Operating Systems Project: Topic 8
Kernel Virtual Memory Mapping Visualizer

Liangsen Wang
224040364 @link.cuhk.edu.cn

2026.1.22

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 1/23



Outline

@ Project Goals & Requirements

© Theory: The Virtual Address Space
e Kernel Mechanics: mmap Internals
@ Implementation Guide

© Next Steps

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 2/23



Outline

@ Project Goals & Requirements

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 3/23



The Mission: Topic 8 Requirements

Objective: Open the "Black Box" of process address spaces. Visualize memory layout changes in

real-time.

Requirement 1: Kernel Instrumentation

o Target: Intercept mmap (), munmap (), and brk()
operations.

o Data: Capture start address, length, permissions
(R/W/X), and backing file.

o Output: Stream this data to user space (e.g., via /proc
or debugfs).

Requirement 2: Visualization Tool

o User Space: Develop a GUI (Python/Web).

@ Function: Read the live stream and render the process's
Virtual Memory map dynamically.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8

Virtual Memory

Stack

Heap (—ma\loc

Libs

Code

2026.1.22

4/23



Advanced Options

Option A: Lifecycle Tracking (Fork/Exec)

@ Challenge: fork() duplicates the entire memory map.

@ Task: Visualize this "Cloning” event. Show how Parent and Child memory maps diverge over time
(COW splits).

Option B: Page Table Walk Visualization
o Challenge: VMA is logical; Page Table is physical.

@ Task: When a Page Fault occurs, visualize the hardware "Walk” from PGD — PUD — PMD —
PTE to show physical allocation.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 5/23



Outline

© Theory: The Virtual Address Space

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 6/23



Theory 1: The Grand lllusion (Visualized)

The lllusion: The process sees a neat, contiguous block of memory. The Reality: Data is scattered,
fragmented, and mixed with other processes.

Virtual Memory (Process A) Physical RAM
Logical & Contiguous Scattered & Shared

Other Process

Frame 55 (Data)

Page 0 (Code)

Page 1 (Heap)

MMU Free
Page 2 (Data) & Frame 12 (Code)

Page Table
Frame 99 (Stack)
Frame 4 (Heap)

: Unmapped / Gap

Page N (Stack)

Kernel Reserved

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 7/23



Theory 2: Standard Layout of a Linux Process

When you run a program, the OS builds a standard environment. Your visualizer should identify these

zones.

OxFFFFFF. .. (Kernel Space - Invisible)
Kernel Space (Protected)

Stack (Local variables)i
Grows Down

Mempry Mapping Segment|(libs)

TGrows Up
Heap (malloc)

Data / BSS (Globals)
Text (Binary Code)

0x000000. ..

8/23

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22



Theory 3: Segments Explained

The Dynamic Parts (Change at Runtime)

The Static Parts (Fixed at Load Time)
o Text Segment: Read-Only, Execute. Contains
CPU instructions.
o Data Segment: Read-Write. Global initialized
variables (e.g., int x = 5;).

o BSS Segment: Read-Write. Global
uninitialized variables (e.g., int y;).

o Heap: Managed by brk(). Expands upwards
when you malloc().

@ Stack: Managed automatically. Expands
downwards. Holds function frames and return
addresses.

© Mmap Region: Used for mmap() allocations
and shared libraries (. so files).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 9/23



Theory 4. The Kernel Object - vm_area_struct

To the Linux Kernel, "Segments” are just VMAs (Virtual Memory Areas). Each VMA represents a
contiguous range of addresses with the same permissions.

0x1000 - 0%2000 (R-xko;csooo - 0x4000 (RW-koxsooo - 0x9000 (RW-)

Code VMA Data VMA Stack VMA

Project Task: Your job is to intercept the creation and destruction of these struct nodes.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 10/23



Theory 5: Demand Paging (Virtual vs Physical)

Crucial Concept: When malloc returns, do you have physical RAM? NO. You only have a VMA (a

promise).
The Sequence:

©Q malloc(1MB) calls mmap.

@ Kernel creates a VMA. Returns address.

@ App tries to write to that address.
Q@ CPU Exception (Page Fault)!

@ Kernel catches fault, allocates Physical Frame,

Virtual VMA | Exists immediately
1 Page Fault
Physical RAM | Allocated later (Lazy)

updates Page Table.

@ App resumes.
This project visualizes the top box (The VMA).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8

2026.1.22

11/23



Theory 6: VMA Types (Anonymous vs File-Backed)

Not all VMAs are the same. Your visualizer should color-code them.

