
Operating Systems Project: Topic 9
Implement and Evaluate a Custom Disk Scheduler

Liangsen Wang

224040364@link.cuhk.edu.cn

2026.1.27

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 1 / 24



Outline

1 Project Goals & Requirements

2 Theory: Physics of Storage

3 Kernel Mechanics: blk-mq

4 Implementation Guide

5 Evaluation Strategy

6 Action Plan

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 2 / 24



Outline

1 Project Goals & Requirements

2 Theory: Physics of Storage

3 Kernel Mechanics: blk-mq

4 Implementation Guide

5 Evaluation Strategy

6 Action Plan

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 3 / 24



The Mission: Topic 9 Requirements

Objective: Implement a new I/O scheduling algorithm in the Linux blk-mq layer.

Requirement 1: Implementation
Base: Study existing schedulers like mq-deadline or
kyber.
Core Logic: Implement a Priority-Aware scheduler.
Goal: High-priority tasks (e.g., DB) must preempt
low-priority tasks (e.g., Backup).

Requirement 2: Evaluation
Tool: Use fio to generate mixed workloads.
Metrics: Throughput (IOPS), Latency (Completion
Latency), and CPU Overhead.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 4 / 24



Advanced Options

Option A: Adaptive Strategy
Concept: Dynamically switch logic based on workload patterns.
Scenario: If sequential I/O detected → Merge aggressively. If random I/O → Dispatch
immediately.

Option B: SSD vs HDD Optimization
HDD: Physics dictates performance (Head Movement). Sorting is crucial.
SSD: Internal Parallelism dictates performance. Queue depth is crucial.
Task: Compare your scheduler’s behavior on both device types.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 5 / 24



Outline

1 Project Goals & Requirements

2 Theory: Physics of Storage

3 Kernel Mechanics: blk-mq

4 Implementation Guide

5 Evaluation Strategy

6 Action Plan

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 6 / 24



Theory 1: The CPU-Disk Gap

Why do we need a scheduler at all? Why not just FIFO?

Latency Scale

L1 Cache
(1ns)

RAM
(100ns)

NVMe SSD
(100µs)

HDD
(10ms)

The Block Layer’s Job:
Hide this massive latency via

Batching, Reordering, and Merging.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 7 / 24



Theory 2: HDD Physics (The Elevator Algorithm)

For Hard Drives, Seek Time dominates. Moving the mechanical arm is expensive.
Scenario: Head at 100. Requests: 900, 101.

FIFO: 100 → 900 → 101. Total Seek: 800 +
799 = 1599 tracks.
Elevator (Sorting): 100 → 101 → 900. Total
Seek: 1 + 799 = 800 tracks.

Conclusion: Reordering doubles performance on
HDD.

Head Arm

100

101

900

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 8 / 24



Theory 3: SSD Physics (Internal Parallelism)

SSDs have no moving parts. Seek time is zero. However, they have multiple internal NAND Channels.
Implication:

Sorting by address matters less.
Queue Depth matters more. You must flood
the device with requests to keep all channels
busy.
Priority Scheduling is more effective here
because the device is fast enough to switch
contexts instantly.

SSD Controller

Channel 1Channel 2Channel 3

Requests must be parallel!

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 9 / 24



Theory 4: Merging (The Silent Optimization)

Before scheduling, the kernel tries to Merge.

BIO A: Sector 100-107 (4KB) BIO B: Sector 108-115 (4KB)

Request: Sector 100-115 (8KB)

Reduces overhead.
Increases throughput.
Your scheduler receives the
Merged Request.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 10 / 24



Outline

1 Project Goals & Requirements

2 Theory: Physics of Storage

3 Kernel Mechanics: blk-mq

4 Implementation Guide

5 Evaluation Strategy

6 Action Plan

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 11 / 24



Mechanics 1: Evolution of the Block Layer

Legacy (Single Queue)
Single Request Queue per device.
Protected by one Global Lock.
Bottleneck: CPU contention on multi-core
systems.

blk-mq (Multi-Queue)
Software Queues: One per CPU (No
locking!).
Hardware Queues: Mapped to device
channels.
Your Scheduler: Sits between SW and HW
queues.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 12 / 24



Mechanics 2: blk-mq Architecture

CPU 0

SW Queue 0

CPU 1

SW Queue 1

CPU 2

SW Queue 2

CPU 3

SW Queue 3

I/O Scheduler (Global Reordering / Merging)

HW Queue 0 HW Queue 1

Task: You implement the logic inside the Yellow Box.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 13 / 24



Mechanics 3: The Request Structure

You interact with struct request.
1 // include/linux/blk-mq.h
2 struct request {
3 struct request_queue *q;
4 struct list_head queuelist; // Used to chain requests in your scheduler
5

