Operating Systems Project: Topic 4

Lightweight Container Implementation with Namespaces

Liangsen Wang
224040364 @link.cuhk.edu.cn

2026.1.15

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15

1/18

Outline

@ Project Goals & Requirements

© Theory: The Evolution of Isolation

© Kernel Mechanics: The Building Blocks

@ Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 2/18

Outline

@ Project Goals & Requirements

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 3/18

The Mission: Basic Requirements (Mandatory)

Objective: Build a "Mini-Docker” using raw Linux System Calls.

Requirement 1: The Core (Implementation)

o Constraint: No Docker/Runc. Pure C code interacting with Kernel.
o Mandatory Namespaces: PID, MNT, UTS, NET, IPC.
o Key Syscall: clone() with flags.

Requirement 2: The Proof (Verification)

@ Process View: ps aux inside must ONLY show container processes.

o ldentity: hostname must be independent.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 4/18

Advanced Options

Option A: Resource Control (Cgroups)

@ Goal: Limit CPU or Memory usage (e.g., Max 100MB RAM).
@ Mechanism: Manipulate /sys/fs/cgroup/ (cgroup vl or v2).

@ Test: Launch a memory hog (malloc loop) inside the container and verify it gets killed (OOM)
without crashing the host.

Option B: Image Management (Rootfs)

@ Goal: Make the container look like a real OS (e.g., Alpine Linux).

@ Mechanism: Use pivot_root (secure) or chroot to switch the root directory to an extracted
tarball.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 5/18

Outline

© Theory: The Evolution of Isolation

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 6/18

Theory 1: The Evolution of Deployment

Era 2: Virtual Machines
GuestOS
Hypervisor
Era 1: Bare Metal

HW Era 3: Containers AW

PP App

I

Container Engine

Host Kernel

@ Issue: Dependency Hell.

App A needs Lib v1, App B o Issue: Heavy. Each App © Solution: Shared Kernel.
needs Lib v2. Conflict! carries a full OS kernel (GBs Lightweight isolation via
of RAM). Namespaces.
T

7/18

Theory 2: The Container Architecture Stack

"Docker” is actually a stack of tools. Where does your project fit?
@ High Level (Docker CLI / Kubernetes): Orchestration, Image downloading.
@ Container Runtime (containerd): Manages lifecycle.

@ Low-Level Runtime (runc): <— THIS IS YOUR PROJECT!

o Specifically talks to the Kernel.
o Sets up Namespaces and Cgroups.
o Execs the user process.

@ Linux Kernel: Provides the primitives (clone, cgroups).

You are essentially building a simplified version of runc.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 8/18

Outline

© Kernel Mechanics: The Building Blocks

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 9/18

Mechanics 1: The Three Pillars of Containers

A container is not a single feature. It is the combination of three kernel primitives:

1. Namespaces 2. Cgroups 3. UnionFS / Chroot
"What you can SEE” "What you can USE” "Where you LIVE”
Storage

@ Limitation of Resources. o File System Jail.
@ Example: "Max 1GB RAM"

@ Isolation of View.

@ Example: "l am PID 1. @ Example: "My root is here.”

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 10/18

Mechanics 2: Deep Dive into Namespaces (The "Matrix”)

Namespaces partition global system resources.

Namespace Flag

Effect

PID CLONE_NEWPID
Mount CLONE_NEWNS

UTS CLONE_NEWUTS
Network CLONE_NEWNET
IPC CLONE_NEWIPC

Processes inside get their own PIDs starting from 1. Es-
sential for init-like behavior.

Private list of mount points. Mounting /proc here
doesn’t affect the host.

Independent Hostname and Domain name.

Private Loopback, IP, Ports, Routing Table.

Private Shared Memory segments.

Liangsen Wang (224040364@link.cuhk.edu.cn)

CSC5031 Project - Topic 4 2026.1.15

11/18

Mechanics 3: Kernel Implementation (nsproxy)

How does the kernel track this? Through struct nsproxy.

@ Every process (task_struct) points to an

NSProxy.

@ Normal Process: Points to the same nsproxy task_struct |———3 nsprony
2s It
mnt_ns (New)

o Container Process: Points to a new nsproxy
with new Namespace pointers.

Project Hint: You rely on the kernel to manage this. You just set the flags in clone().

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 12/18

Mechanics 4: Control Groups (Cgroups)

(Advanced Requirement) Namespaces hide processes, but they don't stop a container from using 100%
CPU.

What are Cgroups?

A kernel feature that organizes processes into hierarchical groups and limits/monitors their resource
usage.

o Interface: The Virtual Filesystem at /sys/fs/cgroup/.
e How to use (Logic):

@ mkdir /sys/fs/cgroup/memory/my_container
© echo 100M > .../memory.limit_in_bytes
© echo [PID] > .../tasks

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 13/18

Mechanics 5: Changing the Root (pivot_root)

Problem: Even in a namespace, 1s / shows the Host's files. This is dangerous. Solution: We need to

change what /" means.
Modern Way: pivot_root

Old Way: chroot @ Swaps the mount point of / with a new

. directory.
@ Changes root directory for current process. y

@ Actually unmounts the old root from the

@ Can be escaped easily. container’s view

@ More secure.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 14 /18

Outline

@ Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu. CSC5031 Project - Topic 4 2026.1.15 15/18

Step 1: The Engine - clone()

We don't use fork(). We use clone() to finely control sharing.

#define _GNU_SOURCE
#include <sched.h>

1
2
3
4 // 1. Define the stack for the child (it needs its own memory)
5 char child_stack[1024 * 1024]; // 1MB Stack
6
7
8

// 2. Define the Flags (The "Magic")
// NEWPID: I am PID 1. NEWUTS: I have my own name. NEWNS: My own mounts.
o int flags = CLONE_NEWPID | CLONE_NEWUTS | CLONE_NEWNS | SIGCHLD;

11 // 3. Launch
12 pid_t pid = clone(child_function,

13 child_stack + sizeof(child_stack),
14 flags,
15 NULL) ;

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 16 /18

Step 2: Inside the Container (The Child)

Once execution enters child_function, you are isolated. Now you must setup the environment.

1 int child_function(void *arg) {

2 // A. Identity

3 sethostname ("my-container", 12);

4

5 // B. Environment (CRITICAL)

6 // Unmount old proc (if propagated) and mount new proc
7 mount ("proc", "/proc", "proc", 0, NULL);

8

9 // C. Life

10 // Replace this setup process with an interactive shell
11 char *args[] = {"/bin/bash", NULL};

12 execv(args [0], args);

13

14 return O;

15 }

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 17 /18

Resources & Next Steps

Action Plan:
@ Write a simple C program calling clone with just CLONE_NEWUTS.
@ Verify hostname change affects only the child.
© Add CLONE_NEWPID and the mount logic.
@ Verify with ps aux.
Reading:
@ man 2 clone, man 7 namespaces.

@ Look at simple C container tutorials online.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 4 2026.1.15 18 /18

	Project Goals & Requirements
	Theory: The Evolution of Isolation
	Kernel Mechanics: The Building Blocks
	Implementation Guide

