Operating Systems Project: Topic 9

Implement and Evaluate a Custom Disk Scheduler

Liangsen Wang
224040364@link.cuhk.edu.cn

2026.1.27

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9

2026.1.27

1/24

Outline

@ Project Goals & Requirements
© Theory: Physics of Storage
© Kernel Mechanics: blk-mq

© Implementation Guide

© Evaluation Strategy

© Action Plan

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 2/24

Outline

@ Project Goals & Requirements

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 3/24

The Mission: Topic 9 Requirements

Objective: Implement a new |/O scheduling algorithm in the Linux blk-mq layer.

Requirement 1: Implementation

o Base: Study existing schedulers like mg-deadline or
kyber.

o Core Logic: Implement a Priority-Aware scheduler.

o Goal: High-priority tasks (e.g., DB) must preempt
low-priority tasks (e.g., Backup).

A

Requirement 2: Evaluation
@ Tool: Use fio to generate mixed workloads.

o Metrics: Throughput (IOPS), Latency (Completion
Latency), and CPU Overhead.

.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 4/24

Advanced Options

Option A: Adaptive Strategy

@ Concept: Dynamically switch logic based on workload patterns.

o Scenario: If sequential 1/O detected — Merge aggressively. If random 1/O — Dispatch
immediately.

Option B: SSD vs HDD Optimization

e HDD: Physics dictates performance (Head Movement). Sorting is crucial.

@ SSD: Internal Parallelism dictates performance. Queue depth is crucial.

@ Task: Compare your scheduler’s behavior on both device types.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 5/24

Outline

© Theory: Physics of Storage

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 6/24

Theory 1: The CPU-Disk Gap

Why do we need a scheduler at all? Why not just FIFO?

L1 Cache RAM NVMe SSD HDD
(1ns) (100ns) (100ps) (10ms)

~

Latency Scale
The Block Layer’s Job:
Hide this massive latency via
Batching, Reordering, and Merging.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27

7/24

Theory 2: HDD Physics (The Elevator Algorithm)

For Hard Drives, Seek Time dominates. Moving the mechanical arm is expensive.
Scenario: Head at 100. Requests: 900, 101.
o FIFO: 100 — 900 — 101. Total Seek: 800 +
799 = 1599 tracks.
e Elevator (Sorting): 100 — 101 — 900. Total
Seek: 1 4 799 = 800 tracks.
Conclusion: Reordering doubles performance on
HDD.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 8/24

Theory 3: SSD Physics (Internal Parallelism)

SSDs have no moving parts. Seek time is zero. However, they have multiple internal NAND Channels.
Implication:

@ Sorting by address matters less. Requests must be parallel!
@ Queue Depth matters more. You must flood
the device with requests to keep all channels ‘ SSD Controller ‘
busy.
@ Priority Scheduling is more effective here 4
because the device is fast enough to switch ’ Chann Chann‘ Channel 3‘

contexts instantly.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 9/24

Theory 4: Merging (The Silent Optimization)

Before scheduling, the kernel tries to Merge.

BIO A: Sector 100-107 (4KB) | | BIO B: Sector 108-115 (4KB) |

\ / Reduces overhead.

Increases throughput.
‘ Request: Sector 100-115 (8KB) ‘ Your scheduler receives the

Merged Request.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 10/24

Outline

© Kernel Mechanics: blk-mq

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 11/24

Mechanics 1: Evolution of the Block Layer

blk-mq (Multi-Queue)

Legacy (Single Queue) o Software Queues: One per CPU (No
@ Single Request Queue per device. locking!).
@ Protected by one Global Lock. o Hardware Queues: Mapped to device
o Bottleneck: CPU contention on multi-core channels.
systems. @ Your Scheduler: Sits between SW and HW
queues.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 12/24

Mechanics 2: blk-mq Architecture

& O & &

SW Queue 0 SW Queue 1 SW Queue 2 SW Queue 3

))))

1/0 Scheduler (Global Reordering / Merging)

HW Queue 0

Task: You implement the logic inside the Yellow Box.

HW Queue 1

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 13/24

Mechanics 3: The Request Structure

You interact with struct request.