1. Anonymous Mappings (Anon) 2. File-Backed Mappings (File)

o Content: Pure RAM (initialized to zero). ® Content: Direct view of a file On_dISk_'

o Used For: Heap, Stack, BSS. ° g:::fﬁ:: Code (.exe), Shared Libraries (.s0),
e Backing: Swap File (if RAM is full). . Backing_'The fle itself

© Kernel Flag: vm_file == NULL. o Kernel Flag: vm_file != NULL.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 12/23



Outline

e Kernel Mechanics: mmap Internals

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 13/23



Mechanics 1: The Memory Descriptor (mm_struct)

Every process (task_struct) points to an mm_struct. This describes the entire address space.
Key Fields in mm_struct:

o mmap: Head of the VMA Linked List (for sequential
aceess, €.g., /proc/maps). ’ task_struct }—){ mm_struct ‘

o mm_rb: Root of VMA Red-Black Tree (for fast lookup '
during Page Faults).

@ start_code, end_code: Boundaries of the text segment.

@ start_brk, brk: Boundaries of the Heap.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 14 /23



Mechanics 2: The Lifecycle of an mmap

What actually happens inside the kernel?

User: mmap ()

‘ Syscall: sys_mmap ‘

‘ Kernel: vm_mmap_pgoff ‘

Find Free Gap?

Ye
Allocate VMA

<— Hook Here!
(Capture address)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 15/23

Insert to RB-Tree ‘




Outline

@ Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu. CSC5031 Project - Topic 8 2026.1.22 16 /23



Step 1: Where to Hook?

You need to intercept VMA creation, destruction, and resizing.

Target File: mm/mmap.c

This file manages the address space layout.
@ Creation: Hook mmap_region() or do_mmap(). This is where ‘'vm_start’ is finalized.
@ Destruction: Hook do_munmap() or __vm_munmap ().

@ Resizing: Hook do_brk() (used for small Heap allocations).

Tools: You can use tracepoints (safe) or direct source modification (flexible).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 17/23



Step 2: What to Log?

Inside the kernel, you have access to the vm_area_struct. Extract these fields:

// Pseudo-code injection in mm/mmap.c
struct vm_area_struct *vma = ...; // The created VMA

if (current->pid == TARGET_PID) {

// 1. Basic Range
unsigned long start = vma->vm_start;
unsigned long end = vma->vm_end;

// 2. Permissions (R/W/X)
unsigned long flags = vma->vm_flags;

// 3. Name (Backing File)

char *name = "anon";
if (vma->vm_file) {

name = vma->vm_file->f_path.dentry->d_name.name;
}

trace_printk ("VMOP: ADD %1x-%1lx %s\n", start, end, name);

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22

18/23



Step 3: Handling the Data Stream

How do you send this data to User Space efficiently?
Approach B: Netlink / RelayFS (Advanced)

@ Create a socket-like channel between kernel
and user.

Approach A: printk (Simple)
@ Easy to implement.

® Read via dmesg or /proc/kmsg. @ Zero-copy or ring-buffer based.

o Con: Slow, rate-limited, can drop messages if

@ Pro: Very fast, suitable for heavy workloads
updates are too fast.

(e.g., compiling code).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 19/23



Step 4: The User Space Visualizer

Live Map (PID 1234)

Architecture:
© Target App: A dummy C program that X
. . ponfiing
malloc’s randomly. -
@ Parser: Python script reading log stream.
@ Renderer: Matplotlib / PyGame.
Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22

20/23



Step 5: What to look for?

Your tool should be able to spot these standard patterns:
2. Stack Growth

o Visual: The Stack VMA (Top) expands
downwards automatically as function recursion
deepens.

1. Memory Leak

o Visual: The Heap VMA (Blue) keeps growing

continuously without shrinking. ' ‘ )
@ Note: You don't see ‘mmap’ calls for stack

growth; the kernel handles Page Faults to
expand it automatically.

@ Cause: malloc without free.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 21/23



Outline

© Next Steps

CSC5031 Project - Topic 8 2026.1.22 22/23



Resources & Next Steps

Action Plan:
@ Explore: Run cat /proc/self/maps. This is the text output you want to visualize.
@ Trace: Use ftrace to find when mmap_region is called.
© Code: Modify kernel to export this data.
@ Build: Write a Python script to animate the boxes.
Resources:
e Understanding the Linux Kernel: Chapter 20 (The Process Address Space).
@ man proc: Read about the format of /proc/[pid] /maps.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 8 2026.1.22 23/23



	Project Goals & Requirements
	Theory: The Virtual Address Space
	Kernel Mechanics: mmap Internals
	Implementation Guide
	Next Steps

