Operating Systems Project: Topic 7
Copy-on-Write (COW) Optimization Study

Liangsen Wang
224040364 @link.cuhk.edu.cn

2026.1.22

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 1/18

Outline

@ Project Goals & Requirements

© Theory: The Lazy Optimization

© Kernel Mechanics: Handling the Fault

@ Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 2/18

Outline

@ Project Goals & Requirements

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 3/18

The Mission: Topic 7 Requirements

Objective: Analyze the behavior and performance of Copy-on-Write.

Requirement 1: Analysis (The "Observer")

@ Task: Measure the latency of memory copying during

COW.
. . - .
° Metrlc§. How Io.ng does a write fault take? How does it Key Question:
scale with page size?

Why copy a whole page
if | only change 1 byte?

Requirement 2: Modification (The "Hacker")

o Task: Modify the COW trigger logic.

o Example: Implement Pre-Copy (copy neighboring pages
speculatively) or Delayed Allocation.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 4/18

Advanced Options

Option A: Manual COW Trigger

@ Task: Implement a custom system call to manually trigger COW on a memory range.

@ Use Case: Snapshotting a database in user space without forking.

Option B: Huge Page COW

@ Challenge: Copying 4KB is fast. Copying 2MB (Huge Page) causes latency spikes.

@ Task: Optimize COW for Transparent Huge Pages (THP), perhaps by breaking them into 4KB
pages only when needed.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 5/18

Outline

© Theory: The Lazy Optimization

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 6/18

Theory 1: Virtual Memory Recap (The Foundation)

Before we understand COW, we must recall how memory works.
Key Concept: Indirection

@ Processes never see physical RAM directly.

@ They see Virtual Addresses (VA).
’ V)
@ The Hardware (MMU) translates VA to
Physical Address (PA) using Page Tables. MMU / Page Table \T’ Frame 55 (Shared)
Why is this important for COW?

@ Because multiple Virtual Addresses (from
different processes) can point to the Same
Physical Page.

2026.1.22 7/18

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7

Theory 2: The Power of Permissions (R/W Bits)

The Page Table does more than translation; it enforces Protection.

Page Table Entry (PTE) - 64 bits

P

R/W

u/s

Physical Frame Address ...

Present

The COW Trick:

Read/Write User/Supervisor
(Valid?) (0=R/O, 1=R/W)

@ The OS marks a page as Read-Only in the hardware (R/W = 0).
@ Even if the process thinks it has write permission logic, the hardware says NO.

o Writing to it triggers a CPU Exception (Page Fault). This is how the kernel gets notified!

Liangsen Wang (224040364@link.cuhk.edu.cn)

CSC5031 Project - Topic 7

2026.1.22 8/18

Theory 3: The Fork Problem

Historically, fork() created a Complete Duplicate of the parent’s memory.

The Naive Approach (Deep Copy):
© Parent has 1GB RAM.
Q fork() called.
© Kernel pauses Parent.
© Kernel allocates new 1GB frames.
© Kernel copies 1GB data.
O Resume.

Problem: Slow! And wasteful, because Child often
calls exec () immediately, discarding that 1GB copy.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7

P3

rent RAM——

Copy

hild RA

Expensive!

2026.1.22

9/18

Theory 4: The COW Solution

Core Concept: Sharing enables instant forking. Copying is delayed until absolutely necessary.

1. Before Write (Read-Only) 2. After Write (Split)
‘ Parent ‘ l Child ‘ ‘ Parent ‘ ’ Child ‘
}FTE(FE/E)EJ }FTE(FE/Z)}J | PTE (R/0) | | PTE (R/W) |
TTTTN T Tt e TV T TS ¥ Point to New

Phy Frame A
(Shared)

< >
Frame B
(Shared)

Copy Happened

Zero Copy Cost!

2026.1.22 10/18

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7

Outline

© Kernel Mechanics: Handling the Fault

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 11/18

Mechanics 1: The Trap

What happens when the Child tries to write to that Read-Only page? Hardware raises a Page Fault
(Exception 14 on x86).

Write
@ MMU Check

Write on R/O?

do_page_fault

Yes
The Kernel looks at the VM Area Struct (VMA).
o If VMA says "This should be writable”, but PTE says "Read-Only”, the Kernel knows: This is a
COW page.
CSC5031 Project - Topic 7 2026.1.22 12/18

Mechanics 2: The do_wp_page Function

This is the heart of COW logic in mm/memory. c.

1 // Pseudo-code mm/memory.c
2 int do_wp_page(...) {

3 old_page = vm_normal_page (vma,
© Check Reference Count: How many processes map this s00) 8
page? . if (t(old) 1) {
5 i page_count (old_page) ==
@ Case A (Count == 1): | am the last user. . 7 Rewsel
o No need to Copy! 7 make_writable(pte) 5
o Just change PTE to Read/Write. Done. ¢ 3 DRLEED);
9
@ Case B (Count > 1): Others are sharing it. o
o Allocate New Page. u // Copy!
e Copy data from old page to new page. 12 new_page = ?11°°—Page(' -5
o Update my PTE to point to New Page (R/W). " co};{au:zz;};%ghpage(new‘page ’
o Decrement count on old page. » Set_p;e_at(_ .., new_page, RW);

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 13/18

Outline

@ Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu. CSC5031 Project - Topic 7 2026.1.22 14 /18

Step 1: Locating the Code

You need to modify the memory management subsystem.

o mm/memory.c: Contains handle_pte_fault and do_wp_page. This is your main workspace.

@ include/linux/mm.h: Definitions of page flags.

Strategy for Requirement 1 (Latency Analysis):
@ Wrap the copy_user_highpage function call with timing code.
o Use ktime_get () before and after.
@ Printk the delta.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 15/18

Step 2: Measuring Latency

1 // Inside do_wp_page or wp_page_copy
> ktime_t start, end;
s64 actual_time;

start = ktime_get();

7 // The heavy operation
s copy_user_highpage (new_page, old_page, vma_addr, vma);

10 end = ktime_get();
11 actual_time = ktime_to_ns(ktime_sub(end, start));

13 printk (KERN_INFO "COW: Copy took %11d ns for PFN %lx\n",
14 actual_time, page_to_pfn(old_page));

Tip: Don't print every time! You will hang the system. Print only if latency > threshold or sample 1 in
1000 events.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 16 /18

Step 3: Implementing Pre-Copy (Idea)

Hypothesis: Spatial Locality. If | write to Page N, | will likely write to Page N + 1 soon.

Your Modification
Inside the fault handler:
@ Handle the current fault (Copy Page N).
@ Look Ahead: Check if Page N + 1 exists and is also COW-shared.
@ If yes, allocate a new frame for N + 1 and copy it now.
@ Update PTE for N + 1 to Read/Write.

Benefit: Reduces the number of Page Fault Exceptions (Traps), which are expensive. Risk: Wasted
memory if | don't actually write to N + 1.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 17 /18

Resources & Next Steps

Action Plan:
@ Setup: Compile vanilla kernel.
@ Trace: Locate do_wp_page in mm/memory.c. Add a log.
© Test: Run a program that forks and writes. Check dmesg.
@ Measure: Add timing code. Generate latency histogram.
@ Hack: Implement pre-copy logic for the next page.
Resources:
o Understanding the Linux Kernel: Chapter on Memory Addressing / Page Faults.
o Intel SDM (Software Developer Manual) Vol 3: Interrupt 14.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 18 /18

	Project Goals & Requirements
	Theory: The Lazy Optimization
	Kernel Mechanics: Handling the Fault
	Implementation Guide

