case, each processor
needs to send and receive n – 1 messages at the same time.
Hsu [4] and Neumann [14] used the buffered case method
to composite subimages into a final image. In the
sequenced case, such as tiling approach [6], parallel
pipeline [8], binary-tree [1], and binary-swap [11], each
processor receives a message from one processor and
composites received pixels immediately in each
compositing stage. Each processor repeats the same step
in each compositing stage until it generates the portion of
the final image. Since our methods are based on the
binary-swap compositing method, we will describe it in
details in Section 3.1.

The compositing methods described above can be
applied to the sort-last-sparse or the sort-last-full
implementations. Some methods for the sort-last-sparse
parallel volume rendering system have been proposed in
the literature [1, 2, 8, 11]. In the following, we briefly
describe them.

Ahrens and Painter [1] proposed a compression-
based image compositing algorithm. They used a
lossless compression technique, run-length encoding [3],
to compress non-blank pixels. They applied this scheme

to the binary-tree compositing method for parallel surface
rendering. Because of the surface rendering, a pixel
value is represented using red, blue, green, depth, and
count fields. The algorithm initially uses the first pixel as
the base pixel and compares it with next pixel. Iterating
through the pixels of the image by column or row, the
algorithm compares the base pixel with the current pixel.
If the values of red, blue, green, and depth of the two
pixels are equal, the value of the count field in base pixel
is increased by one. Otherwise the base pixel is the
encoded pixel. The base pixel value is then set to the
current pixel value and the value of its count field is set to
1. In the compression phase, the time complexity of the
algorithm is O(n), where n is the number of pixels of the
input image. In a compositing compressed images phase,
two images are input and one result image is output.
There are two cases in this phase. One case is that one
input image contains a run (an encoded pixel) and the
other does not. In this case, an output pixel's value is
extracted from the run and the count field in the run is
decreased by 1. The other case is that both two input
images contain runs. The runs of pixels can be
composited together. The length of runs to be
composited is equal to the smaller count value of the two
runs. The value of the count field of one run with larger
count value is set to its count value subtracts the count
value of the other run. The comparison continues until
there has no more runs. In the compositing phase, the
time complexity of the algorithm is O(n) for the worst case
and is O(1) for the best case.

Lee [8] proposed a direct pixel forwarding method
and applied it to the parallel pipeline compositing
algorithm for the sort-last-sparse polygon rendering. In
the direct pixel forwarding method, an explicit information
is used to locate non-blank pixel positions in a subimage.
For each non-blank pixel, its value is represented by red,
blue, green, depth, and the x and y coordinates of the pixel.
In the compositing phase, each processor only composites
non-blank pixels and stores result pixels in correct
positions according to the x and y coordinates of pixels.
Cox and Hanrahan [2] also applied this scheme to a
distributed snooping algorithm for polygon rendering.

Molnar et al. [12] indicated that the sort-last sparse
merging methods are load unbalanced if a processor sends
more non-blank pixels than other processors. To solve
the load imbalance problem, one can assign each processor
an interleaved array of non-blank pixels such that each
processor sends almost equal number of pixels to other
processors. Lee [8] applied this scheme to the parallel
pipeline compositing algorithm with direct pixel
forwarding.

To avoid sending blank pixels and some overheads
of non-blank pixels, the bounding rectangle [3] is a good
choice. Iterating through the pixels in an input image, the
bounding rectangle scheme records the coordinates of the

upper-left and the lower-right corners of the bounding
rectangle. In the compositing phase, each processor only
handles pixels in the bounding rectangle. Lee [8] applied
the bounding rectangle scheme to the parallel pipeline
compositing algorithm. Ma et al. [11] also used a
bounding rectangle to cover all non-blank pixels at each
compositing stage.

3. The Proposed Compositing Methods

In this section, we first describe the binary-swap (BS)
compositing method proposed by Ma et al. [11]. Then
we describe the proposed compositing methods, the
binary-swap with bounding rectangle (BSBR) method, the
binary-swap with run-length encoding and static load-
balancing (BSLC) method, and the binary-swap with
bounding rectangle and run-length encoding (BSBRC)
method, in details.