// include/linux/blk-mq.h
struct request {
struct request_queue *q;

1

3

4 struct list_head queuelist; // Used to chain requests in your scheduler
5

6 unsigned short ioprio; // <--- YOUR FOCUS
7 // IOPRIO_PRIO_CLASS(ioprio) -> RT, BE, IDLE
8 // IOPRIO_PRIO_DATA(ioprio) =-> Level 0-7

9

10 sector_t __sector; // Target address
11 unsigned int __data_len; // Size

12

13 };

Key Idea: Extract ioprio and put the request into the correct linked list.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27

14 /24

Outline

© Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu. CSC5031 Project - Topic 9 2026.1.27 15/24

Step 1: The Design (Multi-Level Queue)

We will implement a simple Strict Priority Scheduler.

‘ High Priority (RT) ‘

1 Check Fil’st
2. If High Em

’ Normal (Best Effort) } Dispatch

51 All EmPY
| Low(idle) | '

The Risk: Starvation. If High Priority is always full, Low Priority never runs.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 16 /24

Step 2: Solving Starvation (Aging)

To make it robust (and get better grades), implement Aging.

@ Add a timestamp arrival_time to the request when inserting.

@ During dispatch, check the Low Priority list.
© If (Current Time - arrival_time) > STARVATION_LIMIT:
@ Promote the request to High Priority temporarily.

This ensures that even low-priority backups eventually complete.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 17 /24

Step 3: The Skeleton Code

Copy block/mg-deadline.c as a template.

1 struct my_data {
2 struct list_head high_prio_list;
3 struct list_head low_prio_list;

4}

6 static bool my_dispatch_request(struct blk_mg_hw_ctx *hctx) {
7 struct my_data *d = hctx->queue->elevator->elevator_data;

8 struct request *rq;

9

10 // 1. Try High Prio

11 if (!list_empty(&d->high_prio_list)) {

12 rq = list_first_entry(&d->high_prio_list,
13 list_del_init (&rq->queuelist);

14 blk_mqg_dispatch_rq_list (hctx, &list, ...);
15 return true;

16 ¥

17 // 2. Try Low Prio

18 return false;

19}

Liangsen Wang (224040364@link.cuhk.edu.cn)

CSC5031 Project - Topic 9

2026.1.27

18 /24

Step 4: Registering the Scheduler

1 static struct elevator_type my_sched = {

2 .ops = {

3 .insert_requests = my_insert_requests,
4 .dispatch_request = my_dispatch_request,
5 .next_request = my_next_request,

6 .init_sched = my_init_sched,

7 .exit_sched = my_exit_sched,

8 }:

9 .elevator_name = "my_prio_sched",

10 .elevator_owner = THIS_MODULE,

11 };

13 // In module_init:
14+ elv_register (&my_sched) ;

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 19/24

Outline

© Evaluation Strategy

Liangsen Wang (224040364@link.cuhk.edu. CSC5031 Project - Topic 9 2026.1.27 20/24

Evaluation 1: FIO Workload Design

You need to simulate contending processes. Use fio.

[globall]

» ioengine=1libaio
direct=1
size=1G
time_based
runtime=30

[database-sim]
prio=1 # High
rw=randread

[backup-sim]
prio=7 # Low
rw=read

Liangsen Wang (224040364@link.cuhk.edu.cn)

Expected Result:
@ High Prio: High IOPS, Low Latency.

o Low Prio: Low IOPS, High Latency (but
non-zero!).

CSC5031 Project - Topic 9 2026.1.27

21/24

Evaluation 2: Visualization Requirement

Generate charts to prove your scheduler works.

Latency (ms)

Low Prio (High)

High Prio (Stable)

Time

Example of expected outcome

Comparison: Run the same test on none or mq-deadline to show the difference.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27

22/24

Outline

© Action Plan

CSC5031 Project - Topic 9 2026.1.27 23/24

Summary & Roadmap

@ Compile: Build the kernel and ensure you can switch schedulers.
@ Clone: Copy ‘mg-deadline.c’ to start.
Q Implement:

o Modify struct elevator_queue to have 3 lists.
o Modify insert_requests to parse ioprio.
e Modify dispatch_request to check lists in order.

© Refine: Add Aging to prevent starvation.
@ Test: Run FIO script and plot graphs.

Resources: block/blk-mq.c, include/linux/ioprio.h

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 24 /24

	Project Goals & Requirements
	Theory: Physics of Storage
	Kernel Mechanics: blk-mq
	Implementation Guide
	Evaluation Strategy
	Action Plan

