Operating Systems Project: Topic 5

Implement a Custom Page Replacement Policy

Liangsen Wang
224040364 @link.cuhk.edu.cn

2026.1.20

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 1/19

Outline

@ Project Goals & Requirements

© Theory: Memory Management Algorithms

© Kernel Mechanics: Linux Implementation

@ Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 2/19

Outline

@ Project Goals & Requirements

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 3/19

The Mission: Topic 5 Requirements

Objective: Modify the Linux kernel's page replacement algorithm.

Requirement 1: Core Implementation RAM (Finite)

o Task: Replace the default eviction logic. New)]

o Target: Implement Working Set or Adaptive LRU. []

v

Requirement 2: Monitoring & Ul []
Requirement 2: Monitoring & Ul____________| S

@ Tools: Use vmstat / perf to monitor faults.] E"_'Cm

o Visualization: GUI displaying real-time page status.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 4/19

Advanced Options

Option A: Frequency-Awareness (LFU-like)

@ Concept: Standard LRU tracks Recency. You should track Frequency.
@ Why? Prevents "Scan Pollution” (One-time read of a large file shouldn’t flush hot pages).

o

Option B: Comparative Analysis

@ Goal: Scientific Comparison.

@ Metrics: Hit Rate, Latency, Thrashing onset point.

.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 5/19

Outline

© Theory: Memory Management Algorithms

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 6/19

Theory 1: The Memory Hierarchy

Why replace pages? Because faster memory is scarcer.

L1 / L2 Cache

Main Memory (RAM)

Disk / Swap %ge Fault (ms vs ns)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 7/19

Theory 2: The Extremes - OPT and FIFO

Before designing your algorithm, understand the boundaries.
1. The (_)"t'mf" (OPT / M'N)_ 2. FIFO (First-In First-Out)
o Logic: Evict the page that will not be used for o Logic: Evict the oldest page.

the longest time in the future.
o Fatal Flaw: Belady’s Anomaly.

o Adding more RAM can actually INCREASE
page faults!

@ Status: Impossible to implement (requires
predicting the future).

o Use: Benchmark only.

Page Faults
Belady's

Anomaly

Expected

RAM Size (Frames)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 8/19

Theory 3: Hardware Reality - The Clock Algorithm

True LRU is too expensive (moving pointers on every memory access). OS uses an approximation called
Second Chance (Clock).

The Mechanism:

@ Pages are arranged in a circular buffer. i
an

@ Each page has a hardware Reference Bit (R). 1 N 1

@ On Access: Hardware sets R = 1. 0
@ On Eviction (The Hand scans):

o If R==1: Give "Second Chance”, set R=0, move next.

o If R==0: Evict this page. R=1 — Keep
R=0 — Kill

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 9/19

Theory 4: Addressing Frequency (LFU)

LRU fails when "History doesn't predict Future” (e.g., Database Scans).

The Problem: Scan Pollution
Reading a 10GB file once fills all 8GB RAM with useless pages, evicting frequently used hot pages.

LFU (Least Frequently Used)

@ Logic: Track access_count. Evict the page

with the lowest count. m Count: 500

o Benefit: Resistant to scans.

o Implementation: Add a counter to struct Video File suhticl (Cold)

page (This is Advanced Option A).

Protected

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 10/19

Theory 5: Thrashing

What happens if we run too many processes at once?

CPU Utilization . ere
The Definition:

@ Thrashing occurs when the system spends

i more time paging (swapping in/out) than

‘ ting.

HRASHING executing

Paging time > o Symptom: CPU utilization drops to nearly
0%, while Disk I/O goes to 100%.

@ The Trap: The scheduler sees low CPU usage
— Loads more processes — Situation gets
L Multiprogramming Level worse
Nopt .

Phase/1: Efficient

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 11/19

Theory 6: Preventing Thrashing (Working Set)

The Root Cause: Total size of localities > Total Physical Memory.
Z Size of Working Set; > Total RAM

Solution 1: Working Set Model (Your Project)

@ Track the set of pages a process is actually using
(Working Set).

o Policy: If free RAM < Working Set of new process, ey (B2)
Suspend the process (Swap it out completely). Don't let
) Need 5 books?
it run halfway. e e (VD) You spend il day

Capacity: 3 Books swapping books!

Solution 2: Page-Fault Frequency (PFF)
o If Fault Rate > Upper Bound: Give more frames.
o If Fault Rate < Lower Bound: Take back frames.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20

12/19

Outline

© Kernel Mechanics: Linux Implementation

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 13/19

Kernel Mechanics 1: The "Active/Inactive” Lists

Linux uses a "2Q" approximation of LRU to handle Scan Resistance.

Deactivate (Aging)

Active List Inactive List Reclaim ﬁ
(Hot Pages) (Cold Pages)

Protected erfor eviction

Activate (Refault)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 14 /19

Kernel Mechanics 2: Key Structures

File: include/linux/mm_types.h

struct folio (formerly struct page)
@ The fundamental unit of memory.

o Flags:
o PG_active: Is it in the Active list?

o PG_referenced: Was it touched recently?

o LRU List: A linked list node connecting pages.

Liangsen Wang (224040364@link.cuhk.edu.cn)

CSC5031 Project - Topic 5

1
2
3
4
5

6

struct folio {
/] ...

unsigned long flags;
struct list_head 1lru;
//

g

// In mm/vmscan.c

void shrink_active_list(...)
// Logic to move pages
// Active -> Inactive

2026.1.20

{

15/19

Outline

@ Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu. CSC5031 Project - Topic 5 2026.1.20 16 /19

Step 1: The Call Graph

Where exactly do you inject your code? mm/vmscan.c is the battlefield.

] kswapd (Kernel Thread) \

shrink_node

Your Task:
shrmk node memcgs Modify logic in these two functions.
/ \ Decide WHO moves between lists.
shrink__inactive I|st‘ shrmk active_list

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 17 /19

Step 2: The Visualization Pipeline

How to see inside the kernel? Use the Producer-Consumer model.

Kernel Space
fp

vmscan.c

Liangsen Wang (224040364@link.cuhk.edu.cn)

o

/proc/my_stats

User Space

[rtvon St

G

CSC5031 Project - Topic 5

2026.1.20

18/19

Resources & Next Steps

Action Plan:

© Setup: Compile a vanilla Linux kernel inside QEMU/KVM.

@ Trace: Add printk("Evicting page!") in shrink_page_list.

© Observe: Run a memory hog and watch dmesg.

@ Modify: Change the logic (e.g., protect pages with high access counts).
Resources:

o Understanding the Linux Kernel: Chapter on Page Frame Reclamation.

@ Source code: mm/vmscan.c, mm/rmap.c.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 5 2026.1.20 19/19

	Project Goals & Requirements
	Theory: Memory Management Algorithms
	Kernel Mechanics: Linux Implementation
	Implementation Guide