A summary of the notations used in this paper is
listed below.
y Tcomp(L) − The computation time of method L.
y Tcomm(L) −The communication time of method L.
y Ts − The start-up time of a communication channel.
y Tc − The data transmission time per byte.
y To − The computation time of "over" operation per

pixel.
y A − The image size in pixels, A1/2 × A1/2.
y P − The number of processors.

3.1 The Binary-Swap Compositing Method

The binary-swap compositing method [11] was
originally proposed for parallel volume rendering to
composite ray-traced subimages to a full image. The key
idea is that, at each compositing stage, two processors are
paired. One processor in a pair exchanges half of its
subimage (the sending subimage) with that of the other.
After exchanging subimages, each processor composites
the half image that it keeps (the local subimage) with
received half image (the receiving subimage) by using the
over operation. Continuing the pairing, exchanging, and
compositing operations until the final image is produced.
Figure 2 illustrates the binary-swap compositing method
using four processors.

In the binary-swap compositing method, it requires
logP communication steps. When the compositing of
local subimage to a full image is completed, the total

number of pixels transmitted is ∑
=

×
P

k
k

A
P

log

1 2
 and each

pixel consists of intensity and opacity. Each pixel is
represented by 16 bytes. Therefore, for each processor,
the local computation time and the communication time in

the binary-swap compositing method are

∑
=

 ×=

P

k
kocomp

A
TBST

log

1 2
)((1)

and

∑
=

 ×

 ⋅+=

P

k
ckscomm T

A
TBST

log

1 2
16)(, (2)

respectively.

P E 0

P E 1

P E 2

P E 3

S T E P 1 S T E P 2

Figure 2. The binary-swap compositing method using
four processors.

3.2 The Binary-Swap with Bounding Rectangle
(BSBR) Method

Ma et al. [11] used a bounding rectangle to cover all
nonblank pixels at each compositing stage. Each
processor only binary-swaps pixels within this bounding
rectangle. When applying the bounding rectangle
scheme to the binary-swap compositing method, termed
BSBR, we have two cases. We show these two cases in
Figure 3. In the first case as shown in Figure 3(a), for
each processor pair, PE and PE', PE needs to send (receive)
pixels to (from) PE' if the sending subimage (the receiving
subimage) contains a portion of bounding rectangle. The
portion of bounding rectangle sent (received) to (from) PE'
is called the sending (receiving) bounding rectangle of PE.
The portion of bounding rectangle retains in PE is called
the local bounding rectangle of PE. For the second case
as shown in Figure 3(b), for each processor pair, PE and
PE', PE need not send (receive) pixels to (from) PE' if the
sending subimage (the receiving subimage) contains no
portion of bounding rectangle. In order to obtain the
bounding rectangle information, processor in each pair has
to exchange its bounding rectangle information in each
compositing stage.

The advantage of the BSBR method is that it can
quickly find an approximate number of non-blank pixels

with less additional fields to record these pixels' positions.
In the BSBR method, it takes O(A) time to search the
sending bounding rectangle and local bounding rectangle
in the first compositing stage. In the later compositing
stages, each processor generates a new local bounding
rectangle by comparing the local bounding rectangle and
the receiving bounding rectangle information. The time
complexity is O(1) in comparing bounding rectangle.
The disadvantage of the BSBR method is that it sends not
only non-blank pixels but also blank pixels within the
sending bounding rectangle. As the non-blank pixels'
density of a sending bounding rectangle is dense, the
BSBR method performs well. Conversely, it performs
poorly as the non-blank pixels' density of a bounding
rectangle is sparse.

(a)

(b)

sending
sub image

receiv ing
sub image

P EP E PE'PE '

P E P EPE' PE '

Figure 3. Two cases for the BSBR method. (a) The first
case. (b) The second case.

