
Operating Systems Project: Topic 6
Investigating and Tuning the Linux Buddy Allocator

Liangsen Wang

224040364@link.cuhk.edu.cn

2026.1.20

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 1 / 17



Outline

1 Project Goals & Requirements

2 Theory: Fragmentation & The Buddy System

3 Kernel Mechanics: Linux Implementation

4 Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 2 / 17



Outline

1 Project Goals & Requirements

2 Theory: Fragmentation & The Buddy System

3 Kernel Mechanics: Linux Implementation

4 Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 3 / 17



The Mission: Topic 6 Requirements

Objective: Study and improve the Linux memory allocation subsystem.

Requirement 1: Observation (The ”Monitor”)
Task: Add instrumentation to the kernel.
Goal: Analyze allocation patterns (e.g., how often are
Order-0 vs Order-3 pages requested?).
Output: Logs or visualizations of fragmentation.

Requirement 2: Modification (The ”Tuner”)
Task: Modify the buddy allocation strategy.
Example: Adjust Compaction Priority (aggressiveness
of defragmentation) or fallback logic.

The Challenge:
Can you find a

contiguous 4MB block
in a fragmented heap?

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 4 / 17



Advanced Options

Option A: Adaptive Buddy System
Concept: Dynamically adjust behavior based on a Fragmentation Threshold.
Logic: If fragmentation > 80%, force compaction immediately; otherwise, defer it.

Option B: Slab Allocator Comparison
Context: Buddy manages Pages (4KB). Slab manages Objects (e.g., 512B).
Task: Compare performance of SLAB vs. SLUB vs. SLOB under different workloads.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 5 / 17



Outline

1 Project Goals & Requirements

2 Theory: Fragmentation & The Buddy System

3 Kernel Mechanics: Linux Implementation

4 Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 6 / 17



Theory 1: Physical Memory Basics

Before we talk about fragmentation, let’s understand the raw material: Physical RAM.
The Kernel’s View:

RAM is not a byte-array; it is an array of Page
Frames.
Standard Page Size: 4KB.
Every frame is described by a struct page
(32-64 bytes overhead).

Why not malloc()?
malloc is a C library function (User Space).
The Kernel needs a way to allocate memory for
itself (Page Tables, Process Descriptors).
Buddy Allocator is the Kernel’s malloc.

Physical RAM (4GB)
Frame 0 (Reserved)

Frame 1 (Kernel Code)

Frame N (Free)

Frame M (Used)

Managed by Buddy

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 7 / 17



Theory 2: Orders and Powers of Two

The Buddy System speaks the language of ”Orders”. It never allocates 3 pages or 5 pages. It allocates
2n pages.

Order Pages Size (4KB Base) Use Case

0 20 = 1 4 KB Standard User Page, small buffers
1 21 = 2 8 KB Kernel Stack (sometimes)
2 22 = 4 16 KB Network Packets (Jumbo Frames)
... ... ... ...
10 210 = 1024 4 MB Hugepages, Video Buffers

The Round-Up Rule
If you need 5KB (1.25 pages), the kernel gives you 8KB (Order 1). This waste is called Internal
Fragmentation.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 8 / 17



Theory 3: The Enemy - External Fragmentation

Definition: Total free memory is sufficient, but no single contiguous block is large enough to satisfy the
request.

Physical RAM (Total Free: 4 Units)

Used Free Used Free Used Free (2)

Request: 3 Contiguous Units

FAIL!

Result: Allocation fails even though we have enough total memory.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 9 / 17



Theory 4: The Buddy Algorithm

Philosophy: Split large blocks into halves. Merge halves back when both are free.

Allocation (Request 4KB):
1 Have 16KB block.
2 Split → 8KB + 8KB.
3 Split first 8KB → 4KB + 4KB.
4 Return first 4KB.

16K

8K

4K (Use) 4K (Free)

8K (Free)

Merging: When the 4K block is freed, the allocator checks its ”Buddy” (neighbor). If free, they merge
back into 8K.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 10 / 17



Outline

1 Project Goals & Requirements

2 Theory: Fragmentation & The Buddy System

3 Kernel Mechanics: Linux Implementation

4 Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 11 / 17



Mechanics 1: The Core Structures

Linux organizes memory into Zones (DMA, NORMAL). Each Zone has a free_area array indexed by
Order (2order pages).

Order 0 (4K)

Order 1 (8K)

Order 2 (16K)

... up to MAX_ORDER (11)

struct list_head → Page ↔ Page ...

struct list_head → Page ...

struct list_head (Empty)

1 struct zone {
2 struct free_area free_area[MAX_ORDER]; // Usually 11
3 ...
4 };
5 struct free_area {
6 struct list_head free_list[MIGRATE_TYPES];
7 unsigned long nr_free;
8 };
9

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 12 / 17



Mechanics 2: Memory Compaction (Defragmentation)

When allocation fails due to fragmentation, Linux triggers Compaction.

Before:

U U U

Migrate Used Pages After:

U U U Huge Free Block

The Project: You can modify when this happens (Compaction Priority) or how hard the kernel tries
before giving up (OOM).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 13 / 17



Outline

1 Project Goals & Requirements

2 Theory: Fragmentation & The Buddy System

3 Kernel Mechanics: Linux Implementation

4 Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 14 / 17



Step 1: Where to Hack?

The Buddy Allocator lives in mm/.

Key File: mm/page_alloc.c
This is the Holy Grail.

__alloc_pages_nodemask(): The main entry point for all allocations.
get_page_from_freelist(): The ”Fast Path” (try to get a page without waiting).
__alloc_pages_slowpath(): The ”Slow Path” (wakes up kswapd, compaction).

Data Structures
include/linux/mmzone.h: Defines struct zone and free_area.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 15 / 17



Step 2: How to Monitor?

You need to see the ”Orders” being requested.
Method A: Tracepoints (Recommended) Linux already has mm_page_alloc tracepoints. You can
hook into them or add your own printk.

1 // In __alloc_pages_nodemask (mm/page_alloc.c)
2 struct page *__alloc_pages_nodemask(gfp_t gfp_mask,
3 unsigned int order, ...)
4 {
5 // Add your instrumentation here!
6 if (order > 0) {
7 printk(KERN_INFO "BuddyMonitor: Alloc Order %d\n", order);
8 my_fragmentation_stats.count[order]++;
9 }

10 ...
11 }
12

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 16 / 17



Resources & Next Steps

Action Plan:
1 Read: mm/page_alloc.c. Understand the order parameter.
2 Instrument: Print logs every time order > 2 is requested.
3 Stress: Write a user program that mallocs weird sizes to fragment memory (or use usemem).
4 Visualize: Read logs and plot ”Requested Order Distribution”.

Resources:
Understanding the Linux Kernel : Chapter on Memory Management.
/proc/buddyinfo: Shows current free pages per order.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 6 2026.1.20 17 / 17


	Project Goals & Requirements
	Theory: Fragmentation & The Buddy System
	Kernel Mechanics: Linux Implementation
	Implementation Guide

