
Operating Systems Project: Topic 5
Implement a Custom Page Replacement Policy

Liangsen Wang

224040364@link.cuhk.edu.cn

2026.1.20

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 1 / 19



Outline

1 Project Goals & Requirements

2 Theory: Memory Management Algorithms

3 Kernel Mechanics: Linux Implementation

4 Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 2 / 19



Outline

1 Project Goals & Requirements

2 Theory: Memory Management Algorithms

3 Kernel Mechanics: Linux Implementation

4 Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 3 / 19



The Mission: Topic 5 Requirements

Objective: Modify the Linux kernel’s page replacement algorithm.

Requirement 1: Core Implementation
Task: Replace the default eviction logic.
Target: Implement Working Set or Adaptive LRU.

Requirement 2: Monitoring & UI
Tools: Use vmstat / perf to monitor faults.
Visualization: GUI displaying real-time page status.

RAM (Finite)
New

Evict
Disk

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 4 / 19



Advanced Options

Option A: Frequency-Awareness (LFU-like)
Concept: Standard LRU tracks Recency. You should track Frequency.
Why? Prevents ”Scan Pollution” (One-time read of a large file shouldn’t flush hot pages).

Option B: Comparative Analysis
Goal: Scientific Comparison.
Metrics: Hit Rate, Latency, Thrashing onset point.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 5 / 19



Outline

1 Project Goals & Requirements

2 Theory: Memory Management Algorithms

3 Kernel Mechanics: Linux Implementation

4 Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 6 / 19



Theory 1: The Memory Hierarchy

Why replace pages? Because faster memory is scarcer.

Registers

L1 / L2 Cache

Main Memory (RAM)

Disk / Swap Page Fault (ms vs ns)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 7 / 19



Theory 2: The Extremes - OPT and FIFO

Before designing your algorithm, understand the boundaries.
1. The Optimal (OPT / MIN)

Logic: Evict the page that will not be used for
the longest time in the future.
Status: Impossible to implement (requires
predicting the future).
Use: Benchmark only.

2. FIFO (First-In First-Out)
Logic: Evict the oldest page.
Fatal Flaw: Belady’s Anomaly.
Adding more RAM can actually INCREASE
page faults!

RAM Size (Frames)

Page Faults
Belady’s
Anomaly

Expected

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 8 / 19



Theory 3: Hardware Reality - The Clock Algorithm

True LRU is too expensive (moving pointers on every memory access). OS uses an approximation called
Second Chance (Clock).

The Mechanism:
Pages are arranged in a circular buffer.
Each page has a hardware Reference Bit (R).
On Access: Hardware sets R = 1.
On Eviction (The Hand scans):

If R==1: Give ”Second Chance”, set R=0, move next.
If R==0: Evict this page.

P01

P1
0

P2
1P3

0

P4 1

P5
0

P6
0 P7

1

Hand

R=1 → Keep
R=0 → Kill

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 9 / 19



Theory 4: Addressing Frequency (LFU)

LRU fails when ”History doesn’t predict Future” (e.g., Database Scans).

The Problem: Scan Pollution
Reading a 10GB file once fills all 8GB RAM with useless pages, evicting frequently used hot pages.

LFU (Least Frequently Used)
Logic: Track access_count. Evict the page
with the lowest count.
Benefit: Resistant to scans.
Implementation: Add a counter to struct
page (This is Advanced Option A).

DB Index Count: 500

Video File Count: 1Evict (Cold)

Protected

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 10 / 19



Theory 5: Thrashing

What happens if we run too many processes at once?

Multiprogramming Level

CPU Utilization

Nopt

Phase 1: Efficient
THRASHING

Paging time >
Execution time

The Definition:
Thrashing occurs when the system spends
more time paging (swapping in/out) than
executing.
Symptom: CPU utilization drops to nearly
0%, while Disk I/O goes to 100%.
The Trap: The scheduler sees low CPU usage
→ Loads more processes → Situation gets
worse.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 11 / 19



Theory 6: Preventing Thrashing (Working Set)

The Root Cause: Total size of localities > Total Physical Memory.∑
Size of Working Seti > Total RAM

Solution 1: Working Set Model (Your Project)
Track the set of pages a process is actually using
(Working Set).
Policy: If free RAM < Working Set of new process,
Suspend the process (Swap it out completely). Don’t let
it run halfway.

Solution 2: Page-Fault Frequency (PFF)
If Fault Rate > Upper Bound: Give more frames.
If Fault Rate < Lower Bound: Take back frames.

Library (Disk)
Unlimited

Small Desk (RAM)
Capacity: 3 Books

Need 5 books?
You spend all day
swapping books!

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 12 / 19



Outline

1 Project Goals & Requirements

2 Theory: Memory Management Algorithms

3 Kernel Mechanics: Linux Implementation

4 Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 13 / 19



Kernel Mechanics 1: The ”Active/Inactive” Lists

Linux uses a ”2Q” approximation of LRU to handle Scan Resistance.

Active List
(Hot Pages)

Inactive List
(Cold Pages) Swap

Deactivate (Aging)

Activate (Refault)

Reclaim

Protected from eviction Candidates for eviction

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 14 / 19



Kernel Mechanics 2: Key Structures

File: include/linux/mm_types.h

struct folio (formerly struct page)
The fundamental unit of memory.
Flags:

PG_active: Is it in the Active list?
PG_referenced: Was it touched recently?

LRU List: A linked list node connecting pages.

1 struct folio {
2 // ...
3 unsigned long flags;
4 struct list_head lru;
5 // ...
6 };
7

8 // In mm/vmscan.c
9 void shrink_active_list(...) {

10 // Logic to move pages
11 // Active -> Inactive
12 }
13

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 15 / 19



Outline

1 Project Goals & Requirements

2 Theory: Memory Management Algorithms

3 Kernel Mechanics: Linux Implementation

4 Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 16 / 19



Step 1: The Call Graph

Where exactly do you inject your code? mm/vmscan.c is the battlefield.

kswapd (Kernel Thread)

shrink_node

shrink_node_memcgs

shrink_inactive_list shrink_active_list

Your Task:
Modify logic in these two functions.
Decide WHO moves between lists.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 17 / 19



Step 2: The Visualization Pipeline

How to see inside the kernel? Use the Producer-Consumer model.

Kernel Space

vmscan.c /proc/my_stats

User Space

Python Script Graph
fprintf read()

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 18 / 19



Resources & Next Steps

Action Plan:
1 Setup: Compile a vanilla Linux kernel inside QEMU/KVM.
2 Trace: Add printk("Evicting page!") in shrink_page_list.
3 Observe: Run a memory hog and watch dmesg.
4 Modify: Change the logic (e.g., protect pages with high access counts).

Resources:
Understanding the Linux Kernel : Chapter on Page Frame Reclamation.
Source code: mm/vmscan.c, mm/rmap.c.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 19 / 19


	Project Goals & Requirements
	Theory: Memory Management Algorithms
	Kernel Mechanics: Linux Implementation
	Implementation Guide