The BSBR method is implemented as follows. We
use four short integers to represent the upper-left and the
lower-right coordinates of the bounding rectangle. First,
each processor finds the boundary of the sending bounding
rectangle and packs pixels in the sending bounding
rectangle into a sending buffer. Then, for each PE in a
processor pair, it sends the sending buffer to PE' and
receives the receiving bounding rectangle from PE'. If
the receiving bounding rectangle contains no pixels, the
pixel compositing is completed in this compositing stage.
Otherwise, it composites the pixels in the receiving
bounding rectangle with pixels in the local bounding
rectangle. The compositing time of the BSBR method is

O(k
iRECV)for the ith processor at the kth compositing

stage, where k
iRECV is the number of pixel in a

receiving bounding rectangle. The local computation
time and the communication time for the BSBR method
are

()

×+= ∑
=

−

=

P

k

k
io

P

i
boundcomp RECVTMAXTBSBRT

log

1

1

0
)((3)

and

()()

 ×⋅++= ∑

=

−

=

P

k
c

k
is

P

i
comm TRECVTMAXBSBRT

log

1

1

0
168)(, (4)

respectively, where Tbound is the computation time for
finding a sending bounding rectangle and local bounding
rectangle in the first compositing stage.

3.3 The Binary-Swap with Run-Length Encoding
and Static Load-Balancing (BSLC) Method

The run-length encoding is better than explicit x and
y coordinates by using less position information to record
non-blank pixels. In [1], they used the values of pixels to
do encoding. It is a good scheme for surface rendering,
but not efficient for volume rendering due to an additional
field is used to record a count of the same pixel's value.
In surface rendering or polygon rendering, a pixel's value
is usually represented by integer. Due to the data
coherence of 2D images and pixel's value representation
format, the count field can be used efficiently. It can
compress many pixels with the same value into one pixel.
However, in volume rendering, opacity and intensity are
used as a pixel's values and are usually represented by
floating points. In general, the values of a non-blank
pixel and the one next to it are different. If we applied
the run-length encoding method used in [1] for volume
rendering, the image size created is usually equal to the
number of non-blank pixels of the original image. This
will increase the message size due to the count field. To
avoid this case, we use the background/foreground value
of a pixel (blank/non-blank) instead of the value of a pixel
to do encoding.

3 241058

non-blank p ixe l

b lank pixel

run- length code: 3, 8, 5, 10, 4, 2

Figure 4. The case of run-length encoding by using the
background/foreground values of pixels.

Figure 4 shows the case of run-length encoding by
using the background/foreground values of pixels. In the
run-length encoding, non-blank pixels transmitting and
pixels compositing may not be balanced because of
uneven non-blank pixels distribution. They can be more
balanced by using some static load-balancing methods.
An interleaved array distribution is a good choice for
balancing compositing load without significant processor
overheads. Figure 5 shows the load-balancing scheme of
an interleaved array distribution in the binary-swap
compositing method.

In the BSLC method, the rule of dada exchange is
the same as the binary-swap compositing method. The
different is that we send the interleaved array of a
subimage instead of the half array of a subimage. In the
run-length encoding, iterating through the pixels of the
image using an interleaved method, the algorithm checks a
pixel's value (opacity or intensity) whether it is equal to
zero or nonzero, i.e., the pixel is blank or non-blank. The
algorithm records the numbers of the continuous blank and
non-blank pixels as shown in Figure 4. After encoding,
we generate the run-length codes to index the blank and
non-blank pixels. Then we pack the run-length codes and
non-blank pixels into a sending buffer. As one processor
receives the data from the other paired processor, it only
composites the non-blank pixels in a receiving buffer
according to the run-length codes.

P E 0

P E 1

P E 2

P E 3

S T E P 1 S T E P 2

Figure 5. An interleaved array distribution scheme in
the binary-swap compositing method.

The time complexity of a run-length encoding phase

in the BSLC method is O(
k

A

2
) at the kth compositing

stage. The size of run-length codes depends on an image.
As the image contains almost continuous blank and non-
blank pixels, it generates fewer codes than blank and non-
blank pixels in discrete distribution. In the worst case,
i.e., the blank and non-blank pixels are appeared in turn,
the size of run-length codes is equal to the scheme of
explicit x and y coordinates. The compositing time in the

BSLC method is O(k
iLOPA)for the ith processor at the

kth compositing stage, where k
iLOPA is the number of

non-blank pixels in a receiving subimage. The local
computation time and the communication time in the
BSLC method are

 ×+×= ∑

=

−

=

P

k

k
iokencode

P

i
comp LOPAT

A
TMAXBSLCT

log

1

1

0 2
)((5)

and

()()

×⋅+⋅+= ∑
=

−

=

P

k
c

k
i

k
is

P

i
comm TLOPACODETMAXBSLCT

log

1

1

0
162)(

, (6)

respectively, where Tencode is the computation time of run-

length encoding per pixel, and k
iCODE is the size of

run-length codes. Each element of run-length codes is
represented by two bytes.

