
Operating Systems Project: Topic 8
Kernel Virtual Memory Mapping Visualizer

Liangsen Wang

224040364@link.cuhk.edu.cn

2026.1.22

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 1 / 23



Outline

1 Project Goals & Requirements

2 Theory: The Virtual Address Space

3 Kernel Mechanics: mmap Internals

4 Implementation Guide

5 Next Steps

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 2 / 23



Outline

1 Project Goals & Requirements

2 Theory: The Virtual Address Space

3 Kernel Mechanics: mmap Internals

4 Implementation Guide

5 Next Steps

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 3 / 23



The Mission: Topic 8 Requirements

Objective: Open the ”Black Box” of process address spaces. Visualize memory layout changes in
real-time.

Requirement 1: Kernel Instrumentation
Target: Intercept mmap(), munmap(), and brk()
operations.
Data: Capture start address, length, permissions
(R/W/X), and backing file.
Output: Stream this data to user space (e.g., via /proc
or debugfs).

Requirement 2: Visualization Tool
User Space: Develop a GUI (Python/Web).
Function: Read the live stream and render the process’s
Virtual Memory map dynamically.

Virtual Memory

Stack

Heap

Libs

Code

malloc

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 4 / 23



Advanced Options

Option A: Lifecycle Tracking (Fork/Exec)
Challenge: fork() duplicates the entire memory map.
Task: Visualize this ”Cloning” event. Show how Parent and Child memory maps diverge over time
(COW splits).

Option B: Page Table Walk Visualization
Challenge: VMA is logical; Page Table is physical.
Task: When a Page Fault occurs, visualize the hardware ”Walk” from PGD → PUD → PMD →
PTE to show physical allocation.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 5 / 23



Outline

1 Project Goals & Requirements

2 Theory: The Virtual Address Space

3 Kernel Mechanics: mmap Internals

4 Implementation Guide

5 Next Steps

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 6 / 23



Theory 1: The Grand Illusion (Visualized)

The Illusion: The process sees a neat, contiguous block of memory. The Reality: Data is scattered,
fragmented, and mixed with other processes.

Virtual Memory (Process A)
Logical & Contiguous

Page 0 (Code)

Page 1 (Heap)

Page 2 (Data)

Unmapped / Gap

Page N (Stack)

MMU
&

Page Table

Physical RAM
Scattered & Shared

Other Process
Frame 55 (Data)

Free
Frame 12 (Code)

Frame 99 (Stack)

Frame 4 (Heap)

Kernel Reserved

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 7 / 23



Theory 2: Standard Layout of a Linux Process

When you run a program, the OS builds a standard environment. Your visualizer should identify these
zones.

0xFFFFFF... (Kernel Space - Invisible)
Kernel Space (Protected)

Stack (Local variables)
Grows Down

Memory Mapping Segment (libs)

Heap (malloc)
Grows Up

Data / BSS (Globals)

Text (Binary Code)

0x000000...

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 8 / 23



Theory 3: Segments Explained

The Static Parts (Fixed at Load Time)
Text Segment: Read-Only, Execute. Contains
CPU instructions.
Data Segment: Read-Write. Global initialized
variables (e.g., int x = 5;).
BSS Segment: Read-Write. Global
uninitialized variables (e.g., int y;).

The Dynamic Parts (Change at Runtime)
Heap: Managed by brk(). Expands upwards
when you malloc().
Stack: Managed automatically. Expands
downwards. Holds function frames and return
addresses.
Mmap Region: Used for mmap() allocations
and shared libraries (.so files).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 9 / 23



Theory 4: The Kernel Object - vm_area_struct

To the Linux Kernel, ”Segments” are just VMAs (Virtual Memory Areas). Each VMA represents a
contiguous range of addresses with the same permissions.

0x1000 - 0x2000 (R-X) 0x3000 - 0x4000 (RW-)0x8000 - 0x9000 (RW-)

Code VMA Data VMA Stack VMA

Project Task: Your job is to intercept the creation and destruction of these struct nodes.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 10 / 23



Theory 5: Demand Paging (Virtual vs Physical)

Crucial Concept: When malloc returns, do you have physical RAM? NO. You only have a VMA (a
promise).

The Sequence:
1 malloc(1MB) calls mmap.
2 Kernel creates a VMA. Returns address.
3 App tries to write to that address.
4 CPU Exception (Page Fault)!
5 Kernel catches fault, allocates Physical Frame,

updates Page Table.
6 App resumes.

Virtual VMA Exists immediately

Physical RAM Allocated later (Lazy)

Page Fault

This project visualizes the top box (The VMA).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 11 / 23



Theory 6: VMA Types (Anonymous vs File-Backed)

Not all VMAs are the same. Your visualizer should color-code them.
1. Anonymous Mappings (Anon)

Content: Pure RAM (initialized to zero).
Used For: Heap, Stack, BSS.
Backing: Swap File (if RAM is full).
Kernel Flag: vm_file == NULL.

