
Operating Systems Project: Topic 4
Lightweight Container Implementation with Namespaces

Liangsen Wang

224040364@link.cuhk.edu.cn

2026.1.15

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 1 / 18

Outline

1 Project Goals & Requirements

2 Theory: The Evolution of Isolation

3 Kernel Mechanics: The Building Blocks

4 Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 2 / 18

Outline

1 Project Goals & Requirements

2 Theory: The Evolution of Isolation

3 Kernel Mechanics: The Building Blocks

4 Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 3 / 18

The Mission: Basic Requirements (Mandatory)

Objective: Build a ”Mini-Docker” using raw Linux System Calls.

Requirement 1: The Core (Implementation)
Constraint: No Docker/Runc. Pure C code interacting with Kernel.
Mandatory Namespaces: PID, MNT, UTS, NET, IPC.
Key Syscall: clone() with flags.

Requirement 2: The Proof (Verification)
Process View: ps aux inside must ONLY show container processes.
Identity: hostname must be independent.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 4 / 18

Advanced Options

Option A: Resource Control (Cgroups)
Goal: Limit CPU or Memory usage (e.g., Max 100MB RAM).
Mechanism: Manipulate /sys/fs/cgroup/ (cgroup v1 or v2).
Test: Launch a memory hog (malloc loop) inside the container and verify it gets killed (OOM)
without crashing the host.

Option B: Image Management (Rootfs)
Goal: Make the container look like a real OS (e.g., Alpine Linux).
Mechanism: Use pivot_root (secure) or chroot to switch the root directory to an extracted
tarball.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 5 / 18

Outline

1 Project Goals & Requirements

2 Theory: The Evolution of Isolation

3 Kernel Mechanics: The Building Blocks

4 Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 6 / 18

Theory 1: The Evolution of Deployment

Era 1: Bare Metal

App A + App B

Host OS

Hardware

Issue: Dependency Hell.
App A needs Lib v1, App B
needs Lib v2. Conflict!

Era 2: Virtual Machines
App App

GuestOS GuestOS

Hypervisor

HW

Issue: Heavy. Each App
carries a full OS kernel (GBs
of RAM).

Era 3: Containers

App App

Container Engine

Host Kernel

HW

Solution: Shared Kernel.
Lightweight isolation via
Namespaces.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 7 / 18

Theory 2: The Container Architecture Stack

”Docker” is actually a stack of tools. Where does your project fit?
1 High Level (Docker CLI / Kubernetes): Orchestration, Image downloading.
2 Container Runtime (containerd): Manages lifecycle.
3 Low-Level Runtime (runc): <– THIS IS YOUR PROJECT!

Specifically talks to the Kernel.
Sets up Namespaces and Cgroups.
Execs the user process.

4 Linux Kernel: Provides the primitives (clone, cgroups).

You are essentially building a simplified version of runc.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 8 / 18

Outline

1 Project Goals & Requirements

2 Theory: The Evolution of Isolation

3 Kernel Mechanics: The Building Blocks

4 Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 9 / 18

Mechanics 1: The Three Pillars of Containers

A container is not a single feature. It is the combination of three kernel primitives:
1. Namespaces

”What you can SEE”

Isolation

Isolation of View.
Example: ”I am PID 1.”

2. Cgroups
”What you can USE”

Limits

Limitation of Resources.
Example: ”Max 1GB RAM.”

3. UnionFS / Chroot
”Where you LIVE”

Storage

File System Jail.
Example: ”My root is here.”

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 10 / 18

Mechanics 2: Deep Dive into Namespaces (The ”Matrix”)

Namespaces partition global system resources.

Namespace Flag Effect

PID CLONE_NEWPID Processes inside get their own PIDs starting from 1. Es-
sential for init-like behavior.

Mount CLONE_NEWNS Private list of mount points. Mounting /proc here
doesn’t affect the host.

UTS CLONE_NEWUTS Independent Hostname and Domain name.
Network CLONE_NEWNET Private Loopback, IP, Ports, Routing Table.
IPC CLONE_NEWIPC Private Shared Memory segments.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 11 / 18

Mechanics 3: Kernel Implementation (nsproxy)

How does the kernel track this? Through struct nsproxy.

Every process (task_struct) points to an
nsproxy.
Normal Process: Points to the same nsproxy
as init.
Container Process: Points to a new nsproxy
with new Namespace pointers.

task_struct nsproxy

pid_ns (New)

mnt_ns (New)

Project Hint: You rely on the kernel to manage this. You just set the flags in clone().

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 12 / 18

Mechanics 4: Control Groups (Cgroups)

(Advanced Requirement) Namespaces hide processes, but they don’t stop a container from using 100%
CPU.

What are Cgroups?
A kernel feature that organizes processes into hierarchical groups and limits/monitors their resource
usage.

Interface: The Virtual Filesystem at /sys/fs/cgroup/.
How to use (Logic):

1 mkdir /sys/fs/cgroup/memory/my_container
2 echo 100M > .../memory.limit_in_bytes
3 echo [PID] > .../tasks

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 13 / 18

Mechanics 5: Changing the Root (pivot_root)

Problem: Even in a namespace, ls / shows the Host’s files. This is dangerous. Solution: We need to
change what ”/” means.

Old Way: chroot
Changes root directory for current process.
Can be escaped easily.

Modern Way: pivot_root
Swaps the mount point of / with a new
directory.
Actually unmounts the old root from the
container’s view.
More secure.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 14 / 18

Outline

1 Project Goals & Requirements

2 Theory: The Evolution of Isolation

3 Kernel Mechanics: The Building Blocks

4 Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 15 / 18

Step 1: The Engine - clone()

We don’t use fork(). We use clone() to finely control sharing.
1 #define _GNU_SOURCE
2 #include <sched.h>
3

4 // 1. Define the stack for the child (it needs its own memory)
5 char child_stack[1024 * 1024]; // 1MB Stack
6

7 // 2. Define the Flags (The "Magic")
8 // NEWPID: I am PID 1. NEWUTS: I have my own name. NEWNS: My own mounts.
9 int flags = CLONE_NEWPID | CLONE_NEWUTS | CLONE_NEWNS | SIGCHLD;

10

11 // 3. Launch
12 pid_t pid = clone(child_function,
13 child_stack + sizeof(child_stack),
14 flags,
15 NULL);
16

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 16 / 18

Step 2: Inside the Container (The Child)

Once execution enters child_function, you are isolated. Now you must setup the environment.
1 int child_function(void *arg) {
2 // A. Identity
3 sethostname("my-container", 12);
4

5 // B. Environment (CRITICAL)
6 // Unmount old proc (if propagated) and mount new proc
7 mount("proc", "/proc", "proc", 0, NULL);
8

9 // C. Life
10 // Replace this setup process with an interactive shell
11 char *args[] = {"/bin/bash", NULL};
12 execv(args[0], args);
13

14 return 0;
15 }
16

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 17 / 18

Resources & Next Steps

Action Plan:
1 Write a simple C program calling clone with just CLONE_NEWUTS.
2 Verify hostname change affects only the child.
3 Add CLONE_NEWPID and the mount logic.
4 Verify with ps aux.

Reading:
man 2 clone, man 7 namespaces.
Look at simple C container tutorials online.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 18 / 18

	Project Goals & Requirements
	Theory: The Evolution of Isolation
	Kernel Mechanics: The Building Blocks
	Implementation Guide