3.4 The Binary-Swap with Bounding Rectangle
and Run-Length Encoding (BSBRC) Method

The disadvantage of the BSLC method is that it has
to iterate through all the pixels of a sending subimage
whether the pixels are blank or non-blank. The
disadvantage of the BSBR method is that as the bounding
rectangle is sparse, a processor sends too many blank
pixels to the paired processor. By combining the
bounding rectangle and the run-length encoding, the
disadvantages of the BSBR method and the BSLC method
can be avoided. We call this method BSBRC. In the
BSBRC method, a processor not only reduces the
computing time by the bounding rectangle but also sends
fewer data to the paired processor by run-length encoding.
In the BSLC method or the method proposed by Ahrens et
al. [1], it has to iterate through all pixels in the sending
subimage in the run-length encoding phase. The BSBRC
method only iterates through the pixels in the sending
bounding rectangle of the subimage. In the run-length
encoding phase, processors process the pixels within the
sending bounding rectangle. It reduces encoding time
and generates fewer run-length codes. In the
compositing phase, processors composite the non-blank
pixels instead of all pixels in the receiving subimage
according to the run-length encoding. It reduces
compositing time and sends fewer data since the number
of the run-length codes and the non-blank pixels is less
than the number of pixels of an image. The BSBRC
algorithm is given as follows.

Algorithm BSBRC(P) {
1.For all PEs do in parallel
2./* Find the bounding rectangle */
3.For all pixels in the subimage do
4. Find the boundary of the local bounding rectangle

to cover all non-blank pixels;
5.For k = 1 to logP do {
6. Use the centerline of the subimage to divide the

local bounding rectangle into the new local
bounding rectangle and the sending bounding
rectangle;

7. For all pixels in the boundary of the sending
bounding rectangle do

8. Use the run-length encoding to generate the
codes to index the non-blank pixels and pack
non-blank pixels into a temporary buffer;

9. Pack the sending bounding rectangle information
into the sending buffer;

10. If sending bounding rectangle is not empty {
11. Pack the run-length codes into the sending

buffer;
12. Pack the pixels in a temporary buffer into the

sending buffer;
 }
13. Send the sending buffer to the paired PE';
14. Receive the receiving buffer from the paired PE';
15. Unpack the receiving bounding rectangle

information from the receiving buffer;
16. If the receiving bounding rectangle is not empty {
17. Unpack the run-length codes from the

receiving buffer;
18. Unpack the pixels from the receiving buffer

into a compositing buffer;
19. For each pixel in a compositing buffer do
20. Composite the pixel with the corresponding

pixel in the local subimage according to the
run-length codes

 }
21. Calculate the new local bounding rectangle by

combining the local bounding rectangle with
the receiving bounding rectangle;

 }
} end_of_BSBRC

The local computation time and the communication
time for the BSBRC method are

()

 ×+×+= ∑

=

−

=

P

k

k
io

k
iencode

P

i
boundcomp BOPATSENDTMAXTBSBRCT

log

1

1

0
)(

 (7)

and

()()

×⋅+⋅++= ∑
=

−

=

P

k
c

k
i

k
is

P

i
comm TBOPACODETMAXBSBRCT

log

1

1

0
1628)(

, (8)

respectively, where k
iSEND is the number of pixels in a

sending bounding rectangle for the ith processor at the kth

compositing stage, and k
iBOPA is the number of non-

blank pixels in a receiving subimage.

4. Performance Study and Experimental
Results

To evaluation the performance of the proposed
methods, we have implemented these methods on an SP2
parallel machine [5] along with the binary-swap (BS)
compositing method. The SP2 parallel machine is

located in the National Center of High performance
Computing (NCHC) in Taiwan. This super-scalar
architecture uses a CPU model of IBM RISC System/6000
POWER2 with a clock rate of 66.7 MHz. There are 80
IBM POWER2 nodes in the system and each node has a
128KB 1st-level data cache, a 32KB 1st-level instruction
cache, and 128MB of memory space. Each node is
connected to a low-latency, high-bandwidth
interconnection network called the High Performance
Switch (HPS).