6 unsigned short ioprio; // <--- YOUR FOCUS
7 // IOPRIO_PRIO_CLASS(ioprio) -> RT, BE, IDLE
8 // IOPRIO_PRIO_DATA(ioprio) -> Level 0-7
9

10 sector_t __sector; // Target address
11 unsigned int __data_len; // Size
12 ...
13 };
14

Key Idea: Extract ioprio and put the request into the correct linked list.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 14 / 24



Outline

1 Project Goals & Requirements

2 Theory: Physics of Storage

3 Kernel Mechanics: blk-mq

4 Implementation Guide

5 Evaluation Strategy

6 Action Plan

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 15 / 24



Step 1: The Design (Multi-Level Queue)

We will implement a simple Strict Priority Scheduler.

High Priority (RT)

Normal (Best Effort)

Low (Idle)

Dispatch

1. Check First
2. If High Empty

3. If All Empty

The Risk: Starvation. If High Priority is always full, Low Priority never runs.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 16 / 24



Step 2: Solving Starvation (Aging)

To make it robust (and get better grades), implement Aging.

The Logic
1 Add a timestamp arrival_time to the request when inserting.
2 During dispatch, check the Low Priority list.
3 If (Current Time - arrival_time) > STARVATION_LIMIT:
4 Promote the request to High Priority temporarily.

This ensures that even low-priority backups eventually complete.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 17 / 24



Step 3: The Skeleton Code
Copy block/mq-deadline.c as a template.

1 struct my_data {
2 struct list_head high_prio_list;
3 struct list_head low_prio_list;
4 };
5

6 static bool my_dispatch_request(struct blk_mq_hw_ctx *hctx) {
7 struct my_data *d = hctx->queue->elevator->elevator_data;
8 struct request *rq;
9

10 // 1. Try High Prio
11 if (!list_empty(&d->high_prio_list)) {
12 rq = list_first_entry(&d->high_prio_list, ...);
13 list_del_init(&rq->queuelist);
14 blk_mq_dispatch_rq_list(hctx, &list, ...);
15 return true;
16 }
17 // 2. Try Low Prio ...
18 return false;
19 }
20

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 18 / 24



Step 4: Registering the Scheduler

1 static struct elevator_type my_sched = {
2 .ops = {
3 .insert_requests = my_insert_requests,
4 .dispatch_request = my_dispatch_request ,
5 .next_request = my_next_request,
6 .init_sched = my_init_sched,
7 .exit_sched = my_exit_sched,
8 },
9 .elevator_name = "my_prio_sched",

10 .elevator_owner = THIS_MODULE,
11 };
12

13 // In module_init:
14 elv_register(&my_sched);
15

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 19 / 24



Outline

1 Project Goals & Requirements

2 Theory: Physics of Storage

3 Kernel Mechanics: blk-mq

4 Implementation Guide

5 Evaluation Strategy

6 Action Plan

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 20 / 24



Evaluation 1: FIO Workload Design

You need to simulate contending processes. Use fio.

1 [global]
2 ioengine=libaio
3 direct=1
4 size=1G
5 time_based
6 runtime=30
7

8 [database-sim]
9 prio=1 # High

10 rw=randread
11

12 [backup-sim]
13 prio=7 # Low
14 rw=read
15

Expected Result:
High Prio: High IOPS, Low Latency.
Low Prio: Low IOPS, High Latency (but
non-zero!).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 21 / 24



Evaluation 2: Visualization Requirement

Generate charts to prove your scheduler works.

Time

Latency (ms)

High Prio (Stable)

Low Prio (High)

Example of expected outcome

Comparison: Run the same test on none or mq-deadline to show the difference.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 22 / 24



Outline

1 Project Goals & Requirements

2 Theory: Physics of Storage

3 Kernel Mechanics: blk-mq

4 Implementation Guide

5 Evaluation Strategy

6 Action Plan

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 23 / 24



Summary & Roadmap

1 Compile: Build the kernel and ensure you can switch schedulers.
2 Clone: Copy ‘mq-deadline.c‘ to start.
3 Implement:

Modify struct elevator_queue to have 3 lists.
Modify insert_requests to parse ioprio.
Modify dispatch_request to check lists in order.

4 Refine: Add Aging to prevent starvation.
5 Test: Run FIO script and plot graphs.

Resources: block/blk-mq.c, include/linux/ioprio.h

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 9 2026.1.27 24 / 24


	Project Goals & Requirements
	Theory: Physics of Storage
	Kernel Mechanics: blk-mq
	Implementation Guide
	Evaluation Strategy
	Action Plan

