
Operating Systems Project: Topic 7
Copy-on-Write (COW) Optimization Study

Liangsen Wang

224040364@link.cuhk.edu.cn

2026.1.22

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 1 / 18



Outline

1 Project Goals & Requirements

2 Theory: The Lazy Optimization

3 Kernel Mechanics: Handling the Fault

4 Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 2 / 18



Outline

1 Project Goals & Requirements

2 Theory: The Lazy Optimization

3 Kernel Mechanics: Handling the Fault

4 Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 3 / 18



The Mission: Topic 7 Requirements

Objective: Analyze the behavior and performance of Copy-on-Write.

Requirement 1: Analysis (The ”Observer”)
Task: Measure the latency of memory copying during
COW.
Metrics: How long does a write fault take? How does it
scale with page size?

Requirement 2: Modification (The ”Hacker”)
Task: Modify the COW trigger logic.
Example: Implement Pre-Copy (copy neighboring pages
speculatively) or Delayed Allocation.

Key Question:
Why copy a whole page
if I only change 1 byte?

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 4 / 18



Advanced Options

Option A: Manual COW Trigger
Task: Implement a custom system call to manually trigger COW on a memory range.
Use Case: Snapshotting a database in user space without forking.

Option B: Huge Page COW
Challenge: Copying 4KB is fast. Copying 2MB (Huge Page) causes latency spikes.
Task: Optimize COW for Transparent Huge Pages (THP), perhaps by breaking them into 4KB
pages only when needed.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 5 / 18



Outline

1 Project Goals & Requirements

2 Theory: The Lazy Optimization

3 Kernel Mechanics: Handling the Fault

4 Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 6 / 18



Theory 1: Virtual Memory Recap (The Foundation)

Before we understand COW, we must recall how memory works.
Key Concept: Indirection

Processes never see physical RAM directly.
They see Virtual Addresses (VA).
The Hardware (MMU) translates VA to
Physical Address (PA) using Page Tables.

Why is this important for COW?
Because multiple Virtual Addresses (from
different processes) can point to the Same
Physical Page.

Proc A: 0x1000

Proc B: 0x1000

MMU / Page Table Frame 55 (Shared)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 7 / 18



Theory 2: The Power of Permissions (R/W Bits)

The Page Table does more than translation; it enforces Protection.

Page Table Entry (PTE) - 64 bits

P R/W U/S Physical Frame Address ...

Present
(Valid?)

Read/Write
(0=R/O, 1=R/W)

User/Supervisor

The COW Trick:
The OS marks a page as Read-Only in the hardware (R/W = 0).
Even if the process thinks it has write permission logic, the hardware says NO.
Writing to it triggers a CPU Exception (Page Fault). This is how the kernel gets notified!

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 8 / 18



Theory 3: The Fork Problem

Historically, fork() created a Complete Duplicate of the parent’s memory.
The Naive Approach (Deep Copy):

1 Parent has 1GB RAM.
2 fork() called.
3 Kernel pauses Parent.
4 Kernel allocates new 1GB frames.
5 Kernel copies 1GB data.
6 Resume.

Problem: Slow! And wasteful, because Child often
calls exec() immediately, discarding that 1GB copy.

Parent RAM
Copy

Child RAM

Expensive!

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 9 / 18



Theory 4: The COW Solution

Core Concept: Sharing enables instant forking. Copying is delayed until absolutely necessary.

1. Before Write (Read-Only)
Parent Child

PTE (R/O) PTE (R/O)

Phy Frame A
(Shared)

Zero Copy Cost!

WRITE
Fault

2. After Write (Split)
Parent Child

PTE (R/O) PTE (R/W)

Frame A Frame B
(Shared)

Point to New

Copy Happened

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 10 / 18



Outline

1 Project Goals & Requirements

2 Theory: The Lazy Optimization

3 Kernel Mechanics: Handling the Fault

4 Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 11 / 18



Mechanics 1: The Trap
What happens when the Child tries to write to that Read-Only page? Hardware raises a Page Fault
(Exception 14 on x86).

CPU MMU Check

Write on R/O?

Trap to OSdo_page_fault

Write

Yes

The Kernel looks at the VM Area Struct (VMA).
If VMA says ”This should be writable”, but PTE says ”Read-Only”, the Kernel knows: This is a
COW page.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 12 / 18



Mechanics 2: The do_wp_page Function

This is the heart of COW logic in mm/memory.c.

1 Check Reference Count: How many processes map this
page?

2 Case A (Count == 1): I am the last user.
No need to copy!
Just change PTE to Read/Write. Done.

3 Case B (Count > 1): Others are sharing it.
Allocate New Page.
Copy data from old page to new page.
Update my PTE to point to New Page (R/W).
Decrement count on old page.

1 // Pseudo-code mm/memory.c
2 int do_wp_page(...) {
3 old_page = vm_normal_page(vma,

...);
4

5 if (page_count(old_page) == 1) {
6 // Reuse!
7 make_writable(pte);
8 return;
9 }

10

11 // Copy!
12 new_page = alloc_page(...);
13 copy_user_highpage(new_page ,

old_page);
14 set_pte_at(..., new_page , RW);
15 }
16

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 13 / 18



Outline

1 Project Goals & Requirements

2 Theory: The Lazy Optimization

3 Kernel Mechanics: Handling the Fault

4 Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 14 / 18



Step 1: Locating the Code

You need to modify the memory management subsystem.

Key Files
mm/memory.c: Contains handle_pte_fault and do_wp_page. This is your main workspace.
include/linux/mm.h: Definitions of page flags.

Strategy for Requirement 1 (Latency Analysis):
Wrap the copy_user_highpage function call with timing code.
Use ktime_get() before and after.
Printk the delta.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 15 / 18



Step 2: Measuring Latency

1 // Inside do_wp_page or wp_page_copy
2 ktime_t start, end;
3 s64 actual_time;
4

5 start = ktime_get();
6

7 // The heavy operation
8 copy_user_highpage(new_page , old_page , vma_addr , vma);
9

10 end = ktime_get();
11 actual_time = ktime_to_ns(ktime_sub(end, start));
12

13 printk(KERN_INFO "COW: Copy took %lld ns for PFN %lx\n",
14 actual_time , page_to_pfn(old_page));
15

Tip: Don’t print every time! You will hang the system. Print only if latency > threshold or sample 1 in
1000 events.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 16 / 18



Step 3: Implementing Pre-Copy (Idea)

Hypothesis: Spatial Locality. If I write to Page N, I will likely write to Page N + 1 soon.

Your Modification
Inside the fault handler:

1 Handle the current fault (Copy Page N).
2 Look Ahead: Check if Page N + 1 exists and is also COW-shared.
3 If yes, allocate a new frame for N + 1 and copy it now.
4 Update PTE for N + 1 to Read/Write.

Benefit: Reduces the number of Page Fault Exceptions (Traps), which are expensive. Risk: Wasted
memory if I don’t actually write to N + 1.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 17 / 18



Resources & Next Steps

Action Plan:
1 Setup: Compile vanilla kernel.
2 Trace: Locate do_wp_page in mm/memory.c. Add a log.
3 Test: Run a program that forks and writes. Check dmesg.
4 Measure: Add timing code. Generate latency histogram.
5 Hack: Implement pre-copy logic for the next page.

Resources:
Understanding the Linux Kernel : Chapter on Memory Addressing / Page Faults.
Intel SDM (Software Developer Manual) Vol 3: Interrupt 14.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 7 2026.1.22 18 / 18


	Project Goals & Requirements
	Theory: The Lazy Optimization
	Kernel Mechanics: Handling the Fault
	Implementation Guide