The proposed methods were written in C language
with MPI [13] message passing library. The test samples
are Engine_low (256 × 256 × 110), Engine_high (256 ×
256 × 110), Head (256 × 256 × 113), and Cube (256 × 256
× 110). The images of the test samples are shown in
Figure 6. In the rendering phase, for each test sample, a
ray tracing algorithm is used to generate 8-bit graylevel
images on 384 × 384 pixels and 768 × 768 pixels. To
evaluate the performance of the proposed methods, we run
the test samples on 2, 4, 8, 16, 32, and 64 processors.

(a) (b)

(c) (d)

Figure 6. The images of the test samples. (a)
Engine_low, (b) Engine_high, (c) Head, (d) Cube.

We use the maximum received message sizes to
evaluate the performance of the proposed methods. For
each processor, it calculates the message sizes it received

at all compositing stages by ()∑
=

=
P

k

k
ii Rm

log

1

, where k
iR

is the received message size by bytes for the ith processor
at the kth compositing stage. The maximum received
message size, Mmax, among processors is defined as

()i

P

i
mMAXM

1

0
max

−

=
= . From Equations (2), (4), (6), and

(8), in general, we have that

BSLCBSBRCBSBRBS MMMM maxmaxmaxmax ≥≥≥ (9)

where BSM max , BSBRM max , BSBRCM max , and BSLCM max are

Mmax in the BS, BSBR, BSBRC, and BSLC methods,
respectively.

Figures 7 and 8 show the compositing time of the
proposed methods for Engine_low and Head. These two
test samples are denser than the other two. In these cases,
Tcomp(BSBRC) is larger than Tcomp(BSBR) when the number
of processors is greater than 8. In Figure 7, Ttotal(BSBRC)
is less than Ttotal(BSBR) because the difference between
Tcomm(BSBRC) and Tcomm(BSBR) is larger than that between
Tcomp(BSBRC) and Tcomp(BSBR). However, in Figure 8,
Ttotal(BSBRC) is larger than Ttotal(BSBR) in some cases
where the number of processors are 8, 16, and 32.
Though Tcomm(BSLC) is the smallest among the four
methods, Ttotal(BSLC) is larger than Ttotal(BSBR) and
Ttotal(BSBRC) in denser cases due to Tcomp(BSLC).

Engine_low

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

2 4 8 16 32 64

number of processors

tim
e

 (
m

s)
Tcomp(BSBR)

Tcomm(BSBR)

Tcomp(BSLC)

Tcomm(BSLC)

Tcomp(BSBRC)

Tcomm(BSBRC)

Ttotal(BSBR)

Ttotal(BSLC)

Ttotal(BSBRC)

Figure 7. The compositing time of the BSBR, BSLC,
and BSBRC methods for Engine_low.

Head

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

2 4 8 16 32 64

number of processors

tim
e

 (
m

s)

Tcomp(BSBR)

Tcomm(BSBR)

Tcomp(BSLC)

Tcomm(BSLC)

Tcomp(BSBRC)

Tcomm(BSBRC)

Ttotal(BSBR)

Ttotal(BSLC)

Ttotal(BSBRC)

Figure 8. The compositing time of the BSBR, BSLC,
and BSBRC methods for Head.

Figures 9 and 10 show the compositing time of the
proposed methods for Engine_high and Cube. In the
sparser cases, Tcomp(BSBRC) is larger than Tcomp(BSBR)
when the number of processors is greater than 32. The
BSBRC method performs better than other methods,
especially as the bounding rectangle of a subimage is large,
but is much sparser, such as Cube. In Figure 10,
Ttotal(BSBRC) is much less than Ttotal(BSBR) in all test cases.

Ttotal(BSLC) is less than Ttotal(BSBR) when the number of
processors is less than 8.

Engine_high

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

2 4 8 16 32 64

number of processors

tim
e

(m
s)

Tcomp(BSBR)

Tcomm(BSBR)

Tcomp(BSLC)

Tcomm(BSLC)

Tcomp(BSBRC)

Tcomm(BSBRC)

Ttotal(BSBR)

Ttotal(BSLC)

Ttotal(BSBRC)

Figure 9. The compositing time of the BSBR, BSLC,
and BSBRC methods for Engine_high.