2. File-Backed Mappings (File)
Content: Direct view of a file on disk.
Used For: Code (.exe), Shared Libraries (.so),
Data files.
Backing: The file itself.
Kernel Flag: vm_file != NULL.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 12 / 23



Outline

1 Project Goals & Requirements

2 Theory: The Virtual Address Space

3 Kernel Mechanics: mmap Internals

4 Implementation Guide

5 Next Steps

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 13 / 23



Mechanics 1: The Memory Descriptor (mm_struct)

Every process (task_struct) points to an mm_struct. This describes the entire address space.
Key Fields in mm_struct:

mmap: Head of the VMA Linked List (for sequential
access, e.g., /proc/maps).
mm_rb: Root of VMA Red-Black Tree (for fast lookup
during Page Faults).
start_code, end_code: Boundaries of the text segment.
start_brk, brk: Boundaries of the Heap.

task_struct mm_struct

Linked List RB Tree

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 14 / 23



Mechanics 2: The Lifecycle of an mmap

What actually happens inside the kernel?
User: mmap()

Syscall: sys_mmap

Kernel: vm_mmap_pgoff

Find Free Gap?

Allocate VMA ENOMEM

Insert to RB-Tree

Yes No

<– Hook Here!
(Capture address)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 15 / 23



Outline

1 Project Goals & Requirements

2 Theory: The Virtual Address Space

3 Kernel Mechanics: mmap Internals

4 Implementation Guide

5 Next Steps

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 16 / 23



Step 1: Where to Hook?

You need to intercept VMA creation, destruction, and resizing.

Target File: mm/mmap.c
This file manages the address space layout.

Creation: Hook mmap_region() or do_mmap(). This is where ‘vm_start‘ is finalized.
Destruction: Hook do_munmap() or __vm_munmap().
Resizing: Hook do_brk() (used for small Heap allocations).

Tools: You can use tracepoints (safe) or direct source modification (flexible).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 17 / 23



Step 2: What to Log?
Inside the kernel, you have access to the vm_area_struct. Extract these fields:

1 // Pseudo-code injection in mm/mmap.c
2 struct vm_area_struct *vma = ...; // The created VMA
3

4 if (current->pid == TARGET_PID) {
5 // 1. Basic Range
6 unsigned long start = vma->vm_start;
7 unsigned long end = vma->vm_end;
8

9 // 2. Permissions (R/W/X)
10 unsigned long flags = vma->vm_flags;
11

12 // 3. Name (Backing File)
13 char *name = "anon";
14 if (vma->vm_file) {
15 name = vma->vm_file->f_path.dentry->d_name.name;
16 }
17

18 trace_printk("VMOP: ADD %lx-%lx %s\n", start, end, name);
19 }
20

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 18 / 23



Step 3: Handling the Data Stream

How do you send this data to User Space efficiently?
Approach A: printk (Simple)

Easy to implement.
Read via dmesg or /proc/kmsg.
Con: Slow, rate-limited, can drop messages if
updates are too fast.

Approach B: Netlink / RelayFS (Advanced)
Create a socket-like channel between kernel
and user.
Zero-copy or ring-buffer based.
Pro: Very fast, suitable for heavy workloads
(e.g., compiling code).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 19 / 23



Step 4: The User Space Visualizer

Architecture:
1 Target App: A dummy C program that

‘malloc‘s randomly.
2 Parser: Python script reading log stream.
3 Renderer: Matplotlib / PyGame.

Live Map (PID 1234)
Stack

Heap (10MB)

libc.so

Expanding

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 20 / 23



Step 5: What to look for?

Your tool should be able to spot these standard patterns:

1. Memory Leak
Visual: The Heap VMA (Blue) keeps growing
continuously without shrinking.
Cause: malloc without free.

2. Stack Growth
Visual: The Stack VMA (Top) expands
downwards automatically as function recursion
deepens.
Note: You don’t see ‘mmap‘ calls for stack
growth; the kernel handles Page Faults to
expand it automatically.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 21 / 23



Outline

1 Project Goals & Requirements

2 Theory: The Virtual Address Space

3 Kernel Mechanics: mmap Internals

4 Implementation Guide

5 Next Steps

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 22 / 23



Resources & Next Steps

Action Plan:
1 Explore: Run cat /proc/self/maps. This is the text output you want to visualize.
2 Trace: Use ftrace to find when mmap_region is called.
3 Code: Modify kernel to export this data.
4 Build: Write a Python script to animate the boxes.

Resources:
Understanding the Linux Kernel : Chapter 20 (The Process Address Space).
man proc: Read about the format of /proc/[pid]/maps.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 23 / 23


	Project Goals & Requirements
	Theory: The Virtual Address Space
	Kernel Mechanics: mmap Internals
	Implementation Guide
	Next Steps

