Operating Systems Project: Topic 6
Investigating and Tuning the Linux Buddy Allocator

Liangsen Wang
224040364 @link.cuhk.edu.cn

2026.1.20

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20

1/17

Outline

@ Project Goals & Requirements

© Theory: Fragmentation & The Buddy System

© Kernel Mechanics: Linux Implementation

@ Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 2/17

Outline

@ Project Goals & Requirements

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 3/17

The Mission: Topic 6 Requirements

Objective: Study and improve the Linux memory allocation subsystem.

Requirement 1: Observation (The "Monitor”)

@ Task: Add instrumentation to the kernel.

@ Goal: Analyze allocation patterns (e.g., how often are
Order-0 vs Order-3 pages requested?). The Challenge:

@ Output: Logs or visualizations of fragmentation. Can you find a
contiguous 4MB block

in a fragmented heap?

Requirement 2: Modification (The "Tuner")

o Task: Modify the buddy allocation strategy.

o Example: Adjust Compaction Priority (aggressiveness
of defragmentation) or fallback logic.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 4/17

Advanced Options

Option A: Adaptive Buddy System
@ Concept: Dynamically adjust behavior based on a Fragmentation Threshold.

o Logic: If fragmentation > 80%, force compaction immediately; otherwise, defer it.

A\,

Option B: Slab Allocator Comparison

o Context: Buddy manages Pages (4KB). Slab manages Objects (e.g., 512B).
@ Task: Compare performance of SLAB vs. SLUB vs. SLOB under different workloads.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20

5/17

Outline

© Theory: Fragmentation & The Buddy System

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 6/17

Theory 1: Physical Memory Basics

Before we talk about fragmentation, let's understand the raw material: Physical RAM.
The Kernel's View:

o RAM is not a byte-array; it is an array of Page
Frames. Physical RAM (4GB)

Frame 0 (Reserved)
o Standard Page Size: 4KB. Frame 1 (Kernel Code)

@ Every frame is described by a struct page L _
(32—64 bytes overhead). | FrameN (Free) | Managed by Buddy

Why not malloc()?

@ malloc is a C library function (User Space). | Frame M (Used) |

@ The Kernel needs a way to allocate memory for
itself (Page Tables, Process Descriptors).

@ Buddy Allocator is the Kernel's malloc.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 7/17

Theory 2: Orders and Powers of Two

The Buddy System speaks the language of "Orders”. It never allocates 3 pages or 5 pages. It allocates
2" pages.

Order Pages Size (4KB Base) Use Case

0 22=1 4 KB Standard User Page, small buffers
1 2l =2 8 KB Kernel Stack (sometimes)
2 22 =4 16 KB Network Packets (Jumbo Frames)
10 21 = 1024 4 MB Hugepages, Video Buffers

The Round-Up Rule

If you need 5KB (1.25 pages), the kernel gives you 8KB (Order 1). This waste is called Internal
Fragmentation.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 8/17

Theory 3: The Enemy - External Fragmentation

Definition: Total free memory is sufficient, but no single contiguous block is large enough to satisfy the

request.

Physical RAM (Total Free: 4 Units)

Used

Free

Used

Free

Used

Free (2)

A~
FAIL!

Request: 3 Contiguous Units

Result: Allocation fails even though we have enough total memory.

Liangsen Wang (224040364@link.cuhk.edu.cn)

CSC5031 Project - Topic 6

2026.1.20 9/17

Theory 4: The Buddy Algorithm

Philosophy: Split large blocks into halves. Merge halves back when both are free.

Allocation (Request 4KB):
@ Have 16KB block.
@ Split — 8KB + 8KB.
@ Split first BKB — 4KB + 4KB.
@ Return first 4KB.

Merging: When the 4K block is freed, the allocator checks its "Buddy” (neighbor). If free, they merge
back into 8K.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 10/17

Outline

© Kernel Mechanics: Linux Implementation

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 11/17

Mechanics 1: The Core Structures

Linux organizes memory into Zones (DMA, NORMAL). Each Zone has a free_area array indexed by
Order (2°7¢" pages).

Order 0 (4K) struct list_head — Page <> Page ...
Order 1 (8K) struct list_head — Page ...
Order 2 (16K) struct list_head (Empty)

. up to MAX_ORDER (11)

struct zone {
struct free_area free_area[MAX_ORDER]; // Usually 11

w N e

g

struct free_area {
struct list_head free_list[MIGRATE_TYPES];
unsigned long nr_free;

© N o o »

g

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 12 /17

Mechanics 2: Memory Compaction (Defragmentation)

When allocation fails due to fragmentation, Linux triggers Compaction.

Before: Migrate Used Pages After:
‘U‘ |U‘ |U‘ ‘ ‘U|U|UHugeFreeBloc4

The Project: You can modify when this happens (Compaction Priority) or how hard the kernel tries
before giving up (OOM).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 13/17

Outline

@ Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu. CSC5031 Project - Topic 6 2026.1.20 14 /17

Step 1: Where to Hack?

The Buddy Allocator lives in mm/.

Key File: mm/page_alloc.c

This is the Holy Grail.

@ __alloc_pages_nodemask(): The main entry point for all allocations.
@ get_page_from_freelist(): The "Fast Path” (try to get a page without waiting).
e __alloc_pages_slowpath(): The "Slow Path” (wakes up kswapd, compaction).

Data Structures
@ include/linux/mmzone.h: Defines struct zone and free_area.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 15 /17

Step 2: How to Monitor?

You need to see the "Orders” being requested.

Method A: Tracepoints (Recommended) Linux already has mm_page_alloc tracepoints. You can
hook into them or add your own printk.

1 // In __alloc_pages_nodemask (mm/page_alloc.c)
struct page *__alloc_pages_nodemask(gfp_t gfp_mask,

3 unsigned int order, ...)

a {

5 // Add your instrumentation here!

6 if (order > 0) {

7 printk (KERN_INFO "BuddyMonitor: Alloc Order %d\n", order);
8 my_fragmentation_stats.count [order]++;

9 }

10

11}

12

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 16 /17

Resources & Next Steps

Action Plan:
@ Read: mm/page_alloc.c. Understand the order parameter.

@ Instrument: Print logs every time order > 2 is requested.
@ Stress: Write a user program that mallocs weird sizes to fragment memory (or use usemem).

@ Visualize: Read logs and plot "Requested Order Distribution”.

Resources:
o Understanding the Linux Kernel: Chapter on Memory Management.

@ /proc/buddyinfo: Shows current free pages per order.

17 /17

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20

	Project Goals & Requirements
	Theory: Fragmentation & The Buddy System
	Kernel Mechanics: Linux Implementation
	Implementation Guide