Cube

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

2 4 8 16 32 64

number of processors

tim
e

(m
s)

Tcomp(BSBR)

Tcomm(BSBR)

Tcomp(BSLC)

Tcomm(BSLC)

Tcomp(BSBRC)

Tcomm(BSBRC)

Ttotal(BSBR)

Ttotal(BSLC)

Ttotal(BSBRC)

Figure 10. The compositing time of the BSBR, BSLC,
and BSBRC methods for Cube.

5. Conclusions

In this paper we have presented three compositing
methods, the binary-swap with bounding rectangle (BSBR)
method, the binary-swap with run-length encoding and
static load-balancing (BSLC) method, and the binary-swap
with bounding rectangle and run-length encoding (BSBRC)
method, for the sort-last-sparse parallel volume rendering
system. We have implemented these three methods along
with the binary-swap method on an SP2 parallel machine
and demonstrated the performance improvements of the
proposed methods. From the experimental results, in
general, we have Ttotal(BSBRC) < Ttotal(BSBR) < Ttotal(BSLC)
< Ttotal(BS).

References

[1] J. Ahrens and J. Painter, "Efficient Sort-Last Rendering
Using Compression-Based Image Compositing," Proc. 2nd
Eurographics Workshop on Parallel Graphics &
Visualization, 1998.

[2] M. Cox and P. Hanrahan, "Pixel Merging for Object-Parallel
Rendering: a Distributed Snooping Algorithm," Proc. 1993
Parallel Rendering Symp., pp. 49-56, New York, 1993.

[3] J. D. Foley, A. van Dam, S. K. Feiner and J. F. Hughes,
"Computer Graphics: Principles and Practice Second
Edition in C," Mass.: Addison-Wesley, 1990.

[4] W. M. Hsu, "Segmented Ray Casting for Data Parallel
Volume Rendering," Proc. 1993 Parallel Rendering Symp.,
pp. 7-14, San Jose, Oct. 1993.

[5] IBM, IBM AIX Parallel Environment, Paralllel
Programming Subroutune Reference.

[6] G. Johnson and J. Genetti, " Volume Rendering of Large
Datasets on the Cray T3D," In 1996 Spring Proceedings
(Cray User Group), pp. 155-159, 1996.

[7] P. Lacroute, "Analysis of a Parallel Volume Rendering
System Based on the Shear-Warp Factorization," IEEE
Computer Graphics and Application, vol. 2, no. 3, pp. 218-
231, 1996.

[8] T. Y. Lee, C.S. Raghavendra, and J.B. Nicholas, "Image
Composition Schemes for Sort-Last Polygon Rendering on
2D Mesh Multicomputers," IEEE Transactions on
Visualization and Computer Graphics, vol. 2, no. 3, pp. 202-
217, Sep. 1996.

[9] M. Levoy, "Efficient Ray Tracing of Volume Data," ACM
Transactions on Graphics, vol. 9, no. 3, pp. 245-261, July
1990.

[10] W. E. Lorensen and H.E. Cline, "Marching Cubes: A High
Resolution 3D Surface Construction Algorithm," Computer
Graphics, vol. 21, no. 4, pp. 163-169, July 1987.

[11] K. L. Ma, J. Painter, C. Hansen, and M. Krogh, "Parallel
Volume Rendering Using Binary-Swap Compositing," IEEE
Computer Graphics and Application, vol. 14, no. 4, pp. 59-
67, July 1994.

[12] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, "A Sorting
Classification of Parallel Rendering," IEEE Computer
Graphics and Application, vol. 14, no. 4, pp. 23-32, July
1994.

[13] MPI Fourm, MPI: A Message-Passing Interface Standard,
May 1994.

[14] U. Neumann, " Volume Reconstruction and Parallel
Rendering Algorithms: A Comparative Analysis," PhD
dissertation, Dept. of Computer Science, Univ. of North
Carolina at Chapel Hill, 1993.

[15] L. A. Westover, " SPLATTING: A Parallel, Feed-Forward
Volume Rendering Algorithm," PhD dissertation, Dept. of
Computer Science, Univ. of North Carolina at Chapel Hill,
July 1991.

